

X86S
EXTERNAL ARCHITECTURAL

SPECIFICATION

Rev. 1.1
Nov 2023

Document Number: 351407-001

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 2

Notice: This document contains information on products in the design phase of development. The
information here is subject to change without notice. Do not finalize a design with this information.

Intel technologies may require enabled hardware, software or service activation.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or
systems or any damages resulting from such losses.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal
analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free
license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Copies of documents which have an order number and are referenced in this document may be obtained by
calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Copyright © 2023, Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 3

Contents

1 About This Document .. 9

1.1 Audience ... 9

1.2 Document Revision History ... 9

2 Introduction ... 11

3 Architectural Changes .. 13

3.1 Removal of 32-Bit Ring 0 ... 13

3.2 Removal of Ring 1 and Ring 2 .. 13

3.3 Removal of 16-Bit and 32-Bit Protected Mode 13

3.4 Removal of 16-Bit Addressing and Address Size Overrides 13

3.5 CPUID ... 13

3.6 Restricted Subset of Segmentation ... 13

3.7 New Checks When Loading Segment Registers 14

3.7.1 Code and Data Segment Types ... 15

3.7.2 System Segment Types (S=1) .. 16

3.8 Removal of #SS and #NP Exceptions .. 17

3.9 Fixed Mode Bits .. 17

3.9.1 Fixed CR0 Bits .. 17

3.9.2 Fixed CR4 Bits .. 17

3.9.3 Fixed EFER Bits ... 18

3.9.4 Removed RFLAGS.. 18

3.9.5 Removed Status Register Instruction 19

3.9.6 Removal of Ring 3 I/O Port Instructions 19

3.9.7 Removal of String I/O .. 19

3.10 64-Bit SIPI .. 19

3.10.1 IA32_SIPI_ENTRY_STRUCT_PTR ... 20

3.10.2 The SIPI_ENTRY_STRUCT Definition .. 20

3.10.3 Pseudocode on Receiving INIT When Not Blocked 21

3.10.4 Pseudocode on Receiving SIPI .. 21

3.11 64-Bit Reset .. 22

3.12 Removal of Fixed MTRRs ... 23

3.13 Removal of XAPIC and ExtInt ... 24

3.14 Virtualization Changes .. 24

3.14.1 VMCS Guest State ... 24

3.14.2 VMCS Exit Controls .. 25

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 4

3.14.3 VMCS Entry Controls ... 26

3.14.4 VMCS Secondary Processor-Based Execution Controls 26

3.14.5 VMX Enumeration .. 26

3.15 SMX Changes ... 27

3.15.1 Summary of Changes to SMX in X86 .. 27

3.15.2 Overview of Changes to State After ENTERACCS/SENTER 27

3.15.3 ENTERACCS / SENTER Pseudocode in X86S 28

3.15.4 EXITAC Pseudocode in X86S ... 30

3.15.5 RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE in X86S: (RLP Only) 31

3.16 Summary of Removals .. 31

3.17 Summary of Additions ... 32

3.18 Changed Instructions .. 32

3.18.1 SYSRET .. 32

3.18.2 IRET .. 32

3.18.3 POPF – Pop Stack Into RFLAGS Register 33

3.19 Summary of Changed Instructions .. 34

3.20 Software Compatibility Notes ... 35

3.20.1 Emulation of Ring 3 I/O Port Access .. 35

3.20.2 64-Bit SIPI ... 35

3.20.3 64-Bit Reset ... 35

3.20.4 Legacy OS Virtualization .. 35

3.20.5 Migration to Intel64 ... 37

4 Appendix .. 39

4.1 Segmentation Instruction Behavior ... 39

4.2 Segmentation Instruction Pseudocode ... 41

4.2.1 CALL Far .. 41

4.2.2 ERETU ... 42

4.2.3 ERETS ... 42

4.2.4 FRED ENTRY FLOW .. 42

4.2.5 Int n, INT3, INTO, External Interrupt, Exceptions with CR4.FRED == 0 .. 42

4.2.6 IRET .. 47

4.2.7 JMP Far .. 48

4.2.8 LSL, LAR, VERW, VERR .. 49

4.2.9 LDS, LES, LFS, LGS, LSS .. 49

4.2.10 LGDT ... 50

4.2.11 LLDT .. 50

4.2.12 LIDT .. 50

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 5

4.2.13 LKGS ... 50

4.2.14 LTR ... 50

4.2.15 MOV from Segment Register ... 50

4.2.16 MOV to Segment Register .. 50

4.2.17 POP Segment Register ... 50

4.2.18 POPF ... 51

4.2.19 PUSH Segment Selector ... 51

4.2.20 PUSHF ... 51

4.2.21 RDFSBASE, RDGSBASE .. 51

4.2.22 RET Far .. 51

4.2.23 SGDT ... 52

4.2.24 SLDT ... 52

4.2.25 SIDT .. 52

4.2.26 STR ... 52

4.2.27 SWAPGS .. 52

4.2.28 SYSCALL .. 52

4.2.29 SYSENTER .. 52

4.2.30 SYSEXIT .. 52

4.2.31 SYSRET .. 52

4.2.32 WRFSBASE, WRGSBASE ... 52

4.2.33 VMEntry ... 53

4.2.34 VMExit ... 53

4.2.35 STM Loading Host State for Dual Monitor Activation 54

4.3 List of Segmentation Instructions and Associated Behavior 54

4.4 64-Bit SIPI Without LEGACY_REDUCED_OS_ISA 56

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 6

Figures

Figure 1. CR0 Register .. 17

Figure 2. CR4 Register .. 18

Figure 3. RFLAGS Register ... 18

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 7

Tables

Table 1. Supported Operating Modes ... 14

Table 2. Fixed EFER Bits .. 18

Table 3. Behavior of Removed RFLAGS .. 19

Table 4. IA32_SIPI_ENTRY_STRUCT_PTR MSR (Address 0x3C) 20

Table 5. SIPI_ENTRY_STRUCT Structure in Memory .. 20

Table 6. 64-Bit Reset Register State .. 23

Table 7. Removed MTRR MSRs .. 24

Table 8. VMCS Fields Changed (Guest State) .. 25

Table 9. VMCS Exit Control Changes .. 25

Table 10. VMCS Entry Control Changes .. 26

Table 11. Secondary Processor-Based Execution Control Changes 26

Table 12. VMX Enumeration Changes .. 26

Table 13. Changes to State After ENTERACCS/SENTER .. 28

Table 14. Summary of Removals .. 31

Table 15. Summary of Additions ... 32

Table 16. RFLAGS Changes with the POPF Instruction.. 33

Table 17. Removed Instructions ... 34

Table 18. Changed Instructions .. 34

Table 19. List of Segmentation Instructions .. 54

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 8

(This page intentionally left blank)

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 9

1 About This Document

1.1 Audience

This document is intended for software development for the X86S ISA.

To provide feedback, email x86s_feedback@intel.com

1.2 Document Revision History

Revision History for this Document

Revision
No.

Revision Description Revision Date

1.0 Initial release Apr 2023

1.1

Change name to X86S. Add SMX chapter. Simplify
state and checks for limited segmentation.
Describe VMEntry and VMExit. Add CPUIDs and
MSR numbers.
No fallback in ERETU. Document init and reset state
and remove FIT references. Various fixes to pseudo
code and descriptions. Remove 5 level switch.
Cleanups to 64-bit SIPI and INIT. Clarify behavior
on asize overrides. Re-add some RPL checks. Add
tables for descriptor types. Fix
IA32_SIPI_ENTRY_STRUCT_PTR definition. Various
clarifications.

Nov 2023

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 10

(This page intentionally left blank)

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 11

2 Introduction

X86S is a legacy-reduced-OS ISA that removes outdated execution modes and operating system
ISA.

The presence of the X86S ISA is enumerated by a single, main CPUID feature

LEGACY_REDUCED_ISA in CPUID 7.1.ECX[2] which implies all the ISA removals described in this
document. A new, 64-bit “start-up” interprocessor interrupt (SIPI) has a separate CPUID feature
flag.

Changes in the X86S ISA consist of:

• restricting the CPU to be always in paged mode

• removing 32-bit ring 0, as well as vm86 mode

• removing ring 1 and ring 2

• removing 16-bit real and protected modes

• removing 16-bit addressing

• removing fixed MTRRs

• removing user-level I/O and string I/O

• removing CR0 Write-Through mode

• removing legacy FPU control bits in CR0

• removing ring 3 interrupt flag control

• removing the CR access instruction

• rearchitecting INIT/SIPI

• removing XAPIC and only supporting x2APIC

• removing APIC support for the 8259 interrupt controller

• removing the disabling of NX or SYSCALL or long mode in the EFER MSR

• removing the #SS and #NP exceptions

• supporting a subset of segmentation architecture

o a subset of IDT event delivery is implemented with FRED restrictions.

o 64-bit segmentation is applied to 32-bit compatibility mode:

▪ base only for FS, GS

▪ base and limit for GDT, IDT, LDT, and TSS

▪ no limit on data or code fetches in 32-bit mode.

o there are no access rights or unusable selector checking on CS, DS, ES, FS, and

GS on data or code fetches in any mode.

o there is no support for changing rings for far call, far return, and far jump (like

FRED).
o IRET can only stay in-ring or change from ring 0 to ring 3.
o there is a reduction of segmentation state. Only a subset of the state is

loaded/stored on VMX entry/exit.
o there is reduced checking on descriptor loads.
o the Accessed bit in a descriptor is not set.
o the Busy bit in the TSS descriptor is not used or checked.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 12

(This page intentionally left blank)

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 13

3 Architectural Changes

3.1 Removal of 32-Bit Ring 0

32-bit ring 0 is not supported anymore and cannot be entered.

3.2 Removal of Ring 1 and Ring 2

Ring 1 and 2 are not supported anymore and cannot be entered.

3.3 Removal of 16-Bit and 32-Bit Protected Mode

16-bit and 32-bit protected mode are not supported anymore and cannot be entered. The CPU

always operates in long mode. The 32-bit submode of Intel64 (compatibility mode) still exists. An
attempt to load a descriptor into CS that has CS.L==0 and CS.D==0 will generate a #GP(sel)
exception.

3.4 Removal of 16-Bit Addressing and Address Size Overrides

For 32-bit compatibility mode, the 16-bit address size override prefix (0x67) triggers a #GP(0)
exception when it leads to an unmasked memory reference. The #GP exception takes precedence
over other memory-related exceptions. Jumps follow different rules specified below.

Jumps with a 16-bit operand size prefix that previously did truncate the RIP to 16 bits (Jump Short
0x7*, Jump Near 0x0f 8*, LOOP 0xE0-2, JECZ 0xE3, JMP near 0xE9 and 0xEB, CALL rel 0xE8, JMP
near 0xFF/4, CALL indirect near 0xFF/2, RET near 0xC2-3, JMP far 0xEA and 0xFF/5, CALL indirect
far 0xFF/3, CALL far 0x9A, and RET far 0xCA-B) will now generate a #UD exception.

Jumps with a 0x67 prefix that previously did truncate to 16 bits (CALL indirect near mem 0xFF/2
mem, JMP far 0xea and 0xFF/5, CALL indirect far 0xFF/3) will now generate a #GP(0) exception.

Note that there is no fault for operations which do not modify memory or jump, like LEA or NOPs.

