Egon Borger, Erich Gradel, Yuri Gurevich

The Classical Decision Problem

Springer-Verlag

Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest



Preface

This book is addressed to all those — logicians, computer scientists, mathe-
maticians, philosophers of science as well as the students in all these disci-
plines — who may be interested in the development and current status of one
of the major themes of mathematical logic in the twentieth century, namely
the classical decision problem known also as Hilbert’s Entscheidungsproblem.
The text provides a comprehensive modern treatment of the subject, includ-
ing complexity theoretic analysis.

We have made an effort to combine the features of a research monograph
and a textbook. Only the basic knowledge of the language of first-order logic
is required for understanding of the main parts of the book, and we use
standard terminology. The chapters are written in such a way that various
combinations of them can be used for introductory or advanced courses on
undecidability, decidability and complexity of logical decision problems. This
explains a few intended redundancies and repetitions in some of the chapters.
The annotated bibliography, the historical remarks at the end of the chap-
ters and the index allow the reader to use the text also for quick reference
purposes.

The book is the result of an effort which went over a decade. Many peo-
ple helped us in various ways: with English, with pictures and latex, with
comments and information. It is a great pleasure to thank David Basin,
Bertil Brandin, Martin Davis, Anatoli Degtyarev, Igor Durdanovic, Dieter
Ebbinghaus, Ron Fagin, Christian Fermiller, Phokion Kolaitis, Alex Leitsch,
Janos Makowsky, Karl Meinke, Jim Huggins, Silvia Mazzanti, Vladimir
Orevkov, Martin Otto, Eric Rosen, Rosario Salomone, Wolfgang Thomas,
Jurek Tyszkiewicz, Moshe Vardi, Stan Wainer and Suzanne Zeitman. This
list 1s incomplete and we apologize to those whose names have been inad-
vertently omitted. We are specially thankful to Saharon Shelah for his help
with the Shelah case and to Cyril Allauzen and Bruno Durand for providing
an appendix with a new, simplified proof for the unsolvability of the domino
problem. Also, we use this opportunity to thank Springer Verlag, the Omega
group and in particular Gert Muller for the patience and belief in our long-
standing promise to write this book.

August 1996 Egon Borger
Erich Gradel

Yur: Gurevich
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1. Introduction: The Classical Decision
Problem

1.1 The Original Problem

The original classical decision problem can be stated in several equivalent
ways.

— The satisfiability problem (or the consistency problem) for first-order logic:
given a first-order formula, decide if it 1s consistent.

— The validity problem for first-order logic: given a first-order formula, decide
if 1t 1s valid.

— The provability problem for a sound and complete formal proof system for
first-order logic: given a first-order formula, decide if it is provable in the
system.

Recall that a formula is satisfiable (or consistent) if it has a model. Tt is
valid (or logically true) if it holds in all models where it is defined. A proof
system is sound if every provable formula is valid; it is complete if every valid
formula is provable.

It was Hilbert who drew attention of mathematicians to the classical
decision problem and made 1t into a central problem of mathematical logic.
He called 1t das Entscheidungsproblem, literally “the decision problem”. In
the beginning of this century, he was developing the formalist programme for
the foundations of mathematics (see [263, 264, 525]) and thus was interested
in axiomatizing various branches of mathematics by means of finitely many
first-order axioms. In principle, such an axiomatization reduces proving a
mathematical statement to performing a mechanical derivation in a fixed
formal logical system; see below. Obviously, the Entscheidungsproblem is very
important in this context:

...stellt sich ...die Frage der Widerspruchsfreiheit als ein Problem
der reinen Prdadikaten-Logik dar ... Fine solche Frage ... fallt unter
das “Entscheidungsproblem”.* [267, page 8]

Hilbert and Ackermann formulated a sound formal proof system for first-
order logic and conjectured that the system is complete [266]. Later Godel

1. .the question of consistency presents itself as a problem of the pure predicate

logic ... Such a question ... falls under the ”Entscheidungsproblem”.
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proved the completeness [184]. The proof is found in standard logic textbooks,
e.g. [B7, 142, 146, 307, 471]. For our purposes, the details of a formal system
are of no importance. We will simply assume that some sound and complete
formal proof system for first-order logic has been fixed. Notice that there
is a mechanical procedure that derives all valid first-order formulae in some
order.

