Fast Primality Testing for Integers That Fit into
a Machine Word*

Michal Forisek and Jakub Jancina

Comenius University, Bratislava, Slovakia,
forisek@dcs.fmph.uniba.sk, jakub.jancina@gmail.com

Abstract. For large integers, the most efficient primality tests are pro-
babilistic. However, for integers with a small fixed number of bits the
best tests in practice are deterministic. Currently the best known tests
of this type involve 3 rounds of the Miller-Rabin test for 32-bit integers
and 7 rounds for 64-bit integers. Our main result in this paper: For 32-
bit integers we reduce this to a single computation of a simple hash
function and a single round of Miller-Rabin. Similarly, for 64-bit integers
we can reduce the number of rounds to two (but with a significantly large
precomputed table) or three. Up to our knowledge, our implementations
are the fastest one-shot deterministic primality tests for 32-bit and 64-bit
integers to date.

We also provide empirical evidence that our algorithms are fast in prac-
tice and that the data segment is roughly as small as possible for an
algorithm of this type.

1 Overview

In this section we give an overview of relevant topics related to primality testing.

1.1 Large Primes, Deterministic Tests

Since the seminal result by Agrawal, Kayal, and Saxena in 2002, we know that
primality testing is in P. Their original paper [1] gives an algorithm that runs in
O(log12 n) when testing whether n is a prime.! A more recent paper by Pome-
rance and Lenstra [10] improves this to O(log®n). While certainly interesting
from a theoretical point of view, these algorithms are rarely used in practice.
For instance, in most cryptographic applications primes with log, n =~ 1000 are
quite common, and the known deterministic tests are way too slow for numbers
of this magnitude.

* The research is partially funded by the VEGA grant V-12-031-00.
! Here, O(f(n)) formally denotes the class [J, O(f(n) log® f(n)).

Fast Primality Testing... 21

1.2 Large Primes, Probabilistic Tests

For large primes, the state of the art are general unconditional probabilistic tests.
Here, “general” means that they work for all possible n, and “unconditional”
means that their correctness does not depend on any unproved hypothesis (such
as the generalized Riemann hypothesis). Most of these tests only have a one-sided
error: for prime n they always report the correct answer, but for composite n
they have a small probability of incorrectly reporting that n is prime.

The two most notable tests with this property are the Solovay-Strassen test
([14], Theorem 1 below) and the Miller-Rabin test ([11, 13], Theorem 2 below).

Theorem 1 (Solovay, Strassen). For a given odd integer n > 3:
Choose an integer a uniformly at random from? [2,n — 1].

Compute = = a"~Y/2 mod n, and the Jacobi symbol for a and n: j = (%)
If n is prime, we always have j #0 and x = j.

If n is composite, with probability at least 1/2 we have j =0 or x # j.

Definition 1. Let n — 1 = 2°d with d odd and s non-negative. The positive
integer n is called a strong probable-prime with base b (b-SPRP) if either b® = 1
(mod n), or (b%)? = —1 (mod n) for some r € [0,s — 1].

If n is a composite b-SPRP, we call it a strong pseudoprime with base b.

Theorem 2 (Rabin, Monier). For a given odd integer n > 3:
Choose an integer b uniformly at random from [2,n — 2].

If n is prime, then n is also a b-SPRP.

If n is composite, with probability at least 3/4 it is not a b-SPRP.

The Solovay-Strassen test can be implemented in O(log® n) by using expo-
nentiation by squaring and the law of quadratic reciprocity to compute the
Jacobi symbol. The Miller-Rabin test can be implemented in O~(log2 n) using
FFT-based multiplication of big integers.

Note that each test can be repeated arbitrarily many times: e.g., k indepen-
dent runs of the Miller-Rabin test decrease the probability of error to 47*.

1.3 Small Primes, Applications

Certainly the most famous application of primality testing lies in cryptography,
where we need to test integers that are as large as possible. However, primality
testing also has many other uses. And for many of those use cases the integers
we need to test for primality come from a bounded range. Here we shall mention
a few such applications:

— Data structures based on hashing (esp. universal hashing).

— Prime moduli for pseudo-random number generators.

