
Safe Hypothesis Tests for the 2× 2
Contingency Table

Reuben Adams (4939034)

Supervisors: Peter Grünwald, Joris Bierkens

A thesis submitted to the department of Statistics, TU Delft, in
partial fulfillment of the requirements for the degree of MSc Applied

Mathematics



Abstract

Safe hypothesis tests are tests that are robust under accumulation bias, namely when there are depen-
dencies between the results of previous studies and the decision whether to conduct further studies.
We construct two types of safe test for the 2× 2 contingency table, the conditional and unconditional
safe tests. In general safe tests are given by an information projection that may be difficult to com-
pute. The conditional tests we construct however are given either in explicit form or implicitly via a
defining equation. The same can be said of many of the unconditional tests we construct, for which
we prove a number of theoretical results enabling their quick calculation when not given explicitly.
The method we develop to accomplish this may perhaps be used to identify optimal safe tests in many
other scenarios.
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Notation

KL(P ||Q) The Kullback–Leibler divergence between the distributions P and Q

kl(p||q) The Kullback–Leibler divergence between two Bernoulli distributions with pa-
rameters p and q respectively

Θ The parameter set
Θ0,Θ1 The null and alternative parameter sets respectively
W(A) The set of all distributions on a given set A
E(Θ0) The set of all S-values defined with respect to the null parameter set Θ0

For 2 × 2 contingency tables in particular, we also use the following notation.

θa, θb
The probability of observing a 1 in group a or b respectively under the alter-
native hypothesis

θLa , θ
U
a The lowest and highest values of θa permitted under the prior knowledge

θLb , θ
U
b The lowest and highest values of θb permitted under the prior knowledge

PKR [θLa , θ
U
a ] × [θLb , θ

U
b ], the prior knowledge rectangle

θ0(p) (p, p), where p ∈ [0, 1]

Θ0 {θ0(p) : p ∈ [0, 1]}
Θ′0 Θ0 ∩ PKR, the restricted null parameter set for the given PKR
I0
PKR [max{θLa , θLb },min{θUa , θUb }], namely the p ∈ [0, 1] such that θ0(p) ∈ Θ′0

Θ1 {(θa, θb) ∈ [0, 1]2 : θb ≥ θa}
Θ′1 Θ1 ∩ PKR, the restricted alternative parameter set for the given PKR

δ = δ(θa, θb) θb − θa, the risk difference for the given (θa, θb)

λ = λ(θa, θb) θb/θa, the relative risk for a given (θa, θb) (also called the risk ratio)

ψ = ψ(θa, θb)
θb

1−θb
1−θa
θa

, the odds ratio for a given (θa, θb) (for conditional S-values, we will
occasionally specify values of ψ without reference to a specific (θa, θb))

Θ1(δ) {(θa, θb) ∈ Θ1 : δ(θa, θb) ≥ δ} for the given risk difference threshold δ
Θ1(λ) {(θa, θb) ∈ Θ1 : λ(θa, θb) ≥ λ} for the given relative risk threshold λ
Θ1(ψ) {(θa, θb) ∈ Θ1 : ψ(θa, θb) ≥ ψ} for the given odds ratio threshold ψ

Θ1(ε)
Used to denote either Θ1(δ), Θ1(λ) or Θ1(ψ) when it is not specified which is
the parameter of interest

Θ1(ε)′ Θ1(ε) ∩ PKR for the given PKR
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Chapter 1

Introduction

1.1 The need for a new type of statistical hypothesis test

Suppose we wish to know whether a novel drug is effective in treating a particular condition. A clinical
trial with 100 patients may be conducted in which 50 are randomly selected to receive the drug while
the remaining 50 receive the placebo, and the number of patients in each group making a recovery
within one year being recorded. Suppose, at the conclusion of the trial, 38 of the patients who received
the drug recovered, while 32 of the patients who received the placebo recovered. Clearly this is evidence
in favour of the hypothesis that the drug is more effective than the placebo, but is it sufficient evidence
to be conclusive? Or perhaps the result is only suggestive and further trials should be conducted before
prescribing the drug.

Statistical hypothesis tests are methods that can be used to quantify evidence in order to more
objectively determine the degree of certainty one should place in either of two opposing hypotheses,
referred to as the null and alternative hypotheses. In the case of the clinical trial, the null hypothesis
is that the drug is only as effective as the placebo, while the alternative hypothesis is that it is more
effective than the placebo. While hypothesis tests come in a number of forms, they broadly fit into
two methodologies; Frequentist and Bayesian.

Frequentists generally quantify evidence by asking the following question: “If the null hypothesis is
indeed true and we repeat the trial in identical manner, what is the probability that we will get evidence
at least as extreme as we obtained the first time round?” This probability is called a p-value. If the
calculated p-value is very small, this means that the evidence we in fact observed was quite unlikely to
occur under the null hypothesis, meaning the null hypothesis is likely to be false. A commonly used
threshold is p = 0.05, where the null hypothesis is deemed to be false (or is ‘rejected’) if and only if
the p-value is less than 0.05.

Bayesians, on the other hand, first attempt to quantify their prior credence in each of the hypotheses
before seeing any data. Their prior belief in the odds of the alternative versus the null hypothesis is
referred to as the ‘prior odds’. The evidence is then used to update the ‘prior odds’ to ‘posterior odds’,
namely the odds of the alternative versus the null hypothesis after observing the evidence. This is done
by using Bayes’ rule, which, informally, allows one to calculate the probability of each hypothesis after
seeing the evidence, provided one has access to the probabilities that each hypothesis would produce
the observed evidence were it true.

There is a long history of disagreement among statisticians about whether the Frequentist or the
Bayesian approach is correct. While the methods are not wholly incompatible, they are underpinned
by fundamentally different philosophies. Since both are frequently used, this is problematic for the
meta-analyst wishing to combine the results of many different trials that may have been analysed using
both Frequentist and Bayesian methods.

Safe hypothesis testing is a new method of statistical inference developed by Grünwald et al. [5]
that, while developed from a Frequentist framework, permits the construction of hypothesis tests with
both Frequentist and Bayesian interpretations. Thus, statisticians of both schools can use these tests
in accordance with their own private philosophies, but in a way that is still straightforward to translate
and reinterpret.
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A further, significant, advantage of safe hypothesis tests is that they are unaffected by accumulation
bias. To explain this, suppose a meta-analyst working for a pharmaceutical company has an incentive
to show that a particular drug is effective. If the evidence so far does not look sufficiently convincing,
the meta-analyst may decide to wait for more results before ‘cashing out’ and conducting the meta-
analysis. Since trials inherently involve an element of randomness, this choice in timing means there
are more chances for the cumulative evidence to look convincing. In this way, the meta-analyst can
increase the probability that the evidence will look convincing at the time of the analysis. This is
clearly a form of bias and is one aspect of ‘accumulation bias’. Safe tests, by their construction, are
impossible to ‘game’ in this way; they are safe under optional continuation.

One of the most commonly encountered situations in which a statistical test is required is that of
determining whether there is a connection between two binary variables. In a clinical trial for example,
we want to know whether there is a connection between whether the patient receives the drug or the
placebo and whether the patient recovers or not. Tests in these scenarios are referred to as 2 × 2
contingency table tests. In this thesis we construct safe versions of such tests. For an outline of the
thesis and our contributions, see section 1.5.

1.2 The importance of full knowledge of the experimental procedure

For a statistical experiment, the p-value is defined as the probability of obtaining data at least as
extreme as the data actually observed. From this definition it is clear that in order to calculate the
p-value, the exact details of the experimental procedure that produced the results must be known. To
see how things can go wrong if this knowledge cannot be obtained in full, suppose we are told that
a coin was tossed n = 100 times came up heads m = 59 times and that we want to use this data to
test whether the coin is biased in favour of heads. Let q be the true probability of the coin coming up
heads. Denote the null hypothesis that the coin is fair by H0 : q = 1/2 and the alternative hypothesis
that the coin is biased in favour of heads by H1 : q > 1/2, and suppose we pick significance level
α = 0.05. Let M be the number of heads, so that under the null hypothesis M ∼ Bin(100, 0.5). We
then have the p-value P = P0(M ≥ 59) = 0.04431 < α. May we therefore conclude that the coin is
biased in favour of heads? In fact we cannot. To see why, note that in our analysis we assumed that
the total number of tosses n = 100 was fixed before the experiment began, but we were not given this
information, we were only told that the coin happened to be tossed 100 times. Thus the assumption
that M ∼ Bin(n, 1/2) where n = 100 was assumed to be fixed in advance is not justified.

Indeed, suppose it is now revealed that it was decided in advance that the coin would first be tossed
50 times, at which point the coin would tossed a further 50 times if and only if the above (incorrect)
analysis would fail to reject the null hypothesis. Perhaps after the first 50 tosses the coin in fact only
came up heads 28 times, at which point we would not have concluded the coin was biased in favour
of heads, since P (M50 ≥ 28) = 0.2399438 > α. Thus, since the decision was made to continue for
another 50 tosses, we were given an extra chance to conduct our flawed analysis and possibly conclude
that the coin was biased in favour of heads. Calculating a valid p-value, would require incorporating
knowledge of the decision made at the halfway point.

Note that it follows directly from the definition that if P is a p-value then P0(P ≤ α) ≤ α, where
P0 represents the distribution of the data under the null hypothesis (for continuous random variables
this will be an equality, whereas for discrete random variables equality is not always attained). Let N
be the number of times the coin is tossed, so that N ∈ {50, 100}, and let P50 and P100 be the invalid
p-values calculated as above by falsely assuming N is fixed from the beginning of the experiment as
50 or 100 respectively. Therefore the invalid p-value P calculated above is equal to PN , where N is
revealed in the course of the experiment. We can now see that PN is not a valid p-value by showing
that P0(PN ≤ α) > α. First, let Mn be the number of heads after n tosses. Then we have

• P0(M50 ≥ 31) = 0.05946 and P0(M50 ≥ 32) = 0.03245. Therefore P50 = P0(M50 ≥ m50) ≤ α iff
m50 ≥ 32.

• P0(M100 ≥ 58) = 0.06660 and P0(M100 ≥ 59) = 0.04431. Therefore P100 = P0(M100 ≥ m100) ≤
α iff m100 ≥ 59.
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It then follows that

P0(PN ≤ α) = P0(PN ≤ α,N = 50) + P0(PN ≤ α,N = 100) (1.1)
= P0(P50 ≤ α) + P0(P50 > α,P100 ≤ α) (1.2)
= P0(M50 ≥ 32) + P0(M50 < 32,M100 ≥ 59) (1.3)

= 0.03245 +

31∑
k=9

P0(M50 = k,M100 −M50 = 59− k) (1.4)

= 0.03245 + 0.03025 (1.5)
= 0.0627, (1.6)

which is indeed greater than α. In other words, if the coin is in fact unbiased and the experiment was
conducted repeatedly, by this faulty analysis we would conclude that the data was at most 5% likely
more than 5% of the time. Clearly the analysis underestimates the true p-value and so rejects the null
hypothesis too readily.

1.3 Meta-Analysis and Accumulation Bias

Large sample sizes are crucial for statistical tests in order to maximize power (the probability of
correctly rejecting the null hypothesis). Therefore one advantage of conducting a meta-analysis is the
increase in power that comes from pooling the results of many studies. In general, the hope is that by
combining the data of many studies one can be more confident of the inferences drawn.

Suppose, after a systematic review of the literature, a series of N studies is found, each testing the
same null hypothesis and providing a p-value. Let Pn be the p-value of the n’th study, namely the
probability, under the null hypothesis, that the results obtained by repeating that experiment would
be at least as extreme as those actually observed. One might then suppose that the probability under
the null hypothesis that all the studies, were they to be repeated, would produce results at least as
extreme as those observed would then be P :=

∏N
n=1 Pn. However, this is not the case, since it would

be making the same mistake as in the coin tossing example: the number of studies is not fixed in
advance. In the coin tossing example, it is possible to overcome this difficulty by incorporating the
decision process behind the total number of tosses. However this approach cannot possibly work in the
case of meta-analyses since the full experimental protocol leading to the full series of studies has so
many complicating factors that cannot be quantified before the first study commences. For example:

• A highly powered study concluding with a significant finding may be deemed conclusive enough
that further studies are not performed, thus terminating the series.

• The statistician performing the meta-analysis may make the decision of when to perform the
meta-analysis based on the results of the studies known at each point in time. This is like the
coin tossing example above.

• An unexpected cut or influx of funding to research institutes may increase or decrease the number
of studies performed.

• If the first study produces significant results, this may lead to a flurry of replications from
researchers also wishing to obtain significant results.

• Conversely, if the first studies produce results that are not significant, this may be sufficient to
dissuade researchers from pursuing the same lines, thus terminating the series.

In summary, the problem is that while the results of any two studies may be independent, the existence
of later studies may be dependent on the results of previous studies. Second, the timing of the meta-
analysis may also depend on the results of the studies hitherto available. These two dependencies have
been collectively termed Accumulation Bias [11]. Moreover, the dependencies may be complex and
impossible to quantify, meaning it is impossible to incorporate them into the meta-analysis since this
would involve knowing the probability of every possible sequence of events in advance.
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As in the coin tossing example, one solution would be to stipulate in advance the number of
studies that will be conducted before the meta-analysis. This would eliminate dependencies between
the existence of studies and dependencies between the results of the studies and the timing of the
meta-analysis. However, this would lead to research waste and hamper the progress of science. For
example, if the first few studies produce highly significant results (they have p-values far below the
significance threshold), then, since further studies are unlikely to overturn these results, resources may
be better spent on follow up research or entirely different lines of research. Conversely, if the first few
studies produce results that give very little evidence against the null hypothesis, it may be best to
abandon the line of research. In medical contexts it may be especially important to preserve the option
to terminate the experiment. Further, it is impossible to rule out the possibility that future studies
will become impossible due to unforeseen circumstances such as a cut in funding.

To avoid causing research waste, one might suggest a more nuanced policy whereby a series of
studies is permitted to be terminated or extended, provided all the ways in which this may happen are
pre-registered. In other words, we make require the pre-registration of a protocol fully specifying the
decisions that will be made on whether to terminate or continue the series of studies based on the results
so far accumulated. Such a policy however is highly unrealistic since the registration process would be
extremely involved, requiring agreements between all researchers with any intention to pursue a line
of research even before seeing the first study. Further, the issue remains that series can be terminated
by outside events that are impossible to quantify.

A much more practical approach is to find a method of statistical analysis that is robust to post-hoc
decisions on whether to continue or terminate a series. This is exactly the problem that analysis via
S-values solves.

1.4 How S-values solve the problem of Accumulation Bias

We require a test statistic which gives a type I error guarantee that is robust to accumulation bias.
This may seem like a lot to ask of a test statistic given the number of possible strategies that could be
used to decide when to terminate the series and conduct a meta-analysis. In fact, we are asking that
the type I error guarantee hold even for adversarial decisions on when to terminate.

Suppose we have an almost surely positive test statistic S such that the expectation of S under
the null hypothesis is at most one. We will refer to such test statistics as S-values. Note that such a
test statistic is unlikely to be large under the null hypothesis. Thus, if S is large, this indicates that
the null hypothesis may not be correct. In fact, 1/S is a conservative p-value by Markov’s inequality

P0(1/S ≤ α) = P0(S ≥ 1/α) ≤ E0[S]

1/α
≤ 1

1/α
= α. (1.7)

We can reframe this as a bet that pays out $S per dollar invested, where under the null hypothesis
the bet is at most fair, namely E0[S] ≤ 1. If we win a large sum after investing $1 in this bet, we may
suspect that the null hypothesis is not correct. Suppose now that S1, S2, . . . is a (possibly infinite)
sequence of S-values. If we consider these as successive bets, where at each stage we either invest
all our accumulated capital into the next bet or decide to cash out, our final winnings is equal to
SK = S1S2 · · ·SK , where K is the number of bets we made.

Suppose the S-values S1, S2, . . . are independent. Then Sn := S1S2 · · ·Sn is a super-martingale
under the null hypothesis, since by definition each S-value has expectation at most one under the null.
It follows from martingale theory that whatever strategy one employs for deciding when to ‘cash-out’,
one cannot in expectation make a profit from bets that are at best fair, namely bets for which the
winnings W satisfies E0[W ] ≤ 1. Somewhat more precisely, suppose each S-value Si is a function of
data Zi, which is a random variable on sample space Zi. Further, suppose that for each k, the decision
on whether to continue to bet k + 1 can be based not just on the S-values S1, S2, . . . Sk, but on the
data Z1, Z2, . . . , Zk on which those S-values are calculated. Formally, a decision rule can be modelled
as a function

f :

∞⋃
k=1

(
k∏
i=1

Zi

)
→ {stop,continue}. (1.8)
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If we now define the stopping time K by

K := min{k : f(Z1, . . . , Zk) = stop}, (1.9)

we see that our final winnings is given by SK := S1S2 · · ·Sk. Now the random variable K is a stopping
time in the sense of random process theory and this implies1, since Sn is a super-martingale, that
E0[SK ] ≤ 1. Thus SK is also an S-value and any choice of decision rule cannot destroy the type I
error guarantee. In particular, suppose we use the greedy decision rule that continues betting until
Sn ≥ 1/α. We then see, again by Markov’s inequality, that

P0

(
∃k :

k∏
i=1

Si ≥ 1/α

)
= P0(SK ≥ 1/α) ≤ 1/α, (1.10)

implying that it is likely we will never cash out at all. While such an adversarial strategy would
constitute p-hacking were we working with p-values, we see that S-values are robust to this kind of
‘gaming’. It is thus clear that whatever decision rule is followed to decide whether to conduct further
studies or to move to meta-analysis, multiplying all S-values together gives a conservative p-value once
the reciprocal is taken. Thus S-values can provide a type I error guarantee even in the presence of
accumulation bias. Finally, we note that while we assumed S1, S2, . . . were independent, the result
that SK is also an S-value for any stopping time K in fact generalizes beyond far beyond that. For
details, see [5, section 2].

Can we always find a non-trivial test statistic with expectation at most one under the null hypoth-
esis? If we can find several such test statistics, how should we choose between them? In the following
section, we outline the theory of these so-called S-values in more detail and provide answers to these
questions.

1.5 Thesis outline

Chapter two outlines some of the general theory developed by Grünwald et al. [5] on safe hypothesis
testing that will form the foundation of this thesis. Section 2.1 formally defines safe tests in terms
of S-values and gives the first examples of S-values, namely Bayes factors for simple null hypotheses.
Section 2.2 then introduces the GROW criterion that will be used to select S-values that ‘grow’ as
quickly as possible under the alternative hypothesis. Section 2.3 presents the main result found in [5]
which characterizes the GROW S-value in terms of information projections. This gives the GROW
S-value as the solution to a convex optimization problem that can then be approximated numerically.
In section 2.4 we apply the result to a large class of statistical models, namely exponential families, and
prove a corollary of a theorem found in [5]. We will use this corollary in chapter four when constructing
conditional S-values. Finally, in section 2.5, we explore the connection between GROW S-values and
the concept of a uniformly most powerful Bayesian test (UMPBT), developed by Johnson [7]. The
connection is discussed in [5] and in this chapter we give a rigorous proof.

The short chapter three introduces 2 × 2 contingency tables. After providing some brief context
in section 3.1, section 3.2 fixes the notation that will be used in the rest of the thesis. Section 3.3
introduces Fisher’s exact test, which is commonly used when evaluating 2× 2 tables and will be used
as a benchmark by which to measure the power of the S-values we construct in subsequent chapters. In
section 3.4 we clarify the difference between ‘conditional’ and ‘unconditional’ S-values; the two types
of S-values that we will construct in this thesis. Finally, section 3.5 discusses the relation of this thesis
to previous work.

Chapter four is where we begin constructing safe tests for 2 × 2 contingency tables, starting with
conditional tests. The GROW S-value can be found in explicit form by using a corollary proved in
chapter two, since the underlying distribution forms an exponential family in the conditional setting.
The uniformly most powerful GROW S-values (UMPG S-values) are defined and can also be found
using theory from chapter two, but only in implicit form. We then evaluate the growth and power of

1We have omitted many details here. For a rigorous measure-theoretic proof, see [5, section 2].
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these S-values. Although they are developed in the conditional setting, we show that these tests can be
used in a valid way also in the unconditional setting. Their evaluation in this setting is postponed to
chapter seven, so that they can be compared with the S-values constructed in the following chapters.

Chapter five explores the unconditional setting, which in many cases is closer to reality (indeed,
for the drug trial example, the unconditional case refers to the scenario where the total number of
patients who recover, referred to as N1, is not known in advance). Similar to the conditional S-values
constructed in chapter four, we will construct two types, namely the unconditional GROW S-values
and, where they exist, the unconditional UMPG S-values. We discuss a number of ways in which the
parameter sets can be restricted to ensure that they are positively separated (which is necessary to
prevent the GROW S-value being degenerate). We do this by setting threshold values for the risk
difference, relative risk or the odds ratio; all parameters that are frequently used in clinical research
when analysing 2×2 tables. We also allow for the possibility that the practitioner has prior knowledge,
showing how this can be incorporated into the test. Chapter five focuses on situations in which the
shortcuts of chapter six cannot be used and the information projection must be approximated directly.
While this can be very slow, we provide a simplified expression for the gradient of the objective function
that can speed up calculations by around an order of magnitude.

In chapter six we provide a number of theoretical results that bypass the slow information projection
approximation used in chapter five and significantly speed up the calculation of the GROW S-values.
We show that in most cases of interest the GROW S-values can be calculated very quickly without
an information projection. Indeed, in two cases we provide explicit formulas for the GROW S-values.
The method developed in this chapter to identify GROW S-values may perhaps be used in other
testing scenarios. Although the chapter is heavily algebraic, the results can frequently be visualized
geometrically. This is by far the longest chapter and contains a significant proportion of the original
work in this thesis. For a more detailed summary of the results, see the introduction to the chapter.

Chapter seven collates the unconditional S-values developed in chapters three to six and evaluates
them in terms of growth and power. Unfortunately there is not a clear winner overall, although it can
be seen that in some cases certain S-values are to be preferred.
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Chapter 2

S-values and safe hypothesis testing

In this chapter we outline some of the general theory developed by Grünwald et al. [5] on safe hypothesis
testing that will form the foundation of this thesis. Section 2.1 formally defines safe tests in terms
of S-values and gives the first examples of S-values, namely Bayes factors for simple null hypotheses.
Section 2.2 then introduces the GROW criterion that will be used to select S-values that ‘grow’ as
quickly as possible under the alternative hypothesis. Section 2.3 presents the main result found in [5]
which characterizes the GROW S-value in terms of information projections. This gives the GROW S-
value as the solution to a convex optimization problem that can then be approximated numerically (see
chapter 5). In section 2.4 we apply the result to a large class of statistical models, namely exponential
families and prove a corollary of the relevant theorem found in [5]. Finally, in section 2.5, we explore
the connection between GROW S-values and the concept of a uniformly most powerful Bayesian test
(UMPBT), developed by Johnson [7]. This connection is discussed in [5] and here we give a rigorous
proof.

2.1 Definitions and first examples

Suppose we have the model P = {Pθ : θ ∈ Θ}, indexed by Θ = Θ0∪Θ1, where the null and alternative
hypotheses are H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1 respectively. Denoting our data by the random variable
Z ∼ Pθ for some unknown θ ∈ Θ, we assume that each Pθ has an associated density or probability
mass function pθ.1 At this point we make no assumption on the structure of Θ; it is simply an indexing
set, so the model may be parametric or non-parametric. The following definitions are made.

Definition 1. An S-value is any non-negative statistic S = S(Z) such that Eθ[S] ≤ 1 for all θ ∈ Θ0.

Definition 2. For any S-value S and significance level α, we define the associated safe test Tα(S) as
the test that rejects H0 iff S ≥ 1/α. We see by (1.7) that Tα(S) has type I error bound α.

Since S-values are defined with respect to Θ0, we are justified in denoting the set of S-values for
a given null parameter set Θ0 by E(Θ0). As a first example, suppose the null hypothesis is simple,
namely Θ0 = {θ0} is a singleton. Then for any θ1 ∈ Θ1, the test statistic

Tθ1(Z) :=
pθ1(Z)

pθ0(Z)
(2.1)

is an S-value. This can be seen by directly calculating the expectation of Tθ1(Z) when Z ∼ Pθ0 as
follows

EZ∼Pθ0

[
pθ1(Z)

pθ0(Z)

]
=

∫
pθ0(z)

pθ1(z)

pθ0(z)
dz (2.2)

=

∫
pθ1(z)dz (2.3)

= 1. (2.4)
1For the purposes of this thesis, Z will always be a discrete random variable and pθ will be a probability mass

function. If Z is continuous however, it is assumed that all the distributions Pθ have densities pθ with respect to a
common measure, say µ.
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Now, for any set A, let W(A) be the set of probability distributions on A. For any W1 ∈ W(Θ1)
(which we will also call a prior as discussed below), let PW1 denote the marginal distribution of Z
when θ ∼W1. If W1 has a density w1, then PW1 has density

pW1(z) :=

∫
Θ1

w1(θ)pθ(z)dθ. (2.5)

More generally, if W1 does not necessarily have a density (for example if it is a point mass), we can
define

pW1(z) := Eθ∼W1 [pθ(z)]. (2.6)

The Bayesian approach to testing H1 : θ ∈ Θ1 against H0 : θ ∈ Θ0 is to take prior probabilities
π1 and π0 as estimates of P (θ ∈ Θ1) and P (θ ∈ Θ0), respectively. Also, priors W1 ∈ W(Θ1) and
W0 ∈ W(Θ0) are used to reflect prior beliefs on the likelihood of different values of θ. Once data Z is
observed, Bayes rule can be used to obtain, for i ∈ {0, 1},

P (θ ∈ Θi|Z) =
p(Z|θ ∈ Θi)P (θ ∈ Θi)

p(Z)
(2.7)

=
pWi(Z)πi
p(Z)

. (2.8)

The densities pW1 and pW0 are referred to as the Bayes marginal probability distributions. The posterior
odds can then be calculated as

P (θ ∈ Θ1|Z)

P (θ ∈ Θ0|Z)
=
pW1(Z)

pW0(Z)

π1

π0
, (2.9)

where the likelihood ratio
BF10(Z) :=

pW1(Z)

pW0(Z)
. (2.10)

is referred to as the Bayes factor. Thus the posterior odds is equal to the prior odds π1/π0 times the
Bayes factor.

If a definitive decision is required, a threshold γ > 1 may be chosen to determine when to reject
the null hypothesis. More precisely, it may be decided that H0 will be rejected in favour of H1 iff
BF10 ≥ γ. We will refer to such a test as a Bayesian hypothesis test and we will return to them in
section 2.5 when discussing uniformly most powerful Bayesian tests. This is reminiscent of the safe
test Tα(S), for any S-value S, which rejects H0 iff S ≥ 1/α. Indeed, if Θ0 = {θ0} is a singleton then
BF10 is an S-value. This can be see by direct calculation, in exactly the same way as above

EZ∼Pθ0 [BF10(Z)] = EZ∼Pθ0

[
pW1(Z)

pθ0(Z)

]
(2.11)

=

∫
pθ0(z)

pW1(z)

pθ0(z)
dz (2.12)

=

∫
pW1(z)dz (2.13)

= 1. (2.14)

Note that BF10 is an S-value for singleton Θ0 even if W1 ∈ W(Θ1) is an arbitrary probability
distribution, not necessarily in alignment with our prior beliefs about the likelihood of different values
of θ. We may therefore wonder, for general Θ0, whether BF10 is an S-value for arbitrary probability
distributions W1 and W0. We will see in the following sections that while this is not true in general,
there do always exist probability distributions W1 and W0 for which the corresponding Bayes factor
BF10 is an S-value, even for non-trivial Θ0. In fact—in a sense to be defined later—the ‘best’ S-value
is always a Bayes factor.