To explain how proving a mathematical statement reduces to performing a
mechanical derivation, assume that 7" 1s a finitely axiomatizable mathemat-
ical theory. Without loss of generality, the axioms have no free individual
variables (that is, are sentences); indeed, if an axiom has free individual vari-
ables, replace it with its universal closure. Let « be the conjunction of the
axioms, § another first-order sentence (a mathematical claim in the termi-
nology of Hilbert), and v the implication @« — 5. Then 3 is a theorem of T'
if and only if 7 is valid if and only if v i1s provable in the fixed formal proof
system. Thus the mathematical question whether 3 is a theorem of T' reduces
to the logical question whether v is valid which, in its turn, reduces to the
question whether the mechanical procedure mentioned above derives ~.

Many important mathematical problems reduce to logic this way [266,
267]. Let us add another example.

Example. Reduction of the Riemann Hypothesis to the validity problem for
some first-order sentence y. Recall that a Diophantine equation is an equation
P(z1,...,25) = 0 where P is a polynomial with integers coefficients and the
variables #; range over integers. In [98], the authors exhibit a Diophantine
equation E that is solvable if and only if the Riemann Hypothesis fails. It
suffices to find a finitely axiomatizable theory 7" and a sentence § such that
(4 1s provable in T if and only if F is solvable; the desired 7 is then the
implication & — 3 where « is the conjunction of (the universal closures of)
the axioms of T'.

Recall that the standard arithmetic .4 is the set of natural numbers with
distinguished element 0, the successor function, addition, multiplication and
the order relation <. Let L be the first-order language of .A. Robinson’s sys-
tem @ is a finitely axiomatizable theory in L such that an arbitrary existential
L-sentence ¢ is provable in @ if and only if it holds in .4 [307]. (A similar
theory is called N in [471].)

Choose T to be @. It suffices to construct an existential L-sentence 3 in
such a way that E is solvable if and only if 8 holds in A.

In fact, an arbitrary Diophantine equation D can be expressed by an exis-
tential formula Sp in such a way. Since a disjunction of existential sentences
is equivalent to an existential sentence, it suffices to check that an existential
L-sentence can express the given equation P(zy, ..., z;) = 0 together with an
atomic constraint z; > 0 or x; < 0 for every variable z;. But this is obvious.
For example, an equation 3 — 4° + 1 = 0 with constraints z < 0,y < 0 is
equivalent to an equation (—x)3 —(—y)®+1 = 0 with constraints 2 > 0,y > 0
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which is equivalent to an equation y° 4+ 1 = 3 with constraints z > 0,y > 0
which is obviously expressible by an existential L-sentence.

The classical decision problem is called the main problem of mathematical
logic by Hilbert and Ackermann:

Das Entscheidungsproblem ist gelost, wenn man ein Verfahren kennt,
das ber eznem vorgelegten logischen Ausdruck durch endlich viele Op-
erationen die Entscheidung wber die Allgemeingultigkeit bzw. Erfull-
barkeit erlaubt. (...) Das Entscheidungsproblem muss als das Haupt-
problem der mathematischen Logik bezeichnet werden.? [266, pp 73ff]

Hilbert and Ackermann were not alone in their evaluation of the impor-
tance of the classical decision problem. Their attitude has been shared by
other leading logicians of the time. Bernays and Schonfinkel wrote:

Das zentrale Problem der mathematischen Logik, welches auch mit

den Fragen der Axtomatik tm engsten Zusammenhang steht, ist das
Entscheidungsproblem.? [35].

Herbrand’s paper [253] starts with:

We could consider the fundamental problem of mathematics to be the
following. Problem A: What is the necessary and sufficient condition
for a theorem to be true in a given theory having only a finite number
of hypotheses?

