
CHAPTER 4

Paths, flows, and routing

4.1. Paths and sets of paths

One of the main themes in graph theory concerns paths joining pairs of vertices.
For example, the Hamiltonian path problem is to decide if a graph has a simple
path containing every vertex of the graph. Some diameter and distance problems
involve finding shortest paths. There are many basic problems depending on sets
of paths that are either vertex-disjoint or edge-disjoint. These path problems arise
naturally in a variety of guises, such as the study of communicating processes on
networks, data flow on parallel computers, and the analysis of routing algorithms
on VLSI chips. Some path problems appear to be quite difficult computationally.
For example, the Hamiltonian path problem is well known to be NP-complete.
The problem of finding disjoint paths between given pairs of vertices even in very
special graphs [139] is also NP-complete. Nevertheless, we will see that eigenvalue
techniques are amazingly effective in providing good solutions for a range of path
problems.

Before we proceed, we first define several types of disjoint paths that we call
flow, route set, and routing. Consider a graph G with vertex set V and edge set
E. Suppose X and Y are two equinumerous subsets of vertices of G. In general, X
and Y can be multisets and it is not necessary to require X ∩ Y = ∅.

For |X| = |Y | = m, a flow F from X to Y consists of m paths in G joining the
vertices in X to the vertices in Y . We call X the input of the flow F and Y the
output of F . Paths in F join vertices of X to vertices in Y in a one-to-one fashion,
but we do not care about “who is talking to whom.” We do care that the paths
be chosen so that no edge is overused. For example, the paths might be required
to be edge-disjoint or vertex-disjoint or with small “congestion” in the sense that
every edge (or vertex) of G is used in relatively few paths of F . We will define
“congestion” precisely later.

A route set is a flow with input-output assignments. Namely, for a specified
assignment A = {(xi, yi) : xi ∈ X, yi ∈ Y }, a route set consists of paths Pi joining
xi to yi for each i. In other words, an assignment specifies “who is talking to
whom.”

Roughly speaking, a routing R is a dynamic version of a route set. It can be
defined as a pebble game. Initially, there is a pebble pi placed at each input vertex
xi with destination yi for each of the assignments (xi, yi) in A. At each time unit,
a pebble can be moved to some adjacent vertex. The routing R is then a route
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58 4. PATHS, FLOWS, AND ROUTING

set together with a strategy for moving pebbles to their destinations. Additional
requirements can be imposed. For example, at each time unit, the edges used for
moving pebbles should be (vertex- or edge-) disjoint or all edges must have small
congestion.

Flow and routes are very useful in establishing lower bounds for Cheeger con-
stants as well as providing lower bounds for eigenvalues (see Sections 4.2 and 4.5).
Conversely, for graphs with good eigenvalue lower bounds, short routes and effec-
tive routing schemes exist with small congestion which will be described in Sections
4.3 and 4.4.

4.2. Flows and Cheeger constants

Flows are closely related to cuts as evidenced by the max flow-min cut theorem
which was used in the previous chapter. In fact, there is a direct connection between
the Cheeger constants and flow problems on graphs. Although these observations
are quite easy, we will state them here since they are useful for bounding eigenvalues.
We follow the definition for Cheeger constants hG and h′G as given in Sections 2.2
and 2.5.

Lemma 4.1. For a graph G on n vertices, suppose there is a set of
(
n
2

)
paths

joining all pairs of vertices such that each edge of G is contained in at most m
paths. Then

h′G = inf
S

|E(S, S̄)|
min(|S|, |S̄|) ≥

n

2m
.

Proof. The proof follows from the simple fact that for any set S ⊆ V with
|S| ≤ |S̄|, we have

|E(S, S̄)| ·m ≥ |S| · |S̄|
≥ |S| · n

2
.

�

As an immediate consequence, we have the following:

Corollary 4.2. For a k-regular graph G on n vertices, suppose there is a set
P of

(
n
2

)
paths joining all pairs of vertices such that each edge of G is contained in

at most m paths in P . Then the Cheeger constant hG satisfies

hG = inf
S

|E(S, S̄)|
kmin(|S|, |S̄|) ≥

n

2mk
.