An attempt to load from SS that has SS.B==0 (16-bit data segment) in compatibility mode will
generate a #GP(0) exception.

3.5 CPUID

The LEGACY_REDUCED_OS_ISA feature bit in CPUID 7.1.ECX[2] indicates all the ISA removals
described in this document.

SIPI64 in CPUID.7.1.ECX[4] indicates support for 64-bit SIPI. A processor that enumerates

LEGACY_REDUCED_OS_ISA will also enumerate SIPI64.

3.6 Restricted Subset of Segmentation

X86S supports a subset of segmentation:

• No gates are supported in the GDT/LDT; it only supports data segments, code segments,
LDTs, and TSSs (in the GDT).

• Bases are supported for FS, GS, GDT, IDT, LDT, and TSS registers; the base for CS, DS,

ES, and SS is ignored for 32-bit mode, the same as 64-bit mode (treated as zero). The

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 14

processor does not save the state of CS, DS, ES, SS Base. It is neither saved nor restored

on VMENTRY/VMEXIT or SMI/RSM.

• Limits are supported for GDT, IDT, LDT, and TSS; the limit for CS, DS, ES, FS, GS, and SS

is treated as infinite. The processor does not save the state of CS, DS, ES, FS, GS, SS.

• The Limit field is neither saved nor restored on VMENTRY/VMEXIT or SMI/RSM.

CS and SS are the only descriptors having access rights. For these only CS.L, SS.B, and

SS.DPL fields exist at runtime; however, some of the other bits may be checked at initial

descriptor load. All other descriptors’ access rights are neither saved nor restored on

VMENTRY/VMEXIT or SMI/RSM. The CPL of the core is always SS.DPL. The access rights

are checked on a descriptor load to check the type and DPL, and to create the limit (if

applicable) and D (if applicable).

• Expand down, conforming, and unusable segment types are not supported – they are
ignored and revert to the base type. What used to be a conforming code segment is now
treated as a code segment. Data and code segments are always readable and writable.

• The descriptor.DPL field must be 0 or 3, and the selector RPL must match DPL (except for

data segments or for exception entry).

• On loads/stores, R/W access rights and NULL are ignored.

• IRET can switch rings from 0 to 3, or stay within a ring, but cannot cause a task switch or

enter into VM86 mode.

• Descriptor accessed bits will not be set in memory, but appear to be set when accessed
through the LAR instruction.

• The TSS busy bit is not supported. It is not set in memory by LTR, or checked on

VMENTRY.

• #SS exceptions are removed and will signal a #GP instead.

• #NP exceptions are removed and will signal a #GP instead.

• The LMSW instruction is removed and will signal a #UD exception.

The three operating modes shown in Table 1 are supported.

Table 1. Supported Operating Modes

 CPL=0 CPL=3

LMA=1 CS.L=0 Unsupported Ring 3 32-bit compatibility mode

LMA=1 CS.L=1 Ring 0 64-bit mode Ring 3 64-bit mode

3.7 New Checks When Loading Segment Registers

When loading segment registers through a method other than VM Entry/Exit, the following
conditions are checked:

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 15

• The CS and SS.DPL field must be either 0 or 3.

• In general, DPL must equal CPL for CS/SS. The exception is the CS descriptor popped off
the stack for IRET and ERETU. For data segments other than SS, DPL is ignored.

• Code descriptors must be code type, and not be 16-bit in any ring, or 32-bit when
DPL==0.

• Data descriptors must not be system type.

A #GP(sel) exception is signaled if these conditions are not met. For non-system segments, limits
and bases are ignored.

Pseudocode for the modified instructions can be found in Chapter 4.

3.7.1 Code and Data Segment Types

Bits[10:8] in the descriptor are ignored for code and data segment types. There are now two

types in the group: data segments, and code segments, with 8 encodings each. Code segments
can be executed; both data and code segments can be read and written.

Type
Field

11 10 9 8 Type Behavior Load Behavior Use

0 0 0 0 0 Data Load for data Read / Write

1 0 0 0 1 Data Load for data Read / Write

2 0 0 1 0 Data Load for data Read / Write

3 0 0 1 1 Data Load for data Read / Write

4 0 1 0 0 Data Load for data Read / Write

5 0 1 0 1 Data Load for data Read / Write

6 0 1 1 0 Data Load for data Read / Write

7 0 1 1 1 Data Load for data Read / Write

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 16

Type
Field

11 10 9 8 Type Behavior Load Behavior Use

8 1 0 0 0 Code Load for code/data Execute / Read / Write

9 1 0 0 1 Code Load for code/data Execute / Read / Write

10 1 0 1 0 Code Load for code/data Execute / Read / Write

11 1 0 1 1 Code Load for code/data Execute / Read / Write

12 1 1 0 0 Code Load for code/data Execute / Read / Write

13 1 1 0 1 Code Load for code/data Execute / Read / Write

14 1 1 1 0 Code Load for code/data Execute / Read / Write

15 1 1 1 1 Code Load for code/data Execute / Read / Write

3.7.2 System Segment Types (S=1)

Bit[9] (BUSY) for 64-bit TSS is ignored. X86S does not differentiate between busy and available
TSS. Both encodings are treated in the same manner.

64-bit call gate has been removed.

There are now four types in this group: LDT, interrupt gate, trap gate (with one encoding), and
TSS (with two encodings).

Type Field Description CR4.FRED=0 CR4.FRED=1

0 Reserved. #GP #GP

1 16-bit TSS. #GP #GP

2 LDT. Load with LLDT or #GP Load with LLDT or #GP

3 Busy 16-bit TSS. #GP #GP

4 16-bit call gate. #GP #GP

5 Task gate. #GP #GP

6 16-bit interrupt gate. #GP #GP

7 16-bit trap gate. #GP #GP

8 Reserved. #GP #GP

9 Available TSS. Load with LTR or #GP Load with LTR or #GP

10 Reserved. #GP #GP

11 Busy 32-bit TSS. Load in LTR or #GP Load with LTR or #GP

12 32-bit call gate. #GP #GP

13 Reserved. #GP #GP

14 Interrupt gate. Follow in IDT or #GP #GP

15 Trap gate. Follow in IDT or #GP #GP

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 17

3.8 Removal of #SS and #NP Exceptions

Any faulting stack segment references, both explicit and implicit, do not cause #SS exceptions
anymore. Instead, #GP exceptions will be generated. All descriptor loads with desc.P==0 will
generate a #GP(sel) exception.

3.9 Fixed Mode Bits

The CPU is always running in the 64-bit submode of Intel64. Real mode, protected mode, or VM86
modes cannot be enabled.

3.9.1 Fixed CR0 Bits

All bits in the CR0 register, shown in Figure 1, except for the TS, WP, AM, and CD bits, are fixed.

ET is fixed to 1 but ignored on input. An incorrect value in a fixed bit will produce a #GP(0)
exception, but only after causing a VM exit if CR0 exiting is configured. Reading will always return
the fixed value with the current value of the flexible bits, unless changed by a VM exit from CR0

exiting.

CR0 Bit
Fixed

Value
Bit Implication

PE 1 0 Protection enable: always in protected mode.

MP 1 1 Monitor coprocessor: always enabled.

EM 0 2 FP emulation.

TS - 3 Task switch. Disable FPU. This bit is still flexible.

ET 1 4 Extension type (ignored on input).

NE 1 5 Numeric error.

WP - 16 Write protect page tables. This bit is still flexible.

AM - 18 Enable alignment checks with RFLAGS.AC. This bit is still flexible.

NW 0 29 Write-through. Always disabled.

CD - 30 Cache disable. This bit is still flexible.

PG 1 31 Paging is always enabled.

Figure 1. CR0 Register

3.9.2 Fixed CR4 Bits

The following bits are fixed in the CR4 register, shown in Figure 2. Writing any other value (except
for any value of VME) for them will produce a #GP(0) exception if not resulting in a VM-exit from
CR4 exiting.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 18

CR4 Bit
Fixed

Value
Bit Implication

PVI 0 1 No support for protected mode virtual interrupts.

PAE 1 5 8-byte PTEs. Always enabled in 64-bit mode.

Figure 2. CR4 Register

3.9.3 Fixed EFER Bits

The bits listed in Table 2 are fixed in the EFER MSR. Writing other values to EFER will produce a
#GP exception, except for LMA, which is ignored.

Table 2. Fixed EFER Bits

EFER Bit
Fixed

Value
Bit Implication

SCE 1 0 Syscall is always enabled.

LME 1 8 Always in long mode

LMA 1 10 Always in long mode, but changes ignored.

NXE 1 11 NX bit for page tables is always enabled.

3.9.4 Removed RFLAGS

Figure 3 shows the bits in the RFLAGS register. The IOPL, VM, VIF, and VIP bits are always zero.

The rules in Table 3 apply.

Figure 3. RFLAGS Register

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 19

Table 3. Behavior of Removed RFLAGS

Action Action on newIOPL != 0
Action on newVIF != 0

or newVIP != 0
Action on newVM!=0

POPF CPL3 Ignored Ignored Ignored

POPF CPL0 Ignored Ignored Ignored

SYSRET #GP(0) #GP(0) N/A (always cleared)

IRET CPL3->CPL3 Ignored Ignored Ignored

IRET CPL0 #GP(0) #GP(0) Ignored

ERETU #GP(0) #GP(0) #GP(0)

ERETS #GP(0) #GP(0) #GP(0)

VMEntry Bad Guest State error Bad Guest State error Bad Guest State error

SEAMRET Bad Guest State error Bad Guest State error Bad Guest State error

RSM Forced to 0 Forced to 0 Forced to 0

3.9.5 Removed Status Register Instruction

The LMSW instruction is removed and will result in a #UD fault.

3.9.6 Removal of Ring 3 I/O Port Instructions

There is no concept of user mode I/O port accesses anymore, and using
INB/INW/INL/INQ/OUTB/OUTW/OUTL/OUTQ in ring 3 always leads to a #GP(0) exception. The
#GP check will be before VM execution or I/O permission bitmap checks. This implies there will be
no loads from the I/O permission bitmap.

3.9.7 Removal of String I/O

INS/OUTS are not supported and will result in a #UD exception. This includes the REP variants of
the INS/OUTS instructions as well.

3.10 64-Bit SIPI

64-bit SIPI defines an architectural package scope IA32_SIPI_ENTRY_STRUCT_PTR MSR that
contains a physical pointer to an entry structure in memory. The entry structure defines the state
for entering application processors in 64-bit paged mode.

To trigger 64-bit SIPI, set the enable bit in the IA32_SIPI_ENTRY_STRUCT_PTR MSR, as well in
the features field of the memory entry struct, then trigger SIPI using the X2APIC ICR register.

Legacy SIPI is not supported.

The presence of 64-bit SIPI is enumerated by the CPUID.7.1.ECX[4] SIPI64 CPUID feature bit.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 20

3.10.1 IA32_SIPI_ENTRY_STRUCT_PTR

The IA32_SIPI_ENTRY_STRUCT_PTR (0x3C) package scope MSR, shown in Table 4, defines the
execution context of the target CPU after receiving a SIPI message. It points to an entry structure
in memory.

The MSR is read only after the BIOS_DONE MSR bit is set.

Table 4. IA32_SIPI_ENTRY_STRUCT_PTR MSR (Address 0x3C)

Bits Field Attr
Reset

Value
Description

63:MAXPA Reserved NA 0 -

MAXPA-1:12 SIPI_ENTRY_STRUCT_PTR RW 0
Bits [MAXPA-1:12] of physical

pointer to SIPI_ENTRY_STRUCT.