The paper ends with:

The solution of this problem would yield a general method in math-
ematics and would enable mathematical logic to play with respect to
classical mathematics the role that analytic geometry plays with re-
spect to ordinary geometry.

In [254], Herbrand adds:

In a sense it [the classical decision problem — BGG] is the most
general problem of mathematics.

Ramsey wrote that his paper was

concerned with a special case of one of the leading problems in mathe-
matical logic, the problem of finding a reqular procedure to determine
the truth or falsily of any given logical formula. [435, p. 264]

2 The Entscheidungsproblem is solved when we know a procedure that allows for
any given logical expression to decide by finitely many operations its validity
or satisfiability. (...) The Entscheidungsproblem must be considered the main
problem of mathematical logic.

? The cental problem of mathematical logic, which is also most closely related to
the questions of axiomatics, is the Fntscheidungsproblem.
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The roots of the classical decision problem can be traced while back.
Philosophers were interested in a general problem-solving method. The me-
dieval thinker Raimundus Lullus called such a method ars magna. Leibniz
was the first to realize that a comprehensive and precise symbolic language
(characteristica universalis) is a prerequisite for any general problem solv-
ing method. He thought about a calculus (caleulus ratiocinator) to resolve
mechanically questions formulated in the universal language. A universal
symbolic language, restricted to mathematics, had to wait until 1879 when
Frege published [171]; the language allowed Russel and Whitehead [446] to
embed virtually the whole body of then known mathematics into a for-
mal framework.* Leibniz distinguished between two different versions of ars
magna. The first version, ars tnveniendi , finds all true scientific statements.
The other, ars tudicandi , allows one to decide whether any given scientific
statement is true or not [255].

In the framework of first-order logic, an ars inventendi exists: the collec-
tion of valid first-order formulae is recursively enumerable, hence there is an
algorithm that lists all valid formulae. The classical decision problem can be
viewed as the ars iudicandi problem in the first-order framework. It can be
sharpened to a yes/no question: Does there exist an algorithm that decides
the validity of any given first-order formula? Some logicians felt sceptical
about ever finding such an algorithm. It wasn’t clear, however, whether the
scepticism could be justified by a theorem. John von Neumann wrote:

Es scheint also, daff es keinen Weg gibt, um das allgemeine Entschei-
dungskriterium dafir, ob eine gegebene Normalformel a beweisbar ist,
aufzufinden. (Nachweisen kinnen wir freilich gegenwdrtig nichts. Es
1st auch gar kein Anhaltspunkt dafur vorhanden, wie ein solcher Un-
entscheidbarkeitsbeweis zu fihren wire.) (...) Und die Unentscheid-
barkeit ist sogar die Conditio sine qua non dafur, daf es wberhaupt
etnen Sinn habe, mit den heutigen heuristischen Methoden Mathe-
matik zu tretben. An dem Tage, an dem die Unentscheidbarkeit
aufhorte, wurde auch die Mathematik vm heutigen Sinne aufhoren zu
existieren; an thre Stelle wirde eine absolut mechanische Vorschrift
treten, mit deren Hilfe jedermann von jeder gegebenen Aussage ent-
scheiden konnte, ob diese bewiesen werden kann oder nicht.

Wir mussen uns also auf den Standpunkt stellen: Es ist allgemein
unentscheidbar, ob eine gegebene Normalformel beweisbar ist oder
nicht. Das einzige, was wir tun kénnen, ist, (... ), beliebig viele be-
weisbare Normalformeln aufzustellen. (... ) Auf diese Art kénnen wir
von wvielen Normalformeln feststellen, dafi sie beweisbar sind. Aber
auf diesem Weg kann uns niemals die Feststellung gelingen, dafS eine
Normalformel nicht beweisbar ist. ® [525, pp 11-12]

* See the forthcoming book by M. Davis [96] in this connection.
® It appears thus that there is no way of finding the general criterion for deciding
whether or not a well-formed formula a is provable. (We cannot, however, at
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Godel’s Incompleteness Theorem [185] was a breakthrough in logic. Can
one use a similar method to prove the nonexistence of a decision algorithm for
the classical decision problem? In an appendix to his paper “The fundamental
problem of mathematical logic” Herbrand wrote:

Note finally that, although at present it seems unlikely that the de-
cision problem can be solved, 1t has not yet been proved that it s
impossible to do so. [254]

Herbrand, Godel and Kleene developed a very general notion of recursive
functions [307]. In 1936, Church put forward a bold thesis: Every computable
function from natural numbers to natural numbers is recursive in the sense of
Herbrand-Godel-Kleene. He showed that no recursive function could decide
the validity of first-order sentences and concluded that that there was no
decision algorithm for the classical decision problem [80].