By using Cheeger’s inequality in Chapter 2 and the above lower bound for the
Cheeger constant derived from a flow, we can establish eigenvalue lower bounds for
a regular graph. In fact, we can derive a better lower bound for λ1 directly from a
flow in a general graph. We first prove a simple version for a regular graph.
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Theorem 4.3. For a k-regular graph G on n vertices, suppose there is a set P
of
(
n
2

)
paths joining all pairs of vertices such that each path in P has length at most

l and each edge of G is contained in at most m paths in P . Then the eigenvalue λ1

satisfies

λ1 ≥ n

kml
.

Proof. Using the definition (1.5) of the eigenvalues, we consider the harmonic
eigenfunction f : V (G)→ R achieving λ1.

λ1 =

n
∑

{x,y}∈E(G)

(f(x)− f(y))2

k
∑
x,y

(f(x)− f(y))2

We note that for x, y ∈ V (G) and the path P (x, y) joining x and y in G, we
have

(f(x)− f(y))2 ≤ |P (x, y)|
∑

e∈P (x,y)

f2(e) ≤ l
∑

e∈P (x,y)

f2(e),

where f2(e) = (f(x) − f(y))2 for e = {x, y}, and |P (x, y)| denotes the number of
edges of G in P (x, y). Hence

m
∑

e∈E(G)

f2(e) ≥
∑
x,y

∑

e∈P (x,y)

f2(e)

≥ 1
l

∑
x,y

(f(x)− f(y))2.

Therefore we have

λ1 ≥ n

kml
.

This completes the proof of Theorem 4.3. �

For a general graph, the above theorems can be generalized as follows:

Theorem 4.4. For an undirected graph G, replace each edge {u, v} by two
directed edges (u, v) and (v, u). Suppose there is a set P of 4e2 paths such that
for each (ordered) pair of directed edges there is a directed path joining them. In
addition, assume that each directed edge of G is contained in at most m directed
paths in P . Then the Cheeger constant hG satisfies

hG = min
S

|E(S, S̄)|
min(vol S, vol S̄)

≥ vol G
2m

.

Proof. For any S ⊆ V (G), we have

m|E(S, S̄)| ≥ vol S vol S̄ ≥ vol S vol G
2

.

�
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Theorem 4.5. For an undirected graph G, replace each edge {u, v} by two
directed edges (u, v) and (v, u). Suppose there is a set P of 4e2 directed paths
such that for each (ordered) pair of directed edges there is a directed path joining
them, each of length at most l. In addition, assume that each directed edge of G is
contained in at most m directed paths in P . Then the eigenvalue λ1 satisfies

λ1 ≥ vol G
ml

.

The proof of Theorem 4.5 is very similar to that of Theorem 4.3 and will be
omitted.

We remark that Theorems 4.3 and 4.5 can be generalized in a number of ways.
For example, instead of having one path joining two vertices, we can ask for a
number of paths or weighted paths with fixed total capacities (in the spirit of the
max flow-min cut theorem). Another direction is to derive the comparison theorems
which will be discussed in Section 4.5.

4.3. Eigenvalues and routes with small congestion

In a graph G, a random walk of length l starting at a vertex v of G is a randomly
chosen sequence v = v0, v1, . . . , vl, where each vi+1 is chosen, uniformly at random
and independently, among the neighbors of vi, for i = 0, . . . , l− 1. We say that the
walk visits vi at time i.

In a graph G with λ1 > 0, a random walk starting from any vertex converges
roughly in log n

λ1
steps to the stationary distribution (if G is bipartite, we use a lazy

random walk; see Section 1.5). We will use this property to derive the following
fact.

Theorem 4.6. Let G be a graph on n vertices and suppose l ≥ logn/λ1. Sup-
pose for any v ∈ V (G) there are dv random walks of length l starting at v. For any
edge q, let I(q) denote the total number of walks containing q. Then, almost surely
(i.e., with probability tending to 1 as n tends to infinity), there is no edge q so that

I(q) > 10l.

Proof. Let P denote the transition matrix defined by

P (u, v) =
{

1/du if u and v are adjacent,
0 otherwise.