11:1 Reserved NA 0 -

0 ENABLED RW 0 Enable 64-bit SIPI.

After INIT, NMIs are blocked until explicitly unblocked by ERETS/ERETU/IRET.

On receiving a SIPI, the target CPU loads the register state from the entry struct and starts
executing at the specified RIP. The vector from the INIT message is delivered in R10. The vector
delivered in the vector field of the INIT IPI message is ignored.

3.10.2 The SIPI_ENTRY_STRUCT Definition

The entry struct memory table, shown in Table 5, defines the execution context of a CPU receiving

a SIPI.

Table 5. SIPI_ENTRY_STRUCT Structure in Memory

Offset 

(bits)

Size 

(bits)
Name  Description 

0 8  FEATURES  Bit[0] - enable bit (0 - shutdown). Other bits are reserved.

8 8  RIP 
New instruction pointer to execute after SIPI. Valid values depend on new

CR4. 

16 8  CR3 
New CR3 value. Must be consistent with new CR4.PCIDE and no reserved

bits set.

24  8  CR0 
New CR0 value. Non-flexible bits must match fixed values and no

reserved bits set.

32  8  CR4 
New CR4 value. Non-flexible bits must match fixed value. Must be

consistent with new CR3, new RIP, new CR0 and no reserved bits set.

Any consistency check failures on SIPI_ENTRY_STRUCT fields lead to a shutdown on the target

CPU.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 21

3.10.3 Pseudocode on Receiving INIT When Not Blocked

IF in guest mode THEN

 Trigger exit

FI

RFLAGS = 2 # clear all modifiable bits in RFLAGS

Set CR0 to PE=1, MP=1, ET=1, NE=1, NW=0, PG=1, preserve CR0.CD

Set CR4 to PAE=1

Clear CR3

Clear CR2

Set CS to Selector = 0, CS.L = 1

Set SS, DS, ES, to Selector = 0

Set FS, GS to Selector = 0, Base = 0

Set GDTR/IDTR to Base = 0, Limit = 0xffff

Set LDTR, TR to Selector = 0, Base = 0, Limit = 0xffff,

Set FS/GS BASE MSR to 0

Set EFER to LMA=1, LME=1, NX=1, SC=1 // only relevant for Intel64

Set RDX to 0x000n06xxx, where n is extended model value and x is a stepping number

Clear all other GPRs

Clear DR0/DR1/DR2/DR3

Set DR6 to 0xffff0ff0

Set DR7 to 0x400

Set x87 FPU control word to 0x37f

Set x87 FPU status word to 0

Set x87 FPU tag word to 0xffff

Flush all TLBs

IF IA32_APICBASE.BSP = 1 THEN

 Force 64bit supervisor mode as in reset

 Execute 64bit reset vector using CR3/RIP value from reset

ELSE

 Enter wait for SIPI state

FI

3.10.4 Pseudocode on Receiving SIPI

IF IA32_SIPI_ENTRY_STRUCT_PTR.ENABLED = 0 THEN

 Shutdown // On non X86S fall back to legacy SIPI

FI

// following memory reads are done physically with normal ring 0 rights honoring range registers and allowing

MKTME keys but not TDX

ENTRY_STRUCT = IA32_SIPI_ENTRY_STRUCT_PTR[12:MAXPA]

IF ENTRY_STRUCT->FEATURES != 1 THEN

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 22

 Non triple fault Shutdown // On non X86S fall back to legacy SIPI

FI

note the order of these checks is not defined

newCR4 = ENTRY_STRUCT->CR4 # read entry_struct.CR4

newRIP = ENTRY_STRUCT->RIP # read entry_struct.RIP

newCR0 = ENTRY_STRUCT->CR0 # read entry_struct.CR0

newCR3 = ENTRY_STRUCT->CR3 # read entry_struct.CR3

IF newCR4.PVI != 0 OR

 OR newCR4.PAE != 1 OR

 newCR4 has reserved bits set OR // follows same rules as MOV CR4

 newCR0.PE != 1 OR

 newCR0.MP != 1 OR

 newCR0.EM != 0 OR

 newCR0.NE != 1 OR

 newCR0.NW != 0 OR

 newCR0.PG != 1 OR

 newCR3 has reserved bits set OR // follows same rules as MOV CR3

 newRIP is not canonical depending on newCR4.LA57 THEN

 Unbreakable Shutdown

FI

IF LEGACY_REDUCED_OS_ISA CPUID is clear THEN

 // initialize state to be equivalent to X86S

 CS = Selector=0, Base=0, Limit=0xffffff, AR=Present, R/W, DPL=0, Type=3, S=1, G=1, L=1

 SS/ES/FS/GS/DS = Selector = 0, Base = 0, Limit = 0xffffff, AR = Present, R/W, DPL=0, Type=3, S=1, G=1

 EFER = LMA=1, LME=1, SC=1, NX=1

 GDTR/TR.limit = 0

FI

newCR0.ET = 1

CR4 = newCR4 ; CR3 = newCR3 ; CR0 = newCR0

Move received SIPI vector zero extended to R10

NMIs are blocked

RIP = newRIP

3.11 64-Bit Reset

The CPU starts executing in 64-bit paged mode with a 4-level page table after reset. No Firmware
Interface Table (FIT) is necessary as the X86S reset state has a fixed RIP and CR3. The fixed reset
RIP is the standard reset vector 0xFFFFFFF0 but is entered as 64-bit. The fixed reset CR3 value is
0xFFFFE000.

Table 6 shows the reset register state.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 23

Table 6. 64-Bit Reset Register State

Register Intel64 Reset X86S Reset

EFLAGS 00000002H 00000002H

RIP/EIP 0000FFF0H FFFFFFF0H

CR0 00000000H 80000033H

CR2 00000000H 00000000H

CR3 00000000H FFFFE000H

CR4 00000000H 00000020H

CS

Selector=F000H
Base=FFFF0000H

Limit=FFFFH
AR=Present, R/W,

Accessed, Type=3

Selector=0H
Base=n/a

Limit=n/a

AR=L=1

SS

Selector=F000H
Base=FFFF0000H

Limit=FFFFH
AR=Present, R/W,

Accessed, Type=3

Selector= 8
Base= n/a

Limit= n/a
AR=DPL=0, B=0, rest n/a

DS,ES

Selector=0000H
Base=00000000H

Limit=FFFFH
AR=Present, R/W,

Accessed, P=1,S=1

Type=3

Selector= 0
Base= n/a

Limit= n/a
AR=n/a

FS,GS

Selector=0000H
Base=00000000H

Limit=FFFFH
AR=Present, R/W,

Accessed, P=1,S=1

Type=3

Selector= 0
Base= 00000000H

Limit= n/a
AR= n/a

EFER 0 LMA=1,LME1=,SC=1,NX=1

LDT Base=0,Limit=0,P=0 Base=0,Limit=0

TR Base=0, Limit=0xffff Base=0, Limit=0

IDTR Base=0,Limit=0xffff Base=0, Limit=0

GDTR Base=0,Limit=0xffff Base=0, Limit=0

3.12 Removal of Fixed MTRRs

There is no support for fixed MTRRs. The FIX bit, bit[8] in the IA32_MTRRCAP register, is cleared
and all the MTRR_FIX_* MSRs are not implemented. MTRR_DEF_TYPE bit[10] is reserved.

Table 7 lists the fixed MTRR MSRs removed.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 24

Table 7. Removed MTRR MSRs

Name

IA32_MTRR_FIX64_00000

IA32_MTRR_FIX16_80000

IA32_MTRR_FIX16_a0000

IA32_MTRR_FIX4_c0000

IA32_MTRR_FIX4_c8000

IA32_MTRR_FIX4_d0000

IA32_MTRR_FIX4_d8000

IA32_MTRR_FIX4_e0000

IA32_MTRR_FIX4_e8000

IA32_MTRR_FIX4_f0000

IA32_MTRR_FIX4_f8000

3.13 Removal of XAPIC and ExtInt

The only way to access the X2APIC is through MSR accesses. Virtual XAPIC through VMX is still
supported.

The CPU is always in x2APIC mode (IA32_APIC_BASE[EXTD] is 1) and is enabled. Attempts to

write IA32_APIC_BASE to disable the APIC or leave x2APIC mode will cause a #GP(0) exception.

This will be enumerated to software through the
IA32_XAPIC_DISABLE_STATUS[LEGACY_XAPIC_DISABLED] MSR bit being 1.

For more details, see
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-
guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html

The ExtINT decoding in the local APIC is removed.

3.14 Virtualization Changes

This section describes changes to the virtualization state.

“Fixed” fields are consistency checked and VM entry will fail if they do not match the fixed value.

3.14.1 VMCS Guest State

Guest VMCS field changes are listed in Table 8.

For VMEntry, consistency checks on the removed segmentation state do not occur.

file:///C:/Users/akleen/AppData/Local/Packages/oice_16_974fa576_32c1d314_25d6/AC/Temp/2BFB90A9.xlsx%23'MSR%20Definitions'!A4826
file:///C:/Users/akleen/AppData/Local/Packages/oice_16_974fa576_32c1d314_25d6/AC/Temp/2BFB90A9.xlsx%23'MSR%20Definitions'!A4843
file:///C:/Users/akleen/AppData/Local/Packages/oice_16_974fa576_32c1d314_25d6/AC/Temp/2BFB90A9.xlsx%23'MSR%20Definitions'!A4860
file:///C:/Users/akleen/AppData/Local/Packages/oice_16_974fa576_32c1d314_25d6/AC/Temp/2BFB90A9.xlsx%23'MSR%20Definitions'!A4898
file:///C:/Users/akleen/AppData/Local/Packages/oice_16_974fa576_32c1d314_25d6/AC/Temp/2BFB90A9.xlsx%23'MSR%20Definitions'!A4915
file:///C:/Users/akleen/AppData/Local/Packages/oice_16_974fa576_32c1d314_25d6/AC/Temp/2BFB90A9.xlsx%23'MSR%20Definitions'!A4932
file:///C:/Users/akleen/AppData/Local/Packages/oice_16_974fa576_32c1d314_25d6/AC/Temp/2BFB90A9.xlsx%23'MSR%20Definitions'!A4949
file:///C:/Users/akleen/AppData/Local/Packages/oice_16_974fa576_32c1d314_25d6/AC/Temp/2BFB90A9.xlsx%23'MSR%20Definitions'!A4966
file:///C:/Users/akleen/AppData/Local/Packages/oice_16_974fa576_32c1d314_25d6/AC/Temp/2BFB90A9.xlsx%23'MSR%20Definitions'!A4983
file:///C:/Users/akleen/AppData/Local/Packages/oice_16_974fa576_32c1d314_25d6/AC/Temp/2BFB90A9.xlsx%23'MSR%20Definitions'!A5000
file:///C:/Users/akleen/AppData/Local/Packages/oice_16_974fa576_32c1d314_25d6/AC/Temp/2BFB90A9.xlsx%23'MSR%20Definitions'!A5017
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 25

Table 8. VMCS Fields Changed (Guest State)