Independently, Alan Turing introduced computing devices which are
called now Turing machines. He put forward a similar thesis: a function from
strings to strings is computable if and only if it is computable by a Turing
machine [513]. He showed that no Turing machine could decide the validity of
first-order sentences and also concluded that there is no decision algorithm for
the classical decision problem. The equivalence of Church’s and Turing’s the-
ses was quickly established. The Church-Turing thesis was largely accepted
and thus it was accepted that the yes/no version of the classical decision
problem was solved negatively by Church and Turing.

1.2 The Transformation of the Classical Decision
Problem

By the time of Church’s and Turing’s theses, the area of the classical decision
problem had already a rich and fruitful history. Numerous fragments of first-
order logic were proved decidable for validity and numerous fragments were
shown to be as hard as the whole problem. What does it mean that a fragment
I is as hard for validity as the whole problem? This means that there exists

the moment demonstrate this. Indeed, we have no clue as to how such a proof
of undecidability would go.) (...) The undecidability is even the conditio sine
qua non for the contemporary practice of mathematics, using as it does heuristic
methods, to make any sense. The very day on which the undecidability would
cease to exist, so would mathematics as we now understand it; it would be
replaced by an absolutely mechanical prescription, by means of which anyone
could decide the provability or unprovability of any given sentence.

Thus we have to take the position; it is generally undecidable, whether a
given well-formed formula is provable or not. The only thing we can do is (...)
to construct an arbitrary number of provable formulae. In this way, we can
establish for many well-formed formulae that they are provable. But in this way
we never succeed to establish that a well-formed formula is not provable.
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an algorithm A that transforms an arbitrary formula ¢ into a formulain F in
such a way that A(yp) is valid if and only if ¢ is so; such a fragment is called
a reduction class for validity. Actually, it had been more common to speak
about satisfiability and finite satisfiability, that 1s satisfiability in a finite
structure. Reduction classes for satisfiability (respectively finite satisfiability)
are defined similarly.

To convey a feeling of the field, let us quote some early results on frag-
ments of pure first-order predicate logic (first-order logic without function
symbols or equality). But first let us recall that a prenes formula is a formula
with all its quantifiers up front. View a string in the four-letter alphabet
{V,3,V*,3*} as a regular expression denoting a collection of strings in the
two-letter alphabet {V,3}. For example, ¥33* denotes the collection of strings
of the form V33 where j is an arbitrary natural number, and 3*v?3* denotes
the collection of strings of the form 3¥?3 where ¢ and j are arbitrary natural
numbers.

In 1915, Lowenheim [365] gave a decision procedure for the satisfiability
of predicate formulae with only unary predicates. He proved also that formu-
lae with binary predicates form a reduction class for satisfiability. In 1931,
Herbrand [254] sharpened the latter result showing that just three binary
predicates suffice. In 1936, Kalmdr [295] showed that one binary predicate
suffices.

In 1920, Skolem [477] showed that ¥*3* sentences form a reduction class
for satisfiability. In 1928, Bernays and Schonfinkel [35] gave a decision pro-
cedure for the satisfiability of 3*V* sentences. In 1928, Ackermann [16] gave
a decision procedure for the satisfiability of 3*¥3* sentences. Godel [186],
Kalmar [293] and Schiitte [457], separately in 1932, 1933 and 1934 respec-
tively, discovered decision procedures for the satisfiability of pure 3*V23* sen-
tences. In another paper, Godel proved that every satisfiable 3*¥23* sentence
has a finite model and that ¥33* sentences form a reduction class for satis-
fiability [187]. (See [234] for a popular introduction to the classical decision
problem.)