The probability that a random walk W (u) starting at u visits a vertex x at time i
is precisely ψuP i(ψx)∗ where ψy is the unit vector having 1 in coordinate y and 0
in every other coordinate. For a directed edge (u, v), the probability that a random
walk W (x) visits u at time i and v at time i+ 1 is

ψxP
iψ∗u/du.
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With dv walks starting at v, the sum of the probabilities that there exists a walk
W (x) that visits q = {u, v} is

I(q) ≤
l−1∑

i=0

∑
x

dxψxP
i(ψ∗u/du + ψ∗v/dv)

=
l−1∑

i=0

(1T )P i(ψ∗u/du + ψ∗v/dv)

where 1 denotes the all 1’s vector, T is the diagonal matrix with entries T (v, v) = dv,
and

(1T )P j = 1T.
Therefore

I(q) ≤
l−1∑

i=0

1T (ψ∗u/du + ψ∗v/dv)

= 2l.

Therefore, for each fixed v, the expectation of the random variable I(e) is no
more than l. We observe that this random variable is a sum of |E(G)| independent
indicator random variables (see, e.g., [12] Theorem A.12, page 237), and that for
each fixed edge q, the probability that I(q) exceeds, say 10l, is at most

(
(2e)9

1010
)l � 1

n3

where e here denotes the natural logarithm. Since there are at most n2 edges, it
follow that the probability that there is an edge with I(q) > 10l is much smaller
than 1

n . This completes the proof of Theorem 4.6. �

The above estimate can in fact be proved directly. Suppose there is a set of m
independent events such that the probability of the i-th event is pi. Furthermore,
suppose that

∑
pi ≤ γ. Then the probability that at least s events occur is

bounded by
∑

S⊂{1,...,m}
|S|=s

∏

i∈S
pi ≤ 1

s!
(
∑

pi)s

≤ (
γe

s
)s.

The proof of Theorem 4.6 follows by choosing γ = l and s = 10γ.

Theorem 4.7. Let G denote a graph on n vertices. Let A = {(xi, yi) : xi ∈
X, yi ∈ Y } denote any assignment such that each vertex v is in X with multiplicity
dv and in Y with multiplicity dv. Then there are paths Pi joining xi to yi of length
at most 2

λ1
log n such that each edge of G is contained in at most 20

λ1
log n paths Pj.

Proof. Let Pi denote a random walk of length 2l between xi and yi where
l ≈ log n

λ1
. Using an argument of Valiant in his work on parallel routing [245] (also

see [40]), we may assume that each walk consists of two random walks of length
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l, one starting from xi and the other from yi. The reason for this is that by our
eigenvalue condition, the distribution of the random walk of length l is close to
its stationary distribution and hence one may view the walk Pi as being chosen
by first choosing its middle point (according to the stationary distribution) and
then choosing its two halves. The proof of Theorem 4.7 then follows from Theorem
4.6. �

The above proofs for Theorem 4.6 and 4.7 were adapted from the following
simpler version for regular graphs in [7]:

Theorem 4.8. Let G denote a k-regular graph on n vertices. Let π denote
a permutation of the vertices of G. Then there are paths Px joining x to π(x) of
length at most 2

λ1
log n such that each edge of G is contained in at most 20

kλ1
logn

paths Py.

4.4. Routing in graphs

In this section, we consider a simple (though fundamental) problem of the
following type: Suppose we are given a connected graph G with vertex set V and
edge set E. Initially, each vertex v of G is occupied by a unique marker or “pebble”
pv. To each pebble pv is associated a destination vertex π(v) ∈ V , so that distinct
pebbles have distinct destinations. Pebbles can be moved to different vertices of G
according to the following basic procedure: At each step a disjoint collection of edges
of G is selected and the pebbles at each edge’s two endpoints are interchanged. Our
goal is to move or “route” the pebbles to their respective destinations in a minimum
number of steps.