We should note that in this thesis we will refer to elements of W(Θ0) and W(Θ1) as ‘priors’, and
test statistics pW1(Z)/pW0(Z) as ‘Bayes factors’ whether or not the priors W1 and W0 align with our
prior beliefs on the likelihood of different values of θ. For the purposes of this thesis, a prior is any
distribution on (a subset of) the null or alternative parameter set.
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2.2 Optimal S-values: growth rate and the GROW criterion

Since large values of S are unlikely under the null hypothesis, a good S value should be likely to be
large under the alternative hypothesis, which can then be interpreted as evidence against the null.
Ordinarily, for example in the Neyman-Pearson setting, this would be formalized by saying we want a
statistical test with large power, where power is defined as the smallest probability of correctly rejecting
the null hypothesis, namely the power is equal to

1− β = inf
θ∈Θ′1

Pθ(Tα(S) = reject) = inf
θ∈Θ′1

Pθ(S ≥ 1/α), (2.15)

where β is the type II error. This is the choice made in the Neyman-Pearson paradigm; once a type I
error threshold α has been fixed, the most powerful test satisfying the type I error constraint is chosen.
With such a worst-case methodology, it is usually necessary to take a subset Θ′1 ⊆ Θ1 to ensure Θ0

and Θ1 are strictly separated.
Instead of working with power however, [5] define the growth rate of an S-value at any particular

θ ∈ Θ1 as
GRθ(S) := EZ∼Pθ [logS], (2.16)

and the worst case growth rate as

GR(S) := inf
θ∈Θ1

EZ∼Pθ [logS]. (2.17)

[5] then formulate the GROW criterion (Growth Rate Optimal in the Worst case), which states that
the S-value that maximizes the worst case growth rate should be chosen. This S-value is then denoted
S∗ and is referred to as the GROW S-value. Thus S∗, if it exists, achieves

sup
S∈E(Θ0)

inf
θ∈Θ1

EZ∼Pθ [logS]. (2.18)

While growth rate is analogous to power, choosing an S-value with larger growth rate does not nec-
essarily mean it will have larger power (and vice versa). Just as in the Neyman-Pearson paradigm, it
may be necessary to restrict Θ1 to a subset Θ′1. This is to ensure that the parameter sets are suffi-
ciently separated so that the worst case growth rate is not degenerate. For any given Θ′1 ⊆ Θ1, the
corresponding GROW S-value is denoted S∗Θ′1 .

A number of explanations are given in [5] as to why the logarithm of S is taken in the definition
of growth rate, rather than defining the growth rate at θ by EZ∼Pθ [f(S)] for some other function
f , perhaps the identity. First, if f is the identity, it ends up being the case that the GROW S-
value is frequently zero with positive probability. This is undesirable from the viewpoint of optional
continuation (which is indeed the purpose of S-values), since if any S-value in a sequence of S-values is
zero, the product will remain zero after that point, meaning the null hypothesis will never be rejected
however strong any subsequent evidence against it is. A similar problem arises when f is any other
polynomial. However, the problem does not arise with the logarithm.

A second justification is that, if the alternative hypothesis is true, we would like the running product
of a series of S-values to grow as quickly as possible. This is because a large product is interpreted
as greater evidence against the null. It is shown in [5, section 3.1] that the logarithm is the natural
choice since it minimizes the average time at which the running product doubles. For a more detailed
discussion and other reasons for choosing the logarithm, see [5, section 3.1].

It is not immediately apparent how one would go about finding the GROW S-value. However,
Grünwald et al. [5] provide a remarkable theorem (Theorem 1), which states that the GROW S-value
is in fact a Bayes factor—as in 2.10—where the priorsW1,W0 are such that the KL divergence between
the marginals PW1 , PW0 is minimized. These special priors are denoted by W ∗1 and W ∗0 , and in general
are unlikely to coincide with our prior beliefs on the likelihood of different values of θ. Furthermore,
they prove that the GROW S-value is ‘essentially unique’, meaning any other S-value satisfying the
GROW criterion is almost surely equal to S∗, regardless of the true value of the parameter θ. We
discuss this theorem in the following section.
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2.3 Characterizing the GROW S-value using information projection

Let P and Q be any two distributions defined on the same probability space Z, such that P is absolutely
continuous2 with respect to Q. We define the Kullback–Leibler divergence from Q to P by

KL(P ||Q) :=

∫
Z

log

(
dP

dQ

)
dP, (2.19)

where dP/dQ is the Radon-Nikodym derivative of P with respect to Q.
Now let P and Q be two arbitrary sets of distributions, where every distribution in both sets is

defined on the same probability space Z. For a given Q ∈ Q, we may define

d(P, Q) := inf
P∈P

KL(P ||Q). (2.20)

If there exists a unique P ∈ P achieving this infimum, it is denoted by P ∗ and is referred to as the
information projection (IP) of Q onto P, namely

P ∗ := arg min
P∈P

KL(P ||Q). (2.21)

Likewise, for any P ∈ P, we may define the reverse information projection (RIP) of P onto Q by

Q∗ := arg min
Q∈Q

KL(P ||Q), (2.22)

provided Q∗ exists and is unique. Finally, we may define the joint information projection (JIP) of P
and Q onto each other by

(P ∗, Q∗) := arg min
(P,Q)∈P×Q

KL(P ||Q), (2.23)

provided P ∗ and Q∗ exist and are unique.
Now take P = {PW1 : W1 ∈ W(Θ1)} and Q = {PW0 : W0 ∈ W(Θ0)} and suppose the JIP

(P ∗, Q∗) ∈ P ×Q exists and is achieved uniquely by the priors W ∗1 and W ∗0 , namely P ∗ = PW ∗1 and
Q∗ = PW ∗0 . Then the following theorem states that the GROW S-value S∗ is given by the Bayes factor
generated by these priors, namely,

S∗ =
pW ∗1 (Z)

pW ∗0 (Z)
. (2.24)

Further, the worst case growth rate of S∗ is attained at W ∗1 , where it is equal to KL(PW ∗1 ||PW ∗0 ), which
can be thought of as the minimum ‘distance’ between distributions in P and Q. Thus, informally, the
greater the separation between P and Q, the more S∗ will grow (at least in the worst case) and so the
easier it will be to correctly reject the null hypothesis. Finally, it states that the GROW S-value S∗

is ‘essentially unique’ where this is taken to mean that if S̃ is any other S-value satisfying the GROW
criterion, then Pθ(S∗ = S̃) = 1 for all θ ∈ Θ0 ∪ Θ1. Since this means their growth rates and powers
at any θ are equal, it is irrelevant from an inference perspective which we choose to use. We now give
the theorem.

Theorem 1 (Grünwald, [5]). Let Θ′1 ⊆ Θ1 and suppose that for all θ0 ∈ Θ0 and W1 ∈ W(Θ′1) we
have that Pθ0 is absolutely continuous relative to PW1 . If inf(W1,W0)∈W(Θ′1)×W(Θ0) KL(PW1 ||PW0) <∞
and the infimum is achieved uniquely by (W ∗1 ,W

∗
0 ), then the GROW S-value S∗Θ′1 exists, is essentially

unique, and is given by

S∗Θ′1
(Z) =

pW ∗1 (Z)

pW ∗0 (Z)
. (2.25)

Further,
inf

W1∈W(Θ′1)
EPW1

[
logS∗Θ′1

]
= EPW∗1

[
logS∗Θ′1

]
= KL(PW ∗1 ||PW ∗0 ), (2.26)

meaning S∗Θ′1 achieves its worst case growth rate at W ∗1 .

2Meaning Q(A) = 0 =⇒ P (A) = 0 for any set A in the underlying σ-algebra. While we do not explicitly refer to
σ-algebras in this thesis, it is always assumed that we take the Borel σ-algebra, which is the σ-algebra generated by the
open sets.
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This characterization of S∗Θ′1 clarifies the importance of ensuring the parameter sets are sufficiently
separated. For if the infimum is achieved and equals zero, we have

KL(PW ∗1 ||PW ∗0 ) = 0 =⇒ PW ∗1 = PW ∗0 =⇒ SΘ′1
≡ 1, (2.27)

meaning the test Tα(SΘ′1
) is useless as it never leads to a rejection of the null hypothesis.

Although the above theorem does not provide a closed formula for the GROW S-value, the char-
acterization reformulates the search as a convex optimization problem since the KL divergence is
jointly-convex. More precisely, the map κ : P ×Q → [0,∞] given by

(P,Q) 7→ KL(P ||Q) (2.28)

is jointly convex in the sense that for any two pairs of distributions (P1, Q1), (P2, Q2) ∈ P × Q and
any α ∈ [0, 1], we have (see [13])

κ(α(P1, Q1) + (1− α)(P2, Q2)) = κ(αP1 + (1− α)P2, αQ1 + (1− α)Q2) (2.29)
:= KL(αP1 + (1− α)P2||αQ1 + (1− α)Q2) (2.30)
≤ αKL(P1||Q1) + (1− α)KL(P2||Q2) (2.31)
= ακ(P1, Q1) + (1− α)κ(P2, Q2). (2.32)

Further, the map m :W(Θ′1) ×W(Θ0)→ P ×Q given by

(W1,W0) 7→ (PW1 , PW0) (2.33)

is linear as follows. Let Wi,W
′
i ∈ W(Θi) for i ∈ {0, 1} and α ∈ [0, 1]. Then

m(α(W1,W0) + (1− α)(W ′1,W
′
0)) = m((αW1 + (1− α)W ′1, αW0 + (1− α)W ′0)) (2.34)

= (PαW1+(1−α)W ′1
, PαW0+(1−α)W ′0

), (2.35)

where, for i ∈ {0, 1}, the distribution PαWi+(1−α)W ′i
is given by

PαWi+(1−α)W ′i
(z) = Eθ∼αWi+(1−α)W ′i

[Pθ(z)] (2.36)

= αEθ∼Wi
[Pθ(z)] + (1− α)Eθ∼(1−α)W ′i

[Pθ(z)] (2.37)

= αPWi(z) + (1− α)PW ′i (z). (2.38)

Substituting this into (2.38), we have

m(α(W1,W0) + (1− α)(W ′1,W
′
0)) = (αPW1 + (1− α)PW ′1 , αPW0 + (1− α)PW ′0) (2.39)

= α(PW1 , PW0) + (1− α)(PW ′1 , PW ′0). (2.40)

Finally, since the composition of a linear map with a convex map is itself convex, we see that the map
κ ◦m :W(Θ′1) ×W(Θ0)→ [0,∞], which is then given by

(W1,W0) 7→ KL(PW1 ||PW0), (2.41)

is convex. Since the parameter sets may be of arbitrary size, this may still be an infinite-dimensional
convex optimization problem. Notwithstanding, we will see later how discretizing the parameter sets
does not destroy convexity and leads to a convex optimization problem reasonable enough to permit
numerical approximation.

2.4 Exponential families

Let Θ ⊆ R be a one-dimensional parameter set and suppose we have a set of distributions on Rn
parametrized by Θ, say P = {Pθ : θ ∈ Θ}. We call such a set a one-parameter exponential family if
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there exist functions h, η, T and A such that each Pθ has a probability mass function or a density pθ
(relative to some common background measure λ say) that can be expressed in the following form

pθ(x) = h(x) exp
(
η(θ)T (x)−A(θ)

)
. (2.42)

In this case, η is referred to as the canonical parameter and the set E := {η(θ) : θ ∈ Θ} as the canonical
parameter space.

The same exponential family may be parametrized in different ways. An important example is the
so-called mean-value parametrization. Suppose we have a one-parameter exponential family P = {Pθ :
θ ∈ Θ}, where θ is in fact the canonical parameter. We may define the mean-value parameter µ by

µ(θ) := EX∼Pθ [X]. (2.43)

It can be shown that µ(θ) is strictly increasing in θ and so the map (2.43) is one-to-one [6, Section
18.3]. This means the family P can be re-parametrized in terms of µ as follows

P = {Qµ : µ ∈M}, where M := {µ(θ) : θ ∈ Θ} and Qµ(θ) := Pθ. (2.44)

The mean-value parametrization will be useful in the later construction of some S-values (see chapter
4, section 3).

Grünwald et al. [5, Section 4.1, proof in Appendix D] provide the following theorem, which states
that for exponential families with mean-value parameter θ and alternative parameter set Θ1 = [θ1,∞)∩
Θ, the GROW S-value is achieved by the prior W ∗1 that puts all its mass on θ1.

Theorem 2. Let P = {Pθ : θ ∈ Θ} with Θ ⊆ R be a one-parameter exponential family for sample space
Z, given in its mean-value parametrization. Suppose 0 ∈ Θ, let Θ0 = {0} and take Θ1(δ) = [δ,∞)∩Θ
for some threshold value δ contained in the interior of Θ. Then the GROW S-value SΘ1(δ), referred to
as the δ-GROW S-value and denoted by S∗δ , is given by

S∗δ (Z) := S∗Θ1(δ)(Z) =
pδ(Z)

p0(Z)
, (2.45)

where, for each θ, pθ is the density or probability mass function of the distribution Pθ.

Suppose we have a one-parameter exponential family as in Theorem 2, but we wish to test Θ0 =
{θ0} against Θ1(δ), for some θ0 6= 0 in the interior of Θ such that δ > θ0. Theorem 2 can be
readily extended to this scenario using simple properties of the KL-divergence and exponential families.
We have the following proposition, which will be used later when we look at Fisher’s noncentral
hypergeometric distribution. Intuitively, this is a simple corollary of the previous result, since shifting
all the distributions and random variables does not change the KL–divergences or the fact that we are
dealing with an exponential family. However, a precise proof requires some work.

Proposition 3. Let P = {Pθ : θ ∈ Θ} with Θ ⊆ R be a one-parameter exponential family for sample
space Z, given in its mean-value parametrization. Suppose Θ0 = {θ0} and Θ1(δ) = [δ,∞) ∩Θ, where
δ > θ0 and both θ0 and δ lie in the interior of Θ. Then the GROW S-value SΘ1(δ), referred to as the
δ-GROW S-value and denoted by S∗δ , is given by

S∗δ (Z) := S∗Θ1(δ)(Z) =
pδ(Z)

pθ0(Z)
, (2.46)

where, for each θ, pθ is the density or probability mass function of the distribution Pθ.

Proof. Let Q = {Qϕ : ϕ ∈ Φ}, where Φ := {θ − θ0 : θ ∈ Θ} and Qϕ is the distribution of Z − θ0 for
Z ∼ Pϕ+θ0 . Now, since P is an exponential family, the density of Pθ can be written as

pθ(z) = h(z) exp
(
η(θ)T (z)−A(θ)

)
, (2.47)

for some h, η, T and A. Since, for any ϕ, Qϕ is simply a translation of Pϕ+θ0 , then the density of Qϕ
can be written as

qϕ(y) = pϕ+θ0(y + θ0) (2.48)
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and so

qϕ(y) = h(y + θ0) exp
(
η(ϕ+ θ0)T (y + θ0)−A(ϕ+ θ0)

)
(2.49)

= h̃(y) exp
(
η̃(ϕ)T̃ (y)− Ã(ϕ)

)
, (2.50)

where h̃(h) := h(y + θ0), η̃(ϕ) := η(ϕ+ θ0), T̃ (y) := T (y + θ0) and Ã(ϕ) := A(ϕ+ θ0). Therefore Q is
also an exponential family. Further, since

EY∼Qϕ [Y ] = EY∼Qϕ [Y + θ0]− θ0 (2.51)
= EZ∼Pϕ+θ0 [Z]− θ0 (2.52)

= ϕ+ θ0 − θ0 (2.53)
= ϕ, (2.54)

we see that Q = {Qϕ : ϕ ∈ Φ} is in fact in the mean-value parametrization. Lastly, since θ0 ∈ Θ0, by
the definition of Φ we have 0 ∈ Φ.

We can therefore apply Theorem 2 to Q, with Φ0 = {0} and Φ1(δ) := [δ − θ0,∞) ∩ Φ, to obtain

S∗Φ1(δ)(Y ) =
qδ−θ0(Y )

q0(Y )
. (2.55)

Recall that GROW S-values are constructed using the JIP, so that the previous line implies

Ẇδ−θ0 = arg min
W1∈W(Φ1(δ))

KL(QW1 ||Q0), (2.56)

where Ẇδ−θ0 represents a point mass on δ − θ0.
By definition of Qϕ, we have that Y ∼ Qϕ implies Y + θ0 ∼ Pϕ+θ0 . We now see that this holds

more generally. Namely, for any W1 ∈ W(Φ1(δ)), let f(W1) ∈ W(Θ1(δ)) be defined such that

ϕ ∼W1 =⇒ ϕ+ θ0 ∼ f(W1). (2.57)

We then have

qW1(y) := Eϕ∼W1 [qϕ(y)] (2.58)
= Eϕ∼W1 [pϕ+θ0(y + θ0)] by (2.48) (2.59)
= Eθ∼f(W1)[pθ(y + θ0)] (2.60)

= pf(W1)(y + θ0), (2.61)

and so Y ∼ QW1 implies Y + θ0 ∼ Pf(W1).
Note that, since Φ1(δ) is a translation of Θ1(δ), f :W(Φ1(δ))→W(Θ1(δ)) is a bijection. Now, it is

a fact that the KL-divergence is invariant under transformations of the variables that are differentiable
and invertible, which includes translations [10]. Thus, for any W1 ∈ W(Φ1(δ)), we have

KL(QW1 ||Q0) = KL(Pf(W1)||Pθ0). (2.62)

Combining these two facts, (2.56) becomes

Ẇδ−θ0 = arg min
W1∈W(Φ1(δ))

KL(QW1 ||Q0) (2.63)

= arg min
W1∈W(Φ1(δ))

KL(Pf(W1)||Pθ0) (2.64)

and so
Ẇδ = f(Ẇδ−θ0) = arg min

W1∈W(Θ1(δ))
KL(PW1 ||Pθ0). (2.65)

Since Θ0 is a singleton, we therefore see that the RIP is given by PẆδ
= Pδ and Pθ0 , so that, by

Theorem 1, the GROW S-value SΘ1(δ) is given by

SΘ1(δ)(Z) =
pδ(Z)

pθ0(Z)
. (2.66)
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2.5 UMPGTs and connections to UMPBTs

Suppose, for a given experiment, that there is a natural way of constructing a restriction Θ1(δ) of
Θ1 based on some parameter δ with a threshold value δ > 0 (where δ is perhaps deemed a minimum
clinically relevant effect size). In such cases, following the terminology used in [5], we will refer to
the resulting GROW S-value S∗δ := S∗Θ1(δ) as the δ-GROW S-value. For example, if we are testing
whether the mean of a normal distribution is equal to zero or not, we may choose Θ0 = {0} and
Θ1(µ) = {µ ∈ R : |µ| ≥ µ} based on a given threshold µ > 0, and refer to the resulting S-value
S∗µ := S∗Θ1(µ) as the µ-GROW S-value.

For a given significance level α, we can inspect the power of S∗δ across the whole of Θ1 for each
each δ > 0. Then, if there exists a δ > 0 such that

∀θ ∈ Θ1 ∀δ′ ≥ 0 Pθ(S
∗
δ ≥ 1/α) ≥ Pθ(S∗δ′ ≥ 1/α), (2.67)

this threshold value δ is denoted by δ∗ and referred to as a uniformly most powerful threshold (UMP
threshold). Likewise, we call S∗δ∗ a uniformly most powerful GROW S-value (UMPG S-value) and the
associated test Tα(S∗µ∗) a uniformly most powerful GROW test of significance level α, or UMPGT(α)
for short. Note that in some cases this terminology is somewhat misleading, since there may exist some
other subset Θ′1 ⊆ Θ1 not of the form Θ1(δ) such that the test Tα(S∗Θ′1

) based on the GROW S-value
S∗Θ′1

is more powerful than Tα(S∗δ∗). However, in the case of one-parameter exponential families, we
will see that Tα(S∗δ∗) is always more powerful than Tα(S∗Θ′1

) for any GROW S-value S∗Θ′1 , meaning in
that case the terminology ‘UMPG S-value’ is fully justified. This is shown in detail in Theorem 5.

Recall that in this thesis we will be concerned solely with one-sided tests since, as noted in [5],
finding GROW S-values for two-sided tests produces extra difficulties. Now, as we saw in Theorem
1, GROW S-values are Bayes factors for very particular priors on the null and alternative parameter
sets. Thus a test based on a GROW S-value is an instance of a Bayesian hypothesis test, in which the
null hypothesis test is rejected iff a Bayes factor exceeds a given threshold. To find a UMPGT(α), we
go via the concept of a uniformly most powerful Bayesian test (UMPBT), first introduced by Johnson
[7]. The idea is that for a fixed parameter space Θ and null hypothesis H0 : θ ∼ π0, there may exist
an alternative hypothesis H1 : θ ∼ π1 that maximises the probability that the associated Bayes factor

BF10(X) :=
pπ1(X)

pπ0(X)
(2.68)

exceeds a certain threshold γ uniformly across Θ. More precisely, Johnson gives the following definition.

Definition 3. A uniformly most powerful Bayesian test for evidence threshold γ > 0 in favor of the
alternative hypothesis H1 against a fixed null hypothesis H0, denoted by UMPBT(γ), is a Bayesian
hypothesis test with Bayes factor BF10(X), where BF10(X) satisfies the following inequality for any
alternative hypotheses H2 : θ ∼ π2(θ):

∀θt ∈ Θ Pθt(BF10(X) > γ) ≥ Pθt(BF20(X) > γ). (2.69)

Johnson then states and proves the following theorem on the existence of a UMPBT(γ) in the
case of exponential families with a one-sided test against a point null hypothesis. It shows that a
UMPBT(γ) can be constructed by using a prior π1 with very restricted support, usually a single point.

Theorem 4. (Johnson’s theorem) Assume that x1, . . . , xn are i.i.d. from an exponential family with a
density (or p.m.f. in the case of discrete data) with canonical form

pθ(x) = h(x) exp
(
η(θ)T (x)−A(θ)

)
, (2.70)

where η is monotonic. Consider a one-sided test of a fixed point null hypothesis H0 : θ = θ0 against
an arbitrary alternative hypothesis. Let γ denote the evidence threshold for a UMPBT(γ). Define
gγ,n(θ, θ0) according to

gγ,n(θ, θ0) =
log γ + n(A(θ)−A(θ0))

η(θ)− η(θ0)
(2.71)
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In addition, define u to be 1 or −1 according to whether η is monotonically increasing or decreasing,
respectively, and define v to be either 1 or −1 according to whether the alternative hypothesis requires
θ to be greater than or less than θ0, respectively. Then a UMPBT(γ) can be obtained by restricting the
support of π1 to values of θ that belong to the set

arg min
θ

uvgγ,n(θ, θ0). (2.72)

Thus finding a UMPBT(γ) reduces to minimizing uvgγ,n(θ, θ0).
The above theorem is used in [5] to show the existence of a UMPGT(α). The key idea is that

since GROW tests (with significance level α) are themselves Bayesian tests (with threshold 1/α), if a
UMPBT(1/α) turns out to be a GROW test, it is automatically a UMPGT(α).3 The authors then state
that Johnson’s theorem implies a UMPBT(1/α) can be found by solving KL(Pθ||Pθ0) = (− logα)/n
for θ. We now state a slightly modified version of their theorem and provide a proof.

Theorem 5. Consider the setting of Johnson’s theorem with parameter set Θ and hypotheses H0 :
θ = θ0 and H1 : θ ∈ Θ1 where Θ1 := [θ0,∞) ∩ Θ. Assume that A and η are differentiable,
η′(θ) > 0 for all θ and that, in the case of continuous random variables, we can take the derivative of∫
h(x) exp (η(θ)T (x)−A(θ)) dx with respect to θ through the integral. For θ ≥ θ0 define

dn(θ) := KL(Pnθ ||Pnθ0), (2.73)

where Pnθ denotes the n-fold product measure of Pθ. Suppose dn is continuous and strictly increasing
in θ. Let L := limθ→∞ dn(θ). Then for all α ∈ (e−L, 1) there exists a UMPGT(α), namely the test
Tα(S∗θ∗) based on the θ∗-GROW S-value S∗θ∗, where θ∗ is the unique solution to dn(θ∗) = − logα.
Further, the terminology UMPGT(α) is fully justified in this setting since Tα(S∗θ∗) is more powerful
than Tα(S∗Θ′1

) based on GROW S-value S∗Θ′1 for any alternative parameter set Θ′1 ⊆ Θ1.

In order to prove the above theorem, we first need the following lemma.

Lemma 6. Fix γ > 0 and suppose the conditions of the above theorem hold. Then ∂
∂θgγ,n(θ, θ0) = 0 if

and only if dn(θ) = log γ.

Proof. First, the Kullback-Leibler divergence can be simplified as follows.

d1(θ) =

∫
h(x) exp (η(θ)T (x)−A(θ)) log

h(x) exp (η(θ)T (x)−A(θ))

h(x) exp (η(θ0)T (x)−A(θ0))
dx (2.74)

=

∫
h(x) exp (η(θ)T (x)−A(θ)) ((η(θ)− η(θ0))T (x) +A(θ0)−A(θ)) dx (2.75)

= (η(θ)− η(θ0))

∫
T (x)h(x) exp (η(θ)T (x)−A(θ)) dx (2.76)

+ (A(θ0)−A(θ))

∫
h(x) exp (η(θ)T (x)−A(θ)) dx (2.77)

= (η(θ)− η(θ0))Eθ[T (X)] +A(θ0)−A(θ). (2.78)

Then, since the KL-divergence is additive for independent distributions, we have

dn(θ) = n
[
(η(θ)− η(θ0))Eθ[T (X)] +A(θ0)−A(θ)

]
(2.79)

Next, since distributions integrate to one, we have that for all θ∫
h(x) exp (η(θ)T (x)−A(θ)) dx = 1. (2.80)

3The UMPGT(α) will in fact be based on a GROW S-value S∗ for which the optimal prior W ∗1 puts all its mass on
the value of θ closest to θ0. This makes it straightforward to implement.
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Hence, by taking a derivative with respect to θ through the integral, we have∫
h(x)(η′(θ)T (x)−A′(θ)) exp (η(θ)T (x)−A(θ)) dx = 0 (2.81)

=⇒ η′(θ)

∫
T (x)h(x) exp (η(θ)T (x)−A(θ)) dx = A′(θ)

∫
h(x) exp (η(θ)T (x)−A(θ)) dx (2.82)

=⇒ η′(θ)Eθ[T (X)] = A′(θ). (2.83)

Using the quotient rule for differentiation and then substituting the above line for A′(θ) gives

∂

∂θ
gγ,n(θ, θ0) =

(η(θ)− η(θ0))nA′(θ)−
[

log γ + n(A(θ)−A(θ0))
]
η′(θ)

(η(θ)− η(θ0))2
(2.84)

=
(η(θ)− η(θ0))nη′(θ)Eθ[T (X)]−

[
log γ + n(A(θ)−A(θ0))

]
η′(θ)

(η(θ)− η(θ0))2
(2.85)

= η′(θ)
n
[
(η(θ)− η(θ0))Eθ[T (X)] +A(θ0)−A(θ)

]
− log γ

(η(θ)− η(θ0))2
(2.86)

= η′(θ)
dn(θ)− log γ

(η(θ)− η(θ0))2
. (2.87)

The result now follows since by the assumption that η′(θ) > 0 for all θ.