The reaction of the logicians to the discoveries of Church and Turing was
that the classical decision problem was wider than the yes/no version of it.
Here is one of the earliest reactions:

Solche Reduktionen des Entscheidungsproblems werden hoffentlich
vorteilhaft sein fir systematische Untersuchungen wber die Zahlaus-
dricke, z.B. wenn man versuchen will eine Ubersicht zu bekommen,
fur welche Klassen von solchen man das Entscheidungsproblem wirk-
lich losen kann. Bekanntlich hat A. Church bewiesen, dass eine all-
gemeine Losung dieses Problems nicht moglich ist.5 [482)]

® Such reductions [a reference to the reductions proposed by Skolem in the paper
cited — BGG] will hopefully be advantageous for systematic investigations of
first-order formulae, for example if one would like to try to arrive at a complete
picture, for which classes of such formulae one can really solve the Entschei-
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The logicians started to think about the classical decision problem as a
classification problem.

— Which fragments are decidable for satisfiability and which are undecidable?

— Which fragments are decidable for finite satisfiability and which are unde-
cidable?

— Which fragments have the finite model property and which contain axioms
of infinity (that is satisfiable formulae without finite models)?

For a long time the classical decision problem remained a central problem
of mathematical logic. With the development of computational complexity
theory, the problem has been refined. If a fragment of first-order logic is de-
cidable for satisfiability, then indeed there is an absolutely mechanical proce-
dure, that is an algorithm, for deciding the satisfiability or unsatisfiability of
any given sentence. But what is the computational complexity of determining
satisfiability? Similarly, if a given fragment is decidable for finite satisfiability,
what is the computational complexity of determining finite satisfiability?

Of course, the unrestricted classifiability problem is hopeless. There are
just too many fragments. Some of them are of no interest to anybody. Some
of them involve particular branches of mathematics. Consider for example
the satisfiability problem for sentences aw A 5 where « is (the universal closure
of) the conjunction of the axioms of fields and g is an arbitrary formula in
the vocabulary of fields; this problem rightfully belongs to field theory rather
than logic.

Eventually, the classical decision problem became to mean the restriction
of the classification problem described above to traditional fragments. This
description is admittedly not precise but it gives a good guidance which we
will follow. One can argue that the complexity issue does not really belong
to the traditional classical decision problem. This is true too, but it is impos-
sible to ignore the complexity issue these days, in particular because of the
relevance of the logical decision procedures to theorem proving and model
checking methods. We will try to cover the known complexity results.

As we have mentioned above, for a long time the classical decision problem
remained a central problem of mathematical logic. The literature on the
subject is huge and contains a great wealth of material. The classical decision
problem served as a laboratory for various logic methods” and especially
reduction methods. The classification results have been used not only in logic
but also in theoretical computer science. In particular, they have been used
as a guide to the study of zero-one laws for fragments of second-order logic.
Classical techniques inspired some proofs on the zero-one laws and some of
classical techniques have been further extended. See [235, 313, 314, 315, 414,
415] in this connection.

dungsproblem. As it is known, A. Church has proved that a general solution of
this problem is not possible.

" By the way, Ramsey proved his famous combinatorial lemma in a paper on the
classical decision problem [435].
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There is a number of books devoted to the classical decision problem. In
the 1950s, Ackermann gave a comprehensive treatment of the solvable cases
known at the time [18], and Surdnyi gave a complementary comprehensive
treatment of reduction classes known at the time [498]. The book [133] of
Dreben and Goldfarb illustrates the potential of the so-called Herbrand ex-
pansion technique in establishing solvability. The complementary book [351]
of Lewis covers many reduction results on classical fragments of pure pred-
icate logic. Together the two books give a systematic treatment of decision
problems for predicate logic without functions or equality.

Nevertheless, much of the wealth has never appeared in a book form.
Moreover, by now, the work on the classical decision problem is by and large
completed (though some open problems remain of course) and most of the
major classifications have not been ever covered in book form. That is exactly
what we intend to do in this book.