— Random primes used as a tool in various other probabilistic algorithms, e.g.
polynomial identity testing.

2 We use the interval notation [a, b] to denote the set of integers {a,a 4 1,...,b}.

22 M. Forisek and J. Jancina

In all these cases, all integers we work with fit into a standard machine
word, which is nowadays usually either a 32-bit or a 64-bit integer variable. As
shown below, the general probabilistic tests are not the most efficient ones in
this setting.

1.4 Small Primes, Deterministic Tests

The basic deterministic primality test is trial division: given an n, we compute
n mod d for all d € [2,|/n]]. The disadvantages are obvious: its time complexity
is not polynomial in the input size, which makes the algorithm usable only for
very small values of n.

Some tools used in practice opt to use probabilistic tests also for small inte-
gers. For instance, the current implementation of GNU factor uses a Las Vegas
(i.e., zero-error) probabilistic algorithm that alternates between running a round
of the Miller-Rabin test to verify compositeness and a round of the Lucas pri-
mality test (see [4]) to verify primality. Note that the Lucas test is impractical
in general for large primes, as it requires the factorization of n — 1.

The state of the art are exact deterministic tests based on SPRP testing:
if we have a limited range of valid inputs, we can easily turn the probabilistic
Miller-Rabin test into a deterministic one by choosing a fixed set of bases that,
taken together, detects all the composite numbers within our range.

Currently, the best known test with two bases due to Izykowski and Panasiuk
[7] works until n = 1050535501. Hence, the best known tests for n < 232 have
three bases. The first such set was found by Jaeschke [8]. The best known set
for n < 2% was found by Sinclair in 2011 (unpublished, verified by Izykowski)
and has seven bases. These two sets are presented below in Theorem 3. See also
[12,15] for older related results and [6] for an up-to-date collection of other
known records.

Theorem 3 (Jaeschke, Sinclair). If n < 232 is a b-SPRP for b € {2,7,61},
then n is a prime. If n < 2%% is a b-SPRP for b € {2,325,9375, 28178, 450775,
9780504, 1795265022}, then n is a prime.

When testing primality of an n that fits into a machine word (e.g., a 32-bit or
a 64-bit unsigned integer in our case), it is perhaps best to estimate the running
time of a single SPRP test as O(logn), as said test involves O(logn) elementary
multiplications and modulo operations.

1.5 Baillie-PSW Test

To conclude our overview, we dedicate a separate section to the Baillie-PSW
test [2]: a combination of the 2-SPRP test and another similar test (the Lucas
probable prime test?®). This is a deterministic test. It is known that the test is
correct for all n < 24, Currently, there are no known counterexamples for larger
n, but there is a heuristic argument that they should exist.

3 This is a different test from the Lucas primality test mentioned above. This test may
err in the opposite direction: by claiming that a composite number is prime.

Fast Primality Testing... 23

2 Towards a Faster Primality Test for 32-bit/64-bit
Integers

Instead of having to test three different SPRP bases in the worst case, we de-
signed a faster class of algorithms that work as follows:

1. Use trial division to check that n is relatively prime to 210.

2. In constant time, compute a hash value h(n).

3. Use a pre-computed lookup table to determine a single base by, (,,) such that
n is a by(n)-SPRP iff n is a prime.

Note that the first step (trial division by 2, 3, 5, and 7) is also included in
other practical primality testing algorithms, as it always decreases the average
case by a constant factor. As we show below, the constant time spent on the
hashing and lookup is negligible in comparison to a single SPRP test, which
makes our algorithm faster in practice.

As ¢(210) = 48, the trial division reduces the search space to 48/210 =
22.86%. We will use M3s and Mgy to denote the set of 32-bit/64-bit numbers
that are relatively prime to 210.

In the following two sections, we present our approximate calculations that
were used to select the right parameters for our search. The actual algorithms
are then presented in later sections of this paper.

2.1 Heuristic Arguments about Hash Table Size, 32-bit Case

When trying to find a suitable hash function and a set of bases, as described
above, we should aim to minimize the size of the precomputed lookup table.
This is because that table has to be loaded into memory when our program
starts. Also, keeping the table small makes the algorithm more cache-friendly
and makes the calls to our primality test function faster in practice.