We can now prove Theorem 5.

Proof (of Theorem 5). Since dn(θ0) = KL(Pnθ0 ||P
n
θ0

) = 0, and dn is continuous and strictly increasing,
dn takes on every value in [0, L) exactly once. Thus, since e−L < α < 1 and so 0 < − logα < L, there
is then a unique solution θ∗ to dn(θ∗) = − logα. Defining γ = 1/α, by Lemma 6 we then have

∂

∂θ
gγ,n(θ∗, θ0) = 0, (2.88)

so that, by Johnson’s Theorem (Theorem 4), a UMPBT(γ) can be obtained for γ = 1/α by choosing a
prior π1 with support a subset of arg minθ gγ,n(θ, θ0). We now show that arg minθ gγ,n(θ, θ0) is a single
point, and in fact

θ∗ = arg min
θ

gγ,n(θ, θ0). (2.89)

Since the null hypothesis is simple, this implies that the UMPBT(γ) uses point mass priors π1 and π0

on θ∗ and θ0 respectively. Thus it uses the Bayes factor

BF10(X) =
pπ1(X)

pπ0(X)
=
pθ∗(X)

pθ0(X)
(2.90)

and rejects the null hypothesis iff pθ∗(X)/pθ0(X) ≥ γ.
To show (2.89), note that since A and η are assumed to be differentiable, gγ,n is partially differ-

entiable with respect to θ except at θ = θ0. Therefore its minimum is attained either at the unique
stationary point θ∗, the endpoint θ0 or at infinity (note θ∗ = θ0 is impossible since it would imply
d(θ∗) = d(θ0) = 0 whereas in fact d(θ∗) = − logα > 0).

We first exclude the possibility that the minimum is attained at θ0 by showing that gγ,n(θ, θ0)→∞
as θ → θ0. Since A and η are differentiable, they are continuous. Thus for θ close enough to θ0, we
have |A(θ)−A(θ0)| ≤ 1/(2n log γ) and so

gγ,n(θ, θ0) :=
log γ + n(A(θ)−A(θ0))

η(θ)− η(θ0)
(2.91)

≥ 1/2 log γ

η(θ)− η(θ0)
, (2.92)

which is positive (as η is strictly increasing) and tends to ∞ as θ → θ0.
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Second, we exclude the possibility that the minimum is attained at infinity by showing that gγ,n is
strictly increasing for θ ≥ θ∗. This follows immediately by noting that

∂

∂θ
gγ,n(θ, θ0) = η′(θ)

dn(θ)− dn(θ∗)

(η(θ)− η(θ0))2
> 0 for θ > θ∗, (2.93)

since η′(θ) > 0 for all θ and dn is strictly increasing. Thus (2.89) holds and the UMPBT(γ) rejects H0

iff pθ∗(X)/pθ0(X) ≥ γ = 1/α.
Now, since we are dealing with a one-parameter exponential family, we can apply Proposition 3 to

see that for any threshold value θ > θ0, the θ-GROW S-value S∗θ := S∗Θ1(θ) is given by

S∗θ (X) =
pθ(X)

pθ0(X)
. (2.94)

In particular, we find that the θ∗-GROW test Tα(S∗θ∗) based on the θ∗-GROW S-value S∗θ∗ rejects H0

iff pθ∗(X)/pθ0(X) ≥ 1/α and therefore coincides with the UMPBT(γ) given in (2.90). Finally, recall
Theorem 1, in particular (2.25), which shows that the GROW S-value S∗Θ′1 based on any Θ′1 ⊆ Θ1 is
given by a Bayes factor, so that all GROW tests Tα(S∗Θ′1

) are instances of Bayesian tests. Thus, since
the uniformly most powerful Bayesian test UMPBT(γ) is in fact equal to the θ∗-GROW test Tα(S∗θ∗),
we see that Tα(S∗θ∗) is the most powerful of all the GROW tests, so that the terminology ‘UMP GROW
test for significance level α is fully justified in this case.

The remainder of this thesis is devoted to finding GROW S-values and UMPGT(α)’s (when they
exist) in the specific case of 2× 2 contingency tables.
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Chapter 3

2× 2 Contingency tables

In this short chapter we introduce 2 × 2 contingency tables. After providing some brief context in
section 3.1, section 3.2 fixes the notation that will be used in the rest of the thesis. Section 3.3
introduces Fisher’s exact test, which is commonly used when evaluating 2× 2 tables and will be used
as a benchmark by which to measure the power of the S-values we construct in subsequent chapters. In
section 3.4 we clarify the difference between ‘conditional’ and ‘unconditional’ S-values. Finally, section
3.5 discusses the relation of this thesis to previous work.

3.1 Context

Suppose a number of categorical random variables are measured across a sample of individuals. The
resulting frequencies can then be represented in a contingency table, which may be used to investigate
any dependencies that may exist between the variables. For the purposes of this thesis, we will be
interested only in 2 × 2 contingency tables, which are the result of measuring two variables, where
each variable can take only two values. Although simple, this scenario is very common, for example in
clinical trials.

Suppose one wants to determine whether a particular treatment improves recovery or increases
the chance of survival. After choosing a (perhaps arbitrary) cut-off point, recovery or survival may
be modelled as a binary random variable. If the subset of the patients who receive the treatment (as
opposed to the placebo) are selected randomly, the resulting data can be used in a causal investigation
of the efficacy of the treatment.

We now outline the mathematical details. Although what follows is clearly not specific to clinical
trials, for clarity we will continue to use words such as ‘patient’ and ‘recover’.

3.2 Mathematical setup

Suppose we have a sample of n patients, na of which are randomly selected to receive the placebo, while
the remaining nb receive the treatment. Let θa be the probability that an individual in the placebo
group will recover and θb be the probability that an individual in the treatment group will recover. Let
Na1 and Nb1 be the numbers of patients that recover in the placebo and treatment groups respectively.
Likewise, let Na0 and Nb0 be the number of patients in the two groups that do not recover. According
to our model, we have

Na1 ∼ Bin(na, θa) and Nb1 ∼ Bin(nb, θb), (3.1)

where Na1 and Nb1 are independent. Throughout this thesis we will abbreviate Z = (Na1, Nb1).
Suppose after the trial has been completed, we have data (na1, na0, nb1, nb0), summarized in the

table below. We want to infer—for a one-sided test—whether θb = θa (the treatment does not improve
the chance of recovery) or θb > θa (the treatment improves the chance of recovery). We take parameter
sets Θ0 = {(θ0, θ0) : θ0 ∈ [0, 1]} and Θ1 = {(θa, θb) ∈ [0, 1]2 : θb > θa}. The null and alternative
hypotheses are then Hi = {Pθ : θ ∈ Θi}, for i = 0, 1 respectively.

24



Group
Recovery

0 (No) 1 (Yes) Total

a (Placebo) na0 na1 na

b (Treatment) nb0 nb1 nb

Total n0 n1 n

Since the practitioner selects na and nb, these are assumed to be known. Note that if we know
N1 = n1 then there is only one degree of freedom remaining. Indeed, given the value of just one of
Na1, Na0, Nb1 or Nb0, we can infer the other values using the marginal sums. Therefore, given the
marginal sums, the data can be summarized simply by Nb1 (picked arbitrarily). In chapter four we
will consider the case in which the value of N1 is known in advance. While this is unrealistic in the
context we have just given, there are situations in which this is possible. Chapter five then considers
the case when N1 is treated as a random variable whose value is not known in advance.

3.3 Fisher’s exact test

Many different statistical tests have been proposed for analyzing 2 × 2 contingency tables. Examples
include Pearson’s chi-squared test [8], Fisher’s exact test [4], Boschloo’s test [2] and Barnard’s test [1].
Since Fisher’s exact test bears some resemblance to the ‘conditional S-values’ we construct in the next
chapter, we will discuss it here.

If the null hypothesis were true—where θa and θb both equal p say—patients receiving the treatment
would face the same chance of recovery as those receiving the placebo. We would therefore expect the
proportion of patients that recover to be approximately the same in both groups. For any fixed n1,
we would expect Na1 ≈ nan1/n and Nb1 ≈ nbn1/n. Therefore if Nb1 is ‘large’, we should interpret
this as evidence against the null. To formalize this, we need to be precise about what we mean by
‘large’. A key insight is that under the null hypothesis N1 is a sufficient statistic for p. This implies
that, under the null hypothesis, the distribution of (Na1, Nb1)|N1 = n1—and hence the distribution of
Nb1|N1 = n1—does not depend on the true parameter p.

Thus, Fisher’s exact test finds the distribution of Nb1 when conditioned on the actually observed
value N1 = n1 and, for a one-sided test with significance level α and observed values nb1 and n1, rejects
the null hypothesis if and only if

P (Nb1 ≥ nb1|N1 = n1) ≤ α. (3.2)

Now, for a given value of n1, the conditional distribution of Nb1 under the null hypothesis is the
hypergeometric distribution. More precisely,

Nb1 | N1 = n1 ∼ hypg(n, nb, n1) where P (Nb1 = nb1 | N1 = n1) =

(
na

n1−nb1

)(
nb
nb1

)(
n
n1

) , (3.3)

Therefore Fisher’s exact test rejects the null if and only if

min{nb,n1}∑
n′b1=nb1

(
na

n1−nb1′
)( nb
n′b1

)(
n
n1

) ≤ α. (3.4)

To see that the conditional distribution of Nb1 given N1 = n1 takes the above form, let Pθ0 be the
distribution of Z = (Na1, Nb1) given any true parameter θ0 = (p, p) ∈ Θ0. Then Na1 ∼ Bin(na, p) and
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Nb1 ∼ Bin(nb, p) are independent and, for any fixed values nb1 and n1, we have

Pθ0(Nb1 = nb1 | N1 = n1) := Pθ0(Nb1 = nb1 | N1 = n1) (3.5)

=
Pθ0(Nb1 = nb1, N1 = n1)

Pθ0(N1 = n1)
(3.6)

=
Pθ0(Na1 = n1 − nb1, Nb1 = nb1)

Pθ0(N1 = n1)
(3.7)

=
Pθ0(Na1 = n1 − nb1)Pθ0(Nb1 = nb1)

Pθ0(N1 = n1)
(3.8)

=

(
na

n1−nb1

)
pn1−nb1(1− p)na−(n1−nb1)

(
nb
nb1

)
pnb1(1− p)nb−nb1(

n
n1

)
pn1(1− p)n−n1

(3.9)

=

(
na

n1−nb1

)(
nb
nb1

)(
n
n1

) , (3.10)

which is independent of θ0 and is in fact the p.m.f. of the hypergeometric distribution with parameters
n, nb, n1.

Fisher’s exact test is exact in the sense that since no asymptotic approximation is been made (as
is common in other tests), and instead the true distribution of Nb1 is used, the test’s true significance
level is equal to α.1 While this is based on the assumption that N1 really is fixed in advance—which
of course in the context of clinical trials it is not, since we do not know in advance the total number
of patients that will recover—the exactness in fact carries over to the case when N1 is not known in
advance by the law of total probability. More precisely, for any θ0 ∈ Θ0, we have

Pθ0(FET rejects H0) =

n∑
n1=0

Pθ0(FET rejects H0 | N1 = n1)Pθ0(N1 = n1) (3.11)

≈
n∑

n1=0

αPθ0(N1 = n1) (3.12)

= α. (3.13)

Nevertheless, there is some controversy around conditioning on N1 [3]. There are three cases; N1 really
is known in advance; N1 is not known in advance, but we analyse the data as though it were; and N1

is not known in advance and we do not treat is as though it were. In the following section, we briefly
outline how we will construct S-values in these three cases.

3.4 Conditional and unconditional S-values

First, if N1 truly is known in advance, then the data can be summarized by Nb1. We will see in the next
chapter that Nb1 then follows Fisher’s noncentral hypgergeometric distribution, which is parametrized
by the odds ratio ψ, defined as

ψ =
θb

1− θb
1− θa
θa

(3.14)

This is a one-dimensional exponential family, so we can use the relevant results from [5] to find the
GROW and UMPG S-values, which will then be referred to as conditional S-values.

Second, supposeN1 is not known in advance, but we analyze the data as though the discovered value
of N1 were in fact known from the beginning. More precisely, we can calculate the conditional S-value
using the value of N1 discovered in the course of the experiment. This is similar to the methodology
of Fisher’s exact test and in fact this statistical test shares the property of Fisher’s exact test that the
type I error guarantee is preserved even after taking expectations over N1. When using the conditional
S-value in this way, we still refer to it as the conditional S-value, but we will evaluate its growth and

1Strictly speaking, since we are dealing with discrete random variables, the true significance may be slightly less than
α.
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power in the unconditional setting, where N1 is unknown. The details of these first two choices can be
found in the following chapter.

Finally, suppose N1 is not known in advance and we do not treat it as though it were. In this
case we no longer have an exponential family and so we resort to calculating (or approximating) the
JIP. Recall that this requires restricting the parameter sets so that they are positively separated. At
this point a number of choices can be made. For example, if we are interested in the risk difference
δ = δ(θa, θb) := θb − θa, we may pick a threshold value of this parameter that is deemed ‘substantial’.
We may therefore choose

Θ0 = {(θa, θb) ∈ [0, 1]2 : θa = θb} and Θ1(δ) = {(θa, θb) ∈ [0, 1]2 : θb > θa + δ}. (3.15)

We can then calculate the JIP to get the GROW S-value S∗δ . Thus for each threshold value of δ, we
have an associated GROW S-value S∗δ . Out of these, we can then choose the uniformly most powerful
one (if it exists), S∗δUMP

. These S-values are referred to as unconditional S-values. The full details of
the different choices to be made and the resulting S-values can be found in chapter 5.

3.5 Relation to previous work

This thesis is of course heavily based on the methodology and results developed by Grünwald et al.
in [5]. It also builds on the work of Turner [12], who conducted an empirical investigation of some of
the unconditional GROW and UMPG S-values we explore here, bolstered by some theoretical work
in specific cases. We extend the work of Turner by investigating other choices for restricting Θ1. We
prove a number of theoretical results that give closed formulas for the GROW S-values in some cases
and in other cases give methods for finding the GROW S-values that are dramatically quicker than
approximating the JIP directly. While in some cases it is still necessary to approximate the JIP directly
(and this is computationally intensive), we have found a simplification of the calculation in the specific
case of 2× 2 contingency tables that speeds up the calculation by around an order of magnitude. Our
calculation of a conditional UMPG S-value in the subsequent chapter is heavily reliant on a theorem
of Johnson [7], extended by Grünwald et al. [5].
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Chapter 4

Safe tests for 2× 2 contingency tables
when N1 is known

In this chapter we construct safe tests for 2 × 2 contingency tables in the case where N1 is known in
advance. We shall call these tests conditional safe tests. In fact, as we will see in Proposition 7, it is
also valid to use these tests in the unconditional setting, namely when N1 is not known in advance,
simply by substituting the discovered value n1. This is valid in the sense that the type I error guarantee
is preserved.

In section 4.1 we show that the distribution of Nb1 when conditioned on N1 is equal to Fisher’s
noncentral hypergeometric distribution (fnchypg), of which the hypergeometric distribution is a special
case. The parameters of this distribution are n, nb, n1 and ψ, where ψ is the odds ratio. Since the
fnchypg distributions form an exponential family, the methods discussed in chapter 2 can be used
to produce GROW and UMPG S-values, which we will call the conditional GROW and conditional
UMPG S-values. We provide a closed formula for the conditional GROW S-value in section 4.2 and
an implicit expression for the UMPG S-value (when it exists) in section 4.3. The growth and power
of these conditional S-values in the conditional setting (when N1 is known in advance) are evaluated
in section 4.4, while the evaluation in the unconditional setting (when N1 is not known in advance) is
postponed to chapter 7.

4.1 Fisher’s noncentral hypergeometric distribution

Recall that under the null hypothesis θ = (θa, θb) ∈ Θ0, the distribution of Nb1 conditioned on N1

follows the hypergeometric distribution, namely

Nb1 | N1 = n1 ∼ hypg(n, nb, n1) where P (Nb1 = nb1 | N1 = n1) =

(
na

n1−nb1

)(
nb
nb1

)(
n
n1

) , (4.1)

We now show that this is in fact a special case, in that for an arbitrary θ = (θa, θb) ∈ [0, 1]2, the
distribution of Nb1 conditioned on N1 = n1 is equal to Fisher’s noncentral hypergeometric distribution,
which is a generalization of the hypergeometric distribution which only depends on θ via the one-
dimensional parameter ψ(θa, θb), referred to as the odds ratio. We are thus justified in writing the
conditional distribution of Nb1 as Pψ. More precisely, we have

Nb1 | N1 = n1 ∼ fnchypg(n, nb, n1, ψ), where ψ = ψ(θa, θb) =
θb

1− θb
1− θa
θa

(4.2)

and1

Pψ(Nb1 = nb1) := Pθa,θb(Nb1 = nb1 | N1 = n1) =

(
na

n1−nb1

)(
nb
nb1

)
ψnb1∑min{nb,n1}

n′b1=max{0,n1−na}
(

na
n1−n′b1

)( nb
n′b1

)
ψn
′
b1

. (4.3)

1Although we are using P for both the conditional distribution of Nb1 given N1 and a particular ψ, and the uncon-
ditional distribution of Z = (Na1, Nb1) for a particular θ, no confusion should arise so long as one of the symbols ψ or θ
is present. If values are substituted, it should still be clear since ψ is a scalar while θ is a tuple.

28



Recall that Na1 and Nb1 are independent and have distributions Na1 ∼ Bin(na, θa) and Nb1 ∼
Bin(nb, θb). If we define

ψa =
θa

1− θa
and ψb =

θb
1− θb

, (4.4)

so that ψ = ψb/ψa, we can derive (4.3) as follows

Pθa,θb(Nb1 = nb1 | N1 = n1) =
Pθa,θb(Nb1 = nb1, N1 = n1)

Pθa,θb(N1 = n1)
(4.5)

=
Pθa,θb(Na1 = n1 − nb1, Nb1 = nb1)∑min{nb,n1}

n′b1=max{0,n1−na} Pθa,θb(Na1 = n1 − n′b1, Nb1 = n′b1)
(4.6)

=
Pθa,θb(Na1 = n1 − nb1)Pθa,θb(Nb1 = nb1)∑min{nb,n1}

n′b1=max{0,n1−na} Pθa,θb(Na1 = n1 − n′b1)Pθa,θb(Nb1 = n′b1)
(4.7)

=

(
na

n1−nb1

)
θn1−nb1
a (1− θa)na0

(
nb
nb1

)
θnb1b (1− θb)nb0∑min{nb,n1}

n′b1=max{0,n1−na}
(

na
n1−n′b1

)
θ
n1−n′b1
a (1− θa)n

′
a0

( nb
n′b1

)
θ
n′b1
b (1− θb)n

′
b0

(4.8)

=

(
na

n1−nb1

)
ψn1−nb1
a (1− θa)na

(
nb
nb1

)
ψnb1b (1− θb)nb∑min{nb,n1}

n′b1=max{0,n1−na}
(

na
n1−n′b1

)
ψ
n1−n′b1
a (1− θa)na

( nb
n′b1

)
ψ
n′b1
b (1− θb)nb

(4.9)

=

(
na

n1−nb1

)(
nb
nb1

)
ψn1−nb1
a ψnb1b∑min{nb,n1}

n′b1=max{0,n1−na}
(

na
n1−n′b1

)( nb
n′b1

)
ψ
n1−n′b1
a ψ

n′b1
b

(4.10)

=

(
na

n1−nb1

)(
nb
nb1

)
ψn1−nb1+nb1
a ψnb1∑min{nb,n1}

n′b1=max{0,n1−na}
(

na
n1−n′b1

)( nb
n′b1

)
ψ
n1−n′b1+n′b1
a ψn

′
b1

(4.11)

=

(
na

n1−nb1

)(
nb
nb1

)
ψnb1∑min{nb,n1}

n′b1=max{0,n1−na}
(

na
n1−n′b1

)( nb
n′b1

)
ψn
′
b1

. (4.12)

The sum introduced in the denominator is simply a sum over all possible values of n′b1. This sum has
a more complicated form than might first be supposed. This is because the lowest and highest values
n′b1 can take depend not just on the size of group b but also on the size of group a. More precisely, the
lowest value n′b1 can take is when as many 1’s as possible are in group a. If na ≥ n1, then we can fit
all the 1’s in group a. However, if na < n1, then we can only fit at most na, leaving n1 − na in group
b. Thus the smallest value n′b1 can take is max{0, n1−na}. Similar reasoning gives min{nb, n1} as the
upper limit of the sum.

In the rest of the thesis, we will let K denote the set of possible values of nb1 for a given n1, namely

K := {k ∈ N : max{0, n1 − na} ≤ k ≤ min{nb, n1}}, (4.13)

where N is the nonnegative integers (which includes 0). Further, for k ∈ K, we will use the abbreviation

ck :=

(
na

n1 − k

)(
nb
k

)
. (4.14)

We can then write (4.12) more concisely as

Pψ(Nb1 = nb1 | N1 = n1) =
cnb1ψ

nb1∑min{nb,n1}
k=max{0,n1−na} ckψ

k
. (4.15)

As a sanity check, we can confirm that the denominator is never zero by checking that K 6= ∅ and
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all the binomial coefficients are valid. We have

K 6= ∅ ⇐⇒ min{nb, n1} ≥ max{0, n1 − na} (4.16)
⇐⇒ nb, n1 ≥ max{0, n1 − na} (4.17)
⇐⇒ nb, n1 ≥ 0 and nb, n1 ≥ n1 − na (4.18)
⇐⇒ nb, n1 ≥ 0 and na + nb ≥ n1 and n1 ≥ n1 − na (4.19)
⇐⇒ nb, n1 ≥ 0 and n ≥ n1 and na ≥ 0 (4.20)
⇐⇒ na, nb ≥ 0 and 0 ≤ n1 ≤ n. (4.21)

Clearly then for all sensible values of (n, n1, nb) the sum contains at least one term. In order to do
statistical inference however, K must contain at least two values, otherwise Nb1 is constant and nothing
can be deduced from knowing its value. Now |K| ≥ 2 iff all the inequalities above are strict, namely
na, nb > 0 and 0 < n1 < n. While we will always assume na, nb > 0, it may occur that n1 = 0 or
n1 = n. We will make it clear in this thesis when we are excluding such cases. Finally, we see that

max{0, n1 − na} ≤ k ≤ min{nb, n1} =⇒ 0, n1 − na ≤ k and k ≤ nb, n1 (4.22)
=⇒ 0 ≤ k ≤ nb and n1 − na ≤ k ≤ n1 (4.23)
=⇒ 0 ≤ k ≤ nb and 0 ≤ n1 − k ≤ na, (4.24)

and so all the binomial coefficients are valid for sensible values of (n, n1, nb).
Since the conditional distribution of Nb1 given N1 depends on θ only via the one-dimensional

parameter ψ, we may reparametrize the model in terms of ψ. Thus the null parameter set becomes

Ψ0 := {ψ(θ0) : θ0 ∈ Θ0} =

{
p

1− p
1− p
p

: p ∈ [0, 1]

}
= {1}, (4.25)

which is a singleton. Further, since x 7→ x
1−x is a strictly increasing function on [0, 1), we have

θa > θb ⇐⇒ ψa > ψb ⇐⇒ ψ > 1. (4.26)

Therefore, if we are performing a one sided test with parameter set Θ1 = {(θa, θb) ∈ [0, 1]2 : θb > θa},
we have

Ψ1 := {ψ(θ1) : θ1 ∈ Θ1} = (1,∞). (4.27)

With this parametrization, Ψ0 is a singleton and so, as we saw above, for any prior W1 ∈ W(Ψ1)
the likelihood ratio

SW1(Nb1) :=
PW1(Nb1)

P1(Nb1)
(4.28)

is an S-value, where the marginal PW1 is defined by

PW1(Nb1) := Eψ∼W1 [Pψ(Nb1)]. (4.29)

In particular, for a prior W1 = δ{ψ} that is a point mass on some ψ, we have

Sψ(Nb1) := Sδ{ψ}(Nb1) (4.30)

=
Pψ(Nb1)

P1(Nb1)
(4.31)

=

(
na

n1−nb1

)(
nb
nb1

)
ψnb1∑min{nb,n1}

n′b1=max{0,n1−na}
(

na
n1−n′b1

)( nb
n′b1

)
ψn
′
b1

((
na

n1−nb1

)(
nb
nb1

)(
n
n1

) )−1

(4.32)

=

(
n
n1

)
ψnb1∑min{nb,n1}

n′b1=max{0,n1−na}
(

na
n1−n′b1

)( nb
n′b1

)
ψn
′
b1

. (4.33)

We will now see that the GROW and UMPG S-values are all of this form.
Now it is straightforward to show that any test statistic that is an S-value in the conditional case

is also an S-value in the unconditional case. This follows simply by taking expectations over N1. The
following proposition spells this out in more detail and in a more general setting.
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Proposition 7. Let Z = (X,Y ) be a random variable, where Z ∼ Pθ for some θ ∈ Θ0 ∪Θ1. For any
value y and any θ0 ∈ Θ0, let PXθ0 (· | y) denote the conditional distribution of X given Y = y. Suppose
S(X|Y ) is a conditional S-value, in the sense that for any value of y known in advance, S(X|y) is an
S-value. More precisely, for all values of y we have

∀θ0 ∈ Θ0 EX∼PXθ0 (·|y)[S(X|y)] ≤ 1. (4.34)

Then S(X|Y ) is also an unconditional S-value, in the sense that

∀θ0 ∈ Θ0 EZ∼Pθ0 [S(X|Y )] ≤ 1. (4.35)

Proof. This follows simply by taking the expectation over Y . For any θ0 ∈ Θ0, let P Yθ0 be the marginal
distribution of Y when Z ∼ Pθ0 . Then, by the law of total expectation, we have

EZ∼Pθ0 [S(X|Y )] = EY∼PYθ0

[
EX∼PXθ0 (·|Y )[S(X|Y )]

]
(4.36)

≤ EY∼PYθ0
[1] (4.37)

= 1. (4.38)

We therefore see that SW1(Nb1) is both a conditional and an unconditional S-value for any prior
W1. We will now find which W1 gives the S-value with the highest growth rate in the conditional case,
namely the conditional GROW S-value, using the results for exponential families found in [5].

4.2 The conditional GROW S-values

To avoid the GROW S-value being degenerate, we must pick Ψ′1 ⊆ Ψ1 strictly separated from Ψ0. As
in section 2.5, we can define Ψ(ψ) := [ψ,∞) for each threshold value ψ > 1 and refer to the resulting
GROW S-value S∗ψ := S∗Ψ(ψ) as the ψ-GROW S-value. Further, for significance level α ∈ (0, 1), we will
call the safe test Tα(S∗ψ) the ψ-GROW test for significance level α. We now derive a closed formula
for the ψ-GROW S-values. We first need the following lemma.