VMCS Field INDEX Change Reason

WFS encoding in Guest activity state Fixed 0 64-bit SIPI does not support

Guest ES Limit 0x00004800 Ignored Reduced Segmentation State

Guest CS Limit 0x00004802 Ignored Reduced Segmentation State

Guest SS Limit 0x00004804 Ignored Reduced Segmentation State

Guest DS Limit 0x00004806 Ignored Reduced Segmentation State

Guest FS Limit 0x00004808 Ignored Reduced Segmentation State

Guest GS Limit 0x0000480A Ignored Reduced Segmentation State

Guest ES Access Rights 0x00004814 Ignored Reduced Segmentation State

Guest DS Access Rights 0x0000481A Ignored Reduced Segmentation State

Guest FS Access Rights 0x0000481C Ignored Reduced Segmentation State

Guest GS Access Rights 0x0000481E Ignored Reduced Segmentation State

Guest LDTR Access Rights 0x00004820 Ignored Reduced Segmentation State

Guest TR Access Rights 0x00004822 Ignored Reduced Segmentation State

Guest CS Access Rights 0x00004816

Only L and D

saved/loaded;

the rest written

to zero on exit

and ignored on

entry

Reduced Segmentation State

Guest SS Access Rights 0x00004818

Only DPL and B

saved/loaded;

the rest written

to zero on exit

and ignored on

entry

Reduced Segmentation State

Guest ES Base 0x00006806 Ignored Reduced Segmentation State

Guest CS Base 0x00006808 Ignored Reduced Segmentation State

Guest SS Base 0x0000680A Ignored Reduced Segmentation State

Guest DS Base 0x0000680C Ignored Reduced Segmentation State

Guest PDPTE0 0x0000280A Ignored IA32e mode always enabled

Guest PDPTE1 0x0000280A Ignored IA32e mode always enabled

Guest PDPTE2 0x0000280A Ignored IA32e mode always enabled

Guest PDPTE3 0x0000280A Ignored IA32e mode always enabled

3.14.2 VMCS Exit Controls

VM exit controls that are changed are listed in Table 9.

Table 9. VMCS Exit Control Changes

VMCS Field Change Reason

Host Address Space Size (HASS) Fixed 1 Host is always in 64-bit supervisor mode.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 26

3.14.3 VMCS Entry Controls

VM entry controls that are changed are listed in Table 10.

Table 10. VMCS Entry Control Changes

VMCS Field Change Reason

IA-32e mode guest Fixed 1 Guest is always in long mode.

3.14.4 VMCS Secondary Processor-Based Execution Controls

Changes are listed in Table 11.

Table 11. Secondary Processor-Based Execution Control Changes

VMCS Field Change Reason

Unrestricted guest Fixed 0 Unrestricted guest not supported.

3.14.5 VMX Enumeration

Table 12 describes changes in VMX enumeration.

Table 12. VMX Enumeration Changes

MSR Bit(s) Corresponding Field Value Notes

IA32_VMX_EXIT_CTLS 9, 41

host address space size 1

EFER LME and LMA are

fixed to 1.
IA32_VMX_TRUE_EXIT_CTLS

IA32_VMX_ENTRY_CTLS
9, 41 IA-32e mode guest 1

Guest is always in long

mode. IA32_VMX_TRUE_ENTRY_CTLS

IA32_VMX_PROCBASED_CTLS2 39 unrestricted guest 0 No unrestricted guest.

IA32_VMX_MISC 8
supports activity state:

wait-for-SIPI
0 Unsupported.

IA32_VMX_CR0_FIXED0

0
PE: protected mode

enable

1

(legacy)

Always long mode, no

legacy FPU modes.

Fixed to 0.

1
MP: monitor

coprocessor
1

5 NE: numeric error
1

(legacy)

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 27

MSR Bit(s) Corresponding Field Value Notes

31 PG: paging enabled
1

(legacy)

IA32_VMX_CR0_FIXED1

2 EM: FP emulation 0
These CR0 bits are

fixed to 0.
29 NW: not write-through 0

IA32_VMX_CR4_FIXED0 No changes

IA32_VMX_CR4_FIXED1 1
PVI: protected-mode

virtual interrupts

0

No support for

protected-mode virtual

interrupts.

3.15 SMX Changes

The behavior of the following sub leaves of the GETSEC instruction, ENTERACCS/SENTER, EXITAC

as well as the RLP WAKEUP, are modified for X86S. The environment after entering an
authenticated code module is X86S compliant, so the instructions reflect changes to that behavior.
This section details those changes.

3.15.1 Summary of Changes to SMX in X86

The following changes have been made:

1. Overall changes:

a. ACBASE is set to 0FEB00000h by the CPU. The CPU loads the ACM image from a
pointer in memory, and copies it to an internal memory at location 0FEB00000h.

b. There is no requirement for ACM to be located in a region with WB memory type.

2. Changes to ENTERACCS/SENTER:

a. The CodeControl field is removed, and CodeControl checks are removed.
b. Pre-Entry CR3, CR4, RIP, RSP and FRED MSRs are saved to an internal structure.

c. CR3, RIP, and FRED CONFIG MSRs are loaded from the ACM header.
d. All segment state is unmodified.
e. CR4, FRED_SKTLVLS, and RSP are forced to a fixed value. FRED is forced to 1.

3. EXITAC

CR3, CR4, RIP, and FRED states are loaded from a storage structure specified by R8.

4. WAKEUP

a. CR3,CR4, and RIP are loaded from the JOIN structure.

b. Segment state is unmodified.

5. SEXIT

There is no change to SEXIT itself. However, on X86S, if RLP was in LT_WFS
(SENTER_SLEEP) and NEWSIPI is not enabled, INIT will result in a shutdown.

3.15.2 Overview of Changes to State After ENTERACCS/SENTER

Table 13 lists the changes.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 28

These changes provide an X86S-compliant environment.

Table 13. Changes to State After ENTERACCS/SENTER

Register State Value After ENTERACCS - Legacy Value After ENTERACCS – X86S

CR0 PG=0, AM=0, WP=0: Others unchanged PG=1; AM=0; WP=1; Others unchanged

CR4
MCE=0, CET=0, PCIDE=0: Others
unchanged

PAE=1, FRED=1; SMXE=1; Others 0

IA32_EFER 0H Unmodified (EFER has fixed value in X86S)

EIP AC.base + EntryPoint ACMHeader[RIP]

[E|R]BX
Pre-ENTERACCS state: Next [E|R]IP prior to
GETSEC[ENTERACCS]

Unmodified

ECX
Pre-ENTERACCS state:
[31:16]=GDTR.limit;[15:0]=CS.sel

Unmodified

[E|R]DX Pre-ENTERACCS state:GDTR base Unmodified

EBP AC.base Unmodified

CS
Sel=[SegSel], base=0, limit=FFFFFh, G=1,
D=1, AR=9BH

0FEB00400h

DS
Sel=[SegSel] +8, base=0, limit=FFFFFh,
G=1, D=1, AR=93H

Unmodified

GDTR
Base= AC.base (EBX) +
[GDTBasePtr],Limit=[GDTLimit]

Unmodified

CR3 Unmodified ACMHeader[CR3]

FRED_CONFIG Unmodified ACMHeader[FRED_CONFIG]

FRED_STKLVLS Unmodified 0

3.15.3 ENTERACCS / SENTER Pseudocode in X86S

(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)

IF (CR4.SMXE=0)

THEN #UD;

ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);

ELSIF (GETSEC leaf unsupported)

THEN #UD;

ELSIF ((in VMX operation) or

(CR0.CD=1) or (CPL>0) or (IA32_APIC_BASE.BSP=0) or

 (TXT chipset not present) or (ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);

IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF (IA32_MC[I]_STATUS = uncorrectable error)

THEN #GP(0);

OD;

FI;

IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);

ACBASE := EBX;

ACSIZE := ECX;

IF (((ACBASE MOD 4096) ≠ 0) or ((ACSIZE MOD 64) ≠ 0) or (ACSIZE < minimum module size) OR (ACSIZE >

authenticated RAM capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);

IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and

(secondary thread(s) not in SENTER sleep state)

THEN #GP(0);

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 29

Mask SMI, INIT, A20M, and NMI external pin events;

IA32_MISC_ENABLE := (IA32_MISC_ENABLE & MASK_CONST*)

(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)

IA32_DEBUGCTL := 0;

Invalidate processor TLB(s);

Drain Outgoing Transactions; ACMODEFLAG := 1;

SignalTXTMessage(ProcessorHold);

Set up entire ACRAM space and load the internal ACRAM from ACBASE to FEB00000h based on the AC module

size;

Set ACBASE := 0FEB00000h;

IF (AC module header version is not supported) OR (ACRAM[ModuleType] ≠ 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);

(* Authenticate the AC Module and shutdown with an error if it fails *)

KEY := GETKEY(ACRAM, ACBASE);

KEYHASH := HASH(KEY);

CSKEYHASH := READ(TXT.PUBLIC.KEY);

IF (KEYHASH ≠ CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);

SIGNATURE := DECRYPT(ACRAM, ACBASE, KEY);

(* The value of SIGNATURE_LEN_CONST is implementation-specific*)

FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I] := SIGNATURE[I];

COMPUTEDSIGNATURE := HASH(ACRAM, ACBASE, ACSIZE);

FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] := COMPUTEDSIGNATURE[I];

IF (SIGNATURE ≠ COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);

IF (ACRAM[StateSaveAddress] MOD 64) ≠ 0)

 THEN TXT-SHUTDOWN(#BadACMFormat);

If (ACRAM[IA32_FRED_CONFIG] has reserved bits set)

 THEN TXT-SHUTDOWN(#BadACMFormat);

(* Save state to StateSaveArea *)

SSAddr[FRED_CONFIG] := IA32_FRED_CONFIG

SSAddr[FRED_STKLVLS] := IA32_FRED_STKLVLS

SSAddr[CR4] := CR4[63:0]

SSAddr[CR3] := CR3[63:0]

SSAddr[RIP] := Pre-ENTERACCS next RIP

SSAddr[RSP] := RSP

CR0.[AM] := 0;

CR0.[PG.WP] := 1;

CR4[FRED,PAE,SMXE]=1; Rest of CR4=0

EFLAGS := 00000002h;

RSP := 0FEB00400h;

CR3 := ZX(ACRAM[CR3], 64);

IA32_FRED_STKLVLS = 0;

IA32_FRED_CONFIG = ZX(ACRAM[IA32_FRED_CONFIG], 64);

DR7 := 00000400h;

IA32_DEBUGCTL := 0;

SignalTXTMsg(OpenPrivate);

SignalTXTMsg(OpenLocality3);

EIP := ACEntryPoint;

END;

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 30

3.15.4 EXITAC Pseudocode in X86S

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

IF (CR4.SMXE=0)

THEN #UD;

ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);

ELSIF (GETSEC leaf unsupported)

THEN #UD;

ELSIF ((in VMX operation) or ((in 64-bit mode) and (RBX is non-canonical)) or

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or (ACMODEFLAG=0) or (IN_SMM=1)) or (EDX ≠ 0))

THEN #GP(0);

(* Check that the StateSave address is legal *)

SSAddr := R8

IF ((SSAddr MOD 64) ≠ 0 or beyond MAX_PA)

 THEN #GP(0);

TempRIP := SSAddr[RIP]

TempRSP := SSAddr[RSP]

TempCR4 := SSAddr[CR4]

TempCR3 := SSAddr[CR3]

TempFredConfig := SSAddr[FRED_CONFIG]

TempFredSTKLVLS := SSAddr[FRED_STKLVLS]