1.3 What Is and What Isn’t in this Book

We give most attention to the most traditional fragments of first-order logic,
namely, to collections of prenex formulae given by restrictions on the quan-
tifier prefix and/or vocabulary. (Recall that there is a simple algorithm for
transforming an arbitrary first-order formula to an equivalent one in the
prenex form.)

Strings in the two-letter alphabet {V, 3} will be called prefizes. A prefiz set
is a set of prefixes. An arity sequence is a function p from the set of positive
integers to the set of non-negative integers augmented with the first infinite
ordinal w.

Definition 1.3.1 (Prefix-Vocabulary Classes). For any prefix set IT and
any arity sequences p and f, [I1, p, f] (vespectively, [II, p, f]=) is the collection
of all prenex formulae ¢ of first-order logic without equality (respectively with
equality) such that

— the prefix of ¢ belongs to I,

— the number of n-ary predicate symbols in ¢ is < p(n), and

— the number of n-ary function symbols in ¢ is < f(n).

— ¢ has no nullary predicate symbols with the exception of the logic constants
true and false, no nullary function symbols and no free variables.

Let us explain the last clause. We will speak about logic without equality
but the same applies to logic with equality. It i1s easy to see that the status
(decidable or undecidable) of the (finite) satisfiability problem for a prefix-
vocabulary class does not change if nullary predicate symbols are allowed.
Now let us consider the role of nullary function symbols, that is individual
constants. Let C' = [II, p, f] and C” be the version of C' when one is allowed to
use say 7 individual constants. It is easy to see that the status of the (finite)
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satisfiability problem for C” is that of the (finite) satisfiability problem for
[II',p, f] where I[I' = {377 : 7 € II'}. Instead of individual constants, we could
speak about free individual variables. Thus allowing individual constants or
free individual variables does not give us more classes either.

The definition of prefix-vocabulary classes above seems to be excessively
general. Call a prefix set closed if it contains all substrings (even not contigu-
ous substrings) of its prefixes. Clearly, one can restrict attention to closed
prefix sets. Further, call a prefix set Il standard if either it is the set of
all prefixes or else it can be given by a string w in the four-letter alpha-
bet {V,3,¥*,3*}. In the first case I is denoted all. Thus, every standard
prefix set has a succinct notation. Furthermore, we can require without loss
of generality that w is reduced in the following sense: ¥* cannot have V as a
neighbor, and similarly 3* cannot have 3 as a neighbor. For example, a string
V*V33* reduces to V*3*; clearly the two strings define the same prefix set.

Call an arity sequence p standard if it satisfies the following condition:
p(n) = w whenever the sum p(n)+ p(n+ 1)+ - - - is infinite. Every standard
sequence can be given a succinct notation. The standard arity sequence that
assigns w to each n will be denoted all. Any other standard sequence p has a
tail of zeroes, 0 = p(m) = p(m+1) = - - -, and will be denoted by the sequence
(p(1),p(2),...,p(m —1)). In case m = 1, for readability, we denote p with
(0) rather than (). Similar notation can be used for non-standard sequences
with a tail of zeroes. Notice that every arity sequence reduces (in a sense
made more precise in Sect. 2.3) to a standard arity sequence. For example,
[all, (0,w), (0)] C [all, (w,w), (0)] and every sentence ¢ € [all, (w,w), (0)] can
be easily rewritten as an equivalent sentence in [all, (0,w), (0)]: just replace
formulae R(z) with formulae R'(x, 2) where R’ is a binary predicate symbol
that does not occur in ¢.

Definition 1.3.2. A prefix-vocabulary class [II, p, f]or [II,p, f]= is standard
if IT,p and f are standard.

The classification problem for the prefix-vocabulary fragments admits a
complete solution in a form of a finite table. In particular, there are only
finitely many minimal undecidable fragments with closed prefix sets, and all
these minimal fragments are standard. This follows from the Classifiability
Theorem of Gurevich proved in Sect. 2.3. Accordingly, in the main body of
the book, the prefix-vocabulary classes of interest will be almost exclusively
standard classes. The Classifiability Theorem has provided guidance for re-
search and it provides guidance for this book.

