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l. Introduction. The toilet paper dispensers in a certain building are designed to hold two rolls 
of tissues, and a person can use either roll. 

There are two kinds of people who use the rest rooms in the building: big-choosers and 
little-choosers. A big-chooser always takes a piece of toilet paper from the roll that is currently 
larger; a little-chooser always does the opposite. However, when the two rolls are the same size, or 
when only one roll is nonempty, everybody chooses the nearest nonempty roll. When both rolls 
are empty, everybody has a problem. 

Let us assume that people enter the toilet stalls independently at random, with probability p 
that they are big-choosers and probability q = 1 - p that they are little-choosers. If the janitor 
supplies a particular stall with two fresh rolls of toilet paper, both of length n, let Mn(P) be the 
average number of portions left on one roll when the other roll first empties. (We assume that 
everyone uses the same amount of paper, and that the lengths are expressed in terms of this unit.) 
For example, it is easy to establish that 

M1(p) = 1, Mz(p) = 2- p, M3(p) = 3- 2p- p 2 + p3; Mn(O) = n; Mn(l) = 1. 

The purpose of this paper is to study the asymptotic value of Mn ( p) for fixed p as n --+ oo. 
We will see that the generating function En Mn ( p) z n has a surprisingly simple form, from which 
the asymptotic behavior can readily be deduced. Along the way we will encounter several other 
interesting facts. 

2. Recurrence Relations. Let us begin by generalizing the problem slightly, using the notation 
Mmn(P) to stand for the mean number of portions left when one roll empties, if we start with m 
on one roll and n on the other. Thus 

Mn(P) = Mnn(P ); 

Mmo(P) = m; 

Mnn(P) = Mn(n-l)(p ), if n > 0; 

if m > n > 0. 

The value of Mn ( p) can be computed for all n from these recurrence relations, since no pairs 
(m',n') with m' < n' will arise. 

It is convenient to visualize the recurrence by drawing certain arcs between adjacent lattice 
points in the plane, where the arc from (n, n) to (m- 1, n) has weight p and from {m, n) to 
(m, n- 1) has weight q, for all 0 < n < m; the arc from (m, n) to (n, n- 1) has weight 1 for all 
n > 0; and there are no other arcs. Then Mmn(P) is the sum, over all k:;;. 1, of k times the sum 
of the weights of all paths from ( m, n) to ( k, 0), where the weight of a path is the product of the 
individual arc weights. 

A path that starts at the diagonal point ( n, n) must go first to ( n, n - 1); then it either returns 
to the diagonal at (n- 1, n - 1) or goes to (n, n- 2), etc. Let ck be the number of paths from 
(n, n) to (n- k, n- k) whose intermediate points do not touch the diagonal, and let dnk be the 
number of paths from (n, n - 1) to (k, 1) whose points do not ever touch the diagonal. A path 
that starts at ( n, n) either returns to the diagonal for the first time at some point ( n - k, n - k ), 
or never returns to the diagonal at all; it follows that 
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Mn(P) = C1PMn-1(p) + Czp2qMn-2(p) + · · · +cn-1Pn-lqn- 2M1(p) + Ln(P) 

L ckpkqk-lMn-k(P) + Ln(P ); 
O<k<n 

(Each path from (n, n) to (n- k, n- k) has weight pkqk- 1 if no intermediate diagonal points 
are involved, since the step to (n, n - 1) has weight 1 and then there are k steps of weight p and 
k - 1 of weight q, in some order. Similarly, each diagonal-avoiding path from ( n, n - 1) to ( k, 1) 
has weight pn-kqn- 2 .) 

The coefficients ck are the well-known Catalan numbers, and the coefficients dnk are the 
well-known numbers that arise in the classical ballot problem; see, for example, [2, III.1], [3, 
exercise 2.2.1-4]. We can discover the required values by observing that dnk is the number of 
decreasing paths from (n, n- 1) to (k, 1) minus the number of decreasing paths from (n, n- 1) 
to (1, k), where a "decreasing path" is any path that decreases either the left component or the 
right component by unity at each step. This follows because there is a 1-1 correspondence between 
all decreasing paths from (n, n- 1) to (k, 1) that do touch the diagonal and all decreasing paths 
from ( n, n - 1) to (1, k); the idea [1] is to reflect the path about the diagonal, starting after the 
place where it first touches a diagonal point. Since the number of decreasing paths from (a, b) to 

( c d) is (a+ h- c- d) =(a+ h- c- d) for all a ~ c and b ~ d we have 
' a-c h-d ~ 9" ' 

d =(2n-k-2)-(2n-k-2)=(2n-k-2)k-1_ 
nk n - 2 n - 1 n - 2 n - 1 

Furthermore c n _ 1 = d n 2 , hence 

=(2n-2)! en n- 1 n · 

3. Special power series. The generating function for Catalan numbers 

( 
2n - 2) 1 1 - /1 - 4z 

C(z) = c1z + c2z2 + · · · = L _ 1 -zn = 2 n;;d n n 

can be derived in many ways. For our purposes it seems best to make use of the general identity 