Lemma 8. Let P = {Pη : µ ∈ E} be an exponential family given in the canonical parametrization and
let P = {Qµ : µ ∈M} be the same family in the mean-value parametrization. Then

µ(η) := EX∼Pη [X] (4.39)

is a strictly increasing function of η.

Proof. See [6, Section 18.3].

We can now state and prove the following theorem, which says that the optimal prior W ∗1 is simply
a point mass on the threshold value ψ.

Theorem 9. Let n, nb and n1 be fixed, and suppose Nb1 ∼ fnchypg(n, nb, n1, ψ) for some ψ ≥ 1. If we
have null parameter set Ψ0 = {1} and, for some fixed threshold value ψ > 1, alternative parameter set
Ψ1 = [ψ,∞), then the ψ-GROW S-value S∗ψ is given simply by

S∗ψ(Nb1) =
Pψ(Nb1)

P1(Nb1)
. (4.40)

Proof. Let Pψ denote the probability mass function of a fnchypg(n, nb, n1, ψ) distribution. Then, for
any nb1, we can write Pψ(Nb1 = nb1) as

Pψ(Nb1 = nb1) =

(
na

n1−nb1

)(
nb
nb1

)
ψnb1∑min{nb,n1}

n′b1=max{0,n1−na}
(

na
n1−n′b1

)( nb
n′b1

)
ψn
′
b1

= h(nb1)exp [η(ψ)T (nb1)−A(ψ)] , (4.41)

where
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• h(nb1) =
(

na
n1−nb1

)(
nb
nb1

)
• η(ψ) = logψ

• T (nb1) = nb1

• A(ψ) = log
(∑min{nb,n1}

n′b1=max{0,n1−na}
(

na
n1−n′b1

)( nb
n′b1

)
ψn
′
b1

)
.

We therefore see that P := {Pψ : ψ ≥ 1} forms an exponential family. We define the canonical and
mean-value parametrizations of P as follows

• The canonical parametrization is P = {P can
η : η ∈ E}, where E := {η(ψ) : ψ ∈ [1,∞)},

η(ψ) := logψ and P can
η(ψ)

:= Pψ.

• The mean-value parametrization is P = {Pmean
µ : µ ∈ M}, where M := {µ(η) : η ∈ E},

µ(η) := ENb1∼P can
η

[Nb1] and Pmean
µ(η)

:= P can
η .

Since η is strictly increasing in ψ and, by Lemma 8, µ is strictly increasing in η, we see that µ is
strictly increasing in ψ. Thus the null and alternative parameter sets Ψ0 = {1} and Ψ1 = [ψ,∞)
induce null and alternative parameter sets for the mean M0 := {µ(η(1))} and M1(ψ) := [µ(η(ψ)), a),
where a > µη(ψ) and µ(η(ψ)) > µ(η(1)). We can now apply Proposition 3, which states that the
GROW S-value S∗M1(ψ) is given by

S∗M1(ψ)(Nb1) =
Pmean
µ(η(ψ))(Nb1)

Pmean
µ(η(1))(Nb1)

=
P can
η(ψ)(Nb1)

P can
η(1)(Nb1)

=
Pψ(Nb1)

P1(Nb1)
. (4.42)

Finally, since we have simply reparametrized, we know that S∗Ψ1(ψ) = S∗M1
(ψ) and the result follows.

Note that by Proposition 7 we know that S∗ψ is also an unconditional S-value, though it is not
necessarily the unconditional GROW S-value.

4.3 The conditional UMPG S-value

As discussed in section 2.5, instead of deciding a fixed threshold value ψ > 1 in advance and using
the ψ-GROW S-value S∗ψ, we can choose the threshold value ψ such that the ψ-GROW test Tα(S∗ψ)

has the greatest power of all the ψ-GROW tests, uniformly over Ψ1 = [1,∞). If such a ψ exists, it
called the UMP threshold and is denoted by ψ∗. The resulting S-value S∗ψ∗ is called a uniformly most
powerful GROW S-value for significance level α, abbreviated to the UMPG S-value for significance
level α. Further, the test safe Tα(S∗ψ∗) is called a uniformly most powerful GROW test for significance
level α, abbreviated to UMPGT(α). Formally, we are asking whether, for given n, nb, n1 and α ∈ (0, 1),
there exists ψ∗ such that for all ψ1, ψ2 > 1 we have

Pψ1(S∗ψ∗ ≥ 1/α) ≥ Pψ1(S∗ψ2
≥ 1/α). (4.43)

Since P = {Pψ : ψ ≥ 1} forms an exponential family, we can apply Theorem 5 to get Proposition
10 below. This states that not only does a UMPGT(α) exist (provided α is not too small), it is in fact
more powerful than any safe GROW test. Thus the terminology UMPGT(α) is fully justified. Recall
the abbreviations K := {k : max{0, n1 − na} ≤ k ≤ min{nb, n1}} and

ck :=

(
na

n1 − k

)(
nb
k

)
. (4.44)

Proposition 10. Fix n, nb and n1 and take Ψ0 = {1}. Let kmax := max(K) = min{nb, n1}, and
suppose |K| ≥ 2. Then for all α ∈ (ckmax/

(
n
n1

)
, 1) there exists a UMPGT(α), namely Tα(S∗ψ∗), where

ψ∗ is the unique solution to d(ψ∗) = − logα, where

d(ψ) := KL(Pψ||P1). (4.45)
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In order to prove Proposition 10, we require the following important fact for exponential families
in the mean-value parameterization.

Lemma 11. Let P = {Pµ : µ ∈M} be an exponential family given in the mean-value parametrization.
Then, for any µ′ ∈M , we have that

d(µ) := KL(Pµ||Pµ′) (4.46)

is a strictly convex function of µ.

Proof. See [6, Section 18.4].

We can now prove Proposition 10.

Proof. First note that if |K| = 1 then Nb1 can only take one value, meaning all S-values are identically
equal to one. In this uninteresting case all the associated tests are UMP since they all have the same
power. For the remainder of the proof assume |K| > 1.

Recall that P := {Pψ : ψ ≥ 1} forms an exponential family:

Pψ(Nb1 = nb1) = h(nb1)exp [η(ψ)T (nb1)−A(ψ)] , (4.47)

where

• h(nb1) =
(

na
n1−nb1

)(
nb
nb1

)
• η(ψ) = logψ

• T (nb1) = nb1

• A(ψ) = log
(∑min{nb,n1}

n′b1=max{0,n1−na}
(

na
n1−n′b1

)( nb
n′b1

)
ψn
′
b1

)
.

To prove the proposition, it therefore suffices to verify the conditions of Theorem 5.
Clearly, η and A are differentiable and η is strictly increasing. We do not need to worry about

swapping an integral and a derivative since Nb1 is a discrete random variable. Since for all k ∈ K,
ψ 7→ Pψ(k) is continuous, d(ψ) is also continuous. To see that d(ψ) is strictly increasing, we use
Lemmas 11 and 8, which make use of both the canonical and mean-value parametrizations (of which our
parametrization in terms of ψ is neither). We therefore use the same notation for these parametrizations
as in the proof of Theorem 9. We then have

d(ψ) := KL(Pψ||P1) (4.48)
= KL(P can

η(ψ)||P
can
η(1)) (4.49)

= KL(Pmean
µ(η(ψ))||P

mean
µ(η(1))). (4.50)

Now η(ψ) = logψ is clearly strictly increasing in ψ. Further, by Lemma 8, we see that µ(η) is strictly
increasing in η. Thus µ(η(ψ)) is strictly increasing in ψ. Now since d(1) = 0 and the KL-divergence is
always nonnegative, Lemma 11 implies that d(ψ) is strictly increasing for ψ ≥ 1.

It remains to show that limψ→∞ d(ψ) = log
((

n
n1

)
/ckmax

)
. For k ∈ K, let

fk(ψ) :=
∑
l∈K

clψ
l−k. (4.51)

For k < kmax there exists l > k and so fk(ψ)→∞ as ψ →∞. If k = kmax, then all terms in the sum
tend to zero except the last, which equals ckmax . So fkmax(ψ) → ckmax as ψ → ∞. Using these facts,
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we have

d(ψ) =
∑
k∈K

ckψ
k∑

l∈K clψ
l

[
log

ckψ
k∑

m∈K cmψ
m
− log

ck(
n
n1

)] (4.52)

=
∑
k∈K

ck∑
l∈K clψ

l−k

[
log

1∑
m∈K cmψ

m−k + log

(
n

n1

)]
(4.53)

=
∑
k∈K

ck
fk(ψ)

[
log

1

fk(ψ)
+ log

(
n

n1

)]
(4.54)

=
∑

k<kmax

ck
fk(ψ)

[
log

1

fk(ψ)
+ log

(
n

n1

)]
+

ckmax

fkmax(ψ)

[
log

1

fkmax(ψ)
+ log

(
n

n1

)]
(4.55)

→ ckmax

ckmax

[
log

1

ckmax

+ log

(
n

n1

)]
as ψ →∞ (4.56)

= log

( (
n
n1

)
ckmax

)
. (4.57)

4.4 Growth and power of conditional S-values

We now inspect the (worst case) growth rate and power of the conditional GROW and conditional
UMPG S-values in the case where na = nb = 50. We took n1 ∈ {5, 10, 20, 50}, noting that, by
symmetry, n′1 = n− n1 will give the same results in reverse. For each of these values of n1, a UMPG
S-value exists and is denoted by S∗ψ∗(n1), where ψ

∗(n1) is the UMP threshold given by Proposition 10
as the solution to

KL(Pψ,n1 ||P1,n1) = − logα, (4.58)

where Pψ,n1 denotes the fnchypg(n, nb, n1, ψ) distribution. We start at n1 = 5 since (4.58) only has a
solution for n1 ≥ 5.

For a sequence of twenty evenly spaced odds ratio thresholds from ψ = 1 to ψ = 5, we calculated
the (worst case) growth rate and power of the conditional GROW S-value S∗Ψ1(ψ) and the conditional
UMPG S-value S∗ψ∗(n1) on Ψ1(ψ). The results are found in figure 4.1 to 4.4, where we write simply ψ
for the threshold value rather than ψ. It is worth stressing that, as the threshold value ψ increases,
the GROW S-value changes while the UMPG S-value does not. Nevertheless, when ψ = ψ∗, the two
S-values coincide. Therefore the growth and power curves meet when ψ = ψ∗. This is not always
apparent in the figures if ψ∗ is very large.

Note that the GROW S-value always has growth rate at least as high as the UMPG S-value, and
the UMPG S-value always has power at least as high as the GROW S-value. Indeed, this follows from
the definition of these S-values. Interestingly however, there are cases where their power appears equal
while the GROW S-value has larger growth rate (for example when n1 = 50 and ψ > 3). In these
cases, it seems that the GROW S-value is clearly the better choice. We also see that Fisher’s exact
test always has power at least as large as either S-value (for n1 = 5 the power of Fisher’s exact test
seems to be identical to the power of the conditional UMPG S-value). Indeed, it should perhaps be
expected that since S-values satisfy the extra requirement of having a type I error guarantee robust to
optional continuation, that they will necessarily perform worse in some other respect. The fact that
the S-values have lower power than Fisher’s exact test is by no means a definitive argument against
using them.
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Figure 4.1: n1 = 5. There exists a UMP ψ, namely ψ∗ = 44.14.

Figure 4.2: n1 = 10. There exists a UMP ψ, namely ψ∗ = 6.65.

Figure 4.3: n1 = 20. There exists a UMP ψ, namely ψ∗ = 3.62.
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Figure 4.4: n1 = 50. There exists a UMP ψ, namely ψ∗ = 2.69.
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Chapter 5

Safe tests for 2× 2 contingency tables
when N1 is unknown

In the previous chapter it was assumed that N1 was known in advance. Here we drop that assumption
and construct safe tests for 2 × 2 contingency tables where N1 truly is a random variable whose value
is not known before the experiment begins. This is, in most cases, much closer to reality. For example,
when running a clinical trial, the total number of patients who will recover is not known in advance.
Since these tests do not condition on the value of N1, we refer to them as unconditional safe tests.
The S-values on which the unconditional safe tests are based will be referred to as the unconditional
S-values. As before, we will construct two types, namely the unconditional GROW S-values and, where
they exist, the unconditional UMPG S-values.

Given restricted parameter sets, the GROW S-value can be estimated by numerically approximating
the JIP between the sets of Bayesian marginals. Practitioners analysing 2 × 2 contingency tables
commonly use the risk difference, relative risk or the odds ratio between θa and θb to quantify the
effect size. In section 5.1 we describe how threshold values of any of these parameters can be used
to construct a subset of the alternative parameter set. In the case of the risk difference, this suffices
to strictly separate the parameter sets, but for the relative risk or the odds ratio further restriction
must be made. We permit further restriction in the form of a prior knowledge rectangle, representing
the range of values of θa and θb that the practitioner deems reasonable. In section 5.2 we recap the
conditions of the main result of [5] and refer to Appendix A for a discussion of their justification in
our case. We also specify what we mean by a UMPG S-value in the unconditional setting.

Section 5.3 outlines the process used to discretize the parameter sets so that the JIP—and therefore
the GROW S-value—can be approximated numerically. While numerically approximating the JIP is
rather computationally intensive, we provide a simplified formula for the gradient of the objective
function in Proposition 12 that speeds up the calculation by around an order of magnitude. Later, in
chapter six, we will prove a number of results that bypass the JIP approximation altogether by either
reducing the problem to a much simpler computation or even finding an explicit expression for the
GROW S-value.

5.1 Parameter of interest and prior knowledge

The risk difference δ, relative risk λ and odds ratio ψ for any (θa, θb) ∈ [0, 1]2 are defined by

δ = δ(θa, θb) := θb − θa (5.1)
λ = λ(θa, θb) := θb/θa (5.2)

ψ = ψ(θa, θb) :=
θb

1− θb
1− θa
θa

. (5.3)

When discussing facts that hold whichever parameter is chosen, we use ε = ε(θa, θb) to denote an
arbitrary choice. Recall that we are only considering one-sided tests of θb > θa versus θb = θa. This
corresponds to the one-sided test of δ > 0, λ > 1 or ψ > 1 versus δ = 0, λ = 1 or ψ = 1. Thus, given
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any threshold value δ > 0, λ > 1 or ψ > 1 deemed a minimum clinically relevant effect size, we define
the following restrictions1 of Θ1

Θ1(δ) := {(θa, θb) ∈ [0, 1]2 : θb ≥ θa + δ} (5.4)

Θ1(λ) := {(θa, θb) ∈ [0, 1]2 : θb/θa ≥ λ} (5.5)

Θ1(ψ) :=

{
(θa, θb) ∈ [0, 1]2 :

θb
1− θb

1− θa
θa

≥ ψ
}
. (5.6)

Thus, in general, we have
Θ1(ε) := {(θa, θb) ∈ [0, 1]2 : ε(θa, θb) ≥ ε}. (5.7)

As mentioned above, Θ1(δ) is already strictly separated from Θ0 for any δ > 0. However, for the
other parameter choices, we have

Θ1(λ) ∩Θ0 = {(0, 0)} and Θ1(ψ) ∩Θ0 = {(0, 0), (1, 1)}, (5.8)

for any λ > 1 and ψ > 1. In these cases the GROW S-value is degenerate unless we make further
restrictions. We now discuss prior knowledge that may be incorporated to achieve this, when it exists.
We will allow prior knowledge also in the case of the risk difference.

Suppose the practitioner already has knowledge on which values of θa and θb are reasonable. For
example, if the probability of recovery without treatment or placebo is known to be 0.1 from data
drawn from the general population, it may be reasonable to assume that receiving a placebo cannot
decrease the probability of recovery, namely, the practitioner has the prior knowledge that θa ≥ 0.1.
More generally, the practitioner may have prior knowledge on the range of values that θa and θb can
reasonably take. We will refer to this as the prior knowledge rectangle (PKR). More precisely, suppose
the practitioner knows that θa ∈ [θLa , θ

U
a ] and θb ∈ [θLb , θ

U
b ] for some θLa , θUa , θLb , θ

U
b ∈ [0, 1], where

θLa ≤ θUa and θLb ≤ θUb . Then the prior knowledge rectangle is defined by

PKR := [θLa , θ
U
a ] × [θLb , θ

U
b ]. (5.9)

We allow the possibility that θLa = θUa (or θLb = θUb ). This may reflect, for example, knowledge of
previous large studies using the same placebo for the same condition that determined the probability
of recovery for the placebo group to a high accuracy. We now define

Θ1(ε)′ := Θ1(ε) ∩ PKR and Θ′0 := Θ0 ∩ PKR. (5.10)

Further, it may occasionally be necessary to refer to

Θ′1 := Θ1 ∩ PKR, (5.11)

the alternative parameter set restricted by the prior knowledge rectangle but not by any threshold
value.

5.2 The unconditional GROW and UMPG S-values

Given a threshold value ε and prior knowledge rectangle PKR such that Θ1(ε)′ and Θ′0 are strictly
separated, we wish to find the the GROW S-value S∗Θ1(ε)′ . It is these such S-values that we will refer
to as the unconditional GROW S-values. Recall Theorem 1, which states that these S-values exist and
are given by

S∗Θ1(ε)′(Z) =
pW ∗1 (Z)

pW ∗0 (Z)
, where (W ∗1 ,W

∗
0 ) := inf

(W1,W0)∈W(Θ′1)×W(Θ0)
KL(PW1 ||PW0), (5.12)

provided the following conditions hold
1This notation is ambiguous once numerical values for the threshold is substituted. In such cases we will make it

clear which parameter is being used.
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1. For all θ0 ∈ Θ0 and W1 ∈ W(Θ′1) we have that Pθ0 is absolutely continuous relative to PW1 .

2. The infimum inf(W1,W0)∈W(Θ′1)×W(Θ0) KL(PW1 ||PW0) is finite.

3. The infimum is achieved by some (W ∗1 ,W
∗
0 ).

4. The infimum is achieved uniquely.

For an exploration of whether these conditions indeed hold in the cases we consider, see appendix A,
the conclusion of which is essentially that in every case, each condition either holds or its failure to
hold is not problematic, meaning we can always apply the theorem.

As in the conditional case, instead of fixing a threshold value ε, we may instead choose the value of
ε that uniformly maximizes the power of S∗Θ1(ε)′ over Θ′1. More precisely, for a given PKR, let E be the
values of ε such that Θ1(ε)′ 6= ∅ (for example, if we have the risk difference δ and PKR = [0.5, 1]× [0, 1],
then E = (0, 0.5]). Then, given unconditional GROW S-values {S∗Θ1(ε)′ : ε ∈ E}, if there exists ε∗ ∈ E
such that, for a given significance level α ∈ (0, 1), we have

∀θ ∈ Θ′1, ∀ε ∈ E Pθ
(
S∗Θ1(ε∗)′ ≥ 1/α

)
≥ Pθ

(
S∗Θ1(ε)′ ≥ 1/α

)
, (5.13)

we refer to ε∗ as the uniformly most powerful (UMP) threshold, the GROW S-value S∗Θ1(ε∗)′ as the
unconditional uniformly most powerful GROW (UMPG) S-value and the test Tα(S∗Θ1(ε∗)′) as an un-
conditional uniformly most powerful GROW test for significance level α, abbreviated to UMPGT(α).

5.3 Estimating GROW S-values by numerically approximating the
JIP

Chapter six discusses cases in which there are shortcuts to finding the unconditional GROW S-values.
However, there are still cases where it is necessary to estimate the unconditional GROW S-values
by directly approximating the JIP numerically. Although, as seen in Chapter 2, this is a convex
optimization problem, it can still be very computationally intensive. We now discuss how the parameter
sets can be discretized to make the problem amenable to numerical methods, and how the gradient
of the objective function can be found in closed form, which speeds up the calculation by around an
order of magnitude.

Suppose, for given threshold value ε and PKR, we discretize the null and alternative parameter
sets by

Θ̇′0 = {θ0,1, . . . , θ0,K0} ⊆ Θ′0 and Θ̇1(ε)′ = {θ1,1, . . . , θ1,K1} ⊆ Θ1(ε)′ (5.14)

respectively, where K0,K1 ∈ N. A natural choice is to construct an evenly spaced n×n grid of points

Θ̇n := {(i/n, j/n) : i, j ∈ [n]}, (5.15)

where [n] := {0, 1, . . . , n}, and then take

Θ̇′0 = Θ′0 ∩ Θ̇n and Θ̇1(ε)′ = Θ1(ε)′ ∩ Θ̇n. (5.16)

This is the discretization we used in our experiments.
For any K ∈ N, let 4K denote the set of distributions on K points, namely

4K :=

{
w ∈ RK :

K∑
k=1

wk = 1 and wk ≥ 0 for k = 1, . . . ,K

}
. (5.17)

Then, for any w = (w0,w1) ∈ 4K0 × 4K1 , let W0(w) ∈ W(Θ̇′0) be the prior that puts puts mass
w0,k on θ0,k for each k = 1, . . . ,K0, and let W1(w) ∈ W(Θ̇1(ε)′) be the prior that puts puts mass w1,k

on θ1,k for each k = 1, . . . ,K0. The corresponding marginal distributions on Z = (Na1, Nb1) are then
given by

PWi(w) :=

Ki∑
k=1

wi,kPθi,k for i ∈ {0, 1}. (5.18)
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Finally, let f : 4K0 ×4K1 → [0,∞) be defined by

f(w) := KL(PW1(w)||PW0(w)). (5.19)

We therefore have

inf
(W0,W1)∈W(Θ̇′0)×W(Θ̇1(ε)′)

KL(PW1 ||PW0) = inf
w∈4K0×4K1

KL(PW1(w)||PW0(w)) (5.20)

= inf
w∈4K0×4K1

f(w) (5.21)

= min
w∈4K0×4K1

f(w), (5.22)

where the last line follows since f is a continuous function on a compact set and so attains its infimum
at some w∗.

Let W̃ ∗i := Wi(w∗) for i ∈ {0, 1}. Then we can define the likelihood ratio

S̃∗(Z) :=
PW̃ ∗1

(Z)

PW̃ ∗i
(Z)

, (5.23)

which, by Theorem 1, is then the GROW S-value for the discretized parameter sets. Suppose the
conditions of Theorem 1 are satisfied for the original (non-discretized) parameter sets and the GROW
S-value for these original parameter sets is given by

S∗ :=
PW ∗1 (Z)

PW ∗0 (Z)
, where (W ∗1 ,W

∗
0 ) := arg min

(W1,W0)∈W(Θ′0)×W(Θ1(ε)′)
KL(PW1 ||PW0). (5.24)

We will take S̃∗ as our approximation of S∗. By Theorem 1, we know that the worst case growth rates
for S̃∗ and S∗ are given by

GR(S̃∗) = KL(PW̃ ∗1
||PW̃ ∗0 ) and GR(S∗) = KL(PW ∗1 ||PW ∗0 ). (5.25)

Now, if our discretizations are sufficiently fine, we expect that

KL(PW ∗1 ||PW ∗0 ) = min
(W0,W1)∈W(Θ′0)×W(Θ1(ε)′)

KL(PW1 ||PW0) (5.26)

≈ min
(W0,W1)∈W(Θ̇′0)×W(Θ̇1(ε)′)

KL(PW1 ||PW0) (5.27)

= KL(PW̃ ∗1
||PW̃ ∗0 ), (5.28)

meaning the worst case growth rates of S̃∗ and S∗ are approximately equal. Thus S̃∗ has approximately
optimal worst case growth rate and so in this crucial sense it is a good approximation to S∗.

In summary, the optimization problem that we will solve numerically is to minimize

f(w) := KL(PW1(w)||PW0(w)) (5.29)

subject to
Ki∑
k=1

wi,k = 1 for i ∈ {0, 1}, (5.30)

w0,k ∈ [0, 1] for k = 1, . . . ,K0, (5.31)

w1,k ∈ [0, 1] for k = 1, . . . ,K1. (5.32)

Recall (chapter 2) that this is a convex optimization problem. Further, for any z, the gradient of
pWi(w)(z) with respect to w is well-defined for i ∈ {0, 1}. Finally, since Z takes on finitely many
values, we see that the gradient of f(w) with respect to w is also well-defined. Since optimization
packages can often take the gradient as an argument in order to speed up calculation, the following
proposition will be useful.

40



Proposition 12. The gradient of f(w) is well-defined and is given by

∂f

∂w0,k
(w) = −

∑
z

PW1(w)(z)Pθ0,k(z)

PW0(w)(z)
(5.33)

for k = 1, 2, . . . ,K0, and

∂f

∂w1,k
(w) = 1 +

∑
z

Pθ1,k(z) log
PW1(w)(z)

PW0(w)(z)
(5.34)

for k = 1, 2, . . .K1.

Proof. Using the definition of the marginals PW0(w) and PW1(w), we can write f(w) as follows

f(w) = D(PW1(w)||PW0(w)) (5.35)

= EZ∼PW1(w)

[
log

PW1(w)(Z)

PW0(w)(Z)

]
(5.36)

=

K1∑
r=1

w1,rEZ∼Pθ1,r

[
log

PW1(w)(Z)

PW0(w)(Z)

]
(5.37)

=

K1∑
r=1

w1,rEZ∼Pθ1,r

[
logPW1(w)(Z)− logPW0(w)(Z)

]
(5.38)

=

K1∑
r=1

w1,rEZ∼Pθ1,r

[
log

K1∑
s=1

w1,sPθ1,s(Z)− log

K0∑
t=1

w0,tPθ0,t(Z)

]
. (5.39)

Now since Z = (Na1, Nb1) is a discrete random variable, the expectations are finite sums and so we
are permitted to pass derivatives inside the expectations. First, let k ∈ {1, . . . ,K0}. Then by passing
the derivative through the sum and expectations, we have

∂f

∂w0,k
(w) =

K1∑
r=1

w1,rEZ∼Pθ1,r

[
−Pθ0,k(Z)∑K0

t=1w0,tPθ0,t(Z)

]
(5.40)

=

K1∑
r=1

w1,rEZ∼Pθ1,r

[ −Pθ0,k(Z)

PW0(w)(Z)

]
(5.41)

= EZ∼PW1(w)

[ −Pθ0,k(Z)

PW0(w)(Z)

]
(5.42)

= −
∑
z

PW1(w)(z)Pθ0,k(z)

PW0(w)(z)
, (5.43)

which can be fairly efficiently computed by first computing the three distributions PW1(w), Pθ0,k and
PW1(w), and then combining them as in the given sum. Next, let k ∈ {1, . . .K1}. Similar to above,
except now using the product rule, we have
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∂f

∂w1,k
(w) =

K1∑
r=1

w1,r
∂

∂w1,k
EZ∼Pθ1,r

[
log

K1∑
s=1

w1,sPθ1,s(Z)− log

K0∑
t=1

w0,tPθ0,t(Z)

]
(5.44)

+

K1∑
r=1

∂w1,r

∂w1,k
EZ∼Pθ1,r

[
log

K1∑
s=1

w1,sPθ1,s(Z)− log

K0∑
t=1

w0,tPθ0,t(Z)

]
(5.45)

=

K1∑
r=1

w1,rEZ∼Pθ1,r

[
Pθ1,k(Z)∑K1

s=1w1,sPθ1,s(Z)

]
(5.46)

+ EZ∼Pθ1,k

[
log

K1∑
s=1

w1,sPθ1,s(Z)− log

K0∑
t=1

w0,tPθ0,t(Z)

]
(5.47)

=

K1∑
r=1

w1,rEZ∼Pθ1,r

[
Pθ1,k(Z)

PW1(w)(Z)

]
+ EZ∼Pθ1,k

[
logPW1(w)(Z)− logPW0(w)(Z)

]
(5.48)

= EZ∼PW1(w)

[
Pθ1,k(Z)

PW1(w)(Z)

]
+ EZ∼Pθ1,k

[
log

PW1(w)(Z)

PW0(w)(Z)

]
(5.49)

=
∑
z

PW1(w)(z)Pθ1,k(z)

PW1(w)(z)
+
∑
z

Pθ1,k(z) log
PW1(w)(z)

PW0(w)(z)
(5.50)

= 1 +
∑
z

Pθ1,k(z) log
PW1(w)(z)

PW0(w)(z)
. (5.51)

Again, this can be fairly efficiently computed by first computing the three distributions Pθ1,k , PW0(w)

and PW1(w), and then combining them as in the given sum.