(* Perform checks on SSA state *)

IF ((TempCR3 reserved bit set) or

 (TempRIP or TempRSP are non-canonical according to TempCR4.LA57) or

 (TempCR4 & CR4_MASK_CONST ≠ 0) or

 (TempFREDConfig has reserved bits set or is not canonical)

THEN #GP(0);

Invalidate ACRAM contents;

Invalidate processor TLB(s);

Drain outgoing messages;

SignalTXTMsg(CloseLocality3);

SignalTXTMsg(LockSMRAM);

SignalTXTMsg(ProcessorRelease);

Unmask INIT;

IF (SENTERFLAG=0)

THEN Unmask SMI, INIT, NMI, and A20M pin event;

ELSEIF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;

ACMODEFLAG := 0;

CR3 := TempCR3;

CR4 := TempCR4;

RIP := TempRIP;

RSP := TempRSP;

IA32_FRED_CONFIG := TempFredConfig;

IA32_FRED_STKLVLS := TempFredSTKLVLS;

END;

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 31

3.15.5 RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE in X86S: (RLP Only)

WHILE (no SignalWAKEUP event);

IF (IA32_SMM_MONITOR_CTL[0] ≠ ILP.IA32_SMM_MONITOR_CTL[0])

THEN TXT-SHUTDOWN(#IllegalEvent)

IF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;

ELSE

Mask SMI pin event;

Mask A20M, and NMI external pin events (unmask INIT);

Mask SignalWAKEUP event;

Invalidate processor TLB(s);

Drain outgoing transactions;

TempRIP := LOAD (LT.MLE.JOIN+0);

TempCR3 := LOAD (LT.MLE.JOIN+8);

TempCR4 := LOAD (LT.MLE.JOIN+16);

If (TempCR3 reserved bits set) or

 (TempRIP is non-canonical) or

 (TempCR4 & CR4_RESERVED_BIT_MASK ≠ 0)

 THEN TXT-SHUTDOWN(#BadJOINFormat);

3.16 Summary of Removals

A summary of removals is given in Table 14.

Table 14. Summary of Removals

Removal of Replacement Implied by

Segment bases (except

FS/GS/GDT/IDT/LDT/TSS), limits (except

GDT/IDT/TSS/LDT), segment permissions

(other than CS.L and SS.B), unusable

checks (other than for SS/CS/TR)

- Limited segmentation

Real mode (big and 16-bit) 64-bit paged mode, 64-bit SIPI -

16-bit protected mode - -

16-bit address override in other modes

when address is referenced
- -

32-bit ring 0, including 2- and 3-level

paging modes
64-bit ring 0 -

Disabling FPU through CR0.MP - -

Legacy numeric error handling - -

VM86 mode - 16-bit mode removal

Protected-mode virtual interrupts (PVI) - -

Clearing EFER.NXE bit to disable

presence of NX bit in page table entries
- -

Disabling SYSCALL through EFER.SCE - -

FAR JMP/RET/CALL changing rings SYSCALL, INT Limited segmentation

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 32

Removal of Replacement Implied by

IRET/SYSCALL/SYSRET entering 16-bit

mode, vm86 mode or conforming

segments. ERETU supporting non STAR

segments.

-
16-bit mode removal,

Limited segmentation

Fixed MTRRs Variable MTRRs , PAT in page tables -

MMIO-based XAPIC access X2APIC access through MSRs -

APIC ExtInt removal - -

Ring 1, ring 2 removal - -

Ring 3 I/O port access (IOPL, I/O bitmap) Ring 0 I/O port access -

INS and OUTS instructions IN, OUT instructions in loops -

#SS exception #GP(0) exception Limited segmentation

#NP exception #GP(0) exception Limited segmentation

Support for INIT/SIPI on entry in VMCS - 64-bit SIPI

Support for unrestricted guest in VMCS -

16-bit mode removal,

paging always

enabled

VMCS support for 32-bit ring 0 - 32-bit ring 0 removal

3.17 Summary of Additions

New additions in the architecture are given in Table 15.

Table 15. Summary of Additions

Addition of Reason Needed by

64-bit SIPI and INIT Boot application processors in paged 64-bit mode
Real mode

removal

3.18 Changed Instructions

The following descriptions pertain only to new behavior of the instructions. A longer list of

segmentation-related instructions with changed behavior (if any) is shown in Section 4.3. Some
instruction with trivial changes are only documented in the Summaries.

For legacy behavior, please refer to Intel® 64 and IA-32 Architectures Software Developer’s

Manual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4.

3.18.1 SYSRET

SYSRET will generate a #GP(0) exception if a non-zero value is loaded into RFLAGS.IOPL,

RFLAGS.VIP, or RFLAGS.VIF.

3.18.2 IRET

IRET cannot jump to 16-bit mode, task gates. IRET will generate a #GP(0) exception if a non-zero
value is loaded into RFLAGS.IOPL, RFLAGS.VIP, or RFLAGS.VIF when in ring 0. The details of the
IRET instruction are shown in the pseudocode in Section 4.2.6.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 33

3.18.3 POPF – Pop Stack Into RFLAGS Register

Opcode Instruction Op/ En
64-Bit
Mode

Compatibility/
Legacy Mode

Description

9D POPFD ZO N.E. Valid Pop top of stack into EFLAGS.

9D POPFQ ZO Valid N.E.
Pop top of stack and zero-extend into

RFLAGS.

POPF pops a doubleword (POPFD) from the top of the stack (if the current operand size attribute is 32)
and stores the value in the EFLAGS register, or pops a word from the top of the stack (if the operand
size attribute is 16) and stores it in the lower 16 bits of the EFLAGS register (that is, the FLAGS
register). These instructions reverse the operation of the PUSHF/PUSHFD/PUSHFQ instructions.

The IOPL, VM, VIP, and VIF flags are always zero and are ignored on POPF.

The POPF instruction never raises an #SS exception, but only a #GP(0) or a #PF exception.

It changes RFLAGS according to Table 16.

Table 16. RFLAGS Changes with the POPF Instruction

Mode

Operand

Size

CPL

Flags

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

Ring 3 and Ring 0

modes

32,

64

* S N N S N 0 S N S S N S S S S S S

Key

S Updated from stack

N No change in value

0 Value is cleared

Pseudocode:

tempFlags = POP // according to 32/64 operand size

IF CPL = 0 THEN

 // modify non reserved flags with “tempFlags” except RF, IOPL, VIP, VIF, VM.

 // RF is cleared.

 // Do not modify flags not popped due to operand size.

ELSE

 // modify non reserved flags with “tempFlags” except RF, IOPL, VIP, VIF, VM, IF.

 // RF is cleared.

 // Do not modify flags not popped due to operand size.

FI

Table 17 shows a summary of removed instructions.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 34

Table 17. Removed Instructions

Instruction
Possible Legacy Usage in

Rings
Replacement

INS / OUTS Ring 3, 1, 2, 0 IN, OUT

64-bit indirect far jump with 0x67

prefix that changes to 16-bit

operand will #UD.

32-bit near ret, far call, far ret, far

jmp, with 0x67 prefix that changes

to 16-bit operand will #UD.

32-bit near jmp, jCC, JECX*, near

ret, near call, loop*, far jmp with

0x67 prefix that changes to 16-bit

operand will #UD.

32-bit any instruction that

references memory and is not a

jump with 0x67 prefix that changes

to 16-bit operand will #GP.

Ring 3, 1, 2, 0 32-bit/64-bit memory references

LMSW Ring 3, 1, 2, 0 Mov CR0

3.19 Summary of Changed Instructions

Table 18 shows a summary of changed instructions.

Table 18. Changed Instructions

Instruction Rings Change

ERETU 0 No support for non-STAR segments. The RFLAGS IOPL, VM, VIF, VIP bits must be zero.

ERETS 0 The RFLAGS IOPL, VM, VIF, VIP bits must be zero.

IRET 3, 0

No support for 16-bit mode or vm86 or gates or ring 1 or 2. Must stay in ring or go

from ring 0 to ring 3. The RFLAGS IOPL, VM, VIF, VIP bits must be zero. Simplified

checks.

SYSRET 0 The RFLAGS IOPL, VM, VIF, VIP bits must be zero.

FAR CALL
3, 0 Cannot change rings. #UD on 16-bit operand size. #GP on 0x67 in 32-bit mode and

indirect.

FAR JMP 3, 0 Cannot change rings. #UD on 16-bit operand size. #GP on 0x67 in 32-bit mode.

POPF 3, 0 The RFLAGS IOPL, VM, VIF, VIP bits must be zero.

FAR RET 3, 0 Cannot change rings. #UD with 16-bit operand size.

STI 3, 0 No support for ring 3 changes through VM86/PVI.

CLI 3, 0 No support for ring 3 changes through VM86/PVI.

VERW,

VERR, MOV

to sel, MOV

from sel,

PUSH sel,

POP sel,

LAR, LGS,

LFS, LES,

LFS, LGS,

LSS, LDS,

LKGS

3, 0 Simplified checks.

IN*, OUT* 3 Removed support for ring 3 port I/O.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 35

Instruction Rings Change

JMP short,

JMP, LOOP,

JECX, CALL,

RET, JMP

3, 0
#UD with 16-bit operand size prefix in 32-bit mode.

3.20 Software Compatibility Notes

3.20.1 Emulation of Ring 3 I/O Port Access

If there are legacy uses of ring 3 I/O port accesses using the TSS I/O port bitmap or IOPL, it is

possible to emulate this case through a #GP(0) handler that executes IN/OUT in ring 0. INS/OUTS
can be emulated in a #UD handler with an appropriate emulation routine.

3.20.2 64-Bit SIPI

The BIOS should always disable 64-bit SIPI in the SIPI_ENTRY_STRUCT ENABLES field before

passing control to the OS. The BIOS must initialize and enable the IA32_SIPI_ENTRY_STRUCT_PTR

MSR on all packages. On Intel64, this will ensure that a legacy OS can use legacy SIPI. A 64-bit-

SIPI-aware OS can enable it. On X86S it is not possible to use legacy SIPI, but the OS owns the

enabling of 64-bit SIPI, too, for consistency.

3.20.3 64-Bit Reset

Reset uses the same entry point as Intel64, but uses paged 64-bit mode. When compatibility to
Intel64 is desired, the entry code can determine the if it is entered on X86S by checking CR0.PG.

3.20.4 Legacy OS Virtualization

The VMM is responsible for setting up the system state and VMCS appropriately so that the
necessary VM exits and faults occur for cases where emulation of legacy behavior by the VMM is
required. There are also cases where the VMM should not attempt to perform a VM entry, but

instead emulate until a supported guest state is reached, for example when entering into 16bit or
32bit ring 0 code

If required for guest compatibility, the VMM is responsible for (a) setting the exception bitmap

such that #UD and #GP cause a VM exit and then (b) emulating to determine the cause of the

exception and the appropriate response. Some examples:

- Some variants of CLI will spuriously #GP(0), for example, if a legacy guest tried to

execute a CLI in ring 3 and RFLAGS.IOPL==3. Since RFLAGS.IOPL is always 0, this ring 3

CLI will always #GP(0). If the guest requires these IOPL semantics, it is up to the VMM to

emulate this instruction with the emulated legacy guest RFLAGS.IOPL value. Note that

there are un-virtualizable aspects of a non-zero IOPL that are discussed later.