We will imagine the steps occurring at discrete times, and we let pv(t) ∈ V
denote the location of the pebble with initial position v at time t = 0, 1, 2, . . . .
Thus, for any t, the set {pv(t) : v ∈ V } is a permutation of V . We will denote our
target permutation that takes v to π(v), v ∈ V , by π. Define rt(G, π) to be the
minimum possible number of steps to achieve π. Finally, define rt(G), the routing
number of G, by

rt(G) = max
π

rt(G, π)

where π ranges over all destination permutations on G. (Sometimes we will also
call π a routing assignment.)

In more algebraic terms, the problem is simply to determine for G the largest
number of terms τ = (u1v1)(u2v2) · · · (urvr) ever required to represent any per-
mutation in the symmetric group on n = |V | symbols, where each permutation τ
consists of a product of disjoint transpositions (ukvk) with all pairs {uk, vk} required
to be edges of G.

To see that rt(G) always exists, let us restrict our attention to some spanning
subtree T of G. It is clear that if p has destination which is a leaf of T , then we
can first route p to its destination u, and then complete the routing on T \ {u} by
induction.



4.4. ROUTING IN GRAPHS 63

An obvious lower bound on rt(G) is the following:

rt(G) ≥ D(G)

where D(G) denotes the diameter of G.

For Pn a path on n vertices, our routing problem reduces to a well studied
problem in parallel sorting networks, the so-called odd-even transposition sort (see
[174] for a comprehensive survey). In this case, it can be shown that rt(Pn) = n
for n ≥ 3. In fact, any permutation π on Pn can be sorted in n steps by labelling
consecutive edges in Pn as e1, e2, . . . , en−1 and only making interchanges with even
edges e2k on even steps and odd edges e2k+1 on odd steps.

Let Kn denote the complete graph on n vertices. In this case, because Kn is
so highly connected, the routing number of Kn is as small as one could hope for
(see [7]):

rt(Kn) = 2.

For the complete bipartite graph Kn,n with n ≥ 3, the following result is due to
Wayne Goddard [142].

rt(Kn,n) = 4.

For any tree Tn on n vertices, it was proved in [7] that

rt(Tn) < 3n.

However, the correct value of the constant may be half as large, as suggested by
the following:

Conjecture. For any tree Tn on n vertices,

rt(Tn) ≤ b3(n− 1)
2

c.
Furthermore, equality holds only when Tn is a star Sn on n vertices.

We remark that Louxin Zhang [255] has proved an asymptotical version of the
above conjecture by showing rt(Tn) = 3n/2 +O(log n).

The following result on routing on the hypercube can be traced back to the
early work of switching networks (see Benĕs [20]) and has appeared frequently in
the literature on parallel computing:

rt(Qn) ≤ 2n− 1.

The exact value of rt(Qn) is still unknown. It is easy to see that rt(Qn) ≥ n
since the diameter of Qn is n. For small cases, it can be checked that rt(Qn) ≥ n+1
for n = 2, 3.

Problem: Is it true that for the n-cube Qn,

rt(Qn) = n+ o(n) ?

Perhaps, rt(Qn) = n+ o(n) for all sufficiently large n.



64 4. PATHS, FLOWS, AND ROUTING

For the m by n grid graph Pm × Pn, m ≤ n,

rt(Pm × Pn) ≤ 2m+ n.

In general, for the cartesian product of two graphs, we have [7, 179]

rt(G×G′) ≤ 2rt(G) + rt(G′).

Note that since G × G′ and G′ × G are isomorphic graphs, this can be written in
the symmetric form

rt(G×G′) ≤ min{2rt(G) + rt(G′), 2rt(G′) + rt(G).}
Problem: Is it true that for every connected graph G,

rt(G×G) ≥ rt(G) ?

From the above results and partial results, we can see that the problem of de-
termining the routing number is quite difficult even for very special graphs. It is
indeed surprising in a way that by using eigenvalues we can get very good approx-
imations for the routing number problem. The following arguments are basically
adapted from [7]. In the remaining part of this section, we assume G is a regular
graph.

Theorem 4.9. Let G be a regular graph on n vertices and suppose l ≥ logn/λ1.
For each v ∈ V , independently, let W (v) denote a random walk of length l starting
at v. Let I(v) denote the total number of other walks W (u) such that there exists
a vertex x and two indices 0 ≤ i, j ≤ l, |i− j| < 5, so that W (v) visits x at time i
and W (u) visits x at time j. Then, almost surely (i.e., with probability tending to
1 as n tends to infinity), there is no vertex v so that I(v) > 100l.