We can now see the effect of passing the gradient to the minimization procedure. We used the
minimize function from the optimize package of the SciPy library with the SLSQP method, for which
the gradient vector is optional. If the gradient vector is not passed to the optimization method, the
gradient is estimated using the method of finite differences with two points. For each coordinate,
this would require two evaluations of f , each evaluation requiring a single sum over z. On the other
hand, using the above expression for the true gradient vector, each coordinate requires a single sum
over z. We may initially suppose that this halves the overall computation time of the minimization
problem. However, as figure 5.1 shows, the computation time can be much more than halved by using
the true gradient vector, especially for discretizations with many elements. This is likely because the
true gradient allows faster convergence to the minimum than an estimated gradient.

We now present the results of numerically approximating the solution to the convex optimization
problem (5.29) to (5.32). Note that chapter six provides quicker methods or even closed formulas
for the GROW S-value in many cases. However, the method used to derive such results depends on
the parameter sets being convex. Since this does not apply to Θ1(ψ)′, in this case it is necessary to
approximate the JIP directly.

We considered ten values of ψ evenly spaced between 1.5 and 4.5. To ensure the parameter sets were
positively separated, we used prior knowledge rectangle PKR = [0.2, 0.8]2. To reduce computation
time, for each threshold value ψ we assumed that the optimal prior W ∗1 places all its mass on the
boundary of Θ1(ψ)′. We therefore discretized Θ1(ψ)′ by taking K evenly spaced points along its
boundary. We also discretized Θ′0 by using K evenly spaced points. The objective function (5.29) was
then minimized using the minimize function from the optimize package of the SciPy library with the
SLSQP method.

We initialized the weights to the discrete uniform distribution and passed the minimize function
the simplified gradient from Proposition 12. The initial and optimized weights can be seen in figure 5.2,
which shows the unit square (representing all possible values of (θa, θb) ∈ [0, 1]2), the prior knowledge
rectangle and the boundary of Θ1(ψ), namely the curve ψ(θa, θb) = ψ. It can be seen that the optimial
priors put nearly all the mass on just two points each. While W ∗0 seems to put its mass on four points,
these are two pairs of neighbouring discretization points. Indeed, experiments with larger numbers of
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Figure 5.1: Comparison of computation times with and without the gradient. In both cases, na = nb =
10, Θ0 = {(p, p) : p ∈ [0, 1]} and Θ1 = {(θa, θa + δ) : θa ∈ [0, 1 − δ]} for some δ > 0. A discretization
of size K means both Θ0 and Θ1 were discretized by K evenly spaced points. The log plot on the
right demonstrates that the time taken to compute the GROW S-value is approximately an order of
magnitude lower when using the true gradient.

discretization points indicate that this may simply be an artefact of using a discretization, and that
the truly optimal prior W ∗1 is indeed a mixture of just two point masses.

Using the approximately optimal priors, each of the GROW S-values S∗Θ1(ψ)′ was approximated,
along with its (worst case) growth and power over Θ1(ψ)′. The results can be seen in figure 5.3. Finally,
it was checked whether a UMP threshold ψ∗ exists, which it did not. Therefore, for this choice of prior
knowledge at least, no unconditional UMPG S-value exists.

Figure 5.2: The initial and optimized weights for na = nb = 50 and the odds ratio. Θ′0 and the
lower-right border of Θ1(ψ)′ were discretized into 25 evenly spaced points, initialized to the uniform
distribution. After optimizing, it can be see than the JIP approximation concentrates its mass on a
small number of points. The two pairs of green circles become closer for finer discretizations, indicating
that the fact their are four rather than two is an artefact of having to discretize the parameter sets.

5.4 Using conditional S-values in the unconditional setting

Recall the conditional setting, where it is assumed that N1 = n1 is known in advance. The data can
then be summarized by Nb1, which has Fisher’s noncentral hypergeometric distribution for some odds
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Figure 5.3: The growth and power of the unconditionl GROW, conditional GROW and conditional
UMP S-values with Fisher’s exact test for comparison. Here na = nb = 50 and 10 evenly spaced values
between 1.5 and 4.5 have been used for the threshold ψ.

ratio ψ, namely
Nb1 ∼ fnchypg(n, nb, n1, ψ). (5.52)

Further, given parameter sets Ψ0 = {1} and Ψ1(ψ) = [ψ,∞) for some threshold value ψ, we saw that
the GROW S-value S∗ψ := S∗Ψ(ψ) is given by

S∗ψ(Nb1) =
Pψ(Nb1)

P1(Nb1)
, (5.53)

since the optimal prior W ∗1 ∈ W(Ψ1(ψ)) is always a point mass on ψ, independently of n1.
Now, as we saw in Proposition 7, conditional S-values are also unconditional S-values. Thus for

any ψ > 1, the conditional S-value

Sψ(Nb1) :=
Pψ(Nb1)

P1(Nb1)
(5.54)

(which is indeed a conditional S-value since the null parameter set is a singleton) can be legitimately
used for statistical inference even when N1 is not in fact known in advance and is instead discovered
in the course of the experiment. In fact, for any function W : {0, 1, . . . , na + nb} → W(Ψ1), we can
define the random variable SW (Nb1|N1) by

SW (Nb1|N1) :=
PW (N1)(Nb1)

P1(Nb1)
. (5.55)

Then, since SW (Nb1|n1) is a conditional S-value for each n1 (again since the null parameter set is a
singleton), Proposition 7 gives that SW (Nb1|N1) is an unconditional S-value.

Suppose we are in the unconditional setting, with ‘unconditional’ parameter sets Θ′0 and Θ1(ε)′

for some threshold value ε and prior knowledge rectangle PKR. Then we can define the ‘conditional’
parameter sets Ψ0 and Ψ1 to be the sets of values of the odds ratio consistent with Θ′0 and Θ1(ε)′

respectively, namely

Ψ0 := {ψ(θa, θb) : (θa, θb) ∈ Θ′0} = {1} and (5.56)
Ψ1 := {ψ(θa, θb) : (θa, θb) ∈ Θ1(ε)′} = [ψ,ψmax]. (5.57)

Thus the ‘unconditional’ parameter sets define a threshold value ψ for the odds ratio2 that is inde-
pendent of N1. We consider two possibilities for S-values defined as in (5.55). First, we can take

2It is worth emphasizing that the parameter ε may already be the odds ratio ψ. In this case we have that the induced
threshold is equal to the original threshold, so that there is no ambiguity in denoting both by ψ.
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W (n1) = ψ for all n1, so that SW (Nb1|N1) is simply the conditional GROW S-value but in the un-
conditional setting. Second, for any ψ ≥ 1 and 0 < n1 < n, let Pψ,n1 denote the fnchypg(n, nb, n1, ψ)
distribution. Then, for a given significance level α, we can take W (n1) = ψ∗(n1) where ψ∗(n1) is
defined as the unique solution to d(ψ) = − logα, where d(ψ) := KL(Pψ,n1 ||P1,n1), as in Proposition
10. Then SW (Nb1|N1) is simply the conditional UMPG S-value but in the unconditional setting. For
an evaluation of these S-values in terms of growth and power, see chapter seven.
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Chapter 6

The DOT S-value and bypassing the JIP
approximation

Preliminary results of the numerical convex optimization used to find W ∗1 and W ∗0 seem to show that
both of the priors put all their mass on single points provided Θ1(ε)′ is convex. If this is indeed the
case, then it may be possible to find closed formulas for the point masses and therefore for S∗. Thus,
the goal of this chapter is to find when the priors W ∗1 and W ∗0 defining the GROW S-value are in fact
point masses.

Recall that for a given Θ′0 and Θ1(ε)′ the GROW S-value is given by

S∗(Z) =
PW ∗1 (Z)

PW ∗0 (Z)
, where (W ∗1 ,W

∗
0 ) := arg min

(W1,W0)∈W(Θ1(ε)′)×W(Θ′0)

KL(PW1 ||PW0). (6.1)

If W ∗1 and W ∗0 happen to be point masses, they must of course be masses on the two points θ1 and θ0

minimizing KL(Pθ1 ||Pθ0). Defining

Ṡ∗(Z) :=
Pθ∗1 (Z)

Pθ∗0 (Z)
, where (θ∗1, θ

∗
0) := arg min

(θ1,θ0)∈Θ1(ε)′×Θ′0

KL(Pθ1 ||Pθ0), (6.2)

we therefore want to know whether W ∗i = δθ∗i for i ∈ {0, 1}, since this would give S∗ = Ṡ∗. We
will refer to Ṡ∗ as the unconditional DOT S-value1 even if we do not know whether S∗ = Ṡ∗ (this
will be justified in Theorem 15 where we see that the DOT S-value is indeed an S-value). At first
glance it seems that this alone would greatly reduce the difficulty of computing S∗. However, it is
not quite so straightforward; while KL(PW1 ||PW0) is convex in (W1,W0) and so can be minimized by
simple gradient descent (albeit over a large number of discretization points), KL(Pθ1 ||Pθ0) might not
be convex in (θ1, θ0) if we are restricting to point masses. However, as we demonstrate in this section,
there are cases in which S∗ = Ṡ∗ where there exist closed formulas for θ∗1 and θ∗0. Computing S∗ in
theses cases is therefore very straightforward. Moreover, in such cases S∗ has a cleaner interpretation.

In section 6.1, Theorem 13, we determine, for a fixed θ1 which θ0 minimizes KL(Pθ1 ||Pθ0). This is
denoted θ∗0, or θ∗0(θ1) for clarity. Theorem 15 in section 6.2 then shows that pθ1(Z)/pθ∗0 (Z) is an S-value.
Sections 6.3 and 6.4 attempt to generalize this by replacing θ1 with an arbitrary prior W1. While we
are able to find an expression for the associated θ∗0, it is seen that the likelihood ratio pW1(Z)/pθ∗0 (Z)
is not necessarily an S-value. In section 6.5, Theorem 19, we prove that if the parameter sets are
convex and Ṡ∗ achieves its minimum growth rate at θ∗1 defined in 6.2, then Ṡ∗ is in fact the GROW
S-value S∗. Section 6.6 then explores the different cases of parameter and prior knowledge rectangle,
making significant use of Theorem 19 to show that indeed Ṡ∗ = S∗ in many cases. The method we
use relies on Lemma 20, which shows that the optimal θ∗1 always lies on the boundary of Θ1(ε)′. This,
combined with the aforementioned Theorem 19, makes it substantially easier to find S∗ when S∗ = Ṡ∗,
since the problem is reduced to a one-dimensional minimization rather than a very high-dimensional
constrained minimization as when finding the JIP. While it may be tempting to believe that we always
have S∗ = Ṡ∗, in section 6.7 we conclude the chapter by showing providing a counterexample to this
conjecture.

1Informally, ‘DOT’ can be thought of as abbreviating ‘deltas on thetas’.
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6.1 Finding the closest Pθ0 to a fixed Pθ1

For fixed na, nb,PKR and θ1 ∈ [0, 1]2, there is a simple geometric way to find

θ∗0 := arg min
θ0∈Θ′0

KL(Pθ1 ||Pθ0)2. (6.3)

First draw a straight line with gradient −na/nb through θ1 and label the point where it intersects
Θ0 by θ×0 = (p×, p×). Then let θ⊥0 be the point in Θ′0 that is closest in Euclidean distance to θ×0 ,
namely θ⊥0 = (p⊥, p⊥) where

p⊥ := arg min
p∈IPKR

|p− p×|. (6.4)

The following theorem then states that θ∗0 = θ⊥0 . Since the prior knowledge is always a rectangle, this
implies that θ∗0 is to the lower right of θ1.

Theorem 13. Fix na, nb,PKR and θ1 := (θa, θb) ∈ [0, 1]2 and let θ∗0 = (p∗, p∗) and θ⊥0 = (p⊥, p⊥) be
defined as above. Then

θ∗0 = θ⊥0 . (6.5)

Proof. First note that

p× =
naθa + nbθb

n
. (6.6)

This is easily verified by calculating the gradient between θ1 = (θa, θb) and θ×0 = (p×, p×):

p× − θb
p× − θa

=
naθa + nbθb − nθb
naθa + nbθb − nθa

(6.7)

=
na(θa − θb)
nb(θb − θa)

(6.8)

= −na
nb
. (6.9)

Now, for all p ∈ [0, 1], let θ(p)
0 := (p, p) and define

f(p) := KL(Pθ1 ||Pθ(p)0

). (6.10)

Recall that our prior knowledge is of the form PKR = [θLa , θ
U
a ] × [θLb , θ

U
b ]. Therefore Θ′0 = {p ∈ [0, 1] :

θ
(p)
0 ∈ IPKR}, where IPKR := [max{θLa , θLb },min{θUa , θUb }]. Note that by definition of θ∗0 = (p∗, p∗), f(·)
takes its minimum value over IPKR at p∗. Since projecting θ×0 onto Θ′0 is equivalent to projecting p×

onto the interval IPKR, we have one of the following cases:

1. p× ∈ IPKR, which implies p⊥ = p×,

2. p× < min IPKR, which implies p⊥ = min IPKR, or

3. p× > max IPKR, which implies p⊥ = max IPKR.

Our goal is to show that f(·) has a unique minimum over IPKR at p⊥, so that p∗ = p⊥ and hence
θ∗0 = θ⊥0 . In all three cases, the result will follow if we can show that the global minimum of f(·) over
[0, 1] is attained at p× and that f(·) is strictly increasing away from p×. This can be seen by inspecting
f ′(·) directly as follows. First, by independence,

f(p) := KL(Pθ1 ||Pθ(p)0

) (6.11)

= nakl(θa||p) + nbkl(θb||p) (6.12)

= na

(
θa log

θa
p

+ (1− θa) log
1− θa
1− p

)
+ nb

(
θb log

θb
p

+ (1− θb) log
1− θb
1− p

)
. (6.13)

2We are abusing notation by calling this point θ∗0 since it is dependent upon θ1. However, the notation θ∗0(θ1) would
be quite cumbersome for many parts of this section. We therefore omit the dependence on θ1 and trust that it is clear
from the context whether θ∗0 = θ∗0(θ1) for some θ1, or whether θ∗0 is defined by (6.2).
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Next, taking the derivative with respect to p, we obtain

f ′(p) =
d
dp

[
− naθa log p− na(1− θa) log(1− p)− nbθb log p− nb(1− θb) log(1− p))

]
(6.14)

= −naθa + nbθb
p

+
na(1− θa) + nb(1− θb)

1− p
(6.15)

=
pn− (naθa + nbθb)

p(1− p)
(6.16)

=
n(p− p×)

p(1− p)
. (6.17)

Therefore f ′(p) = 0 ⇐⇒ p = p× and so f(·) has a unique stationary point at p×. Moreover, since
the sign of f ′(p) is equal to the sign of p−p×, we see that f(·) is strictly increasing away from p×.

Corollary 14. For any θ1 = (θa, θb) ∈ Θ1, its associated θ∗0 = (p∗, p∗) lies to the lower right of θ1,
namely

θa ≤ p∗ and θb ≥ p∗. (6.18)

Proof. With some thought this should be clear geometrically. Nevertheless, we give the following
algebraic proof.

Note θ1 ∈ Θ1 implies θb ≥ θa. If no projection is required to obtain θ∗0, then

p∗ =
naθa + nbθb

n
, (6.19)

which is a mixture of θa and θb and so clearly θa ≤ p∗ ≤ θb. If projection is required, we either have

p× < min(IPKR) or p× > max(IPKR). (6.20)

In the first case, we have p∗ = min(IPKR). Suppose, for a contradiction, that (p∗, p∗) does not lie to
the lower right of θ1, namely

θa > p∗ or θb < p∗. (6.21)

Recalling IPKR = [max{θLa , θLb },min{θUa , θUb }], this implies

θa > max{θLa , θLb } or θb < max{θLa , θLb }. (6.22)

In the first case, since θb ≥ θa, we have θa, θb > max{θLa , θLb }. Now p× is a mixture of θa and θb and
so this implies p× > max{θLa , θLb } = min(IPKR), which is a contradiction. In the second case we either
have θb < θLb , which is clearly a contradiction, or θb < θLa , which implies θa < θLa (since θb ≥ θa), which
is also a contradiction. Since every option ends in a contradiction, we therefore have that θ∗0 does in
fact lie to the lower right of θ1. By symmetry, this also holds in the second case of (6.20).

6.2 Showing that the DOT S-value is indeed an S-value

For a fixed θ1 ∈ [0, 1]2 and its associated θ∗0 := arg minθ0∈Θ′0
KL(Pθ1 ||Pθ0), the natural question to ask

now is whether Pθ1(Z)/Pθ∗0 (Z) is an S-value. The following theorem shows that the answer is yes,
regardless of the parameter choice or prior knowledge.

Theorem 15. For any na, nb and any θ1 = (θa, θb) ∈ (0, 1)2, let θ∗0 = (p∗, p∗) be defined by

θ∗0 := arg min
θ0∈Θ′0

KL(Pθ1 ||Pθ0). (6.23)

Then
Sθ1,θ∗0 (Z) :=

Pθ1(Z)

Pθ∗0 (Z)
(6.24)

is an S-value.
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Proof. Define R(p) := EZ∼P
θ
(p)
0

[Sθ1,θ∗0 ] for p ∈ [0, 1]. We need to show that R(p) ≤ 1 for all p ∈ IPKR.

In fact, we will show that R(p) ≤ 1 for all p ∈ [0, 1]. We do this by showing that R(·) achieves its
maximum value at p∗ which suffices since

R(p∗) = EZ∼Pθ∗0

[
Pθ1(Z)

Pθ∗0 (Z)

]
=
∑
z

Pθ∗0 (z)Pθ1(z)

Pθ∗0 (z)
=
∑
z

Pθ1(z) = 1. (6.25)

We first expand the definition of R(p). By independence,

R(p) := EZ∼P
θ
(p)
0

[
Pθ1(Z)

Pθ∗0 (Z)

]
(6.26)

= ENa1∼Bin(na,p),Nb1∼Bin(nb,p)

[
Pθ1(Na1, Nb1)

Pθ∗0 (Na1, Nb1)

]
(6.27)

= ENa1∼Bin(na,p)

[
Pθ1(Na1)

Pθ∗0 (Na1)

]
ENb1∼Bin(nb,p)

[
Pθ1(Nb1)

Pθ∗0 (Nb1)

]
. (6.28)

Looking at just the first of these terms for the moment, we have

ENa1∼Bin(na,p)

[
Pθ1(Na1)

Pθ∗0 (Na1)

]
= ENa1∼Bin(na,p)

[
θNa1a (1− θa)na−Na1

(p∗)Na1(1− p∗)na−Na1

]
(6.29)

=

(
1− θa
1− p∗

)na
ENa1∼Bin(na,p)

[(
θa(1− p∗)
(1− θa)p∗

)Na1]
(6.30)

=

(
1− θa
1− p∗

)na [
1− p+ p

θa(1− p∗)
(1− θa)p∗

]na
using the PGF (6.31)

=

(
1− θa
1− p∗

)na [
1 + p

θa − p∗

(1− θa)p∗

]na
. (6.32)

Note that it is permitted to divide by 1 − θa and 1 − θb since θ1 ∈ (0, 1)2. Further, we can divide by
1− p∗ since θa, θb < 1 implies p× < 1 and so p∗ < 1. Combining the two terms again, we have

R(p) =

(
1− θa
1− p∗

)na ( 1− θb
1− p∗

)nb [
1 + p

θa − p∗

(1− θa)p∗

]na [
1 + p

θb − p∗

(1− θb)p∗

]nb
(6.33)

= γ[1 + cap]
na [1 + cbp]

nb , (6.34)

where
γ :=

(
1− θa
1− p∗

)na ( 1− θb
1− p∗

)nb
and ci :=

θi − p∗

(1− θi)p∗
for i ∈ {a, b}. (6.35)

Since θ1 ∈ (0, 1)2, we know that γ > 0 and

ci =
θi − p∗

(1− θi)p∗
> θi − p∗ ≥ 0− 1 = −1. (6.36)

Therefore 1 + cip > 0 for i ∈ {a, b} and we are justified writing the logarithm of R(·) as

r(p) := logR(p) = log γ + na log(1 + cap) + nb log(1 + cbp). (6.37)

Taking the derivative, we see that

r′(p) =
naca

1 + cap
+

nbcb
1 + cbp

(6.38)

and so

r′(p) = 0 ⇐⇒ naca
1 + cap

+
nbcb

1 + cbp
= 0 (6.39)

⇐⇒ naca(1 + cbp) + nbcb(1 + cap) = 0 (6.40)

⇐⇒ p = p0 := −naca + nbcb
ncacb

, (6.41)
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so that r(·) has a single stationary point at p0, provided p0 ∈ [0, 1]. Inspecting the second derivative,
we have

r′′(p) = − nac
2
a

(1 + cap)2
−

nbc
2
b

(1 + cbp)2
, (6.42)

which is nonnegative for all p ∈ [0, 1]. Therefore r(·) is (weakly) concave on [0, 1] and thus on IPKR ⊆
[0, 1].

Going back to (6.38), we see that

r′(p∗) =
na

1/ca + p∗
+

nb
1/cb + p∗

(6.43)

=
na

(1−θa)p∗

θa−p∗ + p∗
+

nb
(1−θb)p∗
θb−p∗ + p∗

(6.44)

=
na(θa − p∗)

(1− θa)p∗ + p∗(θa − p∗)
+

nb(θb − p∗)
(1− θb)p∗ + p∗(θb − p∗)

(6.45)

=
na(θa − p∗)
p∗(1− p∗)

+
nb(θb − p∗)
p∗(1− p∗)

(6.46)

=
naθa + nbθb − np∗

p∗(1− p∗)
(6.47)

=
n(p× − p∗)
p∗(1− p∗)

. (6.48)

Thus r′(p∗) has the same sign as p×−p∗. We now conclude the proof by considering the three possible
cases.

1. If p× ∈ IPKR, then p∗ = p×. This implies that r′(p∗) = 0 and so p∗ = p0, the unique stationary
point of r(·). Since r(·) is (weakly) concave, this implies that r(·) achieves its maximum over
[0, 1] at p∗. Since the map x 7→ log x is increasing, we therefore see that R(·) also achieves its
maximum over [0, 1] at p∗.

2. If p× < min IPKR then p∗ = min IPKR. Therefore p× < p∗ and we see from (6.48) that
r′(min IPKR) = r′(p∗) < 0. Since r(·) is (weakly) concave, this implies that r(·) is non-increasing
on IPKR. Since the map x 7→ log x is increasing, we therefore see that R(·) is also non-increasing
on IPKR. Thus R(·) attains its maximum value at min IPKR = p∗.

3. If p× > max IPKR then p∗ = max IPKR and the rest follows similarly to case 2.

Thus in all three cases R(·) achieves its maximum over [0, 1] at p∗, where R(p∗) = 1. Therefore
R(p) ≤ 1 for all p ∈ IPKR ⊆ [0, 1] and Sθ1,θ∗0 :=

Pθ1
Pθ∗0

is an S-value.

Since θ1 may be chosen arbitrarily, the above theorem holds for θ1 = θ∗1 as defined in (6.2), proving
that Ṡ∗(Z) = Pθ∗1 (Z)/Pθ∗0 (Z) is an S-value. We state this as a corollary.

Corollary 16. For any na, nb, let

Ṡ∗(Z) :=
Pθ∗1 (Z)

Pθ∗0 (Z)
, where (θ∗1, θ

∗
0) := arg min

(θ1,θ0)∈Θ′1×Θ′0

KL(Pθ1 ||Pθ0). (6.49)

Then Ṡ∗ is an S-value.

6.3 Finding the closest Pθ0 to a fixed PW1

Suppose we have a fixed prior W1 ∈ W(Θ1) on the alternative parameter set and we form the test
statistic

TW1(Z) :=
PW1(Z)

Pθ∗0 (Z)
where θ∗0 := arg min

θ0∈Θ′0

KL(PW1 ||Pθ0). (6.50)
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Is TW1 then an S-value? In general, the answer is no. For example, suppose we are interested in the risk
difference with threshold δ = 0.05, we have no prior knowledge (namely PKR = [0, 1]2) and na = nb.
If we take the prior W1 ∈ W(Θ1(δ)) that is uniform across the boundary of Θ1(δ), namely

θa ∼ U [0, 0.95] and θb = θa + 0.05, (6.51)

then we will show that TW1 is not an S-value. We begin with the following lemma which gives a closed
form expression for θ∗0.

Lemma 17. Fix na, nb andW1 ∈ W(Θ1). Suppose we have no prior knowledge, namely, PKR = [0, 1]2.
Then θ∗0 := arg minθ0∈Θ′0

KL(PW1 ||Pθ0) is given by θ∗0 = (p∗, p∗), where

p∗ =
naEW1 [θa] + nbEW1 [θb]

n
. (6.52)

Proof. For all p ∈ [0, 1], define f(p) := KL(PW1 ||Pθ(p)0

). Then

f(p) = EZ∼PW1

[
log

PW1(Z)

P
θ
(p)
0

(Z)

]
(6.53)

= EZ∼PW1
[logPW1(Z)]−EZ∼PW1

[
logP

θ
(p)
0

(Z)
]
. (6.54)

Inspecting the second term and using independence, we see that

EZ∼PW1

[
logP

θ
(p)
0

(Z)
]

= EZ∼PW1

[
log
(
P
θ
(p)
0

(Na1)P
θ
(p)
0

(Nb1)
)]

(6.55)

= EZ∼PW1

[
log

((
na
Na1

)
pNa1(1− p)na−Na1

(
nb
Nb1

)
pNb1(1− p)nb−Nb1

)]
(6.56)

= log

((
na
Na1

)(
nb
Nb1

))
+ n log(1− p) + log

(
p

1− p

)
EZ∼PW1

[Na1 +Nb1] .