- #SS and #NP are converted to #GP. If the guest expects to see the #SS/#NP, the VMM

will need to detect cases where a #GP would have been an #SS or #NP and inject them to

the guest.

Some guest CR values are ignored on VMENTRY (they retain the fixed values and are not

consistency checked). If required by the guest, the VMM can virtualize differences, some of which

are described below:

• CR0.MP is fixed to one. Here, the VMM should diagnose and emulate spurious faulting

cases.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 36

• CR4.PVI is fixed to zero. Here, the VMM can diagnose #GPs from STI/CLI and emulate the

expected guest behavior.

• CR4.DE is fixed to one. Here, the VMM can diagnose and emulate spurious faulting cases.

• CR4.PSE and CR4.PAE are fixed. Legacy paging modes require shadow paging or

emulation.

• EFER.LME is fixed to one. If the guest is in 32-bit CPL0 mode and the VMM wants to do a

VM entry, it should use emulation.

• RFLAGS:

o IOPL is fixed 0

o VIF, VIP are fixed 0. Some CLI/STI may #GP(0) and can be emulated to handle

these appropriately if the guest requires this functionality.

A VMM can choose to emulate legacy functionality as required:

1. VMM changes required for mainstream Intel64 guest using legacy SIPI or non-64-bit boot:

a. Emulate 16-bit modes (real mode, virtual 8086 mode)

b. Emulate unpaged modes

c. Emulate legacy INIT/SIPI.

2. Optional VMM changes for handling uncommon cases:

a. IOPL != 0 (if guest wants ring 3 I/O port access or ring 3 CLI/STI):

i. Catch CLI #GP in CPL3 and emulate.

ii. Catch STI #GP in CPL3 and emulate.

iii. Catch IN/OUT #GP in CPL3 and emulate.

iv. IRET in CPL0 will #GP if attempting to change IOPL; catch and emulate.

Note that that are un-virtualizable aspects of a non-zero IOPL in the next section.

b. INS/OUTS instructions are removed: Catch #UD and emulate.

c. Call gates: VMM needs to catch relevant #GPs and emulate.

d. #SS removal: VMM can catch relevant #GPs and report #SS back to guest.

e. #NP removal: VMM can catch relevant #GPs and report #NP back to guest.

f. CR4.PVI: catch and emulate associated #GPs.

g. Emulate 16-bit addressing by catching #GPs/#UDs.

h. CR4.VME, RFLAGS.VM: Emulate v8086 mode.

i. Emulate 32-bit ring 0 and run 32-bit ring 3 with shadow paging in legacy paging

modes.

j. Support for unsupported obscure segmentation features like expand down or non-

conforming code segments: Can be emulated by catching #GPs.

3. Uncommon cases with expensive SW solutions:

a. CPL1/2 requires partial emulation.

b. Non-flat CS/DS/ES/SS segments or setting access bits in descriptors in memory

requires full emulation triggered by Descriptor Table Exiting and then setting the

GDT/LDT limit to zero (or read/write protect GDT/LDT) to catch segmentation

instructions.

c. When EFER.NXE is cleared, a set NX bit in PTE requires shadow paging.

d. Segmentation permission checking on load/store/execute: this would require full

emulation.

4. Cases that are un-virtualizable:

a. RFLAGS.IOPL != 0: When IOPL is non-zero, most cases where behavior would

typically change will instead #GP, which the VMM can catch/emulate (i.e., many

cases are virtualizable). The problematic Intel64 cases are as follows:

i. Ring 0 privileged SW sets IOPL to 3 and changes to ring 3. If ring 3 SW

runs PUSHF or SYSCALL, the value with IOPL=3 should go into the

memory or register destination. When this sequence runs in a VM, the ring

0 instruction that sets IOPL to 3 would cause a #GP and trigger a VMExit.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 37

If the VMM resumes the VM with the “wrong” IOPL, i.e., IOPL==0, the ring

3 PUSHF or SYSCALL would expose this incorrect IOPL through memory or

the register. Also, ring3 POPF will not update IF. The preferred scheme is

for VMM to emulate the guest till IOPL is changed back to 0. This case is

not expected on modern software.

ii. If the guest attempts to set IOPL to a value greater than zero using a

POPF instruction in ring 0, this will be silently ignored. The IOPL value will

not be updated and the VMM will be unaware that this occurred. Some

subsequent consumers of this value (e.g., CLI/STI/IN/OUT) will generate a

#GP, but others will silently continue with different semantics (e.g., IF

updating POPF, memory written by PUSHF, flags stored by SYSCALL, etc.)

b. #UD behavior on SYSCALL/SYSEXIT when EFER.SCE is cleared.

3.20.5 Migration to Intel64

When migrating a guest from X86S to Intel64, the most permissive segmentation state needs to

be filled in for segmentation VMCS fields that are removed in X86S:

Limit: Fill in infinite for removed fields

 Base: Fill in 0 for removed bases

CS: If selector is zero, fill in Unusable=1 Else S=1, Type=11, L=from VMCS, CPL=from VMCS,

D=!L, G=1, P=1

SS: If selector is zero, fill in Unusable=1 Else S=1, Type=3, B=from VMCS, CPL=from VMCS,

P=1, G=1

 DS/ES/FS/GS: If selector is zero, fill in Unusable=1 Else S=1, Type=3, G=1, P=1

 LDT/GDT/TR: Fill in S=0 and respective type, G bit based on limit value.

Fields not mentioned are 0.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 38

(This page intentionally left blank)

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 39

4 Appendix

This appendix gives further details on limited segmentation and exception compatibility.

4.1 Segmentation Instruction Behavior

Note the descriptions only describe the new behavior of the instructions. For legacy behavior
please refer to the SDM. The pseudocode might not have the final fault ordering or error codes. If
something is not changed from baseline, it will not be mentioned.

Check_selector(selector):

 IF CS AND selector is NULL THEN

 #GP(0);

 FI

 IF (selector.TI == 0 AND selector exceeds GDT limit) OR

 (selector.TI == 1 AND selector exceeds LDT limit) OR

 Descriptor address in table is non canonical THEN

 #GP(selector); // OR ZF := 0

 FI

END

Check_CS_desc(selector, Descriptor, newCPL):

 IF Descriptor is not code segment

 OR (Descriptor.L xor Descriptor.D == 0) // prevents 16b size. Invalid size

 OR Descriptor.DPL == 1 // only needed for gates

 OR Descriptor.DPL == 2 // only needed for gates

 OR selector.RPL != Descriptor.DPL

 OR (Descriptor.DPL != newCPL and not (trap or int gate))

 OR (Descriptor.DPL > newCPL and (trap or int gate)) // gates cannot go out

 OR (Descriptor.L == 0 AND Descriptor.DPL == 0) // prevent 32-bit ring 0

 OR (descriptor.P == 0) THEN

 #GP(selector);

 FI

END

Check_CS_desc_for_IRET(selector, Descriptor, newCPL):

 IF Descriptor is not code segment

 OR (Descriptor.L xor Descriptor.D == 0) // prevents 16b size. Invalid size

 OR Descriptor.DPL == 1

 OR Descriptor.DPL == 2

 OR selector.RPL != Descriptor.RPL

 OR Descriptor.DPL != newCPL // IRET cannot go in

 OR (Descriptor.L == 0 AND Descriptor.DPL == 0) // prevents 32-bit ring 0

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 40

 OR (descriptor.P == 0) THEN

 #GP(selector);

 FI

END

Check_Data_desc(selector, Descriptor):

 IF selector is not NULL THEN

 IF selector exceeds GDT/LDT limit // does not apply to VMEntry/RSM

 OR selector.RPL < CPL

 OR Descriptor is system type

 OR (descriptor.P == 0) THEN

 #GP(selector); // OR ZF := 0

 FI

 FI

END

// This is used for mov SS, pop SS, LSS

Check_SS_desc(selector, Descriptor):

 IF selector exceeds GDT/LDT limit

 OR (selector is non NULL AND selector.RPL != DPL)

 OR selector is NULL

 OR Descriptor is system type

 OR Descriptor.DPL != CPL

 OR Descriptor.P == 0 THEN)

 #GP(selector); // OR ZF := 0

 FI

 // SS.B / Selector / DPL are saved for VMX

END

// This is used only for IRET

Check_SS_desc_for_iret(selector, Descriptor, newCPL):

 IF selector is not NULL THEN

 IF selector exceeds GDT/LDT limit

 OR selector.RPL != Descriptor.DPL

 OR Descriptor is system type

 OR Descriptor.DPL != newCPL

 OR descriptor.P == 0 THEN

 #GP(selector); // OR ZF := 0

 FI

 ELSIF (newCPL == 3 OR NOT 64b mode) THEN // NULL

 #GP(selector)

 FI

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 41

 // SS.B / Selector / DPL are saved for VMX

END

Load_descriptor_from_GDT_LDT(selector):

 IF (selector & 0xFFF8) != 0x0 THEN

 IF selector.TI == 1 THEN BASE := LDT Base;

 ELSE BASE := GDT Base; FI;

 Desc := load_physical_sup(BASE + (selector & 0xFFF8));

 Set accessed bit in Descriptor copy, not in memory;

 Return Desc;

 ELSE

 Return 0;

 FI

END

Load_descriptor_from_IDT(vector):

 Desc := load physical_sup(IDT base + vector << 4);

 Return Desc;

END

4.2 Segmentation Instruction Pseudocode

4.2.1 CALL Far

Far CALLs are intra-level only. Mode restrictions are enforced. The selector must point to a non-
conforming code descriptor in the GDT/LDT. The CS.accessed bit is not set. The new descriptor is
saved for use in VMX. With 16-bit operand size, the instruction raises an #UD exception. With
0x67 prefix and when indirect and in 32-bit mode instruction raises a #GP(0). The #NP and #SS
exceptions are replaced with #GP.

IF 16bit operand size THEN #UD ; FI

IF 0x67 prefix AND indirect AND 32bit mode THEN #GP(0); FI

Check_selector(newCS);

newCSdesc := Load_descriptor_from_GDT_LDT(tempCS);

Check_CS_desc(tempCS, newCSdesc, CPL);

IF newRIP is non-cannonical THEN

 #GP(0)

FI

Push CS;

Push RIP;

CS := newCS;

RIP := newRIP;

Save newCSdesc;

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 42

Do shadow stack pushes if enabled

Do end branch state transition if enabled

4.2.2 ERETU

Enforces RFLAGS restrictions. Mode restrictions are enforced, as well as limits on code selector

types. No access bits for descriptors are set. #NP and #SS are replaced with #GP.

Beginning of flow the same as Intel64

// Intel64 FRED checks for CS/SS compatible with IA32_STAR

Same FRED code

ELSE IF newCS OR newSS not compatible with IA32_ STAR THEN

 #GP(0);

FI

Rest of flow is same as Intel64

4.2.3 ERETS

Enforces RFLAGS restrictions.

4.2.4 FRED ENTRY FLOW

Enforces RFLAGS restrictions.

4.2.5 Int n, INT3, INTO, External Interrupt, Exceptions with CR4.FRED == 0

Mode restrictions and descriptor type restrictions are enforced. Access bits for descriptors. are not

set. #NP is replaced with #GP.