When minimizing the hash table size, we are facing two limits. First of all,
the size of the hash table has to be large enough for the bases to exist. But that’s
not enough. Verifying a base requires a considerable amount of computation,*
and we must be able to find good bases using our limited resources.

Already a single SPRP test gives us a lot of information — for example, in
M35 there are only about 2000 strong pseudoprimes for any prime base. Exact
counts for some prime bases are given in Appendix A, the mean of known values
is u =~ 2152. That is, for any fixed prime base b, if we choose an n € Ms,
uniformly at random, the probability that it is a base-b strong pseudoprime is
only about p ~ 2152/|M| ~ 0.0000022.

4 When searching for the best hash function, we used two different implementations.
A standard desktop computer is capable of about 1M SPRP tests per second. Later
we switched to a CUDA-based implementation that was approximately 10 times
more efficient.

24 M. Forisek and J. Jancina

By choosing a good hash function, we are partitioning Mso into buckets of
approximately the same size. Suppose that we have a bucket with s elements.
The probability that a fixed base b correctly classifies all s elements in the bucket
can now be estimated well by the value ¢; = (1 — p)*.

For our estimate of p, we get ¢; ~ 2.3-107!% for a hash function with 64
buckets, ¢1 ~ 4.8-1078 for a hash function with 128 buckets, and ¢; ~ 0.000219
for 256 buckets. Thus, it’s basically impossible to have 64 or fewer buckets, and
it will be quite hard to get 128 or fewer.

We would now like to extend this estimate to multiple bases. We could now
be tempted to make the following incorrect conclusion: “For a fixed bucket, each
particular base fails with probability 1 — g1, hence if we test k different bases,
we expect all of them to fail with probability (1 — ¢;)*”. The above claim is
incorrect because the distributions of strong pseudoprimes for different bases
are not independent.

More precisely, there is a very strong positive correlation — if a number is
a strong pseudoprime in one base, the probability that it is a pseudoprime in
a different base is significantly greater than an independent distribution would
suggest. If the distributions were independent, for any two bases b; and by we
would have expected to have p?|Mss| ~ 0.00474 numbers that are strong pseu-
doprimes in both bases. However, in practice there are, on average, about 100
such numbers. (Again, please refer to Appendix A for exact measured data.) In
other words, if one particular base does not work, chances are that other bases
won’t work as well.

How can we deal with this issue? It turns out that once we pick siz different
bases, they are very likely to have no strong pseudoprimes in common in Mss.
(Here, 6 is the smallest positive integer with this property.) Hence, for a decent
estimate of what happens when testing multiple bases we can divide the bases
into disjoint groups of five and treat them as independent. Thus, all we need now
is an estimate of the probability g5 that at least one of five prime bases works
for a given bucket. We can then reasonably approximate the probability of any
of 5k bases working as 1 — (1 — g5)*.

Additionally, if k is significantly larger than the number of buckets we have,
we may treat the buckets as independent. Hence, the probability that for each
of h buckets we can find a good base is approximated well by (1 — (1 — g5)*)".

Given the approximate counts of strong pseudoprimes with two to five dif-
ferent bases at the same time, we can easily compute ¢; using the principle
of inclusion and exclusion. For our p, we get ¢5 ~ 8.8 - 10715 for 64 buckets,
g5 ~ 2.25- 1077 for 128 buckets, and g5 ~ 0.001077 for 256 buckets. (Note
that these probabilities are somewhat smaller than the ones we would get for an
independent distribution.)

Given the size of M35, we can realistically hope to be able to process approxi-
mately 10000 different bases. Thus, we decided to cap our search to 16-bit bases.
For these, we get that the probabilities of successfully finding the entire table
of bases is essentially zero for 128 buckets, and essentially one for 256 buckets.

Fast Primality Testing... 25

The threshold appears to be somewhere around 220 buckets: our estimate gives
the probability about 0.15% for 220 buckets but about 36.3% for 230 buckets.
Note that the smallest hash function we actually found has 224 buckets, which
matches these estimates nicely.