The proof is very similar to that of Theorem 4.6 and is omitted.

Theorem 4.10. Let G denote a regular graph on n vertices and let σ be a
permutation of order two on V (i.e., a product of pairwise disjoint transpositions).
Put l = 10

λ1
logn. Then there is a set of n walks W (v), v ∈ V , each of length

2l, where both W (v) and W (σ(v)) connect v and σ(v) and traverse the same set
of edges (in different directions) satisfying the following: If I(v) denotes the total
number of other walks W (u) such that there exists a vertex x and two indices
0 ≤ i, j ≤ l, |i− j| < 5, so that W (v) visits x at time i and W (u) visits x at time
j or at time 2l − j, then I(v) ≤ 400l for all v.

Theorem 4.11. Let σ denote a permutation on the vertex set of G. Then

rt(G, σ) = O(
1
λ1

log2 n).

Proof. Let G denote a regular graph on n vertices. It suffices to consider a
permutation σ of order two on V since any permutation is a product of at most
two such permutations (as proved in the proof of rt(Kn) = 2; also see [7]). We
set l = 10

λ1
log n. We want to show that rt(G, σ) = O(l2). Let W (v) be a system of

walks of length 2l satisfying the assumptions of the previous theorem. Let H be
the graph whose vertices are the walks W (v) in which W (u) and W (v) are adjacent
if there exists a vertex x and two indices 0 ≤ i, j ≤ l, |i − j| < 5 so that W (v)
visits x at time i and W (u) visits x at time j or at time 2l− j. Then the maximum
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degree of H is O(l) and hence it is O(l)-colorable. It follows that one can split all
our paths W (v) into O(l) classes of paths such that the paths in each class are not
adjacent in H. Consider now the following routing algorithm. For each set of paths
as above, perform 2l steps, where the steps numbered i and 2l + 1 − i correspond
to flipping the pebbles along edges numbered i and 2l + 1− i in each of the paths
in the set for all 1 ≤ i ≤ l. One can check that by the end of these 2l steps, the
ends of each path exchange pebbles, and all the other pebbles stay in their original
places. (Note that some pebbles that are not at the ends of any of the paths may
move several times during these steps, but the symmetric way these are performed
guarantees that such pebbles will return to their original places at the completion
of the 2l steps.) By repeating the above procedure for all the path-classes, the
result follows. �

We mention here several problems closely related to the routing number of a
graph. One such problem is the following:

Suppose G = (V,E) is a connected graph on n vertices. For a permutation π,
we consider a route set P , which is just some set of paths Pi joining each vertex vi
to its destination vertex π(vi), for i = 1, . . . , n. For each edge e of G, we consider
the number rc(e,G, π, P ) of paths Pi in P which contain e. The route covering
number rc(G) of G is defined to be

rc(G) = max
π

min
P

max
e∈E

rc(e,G, π, P ).

In other words, for each permutation we want to choose the route set so that
the maximum number of occurrences of any edge in the paths of the route set is
minimized.

For example, for the n-cube Qn, the method [7] used to establish the route set
gives

rc(Qn) ≤ 4.

In the other direction, by choosing π to be the permutation of vertices in Qn so
that the distance between v and π(v) is n for every vertex v, it can be easily seen
that

rc(Qn) ≥
∑
v d(v, π(v))
|E(Qn)| = 2.

Conjecture:

rc(Qn) = 2.

Also of interest is a “symmetric” version of the route covering problem, espe-
cially for Qn :

A pairing for Qn is a partition of the vertex set of Qn into subsets of size 2. Is
it possible to find edge-disjoint paths joining vertices of each pair for any pairing
of Qn ?

The answer is negative when n is even. However, for odd n this problem remains
open.
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4.5. Comparison theorems

We can often bound the eigenvalues of one graph by the eigenvalues of another
provided pairs of adjacent vertices in the first graph can be joined by “short” paths
in the second graph. Although the proofs for these comparison theorems are quite
easy, the applications are abundant. Interesting examples along this line are given in
Diaconis and Stroock [103] and numerous other papers [98, 99, 124] for comparing
various different card shuffling schemes. We remark that the comparison theorems
in this section can be viewed as generalized versions of the so-called “Poincaré”
inequalities [103].