(6.57)

Since the first terms in (6.54) and (6.57) are independent of p, they disappear when we take the
derivative of f with respect to p. Thus

f ′(p) =
d
dp

[
−n log(1− p)− log

(
p

1− p

)
EZ∼PW1

[Na1 +Nb1]

]
(6.58)

=
n

1− p
−
(

1

p
+

1

1− p

)
EZ∼PW1

[Na1 +Nb1] (6.59)

=
n

1− p
− 1

p(1− p)
EZ∼PW1

[Na1 +Nb1] . (6.60)

Inspecting the expectation, we have

EZ∼PW1
[Na1 +Nb1] = E(θa,θb)∼W1

[EZ∼Pθ [Na1 +Nb1]] (6.61)

= E(θa,θb)∼W1
[naθa + nbθb] (6.62)

= naE(θa,θb)∼W1
[θa] + nbE(θa,θb)∼W1

[θb] . (6.63)

Setting the derivative equal to zero, we see that

f ′(p) = 0 ⇐⇒ n

1− p
− 1

p(1− p)
(
naE(θa,θb)∼W1

[θa] + nbE(θa,θb)∼W1
[θb]
)

= 0 (6.64)

⇐⇒ p = p0 :=
naE(θa,θb)∼W1

[θa] + nbE(θa,θb)∼W1
[θb]

n
. (6.65)

Note that EW1 [θx] ∈ [0, 1] for x ∈ {a, b}, so p0, being a mixture of EW1 [θa] and EW1 [θb], is also in
[0, 1]. Substituting p0 back into the expression for f ′(p), we have

f ′(p) =
n

1− p
− np0

p(1− p)
(6.66)
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and so the second derivative is

f ′′(p) =
n

(1− p)2
+

np0

p2(1− p)2
(1− 2p) (6.67)

=
n

(1− p)2

[
1 +

p0(1− 2p)

p2

]
. (6.68)

Therefore

f ′′(p0) ≥ 0 ⇐⇒ 1 +
1− 2p0

p0
≥ 0 (6.69)

⇐⇒ 1− 2p0 ≥ −p0 (6.70)
⇐⇒ p0 ≤ 1. (6.71)

Since p0 ∈ [0, 1], we conclude that p0 is the unique global minimum of f(·) on [0, 1].

6.4 For fixed W1 ∈ W(Θ1), the closest Pθ0 does not necessarily give an
S-value

We can now use the closed form expression for θ∗0 given by Lemma 17 to show that TW1 is not necessarily
an S-value for arbitrary W1.

Lemma 18. Let W1 ∈ W(Θ1) where Θ1 ⊆ [0, 1]2 is arbitrary. Define the test statistic TW1 by

TW1(Z) :=
PW1(Z)

Pθ∗0 (Z)
where θ∗0 := arg min

θ0∈Θ′0

KL(PW1 ||Pθ0). (6.72)

Then TW1 is not in general an S-value.

Proof. For a fixed W1 ∈ W(Θ1), let p = p∗ be defined as in Lemma 17, so that

TW1(Z) =
PW1(Z)

P
θ
(p)
0

(Z)
. (6.73)

For all q ∈ [0, 1], let g(q) be the expectation of TW1 when Z ∼ P
θ
(q)
0

. Then

g(q) := EZ∼P
θ
(q)
0

[
PW1(Z)

P
θ
(p)
0

(Z)

]
(6.74)

= EZ∼P
θ
(q)
0

[
Eθ1∼W1 [Pθ1(Z)]

P
θ
(p)
0

(Z)

]
(6.75)

= EZ∼P
θ
(q)
0

[
Eθ1∼W1

[
Pθ1(Z)

P
θ
(p)
0

(Z)

]]
(6.76)

= Eθ1∼W1

[
EZ∼P

θ
(q)
0

[
Pθ1(Z)

P
θ
(p)
0

(Z)

]]
(Fubini) (6.77)

= E(θa,θb)∼W1

[
E(Na1,Nb1)∼P

θ
(q)
0

[(
na
Na1

)
θNa1a (1− θa)na−Na1

(
nb
Nb1

)
θNb1b (1− θb)nb−Nb1(

na
Na1

)
pNa1(1− p)na−Na1

(
nb
Nb1

)
pNb1(1− p)nb−Nb1

]]
(6.78)

= E(θa,θb)∼W1

[
(1− θa)na(1− θb)nb

(1− p)n

×ENa1∼Bin(na,q)

[(
θa(1− p)
p(1− θa)

)Na1]
ENb1∼Bin(nb,q)

[(
θb(1− p)
p(1− θb)

)Nb1]]
, (6.79)
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where we have used independence in the last two lines. The use of Fubini is justified since the integrand
is nonnegative. Inspecting one of the inner expectations of the final line and using the formula for the
probability generating function of a binomial random variable, we obtain

ENa1∼Bin(na,q)

[(
θa(1− p)
p(1− θa)

)Na1]
=

[
1 + q

(
θa(1− p)
p(1− θa)

− 1

)]na
(6.80)

=

[
1 + q

θa − p
p(1− θa)

]na
. (6.81)

(6.82)

Substituting this back into (6.79) we get,

g(q) = E(θa,θb)∼W1

[
(1− θa)na(1− θb)nb

(1− p)n

[
1 + q

θa − p
p(1− θa)

]na [
1 + q

θb − p
p(1− θb)

]nb]
(6.83)

=
1

pn(1− p)n
E(θa,θb)∼W1

[
[p(1− θa) + q(θa − p)]na [p(1− θb) + q(θb − p)]nb

]
(6.84)

=
1

pn(1− p)n
E(θa,θb)∼W1

[
[p(1− q) + θa(q − p)]na [p(1− q) + θb(q − p)]nb

]
. (6.85)

To prove the lemma, we need to find an example where this is larger than 1. First, suppose we have
na = nb = 1. Then

p =
E[θa] + E[θb]

2
. (6.86)

This allows us to simplify g(q) as follows

g(q) =
1

p2(1− p)2
E(θa,θb)∼W1

[
[p(1− q) + θa(q − p)] [p(1− q) + θb(q − p)]

]
(6.87)

=
1

p2(1− p)2
E(θa,θb)∼W1

[
p2(1− q)2 + p(1− q)(q − p)[θa + θb] + (q − p)2θaθb

]
(6.88)

=
1

p2(1− p)2

[
p2(1− q)2 + p(1− q)(q − p)

(
E[θa] + E[θb]

)
+ (q − p)2E[θaθb]

]
(6.89)

=
1

p2(1− p)2

[
p2(1− q)2 + 2p2(1− q)(q − p) + (q − p)2E[θaθb]

]
(using (6.86)) (6.90)

=
1

(1− p)2

[
(1− q)2 + 2(1− q)(q − p) + (q − p)2E[θaθb]

p2

]
(6.91)

=
1

(1− p)2

[
(1− q)2 + 2(1− q)(q − p) + (q − p)2

]
+

(q − p)2

(1− p)2

[
E[θaθb]

p2
− 1

]
(6.92)

=

(
(1− q) + (q − p)

)2
(1− p)2

+
(q − p)2

(1− p)2

[
E[θaθb]

p2
− 1

]
(6.93)

= 1 +
(q − p)2

(1− p)2

[
E[θaθb]

p2
− 1

]
. (6.94)

(6.95)

Thus PW1(Z)/P
θ
(p)
0

(Z) is an S-value iff g(q) ≤ 1 for all q ∈ [0, 1]. For any particular q, we have

g(q) ≤ 1 ⇐⇒ (q − p)2

(1− p)2

[
E[θaθb]

p2
− 1

]
≤ 0 (6.96)

⇐⇒ q = p or E[θaθb] ≤ p2. (6.97)

Recalling the definition of p, we have

E[θaθb] ≤ p2 ⇐⇒ E[θaθb] ≤
(
E[θa] + E[θb]

2

)2

(6.98)

⇐⇒ 4E[θaθb] ≤ E[θa]
2 + 2E[θa]E[θb] + E[θb]

2. (6.99)
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Now suppose Θ1 ⊆ {(θa, θb) ∈ [0, 1]2 : θb ≥ θa} so that E[θa] ≤ E[θb]. Using the fact that the function
x 7→ x2 is convex, we also have E[θa]

2 ≤ E[θ2
a]. Thus (6.99) implies

E[θaθb] ≤ p2 =⇒ 4E[θ2
a] ≤ E[θ2

a] + 3E[θb]
2 (6.100)

=⇒ E[θ2
a] ≤ E[θb]

2. (6.101)

We now provide an example for which (6.101) does not hold. As outlined previously, we consider
the risk difference with arbitrary threshold δ > 0 in the case of no prior knowledge (PKR = [0, 1]2).
Now let W1 ∈ W(Θ1(δ)) be uniform across the boundary of Θ1(δ), namely

θa ∼ U [0, 1− δ] and θb = θa + δ. (6.102)

Recall that for a uniformly distributed random variable X ∼ U[α, β], the first second moments are
given by

E[X] =
α+ β

2
and E[X2] =

α2 + αβ + β2

3
. (6.103)

Therefore

E[θ2
a] =

(1− δ)2

3
and E[θb]

2 =
(1 + δ)2

4
(6.104)

If we now set let δ = 0.05, we have

E[θ2
a] =

0.952

3
≈ 0.30 and E[θb]

2 =
1.052

4
≈ 0.28 (6.105)

and so E[θ2
a] > E[θb]

2. Working backwards, we now see that (6.101) fails and so (6.97) fails for any
q 6= p. Therefore g(q) > 1 for all q 6= p and TW1 is not an S-value.

6.5 A sufficient condition for the DOT S-value to be GROW

Suppose Θ1 is convex and define the following

(θ∗1, θ
∗
0) := arg min

(θ1,θ0)∈Θ1×Θ0

KL(Pθ1 ||Pθ0) and (6.106)

(W ∗1 ,W
∗
0 ) := arg min

(W1,W0)∈W(Θ1)×W(Θ0)
KL(PW1 ||PW0). (6.107)

Our aim now is to show that W ∗1 and W ∗0 are simply point masses on θ∗1 and θ∗0 respectively, so that
Pθ∗1 (Z)/Pθ∗0 (Z) is in fact the GROW S-value. This will make finding the GROW S-value substantially
less computationally intensive. The following theorem gives a sufficient condition for this to be true.
It will be extensively used in the next section to find closed form or implicit expressions for GROW
S-values that dramatically speed up their computation. Note that this theorem is not specific to the
setting of 2× 2 contingency tables, so that the methods developed in the next section may prove to be
useful in other statistical settings.

Theorem 19. Suppose the conditions of Theorem 1 hold and that in addition Θ1 and Θ0 are convex.
Define the DOT S-value by

Ṡ∗(Z) :=
Pθ∗1 (Z)

Pθ∗0 (Z)
, where (θ∗1, θ

∗
0) := arg min

(θ1,θ0)∈Θ1×Θ0

KL(Pθ1 ||Pθ0). (6.108)

For each θ1 ∈ Θ1, let g(θ) := EZ∼Pθ1 [log Ṡ∗] be the growth rate of Ṡ∗ at θ1. If g(·) achieves its minimum
at θ∗1 then Pθ(S∗ = Ṡ∗) = 1 for all θ ∈ Θ0 ∪ Θ1, so that it is irrelevant from an inference perspective
which we use.
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Proof. Let θ∗1, θ∗0,W ∗1 and W ∗0 be defined as above. For each α ∈ [0, 1], let Wi,α := (1 − α)δθ∗i + αW ∗i
for i ∈ {0, 1}, where δθ denotes the point mass on θ. Now the function

f(α) := KL(PW1,α ||PW0,α) (6.109)

is convex since the KL divergence is jointly convex. Further, for any α ∈ [0, 1], we have

f(α) = KL(PW1,α ||PW0,α) ≥ min
(W1,W0)∈W(Θ0)×W(Θ1)

KL(PW1 ||PW0) = KL(PW ∗1 ||PW ∗0 ) = f(1), (6.110)

so f achieves its minimum value at 1. We will now show that f ′(0) ≥ 0. To see that this proves the
result, note that the continuity and convexity of f then implies f(0) ≤ f(1) = minα∈[0,1] f(α) and so
f(0) = f(1). Thus

KL(Pθ∗1 ||Pθ∗0 ) = KL(PW ∗1 ||PW ∗0 ), (6.111)

which, since we are assuming the conditions of Theorem 1 hold (in particular that the infimum over
priors is obtained uniquely), implies that W ∗1 and W ∗0 are point masses on θ∗1 and θ∗0 respectively,
and so clearly S∗ and Ṡ∗ are almost surely equal. We will check that f ′(0) ≥ 0 by calculating and
simplifying the derivative. First note that for i ∈ {0, 1} we have

PWi,α = P(1−α)δθ∗
i

+αW ∗i
= (1− α)Pθ∗i + αPW ∗i . (6.112)

Using this, we have

f(α) := KL(PW1,α ||PW0,α) (6.113)
= D

(
(1− α)Pθ∗1 + αPW ∗1 ||(1− α)Pθ∗0 + αPW ∗0

)
(6.114)

= EZ∼(1−α)Pθ∗1
(Z)+αPW∗1

(Z)

[
log

(1− α)Pθ∗1 (Z) + αPW ∗1 (Z)

(1− α)Pθ∗0 (Z) + αPW ∗0 (Z)

]
(6.115)

= (1− α)EZ∼Pθ∗1 (Z)

[
log

(1− α)Pθ∗1 (Z) + αPW ∗1 (Z)

(1− α)Pθ∗0 (Z) + αPW ∗0 (Z)

]
(6.116)

+ αEZ∼PW∗1 (Z)

[
log

(1− α)Pθ∗1 (Z) + αPW ∗1 (Z)

(1− α)Pθ∗0 (Z) + αPW ∗0 (Z)

]
. (6.117)

Assuming we can pass the derivative through the expectation, we obtain

f ′(0) = −EZ∼Pθ∗1

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]
+ EZ∼Pθ∗1

[−Pθ∗1 (Z) + PW ∗1 (Z)

Pθ∗1 (Z)

]
(6.118)

−EZ∼Pθ∗1

[−Pθ∗0 (Z) + PW ∗0 (Z)

Pθ∗0 (Z)

]
+ EZ∼PW∗1

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]
(6.119)

= −EZ∼Pθ∗1

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]
+ 1−EZ∼Pθ∗1

[
PW ∗0 (Z)

Pθ∗0 (Z)

]
+ EZ∼PW∗1

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]
(6.120)

≥ −EZ∼Pθ∗1

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]
+ EZ∼PW∗1

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]
. (6.121)

The last line is obtained by switching Pθ∗1 and PW ∗0 and then recalling that
Pθ∗1
Pθ∗0

is an S-value:

EZ∼Pθ∗1

[
PW ∗0 (Z)

Pθ∗0 (Z)

]
= EZ∼PW∗0

[
Pθ∗1 (Z)

Pθ∗0 (Z)

]
≤ 1. (6.122)

It remains to show that

EZ∼PW∗1

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]
≥ EZ∼Pθ∗1

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]
, (6.123)
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but this follows directly from the assumption that Ṡ∗ achieves its minimum growth rate at θ∗1 as follows

EZ∼PW∗1

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]
= Eθ∼W ∗1

[
EZ∼Pθ

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]]
(6.124)

≥ Eθ∼W ∗1

[
EZ∼Pθ∗1

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]]
(6.125)

= EZ∼Pθ∗1

[
log

Pθ∗1 (Z)

Pθ∗0 (Z)

]
. (6.126)

While we have not been able to prove that the reverse of the theorem is true, namely that if
Pθ(S

∗ = Ṡ∗) = 1 for all θ ∈ Θ0 ∪ Θ1 then g(·) achieves its minimum at θ∗1, the following argument
suggests that it is indeed true. Suppose, for a contradiction, that g(·) does not achieve its minimum
at θ∗1, namely there exists θ ∈ Θ1 such that g(θ) < g(θ∗1). We then have

EZ∼Pθ [logS∗] = EZ∼Pθ [log Ṡ∗] = g(θ) < g(θ∗1) = EZ∼Pθ∗1
[log Ṡ∗] = EZ∼Pθ∗1

[logS∗], (6.127)

and thus
EZ∼Pθ [logS∗] < EZ∼Pθ∗1

[logS∗]. (6.128)

Now Theorem 1 states that S∗ achieves its minimum growth rate at W ∗1 and so

EZ∼PW∗1
[logS∗] ≤ EZ∼Pθ [logS∗] < EZ∼Pθ∗1

[logS∗], (6.129)

which implies that W ∗1 6= δθ∗1 . It thus seems unlikely that the priors W ∗0 and δθ∗0 could be such that
the difference between W ∗1 and δθ∗1 is always cancelled out, for every θ ∈ Θ0 ∪Θ1.

6.6 Finding the DOT S-value for 2× 2 tables and checking whether it
is GROW

The following lemma states that θ∗1 always lies on the boundary of Θ1(ε)′. This will be useful in finding
(θ∗1, θ

∗
0) in the different cases since it reduces the search to a one-dimensional space, as we will explain

below.

Lemma 20. For any parameter of interest with threshold ε, and any prior knowledge rectangle PKR,
we have

θ∗1 ∈ BD(Θ1(ε)′), where (θ∗1, θ
∗
0) := arg min

(θ1,θ0)∈Θ1(ε)′×Θ′0

KL(Pθ1 ||Pθ0). (6.130)

Proof. For any fixed θ1 = (θa, θb) ∈ Θ1(ε)′, recall that its associated θ∗0 := arg minθ0∈Θ′0
KL(Pθ1 ||Pθ0)

lies to the lower right of θ1 (this is the case even if there is a projection involved). Let θ̃1 ∈ Θ1 be any
point inside the rectangle spanned by θ1 and θ∗0. In other words, let θ̃1 satisfy

p ≤ θ̃a ≤ θa and p ≤ θ̃b ≤ θb. (6.131)

Then, by independence and the strict monotonicity of the KL divergence between two Bernoulli dis-
tributions, we have

KL(Pθ1 ||Pθ(p)0

) = naKL(Bern(θa)||Bern(p)) + nbKL(Bern(θb)||Bern(p)) (6.132)

≥ naKL(Bern(θ̃a)||Bern(p)) + nbKL(Bern(θ̃b)||Bern(p)) (6.133)
= KL(Pθ̃||P(p,p)). (6.134)

Thus for (θ∗1, θ
∗
0) := arg min(θ1,θ0)∈Θ1(ε)′×Θ′0

KL(Pθ1 ||Pθ0), it must be the case that all of the points to
the lower right of θ∗1 lie outside Θ1(ε)′. For all the permutations of parameter of interest and prior
knowledge that we have considered, this implies θ∗1 lies on the boundary of Θ1(ε)′.
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For each combination of parameter of interest and prior knowledge, the above lemma suggests the
following method for finding (θ∗1, θ

∗
0) as follows. First, parametrize the boundary of Θ1(ε)′ by

BD(Θ1(ε)′) = {(q, ϕ(q)) : q ∈ [0, 1]} ∩ PKR, for some ϕ. (6.135)

For each q, define

f(q) := KL(Pθ1(q)||Pθ∗0(q)), (6.136)

where θ1(q) := (q, ϕ(q)) and θ∗0(q) := arg minθ0∈Θ′0
KL(Pθ1(q)||Pθ0). Defining

q∗ := arg min
q:θ1(q)∈Θ1(ε)′

f(q), (6.137)

we then have

(θ∗1, θ
∗
0) = (θ1(q∗), θ0(q∗)). (6.138)

Thus finding (θ∗1, θ
∗
0) reduces to a one-dimensional optimization problem. We use this method in a

number of cases below.

We now prove the following lemma, which implies that Ṡ∗ achieves its minimum growth rate at
some θG lying on the boundary of Θ1(ε)′, provided no projection is required to obtain θ∗0. This gets
us part of the way to satisfying the requirement of Theorem 19 since, as we have just seen (Lemma
20), θ∗1 lies on the boundary of Θ1(ε)′ regardless of the parameter of interest, its threshold value, or
the prior knowledge. We will then consider each case separately to see whether θG in fact equals θ∗1
and so, by Theorem 19, Ṡ∗ = S∗.

Lemma 21. Let θ = (θa, θb) ∈ [0, 1]2 be such that θb > θa and define the test statistic

Tθ(Z) =
Pθ(Z)

Pθ∗0 (Z)
, where θ∗0 := arg min

θ0∈Θ′0

KL(Pθ||Pθ0). (6.139)

For any θ′ = (θ′a, θ
′
b) ∈ [0, 1]2, let g(θ′) be the growth rate of Tθ at θ′. Then

g(θ′) = caθ
′
a + cbθ

′
b + c, (6.140)

for constants ca, cb and c. Further, ca ≤ 0 and cb ≥ 0, meaning g(·) is decreasing in θ′a and increasing
in θ′b. For all combinations of parameter of interest and prior knowledge, this implies that the growth
rate of Tθ is minimized on the boundary of Θ1(ε)′.
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Proof. Let θ∗0 = (p∗, p∗). Using independence we have

g(θ′) := EZ∼Pθ′ [log Tθ] (6.141)

= EZ∼P ′θ

[
log

Pθ(Z)

Pθ∗0 (Z)

]
(6.142)

= EZ∼Pθ′

[
log

Bin(Na1;na, θa)Bin(Nb1;nb, θb)

Bin(Na1;na, p∗)Bin(Nb1;nb, p∗)

]
(6.143)

= ENa1∼Bin(na,θ′a)

[
log

Bin(Na1;na, θa)

Bin(Na1;na, p∗)

]
+ ENb1∼Bin(nb,θ

′
b)

[
log

Bin(Nb1;nb, θb)

Bin(Nb1;nb, p∗)

]
(6.144)

=
∑

x∈{a,b}

ENx1∼Bin(nx,θ′x)

[
log

(
nx
Nx1

)
θNx1x (1− θx)nx−Nx1(

nx
Nx1

)
(p∗)Nx1(1− p∗)nx−Nx1

]
(6.145)

=
∑

x∈{a,b}

ENx1∼Bin(nx,θ′x)

[
log

(
θx
p∗

)Nx1 (1− θx
1− p∗

)nx−Nx1]
(6.146)

=
∑

x∈{a,b}

log

(
θx
p∗

)
ENx1∼Bin(nx,θ′x)[Nx1] + log

(
1− θx
1− p∗

)
ENx1∼Bin(nx,θ′x)[nx −Nx1] (6.147)

=
∑

x∈{a,b}

nxθ
′
x log

(
θx
p∗

)
+ nx(1− θ′x) log

(
1− θx
1− p∗

)
(6.148)

=
∑

x∈{a,b}

nx

[
θ′x log

(
θx

1− θx
1− p∗

p∗

)
+ log

(
1− θx
1− p∗

)]
. (6.149)

= caθ
′
a + cbθ

′
b + c, (6.150)

where

cx = nx log

(
θx

1− θx
1− p∗

p∗

)
for x ∈ {a, b} and c =

∑
x∈{a,b}

nx log

(
1− θx
1− p∗

)
. (6.151)

Thus g(·) is linear in θ′a and θ′b and so to minimize it we simply need to find the sign of the coefficients
ca and cb. Recall Corollary 14, which states that θ∗0 = (p∗, p∗) lies to the lower right of θ1, namely

θa ≤ p∗ and θb ≥ p∗. (6.152)

Since the function x 7→ x
1−x is increasing on [0, 1], we have

θa ≤ p∗ =⇒ θa
1− θa

≤ p∗

1− p∗
=⇒ log

(
θa

1− θa
1− p∗

p∗

)
≤ 0. (6.153)

Likewise,

θb ≥ p∗ =⇒ θb
1− θb

≥ p∗

1− p∗
=⇒ log

(
θb

1− θb
1− p∗

p∗

)
≥ 0. (6.154)

This shows that g(·) is decreasing in θ′a and increasing in θ′b. For all combinations of parameter of
interest and prior knowledge, this implies that the growth rate of Tθ is minimized on the boundary of
Θ1(ε)′.

Finding θ∗1 and θ∗0 in the case of the risk difference

In the case of the risk difference, we are only able to find explicit formulas for (θ∗1, θ
∗
0) when na = nb.

For a fixed δ ∈ (0, 1), we parametrize the boundary of Θ1(δ) as follows. Take ϕ(q) = q + δ, so that
(6.135) becomes

BD(Θ1(δ)) = {θ1(q) : q ∈ [0, 1− δ]} ∩ PKR (6.155)
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where θ1(q) := (q, q + δ). Suppose for the moment that we have no prior knowledge. Then there is
no need for projection to find θ∗0(q) for each θ1(q). Therefore θ∗0(q) := arg minθ0∈Θ′0

KL(Pθ1(q)||Pθ0) is
given by (p∗(q), p∗(q)), where p∗(q) is given by (6.6), namely

p∗(q) =
naq + nb(q + δ)

n
= q + rδ, (6.156)

where r := nb/n. As in (6.136), for each q we define

f(q) := KL(Pθ1(q)||Pθ∗0(q)) (6.157)

= KL(P(q,q+δ)||P(q+rδ,q+rδ)) (6.158)

= nakl(q||q + rδ) + nbkl(q + δ||q + rδ), (6.159)

where the last line follows by independence.
The following lemma shows that f(·) is a strictly convex function of q (since linear combinations

of strictly convex functions are themselves strictly convex) and so has a unique minimum occurring
either at an endpoint of [0, 1− δ] or at a unique stationary point if one exists. This minimum can be
found in closed form in the case when na = nb, where we have q∗ = 1−δ

2 , so that

θ∗1 =

(
1− δ

2
,
1 + δ

2

)
and θ∗0 =

(
1

2
,
1

2

)
. (6.160)

This is stated and proved below as Corollary 24. When na 6= nb, the following lemma at least shows
that f(·) is straightforward to minimize computationally. Since the proof of the lemma is somewhat
tedious and uninsightful, we relegate it to Appendix B.

Lemma 22. Let γ ∈ [−1, 1] \ {0} and define f(q) = kl(q + γ||q) for max{0,−γ} ≤ q ≤ min{1, 1− γ}.
Then f is strictly convex.