Let us review briefly the contents of the book. The main part of Chapter 2
1s devoted to the reduction theory which we explain from scratch and develop
to a certain depth. The reduction theory helps us to give simpler proofs and
proper lower complexity bounds. The rest of Chapter 2 is devoted to the
Classifiability Theorem.
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In Chapters 3 and 4, we give a complete treatment of the undecidable
prefix-vocabulary fragments of first-order logic (with or without function
symbols, with or without equality). In Chapter 5, we present various other
undecidable fragments mainly defined in terms of additional restrictions on
the propositional structure of the formulae; we study in particular Krom and
Horn formulae which have played an important role in the theory of logic
programming.

In Chapters 6 and 7, we treat the decidable prefix-vocabulary fragments
of first-order logic (with or without function symbols, with or without equal-
ity). Together with the results of Chapters 3 and 4 this gives a complete
classification of the decidable and undecidable prefix-vocabulary classes. Ta-
bles 1.1 and 1.2 summarize the decidability /undecidability results on prefix-
vocabulary fragments.

Undecidable Cases

A: Pure predicate logic (without functions, without =)

(1) V3V, (w, 1), (0)] (Kahr 1962)

(2) [v°3, (w, 1), (0)] (Surdnyi 1959)

(3) [v*3,(0,1),(0)] (Kalmar-Surdnyi 1950)
(4) [V3av*,(0,1),(0)]  (Denton 1963)

(5) [Vav3*, (0,1),(0)] (Gurevich 1966)

(6) [v*3*,(0,1), (0)] (Kalmar-Surdnyi 1947)
(7) [V3*V,(0,1),(0)]  (Kostyrko-Genenz 1964)
(8) [3"V3V, (0,1),(0)] (Surdnyi 1959)

(9) [3*v%3,(0,1),(0)] (Surdnyi 1959)

(10) [v,(0),(2)]= (Gurevich 1976)
(11) [V, (0),(0,1)]= (Gurevich 1976)
(12) [¥2,(0,1),(1)] (Gurevich 1969)
(13) [¥2, (1), (0,1)] (Gurevich 1969)
(14) [v23, (w, 1), (0)]= (Goldfarb 1984)
(15) [3*v23,(0,1),(0)]=  (Goldfarb 1984)
(16) [¥?3*,(0,1),(0)]=  (Goldfarb 1984)

Table 1.1. Minimal Undecidable Standard Classes
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Decidable Cases

A: Classes with the finite model property

(1) [3*V*, all, ( )]l= (Ramsey 1930)

(2) [3*v23*, all, (0)] (Gddel 1932, Kalmar 1933, Schiitte 1934)
(3) [all, (w), (w)] (Lob 1967, Gurevich 1969)

(4) [3*v3*, all,all]  (Maslov-Orevkov 1972, Gurevich 1973)
(5) [3*, all, all]= (Gurevich 1976)

B: Classes with infinity axioms

(6) [all, (w), (1)]= (Rabin 1969)
(7) [3*V3*, all, (1)]=  (Shelah 1977)

Table 1.2. Maximal Decidable Standard Classes

We give also a fairly complete complexity analysis of the decidable cases.
One open problem is to find the exact complexities of the satisfiability and
finite satisfiability problems for the Shelah class. For most of the maximal de-
cidable standard fragments, the satisfiability problem has a very high compu-
tational complexity, typically deterministic or nondeterministic exponential
time, the complexity is even non-elementary in the case of the Rabin class. At
the end of Chapter 6 we also present a classification of the standard classes
that have the finite model property and of those having infinity axioms. The
decidability results in Chapter 7 rely (in our exposition) on a reduction to
S2S, the monadic second-order theory of the infinite binary tree. The de-
cidability of S2S, proved by Rabin [430], is one of the most important and
difficult decidability theorems for mathematical theories. We give a complete
proof of this result in Sect. 7.1. In Chapter 8 we present some other decidable
cases of the decision problem. In addition, the book contains a quite exten-
sive annotated bibliography and an appendix, written by Cyril Allauzen and
Bruno Durand, containing a new simplified proof for the unsolvability of the
unconstrained domino problem which is used at many places in this book.