2.2 Heuristic Arguments About Hash Table Size, 64-bit Case

The most useful resource when dealing with the 64-bit case is the table of all
base-2 strong pseudoprimes up to 264. We acquired this list from a larger data
set computed by Feistma [5].

There are 31894014 base-2 strong pseudoprimes in our range (and we have
good statistical reasons to believe that the number of pseudoprimes for other
bases is similar). We will denote this set Ss.

First of all, we should immediately realize that this huge number basically
rules out any reasonable chance of an algorithm of our type with just one SPRP
test. With about 32M bad numbers, we would need a huge number of buckets
in order to have a decent chance that a fixed bucket received no bad numbers.

Also, as we could not afford repeating and extending the computation done
by Feistma, for the entire range up to 264, we opted to use a different approach:
after the trial division, our algorithm for 64-bit numbers will always perform
a base-2 SPRP test. This will leave us with just the 32M known numbers as
false positives, and we will handle those with a hash function and another SPRP
test (or two).

At a first glance, finding a suitable hash function seems easier than in the 32-
bit case — after all, |Sz| is about 1/24 of |Msz|. However, these are all numbers
known to be base-2 strong pseudoprimes, and therefore they are much more
likely to be strong pseudoprimes in other bases as well. For example, 1501 720
out of the numbers in S5 are also base-3 strong pseudoprimes. This makes finding
a small hash function significantly harder.

Computations similar to the 32-bit case can be used to show that already
with 400 numbers per bucket it is 99.9% certain that no base up to 2'7 will work
for a given bucket. Thus, the best we can hope for if we want a two-test algorithm
is one where the hash table has more than |S5|/400 ~ 100,000 buckets. (It might
be possible to get a smaller table by considering more bases, but our estimates
show that even if we could process all bases up to 2%4, we would still require tens
of thousands of buckets.)

The best two-test algorithm found by our search has 2'® = 262, 144 buckets,
and each of the precomputed bases has at most 17 bits. Our estimates above
show that while this can be improved, the improvement will not be significant.
Still, even with a table this large, the algorithm turns out to be fast in practical
tests.

One possibility how to decrease the size of the precomputed table is a trade-
off: we can decrease it by increasing the number of Miller-Rabin tests from two
to three. In other words, we will always have the initial base-2 test, followed by
two other tests that are different for each bucket.

26 M. Forisek and J. Jancina

3 An Overview of the New Algorithms

In this section we present actual algorithms we constructed for the 32-bit and
64-bit cases, according to the analysis presented above. We will start by listing
a full implementation of a correct and fast primality test for 32-bit integers. The
precomputed hash table contains 256 small integers and fits conveniently into
512 bytes of memory. This is the version we recommend to be used for 32-bit
integers. Below, we refer to this algorithm as FJ32_256.

uint16_t bases[]={16591,2018,166,7429,8064,16045,10503,4399,1949,1295,2776,3620,560,3128,5212,
2657,2300,2021,4652,1471,9336,4018,2398,20462,10277,8028,2213,6219,620,3763,4852,5012,3185,
1333,6227,5298,1074,2391,5113,7061,803,1269,3875,422,751,580,4729,10239,746,2951,556,2206,
3778,481,1522,3476,481,2487,3266,5633,488,3373,6441,3344,17,15105,1490,4154,2036,1882,1813,
467,3307,14042,6371,658,1005,903,737,1887,7447,1888,2848,1784,7559,3400,951,13969,4304,177,41,
19875,3110,13221,8726,571,7043,6943,1199,352,6435,165,1169,3315,978,233,3003,2562,2994,10587,
10030,2377,1902,5354,4447,1555,263,27027,2283,305,669,1912,601,6186,429,1930,14873,1784,1661,
524,3577,236,2360,6146,2850,55637,1753,4178,8466,222,2579,2743,2031,2226,2276,374,2132,813,
23788,1610,4422,5159,1725,3597,3366,14336,579,165,1375,10018,12616,9816,1371,536,1867,10864,
857,2206,5788,434,8085,17618,727,3639,1595,4944,2129,2029,8195,8344,6232,9183,8126,1870,3296,
7455,8947,25017,541,19115,368,566,5674,411,522,1027,8215,2050,6544,10049,614,774,2333,3007,
35201,4706,1152,1785,1028,1540,3743,493,4474,2521,26845,8354,864,18915,5465,2447,42,4511,
1660,166,1249,6259,2553,304,272,7286,73,6554,899,2816,5197,13330,7054,2818,3199,811,922,350,
7514,4452,3449,2663,4708,418,1621,1171,3471,88,11345,412,1559,194};