IF INTO and CS.L = 1 THEN

 #UD;

FI;

IF ((vector_number « 4) + 15) is not in IDT.limit THEN

 #GP(error_code(vector_number,1,EXT));

FI;

gate := Read_descriptor_from_IDT(vector_number);

IF gate.type not in {intGate64, trapGate64} THEN

 #GP(error_code(vector_number,1,EXT));

FI;

IF software interrupt (* does not apply to INT1 *) THEN

 IF gate.DPL < CPL THEN

 #GP(error_code(vector_number,1,0));

 FI;

FI;

IF gate.P == 0 THEN

 #GP(error_code(vector_number,1,EXT));

FI

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 43

newCS := gate.selector;

IF newCS is NULL THEN

 #GP(EXT); (* Error code contains NULL selector *)

FI;

Check_selector(newCS);

newCSdesc := Load_descriptor_from_GDT_LDT(newCS);

Check_CS_desc(newCS, newCSdesc, 0);

IF newCSdesc.DPL < CPL THEN

 GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;

ELSIF newCSdesc.DPL = CPL THEN

 GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;

ELSE

 #GP(error_code(new code-segment selector,0,EXT));

FI

END;

INTER-PRIVILEGE-LEVEL-INTERRUPT:

 IF gate.IST == 0 THEN

 TSSstackAddress := (newCSdesc.DPL « 3) + 4;

 ELSE

 TSSstackAddress := (gate.IST « 3) + 28;

 FI;

 IF (TSSstackAddress + 7) > TSS.limit THEN

 #TS(error_code(TSS.selector,0,EXT);

 FI;

 NewRSP := 8 bytes loaded from (TSS.base + TSSstackAddress);

 NewSS := newCSdesc.DPL; (* NULL selector with RPL = new CPL *)

 IF gate.IST = 0 THEN

 NewSSP := IA32_PLi_SSP; (* where i = newCSdesc.DPL *)

 ELSE

 NewSSPAddress := IA32_INTERRUPT_SSP_TABLE_ADDR + (gate.IST « 3);

 IF ShadowStackEnabled(CPL0) THEN

 NewSSP := 8 bytes loaded from NewSSPAddress;

 FI;

 FI;

 IF NewRSP is non-canonical THEN

 #GP(EXT); (* Error code contains NULL selector *)

 FI;

 IF gate.IP is non-canonical THEN

 #GP(EXT); (* Error code contains NULL selector *)

 FI;

 RSP := NewRSP & FFFFFFFFFFFFFFF0H;

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 44

 SS := NewSS;

 SSdesc := const;

 Push(SS);

 Push(RSP);

 Push(RFLAGS); (* 8-byte push *)

 Push(CS);

 PUSH(RIP);

 Push(ErrorCode); (* If needed, 8-bytes *)

 RIP := gate.RIP;

 CS := newCS;

 IF ShadowStackEnabled(CPL) AND CPL == 3 THEN

 IA32_PL3_SSP := LA_adjust(SSP);

 FI;

 CPL := newCSdesc.DPL;

 CS.RPL := CPL;

 IF ShadowStackEnabled(CPL) THEN

 oldSSP := SSP

 SSP := NewSSP

 IF (SSP & 0x07 != 0) THEN

 #GP(0);

 FI

 IF (CS.L = 0 AND SSP[63:32] != 0) THEN

 #GP(0);

 FI

 FI;

 expected_token_value := SSP; (* busy bit- must be clear *)

 new_token_value := SSP | BUSY_BIT; (* Set the busy bit *)

 IF (shadow_stack_lock_cmpxchg8b(SSP, new_token_value,

 expected_token_value) !=

 expected_token_value) THEN

 #GP(0);

 FI;

 IF oldSS.DPL != 3

 ShadowStackPush8B(oldCS);

 ShadowStackPush8B(oldRIP);

 ShadowStackPush8B(oldSSP);

 FI;

 IF EndbranchEnabled (CPL)

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;

 IA32_S_CET.SUPPRESS = 0

 FI;

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 45

 IF gate.type is intGate64 THEN

 RFLAGS.IF := 0 (* Interrupt flag set to 0, interrupts disabled *);

 FI;

 RFLAGS.TF := 0;

 RFLAGS.RF := 0;

 RFLAGS.NT := 0;

END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:

 NewSSP := SSP;

 CHECK_SS_TOKEN := 0;

 IF gate.IST != 0 THEN

 TSSstackAddress := (IDT-descriptor IST « 3) + 28;

 IF (TSSstackAddress + 7) > TSS.limit THEN

 #TS(error_code(current TSS selector,0,EXT));

 FI;

 NewRSP := 8 bytes loaded from (current TSS base +

 TSSstackAddress);

 ELSE

 NewRSP := RSP;

 FI;

 IF ShadowStackEnabled(CPL) THEN

 NewSSPAddress := IA32_INTERRUPT_SSP_TABLE_ADDR + (IDT gate IST « 3)

 NewSSP := 8 bytes loaded from NewSSPAddress

 CHECK_SS_TOKEN := 1

 FI;

 IF NewRSP is non-canonical THEN

 #GP(EXT); (* Error code contains NULL selector *)

 FI;

 IF gate.RIP is non-canonical THEN

 #GP(EXT); (* Error code contains NULL selector *)

 FI;

 RSP := NewRSP & FFFFFFFFFFFFFFF0H;

 Push(SS);

 Push(RSP);

 Push(RFLAGS); // 8-byte push – including .IF, not affected by IOPL,CPL

 Push(CS);

 PUSH(RIP);

 Push(ErrorCode); (* If needed, 8-bytes *)

 oldCS := CS;

 oldRIP := RIP;

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 46

 RIP := gate.RIP;

 CS := newCS;

 CS.RPL := CPL;

 IF ShadowStackEnabled(CPL) AND CHECK_SS_TOKEN == 1 THEN

 IF NewSSP & 0x07 != 0 THEN

 #GP(0);

 FI;

 IF (CS.L = 0 AND NewSSP[63:32] != 0) THEN

 #GP(0);

 FI;

 expected_token_value := NewSSP (* busy bit – (0)- must be clear *)

 new_token_value := NewSSP | BUSY_BIT (* Set the busy bit *)

 IF shadow_stack_lock_cmpxchg8b(NewSSP, new_token_value,

 expected_token_value) !=

 expected_token_value THEN

 #GP(0);

 FI;

 FI;

 IF ShadowStackEnabled(CPL) THEN

 (* Align to next 8 byte boundary *)

 tempSSP = SSP;

 Shadow_stack_store 4 bytes of 0 to (NewSSP − 4)

 SSP := newSSP & 0xFFFFFFFFFFFFFFF8H;

 ShadowStackPush8B(oldCS);

 ShadowStackPush8B(oldRIP);

 ShadowStackPush8B(tempSSP);

 FI;

 IF EndbranchEnabled (CPL)

 IF CPL == 3 THEN

 IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH;

 IA32_U_CET.SUPPRESS = 0;

 ELSE

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;

 IA32_S_CET.SUPPRESS = 0;

 FI;

 FI;

 IF IDT gate is interrupt gate THEN

 RFLAGS.IF := 0; (* Interrupt flag set to 0; interrupts disabled *)

 FI;

 RFLAGS.TF := 0;

 RFLAGS.NT := 0;

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 47

 RFLAGS.RF := 0;

END;

4.2.6 IRET

IRET cannot enter 16-bit mode or VM86 mode. Task Descriptor access bits are not set. Mode

restrictions are enforced. #NP and #SS are replaced with #GP.

IF FGLAGS.NT == 1 THEN

 #GP(0);

FI

tempRIP := POP(); // according to operand size

tempCS := POP(); // according to operand size

newCPL := tempCS.RPL

tempFlags := POP();// according to operand size

IF CPL == 3 THEN

 tempFlags(VIP, VIF, IOPL) := (0, 0, 0);

ELSIF tempFlags(VIF, VIP, IOPL) != (0,0,0) THEN

 #GP(0);

FI

Check_selector(tempCS);

Descriptor := Load_descriptor_from_GDT_LDT(tempCS);

Check_CS_desc_for_IRET(tempCS, Descriptor, newCPL);

IF newCPL > CPL THEN

 IF CR4.FRED THEN

 #GP(tempCS);

 ELSE

 GOTO RETURN_TO_OUTER_PRIVLEDGE_LEVEL; // must be level 3

 FI

ELSIF Started_in_64b_mode THEN

 GOTO RETURN_FROM_IA32e;

ELSE

 GOTO RETURN_FROM_SAME_PRIVLEDGE_LEVEL;

FI

RETURN_FROM_SAME_PRIVLEDGE_LEVEL:

 IF tempRIP is not canonical THEN

 #GP(0); // Restoring RSP

 FI

 IF ShadowStackEnabled(CPL) THEN

 Perform normal Shadow Stack operations as described in the SDM;

 FI

 CS := tempCS;

 RIP := tempRIP;

 RFLAGS(CF, PF, AF, ZF, SF, TF, DF, OF, NT, RF, AC, IC) := tempFlags;

 IF CPL == 0 THEN FGLAGS(IF) := tempFlags; FI;

 Unmask NMI;

END;

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 48

RETURN_FROM_IA32e:

 tempRSP := POP();

 tempSS := POP();

 Check_sel(tempSS);

 tempSSdesc := Load_descriptor_from_GDT_LDT(tempSS);

 check_SS_desc(tempSS, tempSSdesc, newCPL); // Null handling is not required because IA32e is ring 3.

 SS := tempSS;

 RSP := tempRSP;

 GOTO RETURN_FROM_SAME_PRIVLEDGE_LEVEL;

RETURN_TO_OUTER_PRIVLEDGE_LEVEL:

 IF newCPL != 3 THEN

 #GP(tempCS);

 FI

 tempRSP := POP();

 tempSS := POP();

 IF tempRIP is not canonical THEN

 #GP(0); // Restoring RSP

 FI

 CPL := newCPL;

 IF ShadowStackEnabled() THEN

 Perform normal Shadow Stack operations as described in the SDM;

 FI

 Check_selector(tempSS);

 tempSSdesc := Load_descriptor_from_GDT_LDT(tempSS);

 check_SS_desc_for_IRET(tempSS, tempSSdesc, newCPL);

 CS := tempCS;

 RIP := tempRIP;

 SS := tempSS;

 RSP := tempRSP;

 Save CS.ARbyte

 RFLAGS(CF, PF, AF, ZF, SF, TF, DF, OF, NT, RF, AC, IC) := tempFlags;

 IF CPL == 0 THEN FGLAGS(IF) := tempFlags; FI;

 Unmask NMI;

END;

4.2.7 JMP Far

Far JMPs are intra-level only. Mode restrictions are enforced. The selector must point to a non-
conforming code descriptor in the GDT/LDT. The CS.accessed bit will not be set. With 16-bit

operand size the instruction raises an #UD exception. With 0x67 prefix and when in 32-bit mode
the instruction raises a #GP(0) exception.

Pseudocode:

IF 16bit operand size THEN #UD ; FI

IF 0x67 prefix AND 32bit mode THEN #GP(0); FI

Check_selector(newCS);

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 49

newCSdesc := Load_descriptor_from_GDT_LDT(tempCS);

Check_CS_desc(tempCS, newCSdesc, CPL);

IF newRIP is non-cannonical THEN

 #GP(0);

FI

CS := newCS;

RIP := newRIP;

Save newCSdesc;

Do shadow stack pushes if enabled;

Do end branch state transition if enabled;

4.2.8 LSL, LAR, VERW, VERR

Simplified checks. LAR forces the access bit to 1.