Theorem 4.12. Let G and G′ be two connected regular graphs, with eigenvalues
λ1 and λ′1 and degrees k and k′, respectively. Suppose that the vertex set of G is
the same as the vertex set of G′. We assume that for each edge {x, y} in G, there
is a path P (x, y) in G′ joining x and y of length at most l. Furthermore, suppose
that every edge in G′ is contained in at most m paths P (x, y). Then we have

λ′1 ≥
kλ1

k′lm
.

Proof. Using the definition of the eigenvalues, we consider the harmonic eigen-
function f achieving λ1 in G′.

λ′1 =

∑

{x,y}∈E(G′)

(f(x)− f(y))2

k′
∑

f2(x)

=

k
∑

{x,y}∈E(G′)

(f(x)− f(y))2

k′
∑

{x,y}∈E(G)

(f(x)− f(y))2
·

∑

{x,y}∈E(G)

(f(x)− f(y))2

k
∑

f2(x)

We note that for {x, y} ∈ E(G) and path P (x, y) joining x and y in G′, we
have

(f(x)− f(y))2 ≤ |P (x, y)|
∑

e∈P (x,y)

f2(e) ≤ l
∑

e∈P (x,y)

f2(e)

where f2(e) = (f(x) − f(y))2 for e = {x, y}, and |P (x, y)| denotes the number of
edges of G′ in P (x, y). Hence

m
∑

e∈E(G′)

f2(e) ≥
∑

{x,y}∈E(G)

∑

e∈P (x,y)

f2(e)

≥ 1
l

∑

{x,y}∈E(G)

(f(x)− f(y))2.



4.5. COMPARISON THEOREMS 67

Therefore we have

λ′1 ≥ k

k′lm
·

∑

{x,y}∈E(G)

(f(x)− f(y))2

∑
f2(x)k

≥ k

k′lm
λ1.

This completes the proof of Theorem 4.12. �

It is not surprising that the above proof is quite similar to some of those in
Section 4.2. There are several generalizations of Theorem 4.12.

Theorem 4.13. Let G and G′ be two connected graphs, with eigenvalues λ1

and λ′1, respectively. Suppose that the vertex set of G is the same as the vertex set
of G′. Assume that for each edge {x, y} in G, there is a path P (x, y) in G′ of length
at most l, and for each vertex v, the degree dv of v in G is at least ad′v, where d′v
is the degree of v in G′. Furthermore, suppose every edge in G′ is contained in at
most m paths P (x, y). Then we have

λ′1 ≥
aλ1

lm
.

Instead of proving Theorem 4.13, we will prove the following generalization:

Theorem 4.14. Let G and G′ be two connected graphs, with eigenvalues λ1

and λ′1, respectively. Suppose that the vertex set of G can be embedded into the
vertex set of G′ under the mapping ϕ : V (G) → V (G′). Suppose ϕ satisfies the
following conditions for fixed positive values a, l,m:

(a): Each edge {x, y} in E(G) is associated with a path, denoted by P (x, y),
joining ϕ(x) to ϕ(y) in G′ of length at most l.

(b): Let dv, d′v denote the degrees of v in G and in G′, respectively. For any
v in V (G′), we have

∑

x∈ϕ−1(v)

dx ≥ ad′v.

(c): Each edge in G′ is contained in at most m paths P (x, y).

Then we have

λ′1 ≥
aλ1

lm
.

Proof. The proof is very similar to that of Theorem 4.12. For a harmonic
eigenfunction g of G′, we define f : V (G)→ R as follows: For a vertex x in V (G),

f(x) = g(ϕ(x))− c
where the constant c is chosen to satisfy

∑
x

f(x)dx = 0.