bool is_SPRP(uint32_t n, uint32_t a) {
uint32_t d = n-1, s = 0;
while ((d&1)==0) ++s, d>>=1;
uint64_t cur = 1, pw = d;
while (pw) {
if (pw & 1) cur = (curxa) 7% n;
a = ((uint64_t)a*a) % n;
pw >>= 1;
¥
if (cur == 1) return true;
for (uint32_t r=0; r<s; r++) {
if (cur == n-1) return true;
cur = (cur*cur) % n;
¥
return false;

}

bool is_prime(uint32_t x) {
if (x==2 || x==3 || x==5 || x==7) return true;
if (x%2==0 || x%3==0 || x%5==0 || x%7==0) return false;
if (x<121) return (x>1);
uint64_t h = x;
h = ((h >> 16) ~ h) * 0x45d9f3b;
h = ((h > 16) "~ h) * 0x45d9£f3b;
h = ((h > 16) ~ h) & 255;
return is_SPRP(x,bases[h]);

Two other algorithms that use different constants and a different hash func-
tion are published in [9]. One of those has only 224 buckets for its hash func-
tion, the other has 1024 but each base has only up to 8 bits, and the test uses
a yet-faster hash function. Below, we refer to these as FJ32_224 and FJ32_1024.

For obvious reasons, we decided not to include listings of the algorithms for
the 64-bit case. We have two sample implementations. One of them (FJ64_262k)
is the 2-test algorithm mentioned above, with 262, 144 buckets in its hash func-
tion and at most 16-bit bases. The other (FJ64_16k) is a 3-test version with only
16, 384 buckets and at most 12-bit bases.

Fast Primality Testing... 27

Digital versions of all these algorithms (incl. precomputed tables) are avail-
able online at http://people.ksp.sk/~misof/primes/

3.1 A Note on the Choice of the Hash Function

The choice of the particular hash function used in the algorithm does not actually
matter much. A similar construction should be possible with any hash function
that distributes its inputs in an approximately uniform way.

When searching for the actual algorithms listed above, we simply picked
a class of hash functions that can be computed in constant time and tend to
distribute the inputs in a sufficiently uniform way. Of course, the choice of
a particular hash function is easily validated post hoc by actually finding
a working set of bases of a sufficiently small size.

4 Theoretical Analysis if Our Algorithms

In this section we provide a theoretical comparison of our algorithms with the
3-base algorithm by Jaeschke (in the 32-bit case) and the 7-base algorithm by
Sinclair (in the 64-bit case).

We will consider both their worst-case and average-case performance. Here,
the average is taken over all valid inputs — in other words, we are talking about
their expected running time for a randomly chosen input.

Obviously, the running time of all considered algorithms is dominated by the
number of SPRP tests performed. Already for n € [0,232—1], the average number
of multiply-and-modulo operations in a single SPRP test is approximately 60.
Both the trial divisions and the computation of our hash function are negligible
in comparison.

Hence, the worst-case running time of our algorithms FJ32_* should be ap-
proximately 3 times better than Jaeschke in the 32-bit case. In the 64-bit case,
FJ64_262k should be about 3.5 times, and FJ64_16k about 2.3 times faster than
Sinclair.

Now let’s consider the average case. The old algorithms may sometimes per-
form more than one SPRP test. For example, the Jaeschke algorithm performs
two or three tests when n is a base-2 strong pseudoprime. However, for a lower
bound on their average case we may simply ignore the pseudoprimes and focus
on the worst inputs: primes.