Some classifications appear for the first time in a book: For example,
the classifications of prefix-vocabulary fragments in the cases of logic with
equality, functions or both. All complexity results appear for the first time in
a book. There are many new proofs, e.g. those (assisted by Shelah) related
to the Shelah class. There are also many new results.

On the other hand, there are many closely related topics that we do not
cover in this book. We are concerned here with fragments of first-order logic
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and do not deal with decision problems for second-order logic, higher-order
logic, intuitionistic logic (see [385, 412]), linear logic (see the forthcoming
book [362]) or any other logic. We do not deal with decision problems for
mathematical theories formalized in first-order or any other logic; in this
connection see [89, 97, 148, 166, 231, 432, 506].

Furthermore, even though the classical decision problem is more or less
finished in its most classical form, there are various other natural versions and
extensions of it that we do not deal with here systematically. For example,
we do not deal with classifications based on the resolution calculus; in this
connection see [163, 340]. But we do discuss various extensions of the classical
decision problem and various open problems on our way. Let us mention some
extensions and open problems here.

Extend the classifiability theorem in various directions. This is very im-
portant; without a proper direction, 1t is hard even to remember a myriad of
specific results.

Extend the prefix-vocabulary classification to important undecidable
mathematical theories; see [229] in this connection. Find the computational
complexity of decidable prefix-vocabulary classes of important mathematical
theories (see [201, 206]); in many cases even the computational complexity
of the theory itself is unknown. It would also be interesting to extend the
classification to different logics.

We were interested whether a given fragment contains a formula with-
out finite models. Does a given fragment contain a formula without recur-
sive models? This direction is still covered by the Classifiability Theorem,;
in particular there are finitely many minimal prefix-vocabulary classes with
formulae without recursive models and each of them is standard. Instead
of recursivity, one can speak about other kinds of descriptive or computa-
tional complexity. Similarly, does a given fragment contain an axiom of an
essentially undecidable theory? Since the fragment may be not closed under
conjunction, it is meaningful to ask if the fragment includes a finite set of sen-
tences that form an axiomatization of an essentially undecidable theory. Also,
one may restrict attention to infinite models of certain complexity: primitive
recursive models, recursive models, models of such and such Turing degrees,
Borel models, etc.

In cases of fragments of reasonably low complexity bound, develop prac-
tical solutions of the decision problem. This problem is well recognized as a
major bottleneck for e.g. model checking [70], an important current method
for computer verification of hardware and software correctness claims.

One extension of the classical decision problem is related to the strictness
of reductions. If one cares only about satisfiability, it suffices to require that a
reduction transforms a given formula « into a formula o’ which is satisfiable
if and only if « is so. We usually care about satisfiability and finite satisfia-
bility and thus consider so called conservative reductions when it is required
that (i) o is satisfiable if and only if « is satisfiable, and (ii) &’ is finitely sat-
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isfiable if and only if « is finitely satisfiable. One may be interested in even
stricter reductions. For example, one may require that o and o' have the
same spectra or — more generally — that there is a simple connection between
the spectra. (On several occasions, Surdnyi insisted that there should exist
a general method that transforms a given model of o’ to a model of «.) On
the other hand, one may consider not only recursive but also arithmetical,
Borel, etc. transformations.

There are many more specific problems. One is to examine Boolean com-
binations of prefix-vocabulary classes; see Section 5.4 in this connection.

The book is addressed to a wide audience and not only to professional
logicians. There are scattered remarks and exercises addressing more special
audiences (logicians, people familiar with logic programming, etc.) but the
main body requires only the familiarity with basic notions of mathematical
logic. (This does not mean of course that all parts are easy to read; some
proofs are quite involved even after much simplification). Finally, let us note
that sometimes we will omit the adjective “first-order”; formulae, languages
and theories are by default first-order in this book.