68 4. PATHS, FLOWS, AND ROUTING

We note that
∑

x∈V (G)

f2(x)dx =
∑

x∈V (G)

(g(ϕ(x))− c))2dx

=
∑

v∈V (G′)

(g(v)− c)2
∑

ϕ−1(v)=x

dx

≥ a
∑

v∈V (G′)

(g(v)− c)2d′v.(4.1)

Now, for {x, y} ∈ E(G) with ϕ(x) = u, ϕ(y) = v, let P (x, y) denote the path
corresponding to {x, y} joining u and v in G′. We have

(g(u)− g(v))2 ≤ |P (x, y)|
∑

e∈P (x,y)

g2(e) ≤ l
∑

e∈P (x,y)

g2(e),

where g2(e) = (g(a)− g(b))2 for e = {a, b}. Hence we have

m
∑

e∈E(G′)

g2(e) =
∑

e∈E(G′)

mg2(e)

≥
∑

{x,y}∈E(G)

∑

e∈P (x,y)

g2(e)

≥
∑

{x,y}∈E(G)

∑

u=ϕ(x)
v=ϕ(y)

1
l
(g(u)− g(v))2

≥ 1
l

∑

{x,y}∈E(G)

(f(x)− f(y))2.(4.2)

Combining inequalities (4.1),(4.2), we have

λ′1 = sup
t

∑

{u,v}∈E(G′)

(g(u)− g(v))2

∑

v∈V (G′)

(g(v)− t)2d′v

≥

∑

{u,v}∈E(G′)

(g(u)− g(v))2

∑

v∈V (G′)

(g(v)− c)2d′v

=

∑

{u,v}∈E(G′)

(g(u)− g(v))2

∑

{x,y}∈E(G)

(f(x)− f(y))2
·

∑

{x,y}∈E(G)

(f(x)− f(y))2

∑

x∈V (G)

f2(x)dx
·

∑

x∈V (G)

f2(x)dx

∑

v∈V (G′)

(g(v)− c)2d′v

≥ 1
ml
·

∑

{x,y}∈E(G)

(f(x)− f(y))2

∑

x∈V (G)

f2(x)dx
· a.
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Since ∑
x

f(x)dx = 0,

we have
∑

{x,y}∈E(G)

(f(x)− f(y))2

∑

x∈V (G)

f2(x)dx
≥ λ1.

Hence

λ′1 ≥
a

ml
λ1

and the proof of Theorem 4.14 is complete. �

We remark that Theorems 4.3 and 4.5 in Section 4.2 are just special cases
of Theorem 4.14 in which G is taken to be a complete graph and G′ is chosen
arbitrarily.

We also remark that the generalized version in Theorem 4.14 can often give
stronger results for certain problems. For example, we consider the following simple
and natural random walk problem on generating sets of groups which arises in
computational group theory.

Example 4.15. Let H denote a graph on n vertices each of which is labelled by
an element of a group Γ. At each unit of time, one of the vertices, say v with label
g, can be changed to gf where f or f−1 is a label of a neighbor u of v. Suppose
we start with the case that the set of all vertex labels generates the group Γ. The
problem of interest is to determine how rapidly this processes mixes, i.e., how many
steps it requires to be close to a “random” generating set.

By using Theorem 4.14, we can obtain an upper bound of the form cDn2,
where c depends only on the size of Γ, and D denotes the diameter of H (see [70]).
Similar bounds have also been obtained by Diaconis and Saloff-Coste in [102] using
more complex comparison techniques. However, all of these bounds are rather far
from what is believed to be the truth, namely, that order n logn steps (under total
variation distance). In [71], it is proved that in fact this bound is achieved for the
case that H = Z2. Interestingly, for relative pointwise distance, O(n2) is proved to
be the correct bound [71].

Notes

Path arguments were used early on to compute isoperimetric constants of a
graph. For example, in the early work of Bhatt and Leighton [24] on VLSI design
and parallel computation, path arguments were extensively utilized. Jerrum and
Sinclair [165] used path arguments to bound the Cheeger constant in order to
bound the eigenvalues in their seminal work of estimating permanents. Diaconis
and Stroock [103] used path arguments to directly bound eigenvalues.
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Sections 4.3 and 4.4 on paths and routing are mainly based on [7]. Some
variations of the comparison theorems in Sections 4.2 and 4.5 can be found in [70].