Theorem 23. Fix na, nb (not necessarily equal) and risk difference threshold δ ∈ (0, 1) and let r :=
nb/n. Then the equation

na log
q(1− (q + rδ))

(q + rδ)(1− q)
+ nb log

(q + δ)(1− (q + rδ))

(q + rδ)(1− (q + δ))
= 0 (6.161)

has a unique solution in [0, 1− δ], which we denote q∗. Define

(θ∗1, θ
∗
0) := arg min

(θ1,θ0)∈Θ1(δ)′×Θ′0

KL(Pθ1 ||Pθ0). (6.162)

Then θ∗1 = (q∗, q∗+ δ) and θ∗0 = (q∗+ rδ, q∗+ rδ), provided these lie in PKR. Further, in this case the
GROW S-value S∗ is given by

S∗ = Ṡ∗ :=
Pθ∗1
Pθ∗0

. (6.163)

Proof. By Lemma 20 we know that θ∗1 lies on the boundary of Θ1(δ)′. Let us first suppose that we
have no prior knowledge. Parametrize the boundary of Θ1(δ) as in (6.155), namely

BD(Θ1(δ)) = {(q, q + δ) : q ∈ [0, 1− δ]}. (6.164)

As in (6.156), for each θ1(q) := (q, q + δ), the corresponding θ∗0(q) = (p∗(q), p∗(q)) is given by p∗(q) =
q + rδ. Finally, for q ∈ [0, 1− δ], we define

f(q) := KL(Pθ1(q)||Pθ∗0(q)). (6.165)

Expanding the KL divergence, we have

f(q) = KL(P(q,q+δ)||P(q+rδ,q+rδ)) (6.166)

= nakl(q||q + rδ) + nbkl(q + δ||q + rδ) (6.167)

= na

[
q log

q

q + rδ
+ (1− q) log

1− q
1− (q + rδ)

]
(6.168)

+ nb

[
(q + δ) log

q + δ

q + rδ
+ (1− (q + δ)) log

1− (q + δ)

1− (q + rδ)

]
. (6.169)
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Differentiating with respect to q, we obtain

f ′(q) = na

[
log

q

q + rδ
+ 1− q

q + rδ
− log

1− q
1− (q + rδ)

− 1 +
1− q

1− (q + rδ)

]
(6.170)

+ nb

[
log

q + δ

q + rδ
+ 1− q + δ

q + rδ
− log

1− (q + δ)

1− (q + rδ)
− 1 +

1− (q + δ)

1− (q + rδ)

]
(6.171)

= na

[
log

q(1− (q + rδ))

(q + rδ)(1− q)
+
−q(1− (q + rδ)) + (1− q)(q + rδ)

(q + rδ)(1− (q + rδ))

]
(6.172)

+ nb

[
log

(q + δ)(1− (q + rδ))

(q + rδ)(1− (q + δ))
+
−(q + δ)(1− (q + rδ)) + (1− (q + δ))(q + rδ)

(q + rδ)(1− (q + rδ))

]
(6.173)

= na

[
log

q(1− (q + rδ))

(q + rδ)(1− q)
+

rδ

(q + rδ)(1− (q + rδ))

]
(6.174)

+ nb

[
log

(q + δ)(1− (q + rδ))

(q + rδ)(1− (q + δ))
− (1− r)δ

(q + rδ)(1− (q + rδ))

]
(6.175)

= na log
q(1− (q + rδ))

(q + rδ)(1− q)
+ nb log

(q + δ)(1− (q + rδ))

(q + rδ)(1− (q + δ))
+

(nar − nb(1− r))δ
(q + rδ)(1− (q + rδ))

(6.176)

= na log
q(1− (q + rδ))

(q + rδ)(1− q)
+ nb log

(q + δ)(1− (q + rδ))

(q + rδ)(1− (q + δ))
, (6.177)

where the last line follows since

nar − nb(1− r) =
nanb
n
− nb +

n2
b

n
=
nb
n

(na − n+ nb) = 0. (6.178)

Since δ ∈ (0, 1) and r < 1, using continuity we have

lim
q↓0

f ′(q) = −∞ and lim
q↑1−δ

f ′(q) =∞. (6.179)

Therefore, since Lemma 22 implies f(·) is convex, we know that there exists a unique q∗ ∈ [0, 1− δ] for
which f ′(q∗) = 0. This proves the first part of the theorem, namely that (6.161) has a unique solution
in [0, 1− δ].

If a convex function has a stationary point, then this is in fact the global minimum. Thus q∗ =
arg minq∈[0,1−δ] f(q) and so

KL(Pθ1(q∗)||Pθ0(q∗)) = min
(θ1,θ0)∈Θ1(δ)×Θ0

KL(Pθ1 ||Pθ0). (6.180)

Since restricting the parameter sets cannot decrease the minimum, we have

min
(θ1,θ0)∈Θ1(δ)×Θ0

KL(Pθ1 ||Pθ0) ≤ min
(θ1,θ0)∈Θ1(δ)′×Θ′0

KL(Pθ1 ||Pθ0). (6.181)

Now, by assumption θ1(q∗), θ0(q∗) ∈ PKR and so

min
(θ1,θ0)∈Θ1(δ)′×Θ′0

KL(Pθ1 ||Pθ0) ≤ KL(Pθ1(q∗)||Pθ0(q∗)). (6.182)

These three lines together imply that (6.181) is in fact an equality, which proves the second part of
the theorem, namely θ∗1 = θ1(q∗) = (q∗, q∗ + δ) and θ∗0 = θ0(q∗) = (q∗ + rδ, q∗ + rδ).

We now show that Ṡ∗ achieves its minimum growth rate at θ∗1. By Theorem 19, this will complete
the proof. By Lemma 21, we know that the minimum growth rate of Ṡ∗ is attained at the boundary
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of Θ1(δ)′. Let g(q) equal the growth rate of Ṡ∗ at θ1(q) = (q, q + δ), for q ∈ [0, 1− δ]. We have

g(q) := EZ∼Pθ1(q)

[
log

Pθ∗1
Pθ∗0

]
(6.183)

= EZ∼Pθ1(q)

[
log

Pθ1(q)

Pθ∗0
− log

Pθ1(q)

Pθ∗1

]
(6.184)

= KL(Pθ1(q)||Pθ∗0 )−KL(Pθ1(q)||Pθ∗1 ) (6.185)

= KL(P(q,q+δ)||P(p∗,p∗))−KL(P(q,q+δ)||P(q∗,q∗+δ)) (6.186)

= nakl(q||p∗) + nbkl(q + δ||p∗)− nakl(q||q∗)− nbkl(q + δ||q∗ + δ) (6.187)

= na

[
q log

q

p∗
+ (1− q) log

1− q
1− p∗

− q log
q

q∗
− (1− q) log

1− q
1− q∗

]
(6.188)

+ nb

[
(q + δ) log

q + δ

p∗
+ (1− (q + δ)) log

1− (q + δ)

1− p∗
(6.189)

− (q + δ) log
q + δ

q∗ + δ
− (1− (q + δ)) log

1− (q + δ)

1− (q∗ + δ)

]
(6.190)

= na

[
q log

q∗

p∗
+ (1− q) log

1− q∗

1− p∗

]
(6.191)

+ nb

[
(q + δ) log

q∗ + δ

p∗
+ (1− (q + δ)) log

1− (q∗ + δ)

1− p∗

]
. (6.192)

Differentiating with respect to q, we obtain

g′(q) = na

[
log

q∗

p∗
− log

1− q∗

1− p∗

]
+ nb

[
log

q∗ + δ

p∗
− log

1− (q∗ + δ)

1− p∗

]
(6.193)

= na log
q∗(1− p∗)
p∗(1− q∗)

+ nb log
(q∗ + δ)(1− p∗)
p∗(1− (q∗ + δ))

, (6.194)

which is independent of q. If we now substitute the expression for p∗, namely p∗ = q∗ + rδ, we have

g′(q) = na log
q∗(1− (q∗ + rδ))

(q∗ + rδ)(1− q∗)
+ nb log

(q∗ + δ)(1− (q∗ + rδ))

(q∗ + rδ)(1− (q∗ + δ))
. (6.195)

This is equal to zero by the definition of q∗. Therefore g(·) is constant and so trivially attains its
minimum at q∗, regardless of the prior knowledge.

In the case of na = nb, (6.161) has a closed form solution, namely q∗ = (1− δ)/2. We state this as
a corollary.

Corollary 24. Fix na = nb and risk difference threshold δ ∈ (0, 1). Then the GROW S-value S∗ is
given by

S∗(Z) =
Pθ∗1 (Z)

Pθ∗0 (Z)
, where θ∗1 =

(
1− δ

2
,
1 + δ

2

)
and θ∗0 =

(
1

2
,
1

2

)
, (6.196)

provided θ∗1 and θ∗0 lie in PKR. Further, the worst case growth of this S-value is

GR(S∗) = nkl
(

1 + δ

2

∣∣∣∣∣∣∣∣12
)
. (6.197)

Proof. By Theorem 23, it suffices to show that q = (1− δ)/2 solves (6.161) in the case of r := nb/n =
1/2. Substituting na = nb and r = 1/2, the equation becomes

n

2
log

q(q + δ)(1− (q + δ/2))2

(1− q)(1− (q + δ))(q + δ/2)2
= 0 (6.198)

If we now substitute q = (1− δ)/2 into the left hand side, we obtain

n

2
log

1−δ
2 (1−δ

2 + δ)(1− (1−δ
2 + δ/2))2

(1− 1−δ
2 )(1− (1−δ

2 + δ))(1−δ
2 + δ/2)2

=
n

2
log

1−δ
2

1+δ
2 (1

2)2

1+δ
2

1−δ
2 (1

2)2
= 0. (6.199)
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The growth of S∗ is minimized at θ∗1. Thus

GR(S∗) = EZ∼Pθ∗1

[
log

Pθ∗1
Pθ∗0

]
(6.200)

= KL(Pθ∗1 ||Pθ∗0 ) (6.201)

= nakl
(

1− δ
2

∣∣∣∣∣∣∣∣12
)

+ nbkl
(

1 + δ

2

∣∣∣∣∣∣∣∣12
)

(6.202)

=
n

2
kl
(

1− 1 + δ

2

∣∣∣∣∣∣∣∣12
)

+
n

2
kl
(

1 + δ

2

∣∣∣∣∣∣∣∣12
)

(6.203)

= nkl
(

1 + δ

2

∣∣∣∣∣∣∣∣12
)
. (6.204)

The final line follows by the identity kl(p||q) = kl(1 − p||q), which is easily seen by writing out both
sides.

The proof of Corollary 24 relies on Theorem 23 which in turn depends on the fiddly Lemma 22.
However, there exists a more direct proof without reference to this lemma, which we now present as
an alternative.

Proof. (Alternative proof of Corollary 24) Recalling (6.177) from Theorem 23 (the derivation of which
is independent of Lemma 22), we have

f ′(q) =
n

2
log

q(q + δ)(1− (q + δ/2))2

(1− q)(1− (q + δ))(q + δ/2)2
. (6.205)

Thus

f ′(q) > 0 ⇐⇒ q(q + δ)(1− (q + δ/2))2

(1− q)(1− (q + δ))(q + δ/2)2
> 1 (6.206)

⇐⇒ q(q + δ)(1− (q + δ/2))2 − (1− q)(1− (q + δ))(q + δ/2)2 > 0 (6.207)

⇐⇒ δ3

4
+
δ2

2
q − δ2

4
> 0 (6.208)

⇐⇒ δ + 2q − 1 > 0 (6.209)

⇐⇒ q >
1− δ

2
. (6.210)

Clearly, by symmetry, we also have

f ′(q) < 0 ⇐⇒ q >
1− δ

2
and f ′(q) = 0 ⇐⇒ q =

1− δ
2

. (6.211)

Thus f(·) is strictly increasing away from 1−δ
2 and so has a unique minimum at q∗ := 1−δ

2 .

Finding θ∗1 and θ∗0 in the case of the relative risk

In the case of the relative risk, Θ1(λ) and Θ0 get arbitrarily close near (0, 0), and so S∗ is degenerate
unless we have prior knowledge that positively separates Θ1(λ) and Θ0. When dealing with the relative
risk we therefore always assume that either θLa > 0 or θLb > 0.

For a fixed λ > 1, we parametrize the boundary of Θ1(λ) as follows. Take ϕ(q) = λq, so that
(6.135) becomes

BD(Θ1(λ)) = {θ1(q) : q ∈ [0, 1/λ]} ∩ PKR, (6.212)

where θ1(q) := (q, λq). If, for a given θ1(q), no projection is required, then

θ∗0(q) := arg min
θ0∈Θ′0

KL(Pθ1(q)||Pθ0) (6.213)
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is given by (p∗(q), p∗(q)), where p∗(q) is given by (6.6), namely

p∗(q) =
naq + nbλq

n
= rq. (6.214)

where r := na+λnb
n . As in (6.136), for each q we define

f(q) := KL(Pθ1(q)||Pθ∗0(q)). (6.215)

If, for a given q, no projection is required, then this can be written as

f(q) := KL(Pθ1(q)||Pθ∗0(q)) (6.216)

= KL(P(q,λq)||P(rq,rq)) (6.217)

= nakl(q||rq) + nbkl(λq||rq), (6.218)

where the last line follows by independence.
The following lemma shows that f(·) is strictly increasing in q, since both of its terms are. This

means that if, for qmin := min{q : (q, λq) ∈ Θ1(λ)′}, no projection is required, we have q∗ = qmin and
p∗ = p∗(q∗) = rq∗, so that

θ∗1 = (qmin, λqmin) and θ∗0 = (rqmin, rqmin). (6.219)

We restate this as Theorem 26, where we give a condition for no projection being required for qmin and
prove the result more formally. First we state the following necessary lemma. Its proof is uninsightful
and so can be found in Appendix B.

Lemma 25. Let γ > 0 and define f(q) := kl(q||γq). Then f is strictly increasing in q.

Theorem 26. Fix arbitrary na and nb (not necessarily equal) and relative risk threshold λ > 1 and let
r := (na + λnb)/n. Suppose either θLa > 0 or θLb > 0, so that Θ1(λ)′ and Θ′0 are positively separated,
and define

(θ∗1, θ
∗
0) := arg min

(θ1,θ0)∈Θ1(δ)′×Θ′0

KL(Pθ1 ||Pθ0). (6.220)

Assume θUb ≥ λθLa (otherwise Θ1(λ)′ is empty). If θLb ≤ rθLa ≤ θUa , then the GROW S-value S∗ is given
by

S∗(Z) = Ṡ∗(Z) :=
Pθ∗1 (Z)

Pθ∗0 (Z)
where θ∗1 = (θLa , λθ

L
a ) and θ∗0 = (rθLa , rθ

L
a ). (6.221)

Proof. As before, for q such that θ1(q) ∈ Θ1(λ)′, define

θ×0 (q) := arg min
θ0∈Θ0

KL(Pθ1(q)||Pθ0) and θ∗0(q) := arg min
θ0∈Θ′0

KL(Pθ1(q)||Pθ0), (6.222)

and recall that θ×0 = (p×(q), p×(q)) is given by (6.6), namely

p×(q) =
naq + nbλq

n
= rq. (6.223)

Further, define
f(q) := KL(Pθ1(q)||Pθ∗0(q)) and f×(q) := KL(Pθ1(q)||Pθ×0 (q)

). (6.224)

By Lemma 25, f×(·) is strictly increasing in q and so attains its minimum at qmin := min{q : θ1(q) ∈
Θ1(λ)′}. Note that

(q, λq) ∈ PKR := [θLa , θ
U
a ] × [θLb , θ

U
b ] ⇐⇒ (q, q) ∈ [θLa , θ

U
a ] × [θLb /λ, θ

U
b /λ] (6.225)

and so qmin = max{θLa , θLb /λ}. Moreover, since r := (na+λnb)/n < (λna+λnb)/n = λ, the assumption
that θLb ≤ rθLa implies θLb < λθLa and so qmin = θLa . We now show that no projection is required for
(θLa , λθ

L
a ), namely p×(θLa ) ∈ IPKR := [max{θLa , θLb },min{θUa , θUb }]. First, note

p×(θLa ) =
naθ

L
a + nbλθ

L
a

n
= rθLa . (6.226)

63



By assumption, θLb ≤ rθLa ≤ θUa . Now r := (na + λnb)/n > (na +nb)/n = 1 implies rθLa ≥ θLa . Further,
using again that r < λ, and the assumption that θUb ≥ λθLa , we have rθLa < λθLa ≤ θUb . In summary,

θLa , θ
L
b ≤ rθLa and rθLa ≤ θUa , θUb (6.227)

and so rθLa ∈ IPKR. This means no projection is required, meaning p∗(θLa ) = p×(θLa ) and so θ∗0(θLa ) =
θ×0 (θLa ). By the definitions of f(·) and f×(·), this implies f(θLa ) = f×(θLa ).

Since Θ′0 ⊆ Θ0, we know that for any q such that (q, λq) ∈ Θ1(λ)′, we have f(q) ≥ f×(q) (this
again follows from the definitions of f(·) and f×(·)). Thus

f(q) ≥ f×(q) ≥ f×(θLa ) = f(θLa ) (6.228)

and so f(·) also attains its minimum at θLa . Taken together, this implies

θ∗1 = (θLa , λθ
L
a ) and θ∗0 = (rθLa , rθ

L
a ). (6.229)

To complete the proof, it suffices (by Theorem 19) to show that Ṡ∗ achieves its minimum growth
rate at θ∗1 = (θLa , λθ

L
a ). Let g(q) be the growth rate of Ṡ∗ at θ1(q). Recall (6.149), which states that

for any θ ∈ Θ1(ε)′, its associated θ∗0 and an arbitrary θ′ ∈ Θ1(ε)′, the growth rate of Tθ := Pθ/Pθ∗0 at
θ′ is given by

g(θ′) := EZ∼Pθ′

[
log

Pθ1
Pθ∗0

]
=

∑
x∈{a,b}

nx

[
θ′x log

(
θx

1− θx
1− p∗

p∗

)
+ log

(
1− θx
1− p∗

)]
. (6.230)

Thus, substituting θ = θ∗1 = (θLa , λθ
L
a ), θ∗0 = (rθLa , rθ

L
a ) and θ′ = θ1(q) = (q, λq), we have

g(q) := EZ∼Pθ1(q)

[
Pθ∗1 (Z)

Pθ∗0 (Z)

]
(6.231)

=
∑

x∈{a,b}

nx

[
θ1(q)x log

(
θ∗1,x

1− θ∗1,x
1− p∗

p∗

)
+ log

(
1− θ∗1,x
1− p∗

)]
(6.232)

= na

[
q log

(
θLa

1− θLa
1− rθLa
rθLa

)
+ ka

]
+ nb

[
λq log

(
λθLa

1− λθLa
1− rθLa
rθLa

)
+ kb

]
(6.233)

= naq log

(
θLa

1− θLa

)
+ λnbq log

(
λθLa

1− λθLa

)
+ (na + λnb)q log

(
1− rθLa
rθLa

)
+ k (6.234)

= q

[
na log

(
θLa

1− θLa

)
+ λnb log

(
λθLa

1− λθLa

)
+ (na + λnb) log

(
n− (na + λnb)θ

L
a

(na + λnb)θLa

)]
+ k (6.235)

= q

[
− na log

(
1− θLa

)
+ λnb log λ− λnb log

(
1− λθLa

)
(6.236)

+ (na + λnb) log

(
n− (na + λnb)θ

L
a

na + λnb

)]
+ k, (6.237)

where ka, kb and k are constants that are independent of q and in (6.235) we substituted the value of
r. Thus, as expected, g(q) is linear in q. Let c(θLa , λ) denote the coefficient of q in the final line. We
now show that for all values of na, nb, θLa and λ, we have c(θLa , λ) > 0. This completes the proof since
it shows that g(·) is strictly increasing and therefore obtains its minimum value at the minimum value
of q, namely θLa .

First, for fixed na, nb, we have that

f(λ) := c(0, λ) = λnb log λ+ (na + λnb) log

(
n

na + λnb

)
(6.238)
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is positive for all λ > 1. This is because f(1) = 0 and f ′(λ) > 0 for all λ > 1 as follows

f ′(λ) = nb + nb log λ+ nb log

(
n

na + λnb

)
− nb (6.239)

= nb log

(
λn

na + λnb

)
(6.240)

= nb log

(
λna + λnb
na + λnb

)
> 0. (6.241)

Further, for any λ > 1, the partial derivative of c(θLa , λ) with respect to θLa is positive. This follows
by direct calculation

∂c

∂θLa
=

na
1− θLa

+
λ2nb

1− λθLa
− (na + λnb)

2

n− (na + λnb)θLa
(6.242)

=
na(1− λθLa ) + λ2nb(1− θLa )

(1− θLa )(1− λθLa )
− (na + λnb)

2

n− (na + λnb)θLa
(6.243)

=
na + λ2nb − λ(na + λnb)θ

L
a

(1− θLa )(1− λθLa )
− (na + λnb)

2

n− (na + λnb)θLa
(6.244)

=

[
na + λ2nb − λ(na + λnb)θ

L
a

][
n− (na + λnb)θ

L
a

]
− (na + λnb)

2(1− θLa )(1− λθLa )

(1− θLa )(1− λθLa )
[
n− (na + λnb)θLa

] (6.245)

=
(na + λnb)

[
− λn− (na + λ2nb) + (λ+ 1)(na + λnb)

]
θLa + n(na + λ2nb)− (na + λnb)

2

(1− θLa )(1− λθLa )
[
n− (na + λnb)θLa

]
(6.246)

=
n(na + λ2nb)− (na + λnb)

2

(1− θLa )(1− λθLa )
[
n− (na + λnb)θLa

] (6.247)

=
nanb + λ2nanb − 2λnanb

(1− θLa )(1− λθLa )
[
n− (na + λnb)θLa

] (6.248)

=
nanb(1− λ)2

(1− θLa )(1− λθLa )
[
n− (na + λnb)θLa

] . (6.249)

Line (6.247) follows by using n = na + nb and expanding the coefficient of the θLa in the numerator
to see that the coefficient equals zero. Now, since we assumed θLa ∈ (0, 1/λ) where λ > 1, we know
that 1 − θLa > 0 and 1 − λθLa > 0. Further, since λθLa < 1, we have n − (na + λnb)θ

L
a > n − λnθLa =

n(1− λθLa ) > 0. Thus the final expression is positive and the proof is complete.

6.7 The DOT S-value is not always GROW

At this point we might conjecture that the optimal priors are always point masses, provided Θ′0 and
Θ1(ε)′ are convex. However, this turns out to be false, as the following example shows. The example
is rather simple. As we will see later in Theorem 26, it comes from violating the condition that
θLb ≤ rθLa ≤ θUa by taking θLb > 0 and θLa = 0. We then show that the Ṡ∗ does not achieve its minimum
growth rate at θ∗1, which, by Theorem 19, shows that Ṡ∗ 6= S∗.

Lemma 27. Suppose we have PKR = [0, 1] × [θLb , 1] and that our parameter of interest is the relative
risk. For any values of na and nb, there exists a threshold value λ such that Ṡ∗ 6= S∗. Likewise, for
any values of na and λ, there exists a value of nb such that Ṡ∗ 6= S∗.

Proof. We show that in the two cases either λ or nb respectively can be chosen such that Ṡ∗ does not
achieve its minimum growth rate at θ∗1. For the moment, let na, nb and λ be fixed, with choices to
be made at the end. As before, we know that θ∗1 lies on the boundary of Θ1(λ)′. Parameterize the
boundary of Θ1(λ)′ by

Θ1(λ)′ = {θ1(q) : q ∈ [θLb /λ, 1/λ]}, (6.250)
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where θ1(q) := (q, λq) and for each q let

θ∗0(q) := arg min
θ0∈Θ′0

KL(Pθ1(q)||Pθ0). (6.251)

If we define
f(q) := KL(Pθ1(q)||Pθ∗0(q)), (6.252)

then
(θ∗1, θ

∗
0) = (θ1(q∗), θ∗0(q∗)), where q∗ := arg min

q∈[θLb /λ,1/λ]

f(q). (6.253)

Due to the shape of PKR, there exists a value of q, say q0, such that if q > q0 no projection is required
while for q ≤ q0 we have θ∗0(q) = (θLb , θ

L
b ). Thus for q > q0 we have f×(q) = f(q). We have seen

in Lemma 25 that f×(·) is strictly increasing in q. This implies that q∗ ≤ q0 and so θ∗0 = (θLb , θ
L
b ).

Therefore it suffices to find the minimum of f(·) on the interval [θLb /λ, q0], where

f(q) = KL(Pθ1(q)||P(θLb ,θ
L
b )). (6.254)

We now show that f ′(θLb /λ) < 0, so that q∗ > θLb /λ. For q ≤ q0, we have

f(q) =KL(P(q,λq)||P(θLb ,θ
L
b )) (6.255)

= nakl(q||θLb ) + nbkl(λq||θLb ) (6.256)

= na

[
q log

q

θLb
+ (1− q) log

1− q
1− θLb

]
+ nb

[
λq log

λq

θLb
+ (1− λq) log

1− λq
1− θLb

]
. (6.257)

Differentiating,

f ′(q) = na

[
log

q

θLb
+ 1− log

1− q
1− θLb

− 1

]
+ nb

[
λ log

λq

θLb
+ λ− λ log

1− λq
1− θLb

− λ
]

(6.258)

= na log
q(1− θLb )

θLb (1− q)
+ λnb log

λq(1− θLb )

θLb (1− λq)
. (6.259)

If we now set q = θLb /λ, we obtain

f ′
(
θLb
λ

)
= na log

1− θLb
λ− θLb

+ λnb log
θLb (1− θLb )

θLb (1− θLb )
(6.260)

= na log
1− θLb
λ− θLb

. (6.261)

Since λ > 1, this shows that f ′(θLb /λ) < 0 and so q∗ > θLb /λ.
Recall Lemma 21, which states that the growth rate of Ṡ∗ is minimized somewhere on the boundary

of Θ1(λ)′. Let g(q) be the growth rate of Ṡ∗ at θ1(q). Recalling (6.149), we have

g(q) := EZ∼Pθ1(q)

[
log

Pθ∗1
Pθ∗0

]
(6.262)

= EZ∼P(q,λq)

[
log

P(q∗,λq∗)

P(θLb ,θ
L
b )

]
(6.263)

= naq log
q∗

1− q∗
1− θLb
θLb

+ nbλq log
λq∗

1− λq∗
1− θLb
θLb

+ c. (6.264)

where c is a constant that does not depend on q. Differentiating,

g′(q) =

[
na log

q∗

1− q∗
1− θLb
θLb

+ λnb log
λq∗

1− λq∗
1− θLb
θLb

]
, (6.265)
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which is a constant. Now q∗ > θLb /λ implies λq∗ > θLb . Recalling x 7→ x/(1− x) is a strictly increasing
positive function on [0, 1), we have

q∗ > θLb /λ =⇒ λq∗ > θLb (6.266)

=⇒ λq∗

1− λq∗
>

1− θLb
θLb

(6.267)

=⇒ λq∗

1− λq∗
1− θLb
θLb

> 1 (6.268)

=⇒ log
λq∗

1− λq∗
1− θLb
θLb

> 0. (6.269)

Further, this final term is increasing in λ. Thus, regardless of the value of

na log
q∗

1− q∗
1− θLb
θLb

, (6.270)

g′(q) is a positive constant if nb or λ is chosen large enough. This would then imply that the growth
rate of Ṡ∗ is minimized by taking q as small as possible, namely at the point θG = (θLb /λ, θ

L
b /λ). Since

we have just seen that q∗ > θLb /λ, we see that θG 6= θ∗1. Thus, by Theorem 19, Ṡ∗ 6= S∗.
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Chapter 7

Results

The plots in this chapter show the growth rate and power of a number of S-values in the unconditional
setting (namely where we take expectations over N1 rather than assuming its value is fixed). We focus
on the more computationally feasible S-values, namely the conditional S-values (constructed in the
unconditional setting) of section 5.4 and the DOT S-values of chapter six. Since using a threshold
value ψ of the odds ratio to restrict the alternative parameter set Θ1 leads to the non-convex Θ1(ψ),
the results of the previous chapter do not apply. We therefore consider only the risk difference and
relative risk in this chapter.