Check_Selector(selector);

// If failure return with ZF := 0

Desc := Load_descriptor_from_GDT_LDT(selector);

// If failure return with ZF := 0

Check_Data_Desc(selector, Desc, CPL);

// if failure return with ZF := 0

// For LAR always return Access = 1

// LSL/LAR/VERW/VERR flow to return information from Desc

4.2.9 LDS, LES, LFS, LGS, LSS

The Desc.accessed bit will not be set. Use simplified checks.

Pseudocode:

If newSel is NULL AND LSS AND NOT (CPL0 AND CS.L) THEN

 #GP(0);

FI

Check_selector(newSel);

newDesc := Load_descriptor_from_GDT_LDT(newSel);

IF LSS THEN

 Check_SS_desc(newSEL, newDesc);

ELSE

 Check_Data_desc(newSel, newDesc);

FI

Dest(sel) := newSel;

Dest(offset) := offest;

Save newDesc;

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 50

4.2.10 LGDT

Behaves as described in the SDM.

4.2.11 LLDT

Loading a selector with bits [2:15] set to 0 will clear the LDT base and limit.

4.2.12 LIDT

Behaves as described in the SDM except that the Unusable bit is not set in the AR byte when the
selector is NULL. Instead the limit is set to zero, which has the effect of causing a #GP when an
access is made to a null LDT.

4.2.13 LKGS

Follows modified selector load checks, similar to MOV to segment register below.

4.2.14 LTR

Behaves as described in the SDM except that the BUSY bit is not checked or set in memory.

4.2.15 MOV from Segment Register

Behaves as described in the SDM.

4.2.16 MOV to Segment Register

Simplified checks.

If newSel is NULL AND MOV SS AND NOT (CPL0 AND CS.L) THEN

 #GP(0);

FI

Check_selector(newSel);

newDesc := Load_descriptor_from_GDT_LDT(newSel);

IF MOV SS THEN

 Check_SS_desc(newSEL, newDesc);

ELSE

 Check_Data_desc(newSel, newDesc);

Dest(sel) := newSel;

IF SS THEN

 MOV SS instruction blocking;

 Save Arbyte

FI;

4.2.17 POP Segment Register

Simplified checks.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 51

IF 64b mode and POP DS, POP ES, POP SS THEN

 #UD;

FI

newSel := POP

Check_selector(newSel);

newDesc := Load_descriptor_from_GDT_LDT(newSel);

IF POP SS THEN

 Check_SS_desc(newSEL, newDesc);

ELSE

 Check_Data_desc(newSel, newDesc);

Dest:= newSel;

IF SS THEN

 Do POP SS blocking;

 Save Arbyte;

FI

4.2.18 POPF

The IOPL, VM, VIP, and VIF flags are always zero and are ignored on POPF.

4.2.19 PUSH Segment Selector

Behaves as described in the SDM.

4.2.20 PUSHF

Behaves as described in the SDM.

4.2.21 RDFSBASE, RDGSBASE

Behaves as described in the SDM.

4.2.22 RET Far

Far RETs are intra-level only. The selector must point to a code descriptor in the GDT/LDT. The
CS.accssed bit is not set. With 16-bit operand size the instruction raises an #UD exception.

IF 16bit operand size THEN #UD ; FI

newRIP := POP;

newCS := POP;

If newCS is NULL THEN

 #GP(0)

FI

Check_selector(newCS);

newCSdesc := Load_descriptor_from_GDT_LDT(tempCS);

Check_CS_desc(tempCS, newCSdesc, CPL);

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 52

IF newRIP is non-cannonical THEN

 #GP(0)

FI

CS := newCS;

RIP := newRIP;

Save newCSdesc.ARbyte;

Do shadow stack if enabled

Do end branch state transition if enabled

4.2.23 SGDT

Behaves as described in the SDM.

4.2.24 SLDT

Behaves as described in the SDM.

4.2.25 SIDT

Behaves as described in the SDM.

4.2.26 STR

Behaves as described in the SDM.

4.2.27 SWAPGS

Behaves as described in the SDM.

4.2.28 SYSCALL

Behaves as described in the SDM and FRED EAS, except for enforcing RFLAGS restrictions.

4.2.29 SYSENTER

Behaves as described in the SDM.

4.2.30 SYSEXIT

Behaves as described in the SDM.

4.2.31 SYSRET

Behaves as described in the SDM and FRED EAS, except it faults if incoming FGLAGS (R11) has
VIF, VIP, or IOPL != 0.

4.2.32 WRFSBASE, WRGSBASE

Behaves as described in the SDM.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 53

4.2.33 VMEntry

For each of CS, SS, DS, ES, FS, GS, TR, and LDTR fields are loaded from the VMCS guest state
area as follows:

• TR and LDTR: the selector, base, and limit fields are loaded. The AR bytes including
Unusable for TR and LDTR are ignored. The G bit is not used; the limit is always loaded as

32-bit.

• CS: The selector field is loaded, as well as the L bit from the access-rights field, and the D
bit. The DPL field is checked, but not loaded. The D bit must be always NOT L. Other bits
in the AR byte including Unusable are ignored.

• SS, DS, ES, FS, GS: The selector field is loaded. The SS DPL and B are loaded. For FS/GS
the base is loaded. The AR bytes including Unusable for DS, ES, FS, GS are ignored.

A VMEntry triggers an Invalid Guest State abort for the following conditions in VMCS:

• CS.L == 0 and CS.D == 0 (16-bit)

• CS.L == 1 and CS.D == 1 (invalid)

• CS.L == 0 and SS.DPL == 0 (32-bit ring 0)

• SS.DPL is 1 or 2

• SS.RPL != SS.DPL

• CS.RPL != SS.DPL

• TR.sel.TI != 0 (no TR in LDT)

• LDTR.sel.TI != 0

• LDTR base is not canonical

• There are no checks on data segments other than SS.

4.2.34 VMExit

For each of CS, SS, DS, ES, FS, GS, LDTR, GDTR, TR:

• For FS/GS/TR/LDTR/IDTR/GDTR the base fields are saved.

• For TR/LDTR/IDTR/GDTR the limit fields are saved. The limit is always saved as expanded
32-bit with the G bit never being set.

• For CS, the L bit is saved and the D bit is set to !L. CS.DPL is set to the value of SS.DPL.

The other bits in the same field are undefined.

• For SS, the DPL and B bits are saved. The other bits in the same field are undefined.

For CS, SS, DS, ES, FS, GS, TR, GDTR:

• The selector is loaded from the host selector field. There is no concept of unusable for 0
selectors, except that loading NULL selectors for CS/TR fails consistency checks at entry.

• FS/GS/TR load from the host base following the same rules as Intel64. Other bases are
ignored.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 54

• TR limit is set to 0x67.

• SS.DPL is set to zero, SS.B is set to zero.

For LDTR the base and limit are set to zero. GDTR and IDTR base are loaded with their limits set
to 0xffff.

4.2.35 STM Loading Host State for Dual Monitor Activation

The registers CS, SS, DS, ES, FS, GS are loaded as follows:

• The CS selector is set to 8.

• The selectors for SS/DS/ES/FS/GS are set to 16.

• The base addresses for FS/GS are set to 0.

• The CS.L bit is set to 1.

• CR4.FRED is cleared.

4.3 List of Segmentation Instructions and Associated Behavior

Table 19 lists the segmentation instructions and associated behavior.

Table 19. List of Segmentation Instructions

Instruction Behavior

SGDT No change to Intel64 behavior.

SIDT No change to Intel64 behavior.

SLDT No change to Intel64 behavior.

STR No change to Intel64 behavior.

LGDT No change to Intel64 behavior.

LIDT No change to Intel64 behavior.

LLDT Loading a 0 descriptor will clear base/limit.

LTR Does not check TSS.busy bit.

VERR
Behavior changed to follow the modified segmentation architecture described in

Section 5.1.

VERW
Behavior changed to follow the modified segmentation architecture described in

Section 5.1.

ARPL No change to Intel64 behavior.

FAR CALL

Behavior changed to follow the modified segmentation architecture described in

Section 5.2. #UD on 16-bit operand size. #GP on 0x67 prefix in 32-bit mode and

indirect. Cannot change rings. Enforces mode restrictions.

FAR JMP

Behavior changed to follow the modified segmentation architecture described in

Section 5.2. #UD on 16-bit operand size. #GP on 0x67 prefix in 32-bit mode.

Cannot change rings.

FAR RET

Behavior changed to follow the modified segmentation architecture described in

Section 5.2. #UD on 16-bit operand size. Cannot change rings. Enforces mode

restrictions.

IRET
Only supports intra-ring and ring 0 to ring 3. Enforce mode and RFLAGS

restrictions. Simplified checks.

LDS Load far pointer in DS with simplified segment checks.

LES Load far pointer in ES with simplified segment checks.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 55

Instruction Behavior

LFS Load far pointer in FS with simplified segment check rules

LGS Load far pointer in GS with simplified segment check rules

LSS Load far pointer in SS with simplified segment check rules

LKGS Move to Kernel GS Base with the segment check rules described in Section 5.1.

MOV to DS Move to DS with simplified segment check rules

MOV to ES Move to ES with simplified segment check rules

MOV to SS Move to SS with simplified segment check rules

MOV to FS Move to FS with simplified segment check rules

MOV to GS Move to GS with simplified segment check rules

MOV from DS No change to Intel64 behavior.

MOV from ES No change to Intel64 behavior.

MOV from SS No change to Intel64 behavior.

MOV from FS No change to Intel64 behavior.

MOV from GS No change to Intel64 behavior.

POP DS Pop top of stack into DS with simplified segment check rules

POP ES Pop top of stack into ES with simplified segment check rules.

POP SS Pop top of stack into SS with with simplified segment check rules

POP FS Pop top of stack into FS with simplified segment check rules

POP GS Pop top of stack into GS with simplified segment check rules

PUSH CS No change to Intel64 behavior.

PUSH DS No change to Intel64 behavior.

PUSH ES No change to Intel64 behavior.

PUSH SS No change to Intel64 behavior.

PUSH FS No change to Intel64 behavior.

PUSH GS No change to Intel64 behavior.

SWAPGS No change to Intel64 behavior.

RSM No changes to segmentation, but enforces other mode and RFLAGS restrictions.

WRFSBASE No change to Intel64 behavior.

WRGSBASE No change to Intel64 behavior.

RDFSBASE No change to Intel64 behavior.

RDGSBASE No change to Intel64 behavior.

SYSENTER Cannot enter 16-bit mode or VM86.

SYSEXIT Cannot enter 16-bit mode or VM86.

SYSCALL Enforces RFLAGS restrictions.

SYSRET Enforces RFLAGS restrictions.

ERETU Modified segment check rules. Enforces RFLAGS restrictions.

FRED entry No change to Intel64 behavior.

IDT entry Modified segment check rules and FRED restrictions.

X86S ISA
External Architectural Specification

Document Number 351407-001, Revision 1.1 56

4.4 64-Bit SIPI Without LEGACY_REDUCED_OS_ISA

64-bit SIPI can be implemented on systems that don’t set the LEGACY_REDUCED_OS_ISA CPUID
bit to allow compatibility to X86S systems. In this case, not enabling 64-bit SIPI in the
IA32_SIPI_ENTRY_STRUCT_PTR or in the SIPI_ENTRY_STRUCT FEATURES bit will fall back to
legacy INIT/SIPI.