There are m(n) ~ n/Inn primes smaller than n. Thus, there are |M3z| inputs
where the Jaeschke algorithm performs at least one SPRP test, and out of those
at least 7(232) = 203,280, 221 such that it performs at least three tests. Thus,
the expected number of SPRP tests performed for a random n € [0,23? — 1]
by the Jaeschke algorithm is at least 0.323. On the other hand, our algorithms
FJ32_x* perform exactly one SPRP test for each input from Mjss, which makes
their expected number of SPRP tests only 0.229.

28 M. Forisek and J. Jancina

This makes our algorithms about 1.4 times faster in the average case.

We can make a similar argument in the 64-bit case. We have 7(24) ~ 4.158 -
10'7. Sinclair’s algorithm does at least one SPRP test for each number in Mgy,
and all seven for each prime. Hence, the expected number of SPRP tests in the
Sinclair algorithm is at least 0.3638. On the other hand, our algorithms do at
most two/three tests for each prime and each base-2 strong pseudoprime, and
at most one test for each other number in Mg,. Hence, the expected number of
SPRP tests is at most 0.274 for FJ64_262k and at most 0.2962 for FJ64_16k.

Hence, we should expect FJ64_262k to be about 1.33 times, and FJ64_16k
to be about 1.23 times faster than Sinclair in the average case.

5 Practical Tests of Our Algorithms

We tested our algorithms against various other implementations. We used our
implementation of the Jaeschke algorithm in the 32-bit, and of the Sinclair algo-
rithm (both with trial division by 2, 3, 5, and 7) in the 64-bit case. Additionally,
we used the following other implementations:

— TwoBase: a 2-SPRP and a 15-SPRP test, followed by a binary search check
whether the input is one of 59 counterexamples (only used for 32 bits).

— MPZ: a 25-round probabilistic Miller-Rabin test implemented by the call of

a GMP library function mpz_probab_prime_p(x,25).

BPSW: Baillie-PSW test implementation by Cleaver [3].

— PrimeQ: Primality test in Mathematica.

We used the Mersenne Twister implementation in the g++ <random> library
to generate uniformly distributed numbers for testing. When testing the average
case, we generated 107 numbers and tested each for primality once. When testing
the worst case, we generated at least 10* numbers and tested each 10% times in
order to get more precise measurements.

All test were performed on a 64-bit Athlon processor running Linux.

The results of these tests are summarized in the tables below. The value in
the “average” column is the time in milliseconds needed to process the entire
data set. The value in the “worst” column is the time in microseconds that is
needed to test a single number. (This value is computed as the maximum taken
over all tested numbers of the average time spent on a single execution of the
primality test.)

algorithm| average (ms)| worst (us)
FJ32.1024 1000 2.423
FJ32_256 1029 2.418
FJ32.224 1038 2.413
TwoBase 1234 3.090
Jaeschke 1460 4.328
MPZ 21427 59.822

BPSW 27195 26.959
PrimeQ 49281 —

Fast Primality Testing... 29

algorithm| average (ms)| worst (us)
FJ64_262k 7660 15.755
FJ64_16k 9688 22.337
Sinclair 10896 53.184
BPSW 44539 68.192

MPZ 30831 149.042
PrimeQ 79202 —

As predicted by the analysis in the previous section, our new algorithms
outperform the rest in all tests. The differences in runtime between our tests
and Jaeschke/Sinclair roughly correspond to the theoretical predictions as well.

5.1 A Note on Precomputing the Table of Primes

All the above algorithms are designed as one-shot algorithms that are fast to
execute without the need for any precomputation during the actual execution of
the algorithm. Even though the fastest ones presented above are the fastest ones
currently known for this type of usage, there is a related setting where this is
not true.

If we expect that we’ll need to test a significantly large number of small inte-
gers for primality, the best solution might be precomputing all possible answers
and then answering each query in constant time. The canonical implementation
uses one bit for each odd number, i.e., 2°/16 bytes of memory if the valid in-
puts are b-bit integers. This evaluates to approx. 268 MB of memory for 32-bit
integers. This is obviously impractical for a one-shot test (even loading the 268
MB of data into memory is way too slow) but once the data is loaded the simple
lookup outperforms even the one-round Miller-Rabin test significantly.