7.1 Process for generating the S-values

First, recall the process for generating the unconditional DOT S-values:

1. Choose a parameter ε (in this chapter δ or λ).

2. Specify the prior knowledge rectangle PKR.

3. For each threshold value ε, construct the null and alternative parameter sets Θ′0 and Θ1(ε)′.

4. For each threshold ε, calculate the DOT S-value Ṡ∗Θ1(ε)′ using the methods of the previous chapter.

For each ε, we then calculate the worst case growth rate and power of Ṡ∗Θ1(ε)′ over Θ1(ε)′. Finally, we
see whether there exists a threshold value ε∗ such that the power of Ṡ∗Θ1(ε∗)′ exceeds that of any other
Ṡ∗Θ1(ε)′ uniformly over Θ1(ε0)′, where for the risk difference δ0 = 0 and for the relative risk λ0 = 1. If
such an S-value exists, it will be referred to as the uniformly most powerful DOT S-value or simply
the UMP DOT S-value.

Second, recall the process for generating the conditional S-values in the unconditional setting. The
first three steps are the same as in the unconditional case. Thereafter:

1. Construct the induced parameter sets

Ψ0 := {ψ(θa, θb) : (θa, θb) ∈ Θ′0} = {1} and (7.1)
Ψ1(ψ) := {ψ(θa, θb) : (θa, θb) ∈ Θ1(ε)′} = [ψ,ψmax]. (7.2)

2. For each induced threshold ψ, the GROW S-value is given by

S∗ψ(Nb1) := S∗Ψ1(ψ)(Nb1) = Pψ,N1(Nb1)/P1,N1(Nb1), (7.3)

where Pψ,n1 denotes the fnchypg(n, nb, n1) distribution.

3. The UMPG S-value is given by

S∗ψ∗(N1)(Nb1) = Pψ(N1),N1
(Nb1)/P1,N1(Nb1), (7.4)

where for each n1, ψ∗(n1) is the unique solution to KL(Pψ,n1 ||P1,n1) = − logα.1

1For small values of n1 this equation may not have a solution. In these cases we used an arbitrary value of ψ.
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As before, for each threshold value ε, the worst case growth and power of these S-values is calculated
over Θ1(ε)′.

In summary, for each threshold ε with induced threshold ψ, we calculate the worst case growth and
power over Θ1(ε)′ of

1. The DOT S-value Ṡ∗Θ1(ε)′

2. The UMP DOT S-value Ṡ∗Θ1(ε∗)′

3. The conditional GROW S-value S∗ψ

4. The UMPG S-value S∗.

For the risk difference, we repeated this process with prior knowledge of each of the following forms:

1. no prior knowledge, namely PKR = [0, 1]2

2. prior knowledge θa ≥ 0.1, namely PKR = [0.1, 1] × [0, 1]

3. prior knowledge θa ≤ 0.9, namely PKR = [0, 0.9] × [0, 1]

4. prior knowledge θb ≥ 0.1, namely PKR = [0, 1] × [0.1, 1]

5. prior knowledge θb ≤ 0.9, namely PKR = [0, 1] × [0, 0.9]

6. prior knowledge θa = 0.3, namely PKR = [0.3, 0.3] × [0, 1]

7. prior knowledge θb = 0.3, namely PKR = [0, 1] × [0.3, 0.3].

For the relative risk some of these choices do not suffice to strictly separate the parameter sets. In this
case we just use 2, 4, 6 and 7

7.2 Growth and power plots

We now present all the results in figures 7.1 to 7.11, which were conducted using na = nb = 50
throughout. Note that in some cases there is no line for the UMP DOT S-value. This is because in
those cases no such UMP S-value exists. In the caption for each figure, we state whether it is known
that Ṡ∗ = S∗ by theoretical results from chapter six. As before, for all the power plots we have included
Fisher’s exact test as a benchmark.

Figure 7.1: Risk difference with no prior knowledge. In this case, for every threshold value considered,
it is known theoretically that Ṡ∗ = S∗.
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Figure 7.2: Risk difference with prior knowledge θa ≥ 0.1. In this case, for every threshold value
considered, it is known theoretically that Ṡ∗ = S∗.

Figure 7.3: Risk difference with prior knowledge θa ≤ 0.9. In this case, for every threshold value
considered, it is known theoretically that Ṡ∗ = S∗.

Figure 7.4: Risk difference with prior knowledge θb ≥ 0.1. In this case, for every threshold value
considered, it is known theoretically that Ṡ∗ = S∗.
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Figure 7.5: Risk difference with prior knowledge θb ≤ 0.9. In this case, for every threshold value
considered, it is known theoretically that Ṡ∗ = S∗.

Figure 7.6: Risk difference with prior knowledge θa = 0.3. In this case, for every threshold value
considered, it is known theoretically that Ṡ∗ = S∗.

Figure 7.7: Risk difference with prior knowledge θb = 0.3. In this case, for every threshold value
considered, it is known theoretically that Ṡ∗ = S∗.
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Figure 7.8: Relative risk with prior knowledge θa ≥ 0.1. In this case, for every threshold value
considered, it is known theoretically that Ṡ∗ = S∗.

Figure 7.9: Relative risk with prior knowledge θb ≥ 0.1. In this case, for at least one threshold value
considered it has been numerically demonstrated that Ṡ∗ 6= S∗, but this is not the case for all threshold
values considered.

Figure 7.10: Relative risk with prior knowledge θa = 0.3. In this case, for every threshold value
considered, it is known theoretically that Ṡ∗ = S∗.
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Figure 7.11: Relative risk with prior knowledge θb = 0.3. In this case, for every threshold value
considered, it is known theoretically that Ṡ∗ = S∗.

7.3 Analysis

In most cases we see that Fisher’s exact test is more powerful than all of our S-values. However, for
degenerate prior knowledge rectangles, namely when one of θa or θb is known precisely, it appears that
the unconditional DOT and unconditional UMP DOT S-values are more powerful, at least for large
threshold values. As before, the fact that Fisher’s exact test is usually more powerful is perhaps to
be expected, since S-values have to satisfy the additional requirement of being safe under optional
continuation.

While there is no clear ‘winner’ for growth rate and power simultaneously among the four S-
values, some qualitative judgements can be made. For example, it is noteworthy that between the
unconditional DOT and the unconditional UMP DOT S-values, the first is likely to be preferable in
many cases. The reason is that while by definition the DOT S-value has growth at least as good and
power at most as good as the UMP DOT S-value, it frequently exceeds the growth rate of the UMP
DOT S-value by a large margin, while falling short of the UMP DOT S-value in terms of power by only
a small margin. The same appears true in the conditional case, namely that the conditional GROW
S-value is slightly preferable to the conditional UMPG S-value in many cases.

A significant disadvantage of the conditional UMPG S-value is that its growth rate is occasionally
negative, for small values of the threshold. This means that there are some cases in which the UMPG
S-value may actually shrink under the alternative hypothesis. While the unconditional DOT UMP also
suffers this disadvantage in a small region of figure 7.11, it is the UMPG S-value that is most affected.
Overall, it appears that there should be a slight preference for the unconditional DOT S-value, but
this is not clear cut in every case, meaning the practitioner should first check the specifics of their trial
before deciding which S-value to use.

7.4 Similarity between growth of unconditional DOT and conditional
GROW S-values

Curiously, the growth of the unconditional DOT and conditional GROW S-values is very similar if not
identical in a number of cases. We explore here why that might be.

First, as in [5], for any ρ > 0, we can define

Θ1(ρ) :=

{
θ1 ∈ Θ1 : inf

θ0∈Θ0

KL(Pθ1 ||Pθ0) ≥ ρ
}
. (7.5)

The boundary BD(Θ1(ρ)) of Θ1(ρ), is then referred to in [5] as the ‘lemon’ due to its bulging shape
around the main diagonal. Intuitively, to find the (θ∗1, θ

∗
0) for a given Θ′0 and Θ1(ε)′ minimizing

KL(Pθ1 ||Pθ0 , one can imagine increasing the value of ρ until the ‘lemon’ intersects first intersects
Θ1(ε)′. The point of intersection is then θ∗1. Now Θ1(ε)′ is a polygon for the risk difference and relative
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risk. Further, the shape of the curves ψ(θa, θb) = ψ0 are quite similar to the lemon and they share the
same symmetry about the line θb = 1 − θa. It is not hard to imagine therefore that increasing ψ0 to
find the point where ψ(θa, θb) = ψ0 first intersects Θ1(ε)′ might also give θ∗1. In the case of the risk
difference with no prior knowledge, the symmetry alone suffices to see this. Letting θ∗1 = (θ∗1,a, θ

∗
1,b),

this implies that the induced threshold for the odds ratio is given by ψ = ψ(θ∗1,a, θ
∗
1,b). Suppose we are

indeed in this scenario and let θ∗0 = (p∗, p∗). Then the conditional GROW S-value is given by

S∗ψ(Nb1|N1) = S∗ψ(θ∗1,a,θ
∗
1,b)

(Nb1|N1) (7.6)

:=
Pψ(θ∗1,a,θ

∗
1,b),N1

(Nb1)

P1,N1(Nb1)
(7.7)

=
P(θ∗1,a,θ

∗
1,b)

(Nb1|N1)

P(p∗,p∗)(Nb1|N1)
(since ψ(p∗, p∗) = 1) (7.8)

=
P(θ∗1,a,θ

∗
1,b)

(Na1, Nb1)P(θ∗1,a,θ
∗
1,b)

(N1)

P(p∗,p∗)(Na1, Nb1)P(p∗,p∗)(N1)
. (7.9)

Further, the unconditional DOT S-value is given by

Ṡ∗(Z) =
Pθ∗1 (Z)

Pθ∗0 (Z)
=
P(θ∗1,a,θ

∗
1,b)

(Na1, Nb1)

P(p∗,p∗)(Na1, Nb1)
. (7.10)

Therefore, taking the ratio, we have

Ṡ∗(Z)

S∗ψ(Z)
=
P(θ∗1,a,θ

∗
1,b)

(N1)

P(p∗,p∗)(N1)
=
Pθ∗1 (N1)

Pθ∗0 (N1)
. (7.11)

Using this fact, we can inspect the difference in growth rate between the two S-values as follows. For
any θ1 = (θa, θb) ∈ Θ1(ε)′, we have

EZ∼Pθ1 [log Ṡ∗]−EZ∼Pθ1 [logS∗ψ] = EZ∼Pθ1

[
log

Ṡ∗

S∗ψ

]
(7.12)

= EZ∼Pθ1

[
log

Pθ∗1 (N1)

Pθ∗0 (N1)

]
. (7.13)

Now if Ṡ∗ is in fact the GROW S-value then it achieves its minimum growth rate at θ∗1. Further, for
any N1, S∗ψ achieves its minimum conditional growth rate at ψ∗ = ψ(θ∗1). Suppose this implies S∗ψ
achieves its minimum unconditional growth rate at θ∗1.

We now take a particular example, namely that of the risk difference with threshold δ = 0.2 and
na = nb = 40. Recall that we then have

θ∗1 =

(
1− δ

2
,
1 + δ

2

)
= (0.4, 0.6) and θ∗0 = (0.5, 0.5). (7.14)

Plotting log
(
Ṡ∗/S∗ψ

)
against n1, we have the figure 7.12. Note that the difference is approximately

zero in a neighbourhood of n1 = 40, which is the expected value of N1. Since this is where the majority
of the mass of the distribution of N1 lies, we see that 7.13 is indeed small, meaning the difference in
growth between the two S-values is small (provided all the assumptions we made along the way are
satisfied).
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Figure 7.12: The logarithm of the ratio Ṡ∗(n1)/S∗ψ(n1) plotted against n1.
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Chapter 8

Conclusion

The bulk of the contribution of this thesis is the series of results either giving closed expressions
for the S-values we considered, or providing calculation methods that are dramatically faster than
approximating the JIP directly. While the evaluation of our safe tests did not provide a definite
answer to the question of which should be used for statistical inference, the methods used to construct
them and the results developed along the way contribute to the general understanding of safe tests
for 2 × 2 tables. Some of our results and methods may find wider application in the study of safe
tests more generally; perhaps most promisingly Theorem 19, which can be used to check whether it
suffices to look at point mass priors. If future research validates the conjecture that this theorem can
be reversed, it could also be used in other cases to falsify the claim that point mass priors suffice,
showing that the JIP approximation may have to be used.

It was seen in chapter six that while the unconditional GROW S-value for 2×2 tables is frequently
given by point priors, this is not always the case, even when the parameter sets are convex. Nevertheless,
the cases in which point priors did not suffice were also the cases in which projection was required to
find the optimal θ∗0. This suggests the conjecture that, provided the parameter sets are convex and no
projection is required to obtain θ∗0, namely θ∗0 = (p∗, p∗) where

p∗ = p× =
naθa + nbθb

n
, (8.1)

then point priors suffice. This would be consistent with the results found in this thesis and may be a
direction for future work.
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Appendix A

Conditions of Theorem 1

Recall the conditions of Theorem 1, which is the main result of the paper [5]:

1. For all θ0 ∈ Θ0 and W1 ∈ W(Θ′1) we have that Pθ0 is absolutely continuous relative to PW1 .

2. The infimum inf(W1,W0)∈W(Θ′1)×W(Θ0) KL(PW1 ||PW0) is finite.

3. The infimum is achieved by some (W ∗1 ,W
∗
0 ).

4. The infimum is achieved uniquely.

We will now explore when these conditions hold for our different choices of Θ1(ε)′ and Θ′0.
The first condition holds if Θ′1 does not overlap with the boundary of the unit square. To see this,

note that for all θ = (θa, θb) ∈ (0, 1)2, Na1 ∈ [na] and Nb1 ∈ [nb], we have Pθ(Na1, Nb1) 6= 0. Thus
for any W1 ∈ W((0, 1)2), we also have PW1(Na1, Nb1) 6= 0, and so the absolutely continuous condition
trivially holds.

However, the first condition may not hold if Θ′1 does overlap with the boundary of the unit square.
For example, suppose there exists θ0 = (p, p) ∈ Θ′0 for some p ∈ (0, 1) and some θ1 = (θa, θb) ∈ Θ′1 such
that θa = 0 (θb = 0 will lead to the same problem by swapping the values of Na1 and Nb1). Let W1 be
a point mass on θ1, and take Na1 = 1 and Nb1 = k. Then PW1(Na1, Nb1) = 0, while Pθ0(Na1, Nb1) 6= 0.
Thus Pθ0 is not absolutely continuous relative to PW1 .

In many of our cases Θ1(ε)′ does contain elements of the boundary of the unit square. This can be
remedied by taking the intersection with [c, 1− c]2, for any c > 0. However, note that all the numerical
experiments of chapter five and theoretical results of chapter six demonstrate that the supports of W ∗1
and W ∗0 are strictly separated from the boundary of the unit square for every choice of parameter,
threshold and prior knowledge rectangle for whichW ∗1 andW ∗0 are not degenerate. Hence their supports
already lie in [c, 1 − c]2, for some positive c. Therefore the parameter sets can be safely intersected
with this smaller square without increasing the infimum or altering the priors which achieve it. This
then ensures the first condition holds without altering the GROW S-value. Thus we can safely ignore
condition one.

For the second condition to hold, there need only exist θ0 = (p, p) ∈ Θ′0 and θ1 = (θa, θb) ∈ Θ′1
such that p, θa, θb ∈ (0, 1). By independence, we have

KL(Pθ1 ||Pθ0) = nakl(θa||p) + nbkl(θb||p) (A.1)

= na

[
θa log

θa
p

+ (1− θa) log
1− θa
1− p

]
+ nb

[
θb log

θb
p

+ (1− θb) log
1− θb
1− p

]
, (A.2)

which is finite since none of the values θa θb or p is equal to 0 or 1. Such nontrivial p, θa and θb exist
in all the cases we consider.

We now prove Theorem 30, which states that the third condition holds provided Θ1(ε)′ and Θ′0 are
compact. This suffices, since in all the cases we consider Θ1(ε)′ and Θ′0 are indeed compact. The result
relies on Prokhorov’s Theorem and a theorem due to Posner [9, Theorem 1], for which the following
definitions are required.
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Definition 4. A metric space (X, d) is complete if every Cauchy sequence in X has a limit in X.

Definition 5. A metric space (X, d) is separable if X contains a countable dense subset.

Definition 6. A topological space (X, τ) is sequentially compact if every sequence of points in X has
a convergent subsequence converging to a point in X.

Definition 7. The Borel σ-algebra on a metric space (X, d) is the σ-algebra generated by the open
sets defined by d.

Definition 8. Let (X, d) be a metric space with Borel σ-algebra B. Let P denote the collection of all
probability measures defined on B. A subset Q ⊆ P is tight if for any ε > 0 there exists a compact
Kε ⊂ X such that, for all measures µ ∈ Q,

µ(Kε) > 1− ε. (A.3)

Definition 9. Let (X, d) be a metric space with Borel σ-algebra B. A sequence of probability measures
P1, P2, . . . on B is said to converge weakly to the probability measure P if

EX∼Pn [f(X)]→ EX∼P [f(X)] (A.4)

for every bounded continuous real-valued function f on X. This is written Pn ⇒ P .

Theorem 28 (Prokhorov’s Theorem). Let (X, d) be a separable metric space with Borel σ-algebra B
and let P denote the collection of all probability measures defined on B. A subset Q ⊆ P is tight if
and only if the closure of Q is sequentially compact in the space P equipped with the topology of weak
convergence.

Theorem 29 (Posner, [9]). Let (X, d) be a complete separable metric space and let Pn ⇒ P and
Qn ⇒ Q. Then

KL(P ||Q) ≤ lim inf
n→∞

KL(Pn||Qn). (A.5)

In other words, KL(P ||Q) is jointly lower semi-continuous in P and Q.

With these definitions and theorems, we can now state and prove the following theorem, which
states that condition three holds provided the parameter sets are compact.

Theorem 30. Let Θ′1,Θ
′
0 ⊆ [0, 1]2 be compact. Let na and nb be positive integers and, for any θ =

(θa, θb) ∈ [0, 1]2 let Pθ denote the distribution of Z = (Na1, Nb1), where Na1 and Nb1 are independent
with distributions

Na1 ∼ Bin(na, θa) and Nb1 ∼ Bin(nb, θb). (A.6)

Then there exist W ∗1 and W ∗0 such that

KL(PW ∗1 ||PW ∗0 ) = inf
(W1,W0)∈W(Θ′1)×W(Θ0)

KL(PW1 ||PW0). (A.7)

Proof. By the definition of the infimum, there exists a sequence (W
(n)
1 ,W

(n)
0 ) for n = 1, 2, . . . such

that
KL(P

W
(n)
1

||P
W

(n)
1

)→ inf
(W1,W0)∈W(Θ′1)×W(Θ0)

KL(PW1 ||PW0) (A.8)

as n → ∞. Let Qi = {W (n)
i : n = 1, 2, . . . } for i ∈ {0, 1}. Then, since every W (n)

i is a probability
distribution on the compact set [0, 1]2, we see that Q1 and Q0 are tight (we simply take Kε = [0, 1]2

for each ε > 0). Thus, by Prokhorov’s Theorem (Theorem 28), their closures are sequentially compact,
meaning they have subsequences weakly converging to some W̃1 and W̃0 respectively. By taking the
subsequences sequentially, we can thus find a subsequence (W̃

(n)
1 , W̃

(n)
0 ) of (W

(n)
1 ,W

(n)
0 ) such that

W̃
(n)
1 ⇒ W̃1 and W̃

(n)
0 ⇒ W̃0 (A.9)
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as n → ∞. Now, let f : Z → [−B,B] be an arbitrary bounded continuous real-valued function. We
can then define g : [0, 1]2 → R by

g(θ) := EZ∼Pθ [f(Z)] (A.10)

for any θ = (θa, θb) ∈ [0, 1]2. Then for any θ

|g(θ)| ≤ EZ∼Pθ [|f(Z)|] ≤ EZ∼Pθ [B] ≤ B, (A.11)

so g is bounded. Further, since Pθ(z) is continuous in θ for every z ∈ Z, we see that g is continuous.
Thus, for i ∈ {0, 1}, by the definition of weak convergence we have

EZ∼P
W̃

(n)
i

[f(Z)] = E
θ∼W̃ (n)

i

[
EZ∼Pθ [f(Z)]

]
(A.12)

= E
θ∼W̃ (n)

i

[g(θ)] (A.13)

⇒ Eθ∼W̃i
[g(θ)] (A.14)

= Eθ∼W̃i

[
EZ∼Pθ [f(Z)]

]
(A.15)

= EZ∼PW̃i
[f(Z)]. (A.16)

Since f was an arbitrary bounded continuous real-valued function, we see that P
W̃

(n)
1

⇒ PW̃1
and

P
W̃

(n)
0

⇒ PW̃0
. Finally, by the joint lower semi-continuity of the KL-divergence (Theorem 29), we see

that

KL(PW̃1
||PW̃0

) ≤ lim inf
n→∞

KL(P
W̃

(n)
1

||P
W̃

(n)
0

) (A.17)

= lim
n→∞

KL(P
W̃

(n)
1

||P
W̃

(n)
0

) (A.18)

= inf
(W1,W0)∈W(Θ′1)×W(Θ0)

KL(PW1 ||PW0) (A.19)

and so
KL(PW̃1

||PW̃0
) = inf

(W1,W0)∈W(Θ′1)×W(Θ0)
KL(PW1 ||PW0). (A.20)
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Appendix B

Proofs

We restate and give the proof of Lemma 22.

Lemma. Let γ ∈ [−1, 1] \ {0} and define f(q) = kl(q + γ||q) for max{0,−γ} ≤ q ≤ min{1, 1 − γ}.
Then f is strictly convex.

Proof. We show that f is always either continuous or infinite at the endpoints and has positive second
derivative on the open interval.

First, suppose γ > 0, so that q ∈ [0, 1− γ]. Then

f(0) = kl(γ||0) = γ log
γ

0
+ (1− γ) log

1− γ
1

=∞, (B.1)

f(1− γ) = kl(1||1− γ) = 1 log
1

1− γ
+ 0 log

0

γ
= − log(1− γ) and (B.2)

lim
q↑1−γ

f(q) = lim
q↑1−γ

{
(q + γ) log

q + γ

q
+ (1− (q + γ)) log

1− (q + γ)

1− q

}
(B.3)

= − log(1− γ), (B.4)

using continuity and the fact that x log x→ 0 as x ↓ 0. Therefore f is infinite at the left endpoint and
continuous at the right endpoint.

Likewise, if γ < 0, so that q ∈ [−γ, 1], we have

f(−γ) = kl(0|| − γ) = 0 log
0

−γ
+ 1 log

1

1 + γ
= − log(1 + γ), (B.5)

f(1) = kl(1 + γ||1) = (1 + γ) log
1 + γ

1
− γ log

−γ
0

=∞ and (B.6)

lim
q↓−γ

f(q) = lim
q↓−γ

{
(q + γ) log

q + γ

q
+ (1− (q + γ)) log

1− (q + γ)

1− q

}
(B.7)

= − log(1− γ), (B.8)

again using continuity and the fact that x log x → 0 as x ↓ 0. Therefore f is infinite at the right
endpoint and continuous at the left endpoint.

We now calculate the second derivative of f in the open interval. Expanding the KL divergence,
we have

f(q) = (q + γ) log
q + γ

q
+ (1− (q + γ)) log

1− (q + γ)

1− q
, (B.9)
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and, taking the derivative, we get

f ′(q) = log
q + γ

q
+ (q + γ)

(
1

q + γ
− 1

q

)
− log

1− (q + γ)

1− q
(B.10)

+ (1− (q + γ))

(
− 1

1− (q + γ)
+

1

1− q

)
(B.11)

= log
q + γ

q
− γ

q
− log

1− (q + γ)

1− q
− γ

1− q
. (B.12)

The second derivative is then

f ′′(q) =
1

q + γ
− 1

q
+
γ

q2
+

1

1− (q + γ)
− 1

1− q
− γ

(1− q)2
(B.13)

=
γ2(2γq − γ − 3q(1− q) + 1)

q2(1− q)2(q + γ)(1− (q + γ))
. (B.14)

Since we are now working in the open interval, we have q+γ > 0, q > 0, 1− q > 0 and 1− (q+γ) > 0.
Therefore

f ′′(q) > 0 ⇐⇒ 2γq − γ − 3q(1− q) + 1 > 0 (B.15)

⇐⇒ 3q2 + (2γ − 3)q + 1− γ > 0. (B.16)

The discriminant of this quadratic is (2γ − 3)2 − 12(1 − γ) = 4γ2 − 3. Thus if γ ∈ (−
√

3/2,
√

3/2)
the quadratic is always positive and f is strictly convex. Alternatively, suppose γ < −

√
3/2, so that

q ∈ [−γ, 1]. Let q−, q+ be the lower and upper solutions of the quadratic respectively. We have

q+ :=
3− 2γ +

√
4γ2 − 3

6
< −γ ⇐⇒

√
4γ2 − 3 < −4γ − 3 (B.17)

⇐⇒ 4γ2 − 3 < 16γ2 + 24γ + 9 (since 4γ2 − 3 > 0) (B.18)

⇐⇒ γ2 + 2γ + 1 > 0 (B.19)

⇐⇒ (γ + 1)2 > 0. (B.20)

Since the last line is trivially true, we see that q+ < −γ and so f ′′(q) > 0 for q ∈ [−γ, 1].
Likewise, if γ >

√
3/2, so that q ∈ [0, 1− γ], we have

q− :=
3− 2γ −

√
4γ2 − 3

6
> 1− γ ⇐⇒

√
4γ2 − 3 < 4γ − 3 (B.21)

⇐⇒ 4γ2 − 3 < 16γ2 − 24γ + 9 (since 4γ2 − 3 > 0) (B.22)

⇐⇒ γ2 + 2γ + 1 > 0 (B.23)

⇐⇒ (γ + 1)2 > 0. (B.24)

Again, since the last line is trivially true, we see that q− > 1−γ and so f ′′(q) > 0 for q ∈ [0, 1−γ].

We now restate and give the proof of Lemma 25

Lemma. Let γ > 0 and define f(q) := kl(q||γq). Then f is strictly increasing in q.

Proof. By direct calculation, we show that f ′(0) > 0 and f ′′(q) > 0 for all q, which, since f is
continuously differentiable, implies that f ′(q) > 0 for all q.

f(q) = q log
q

γq
+ (1− q) log

1− q
1− γq

(B.25)

= −q log γ + (1− q) log
1− q

1− γq
. (B.26)

(B.27)
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Differentiating, we get

f ′(q) = − log γ + (1− q)
[
− 1

1− q
+

γ

1− γq

]
− log

1− q
1− γq

(B.28)

= − log γ − 1 +
γ(1− q)
1− γq

− log
1− q

1− γq
(B.29)

= − log γ +
γ − 1

1− γq
− log

1− q
1− γq

. (B.30)

This gives f ′(0) = − log γ + γ − 1 which is positive by the well-known inequality log x < x − 1.
Differentiating again, we have

f ′′(q) =
γ(γ − 1)

(1− γq)2
+

1

1− q
− γ

1− γq
(B.31)

=
γ(γ − 1)

(1− γq)2
+

1− γ
(1− q)(1− γq)

(B.32)

=
γ − 1

(1− γq)2(1− q)
[γ(1− q)− (1− γq)] (B.33)

=
(γ − 1)2

(1− γq)2(1− q)
, (B.34)

which is positive since q ∈ IPKR ∩ [0, 1/λ], so q ≤ 1/λ < 1 since λ > 1. Thus f ′(0) > 0 and f ′′(q) > 0
for all q, meaning f ′(q) > 0 for all q and so f(·) is strictly increasing.
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