6 Conclusions

We have presented what we believe to be the most efficient algorithms to date
to check the primality of 32-bit and 64-bit integers.

In the 32-bit case, we recommend using the algorithm FJ32_256. Based on
our analysis, we expect this algorithm to be pretty close to being optimal, both
in terms of the size of the precomputed data and running time. In other words: it
is possible that significantly more efficient tests exist, but they have to be based
on a different approach.

In the 64-bit case, we recommend using the algorithm FJ64_262k.

We expect that FJ64_16k is still quite far from being optimal. That is, it
should be possible to find a three-base test for 64-bit numbers with a significantly
smaller hash table size. We leave that as an open question for future research.

A Strong Pseudoprimes up to 232

There are 2256 base-2 strong pseudoprimes in M3zs. The following table lists the
number of base-b strong pseudoprimes in M3s for all prime b smaller than 100.

30 M. Forisek and J. Jancina

3: 2680 5: 2269 7: 2053 11: 1953 13: 1965 17: 2026 19: 2071 23: 1936
29: 2005 31: 1965 37: 1899 41: 1976 43: 1978 47: 1957 53: 1959 59: 2057
61: 1873 67: 1985 71: 1951 73: 1846 79: 2126 83: 1953 89: 2003 97: 2000

We also tested 200 random prime bases smaller than 232. The number of
strong pseudoprimes had a sample mean of 2152.7, a sample stdev of 129.9.
Thus, we may expect most values for other bases to lie in the 20 interval of
[1892.9,2412.5].

We also tested about 1000 pairs of bases, each time computing the count of
numbers that are strong pseudoprimes with both bases. For these counts, the
sample mean was 100.75, and the sample stdev was 14.27. (The minimum and
maximum encountered were 63 and 162, respectively.)

References

1. Agrawal, M., Kayal, N. and Saxena, N.: PRIMES in P. Ann. of Math., 160, 781-793
(2004)

2. Baillie, R. and Wagstaff, Jr., S.S.: Lucas Pseudoprimes. Mathematics of Com-
putation, 35, 1391-1417 (1980)

3. Cleaver, D.: Baillie-Pomerance-Selfridge-Wagstaff test implementation (mpz
prp.c). http://sourceforge.net/projects/mpzprp/files/ (2013)

4. Crandall, R. and Pomerance, C.: Prime Numbers: a Computational Perspective.
Springer, 2nd edition (2005)

5. Feistma, J.: List of pseudoprimes and their prime factorizations, with additional an-
notations. http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html (2013)

6. Izykowski, W.: The best known SPRP bases sets. https://miller-rabin.
appspot.com/ (2014)

7. Izykowski, W. and Panasiuk, M.: Finding strong probable prime bases for efficient
ranged primality. Technical report, http://priv.ckp.pl/wizykowski/sprp.pdf
(2011)

8. Jaeschke, G.: On strong pseudoprimes to several bases. Mathematics of Computa-
tion, 61, 915-926 (1993)

9. Jancina, J.: Rychle testy prvociselnosti pre obmedzeny rozsah vstupov (Fast pri-
mality tests for a limited range of inputs, in Slovak). Bachelor thesis at Comenius
University (2014)

10. Lenstra, H.-W. and Pomerance, C.: Primality testing with Gaussian periods. Tech-
nical report, http://www.math.dartmouth.edu/~carlp/aks041411.pdf (2011)

11. Monier, L.: Evaluation and comparison of two efficient probabilistic primality test-
ing algorithms. Theoretical Computer Science, 12, 97-108 (1980)

12. Pomerance, C., Selfridge, J.L. and Wagstaff, Jr., S.S.: The pseudoprimes up to
25 -10°. Math. Comp., 35, 1003-1026 (1980)

13. Rabin, M.O.: Probabilistic algorithm for testing primality. Journal of number the-
ory, 12, 128-138 (1980)

14. Solovay, R. and Strassen, V.: A fast Monte-Carlo test for primality. STAM journal
on Computing, 6, 84-85 (1977)

15. Worley, S.: Optimization of Primality Testing Methods by GPU Evolutionary
Search. Technical report,http://www.gpgpgpu. com/gecco2009/6.pdf (2009)