(•) I:(2k+w)zk= 1 (1-v'1="4z)w 
k;;.O k /1 - 4z 2z 

This well-known identity holds for all complex numbers w; it can be proved easily by contour 
integration: The coefficient of zk in the Maclaurin expansion of the right-hand side is 

1 tl. 1 ( 1 - v'1="4z ) w dz 1 tl. dt 
2wi '.1' /1 _ 4z 2z zk+ 1 = 2wi '.1' (1 _ t) w+k+ 1 tk+ 1 

if we make the substitutions t = ~(1 - /1 - 4z ), z = t- t 2, dz = (1 - 2t) dt. The latter 
integral is the residue of the integrand, i.e., the coefficient of tk in (1 - t)-w-k-1, namely 
(- w -/-

1 )< -1)k = ( Zk; "). (A more elementary proof can be found in [3, exercise 1.2.6-26].) 

The derivative of C(z)jz with respect to z is C(z) 2/(z 2/1 - 4z ); hence we can replace w by 
w + 1 in ( •) and integrate, obtaining the companion formula 

L _w_ ( 2k + w - 1) zk = ( 1 - v'1="4z ) " 
k;;.O k + w k 2z 

Again, this result is valid for all complex w, if we evaluate the coefficient by continuity when 
k + w = 0. The case w = 1 of this formula reduces to the generating function for Catalan 
numbers stated earlier. 
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These power series converge for 1z1 < lj4, because the righthand side is singular only when z 
is infinite or /1 - 4z is singular. It is interesting to consider what happens when z = pq, p ;;?; 0, 
q;;?; 0, and p + q = 1: We have 1 - 4z = (p- q) 2

, hence 

/1- 4z = IP- ql = max(p,q)- min{p,q), 

and we obtain the interesting formula 

C(pq) = L (2n_-12)l_pnqn = min{p,q). 
n;;.l n n 

We have pq < 1/4 unless p = q = 1/2; the formula holds also in the latter case, by Abel's limit 
theorem. 

4. Generating functions. Let us now set 

n;;.l n;;.l 

The recurrence relation for Mn ( p) in section 2 is equivalent to 

M(z)- L(z) = q- 1C(pqz )M(z ), 

and we also have 

L(z) = z + L qn-1 k(k- 1)pn-k( 2n- k- 2)zn 
2~k~nn-1 n-2 

L .qJ+k-1 k(k-1)pi(2j+~-2)zi+k 
J,k;;.o1+k-1 1 

"' k -1k k "' k - 1 ( 2 j + k - 2) ( ) j '-' q z '-' . k 1 . pqz . 
k;;.O j;;.O 1 + - 1 

By the identity in section 3, the latter sum is 

= L qk-1kzk( 1- ..j1- 4pqz )k-1 
k;;.o 2pqz 

P2"' = z L ki-kC(pqz)k- 1 = ~ 
2 

k;;;. o { p - C { pqz ) ) 

We can now eliminate L(z) and solve for M(z), obtaining a "closed form" for the desired 
generating function: 

M ( z) = z ( p - ~( pqz) ) 2 ( q - Cq( pqz) ) . 

Such a simple form for M(z) is unexpected; but in fact, we can do even more! We have 

(p- C(pqz))(q- C(pqz)) = pq- C(pqz) + C(pqz)
2 

= pq(1- z), 

because C(z)- C(z) 2 = z. Hence the denominator of M(z) can be vastly simplified: 

M ( z) = z 2 ( q - C ( pqz) ) . 
(1 - z) q 

This is the product (z + 2z 2 + 3z 3 + · · ·) · (1 - c1pz - c2 p 2qz 2 
- c3p 3q 2z 3 

- • • • ), so the 
coefficient of zn can be written 

Mn(P) = n- (n- 1)c1p- (n- 2)c2p 2q- · · · -1 · Cn_ 1pn- 1pn- 2
. 
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When a formula turns out to be so simple, it must have a simple explanation. But the author 
hasn't been able to think of any direct proof. For some reason, Mn ( p) is not only the expected 
size of the remaining roll when one roll empties, it is also the expected value of the "first return to 
the diagonal," in the following sense: Suppose the two toilet paper rolls start in the full state 
( n, n ), and they are used by big-choosers and little-choosers until the empty state (0, 0) is reached; 
and suppose that the rolls first become equal in size again at state ( n - k, n - k ). Then the 
average value of k is M 11 (p). (This follows from our formula for M11 (p), because ckpkqk~J is the 
probability of first return to (n- k, n- k) for each k < n, and 1- c1p- · · · -cn~JP"~ 1q"~ 2 

is the probability that the diagonal is not encountered until state (0, 0) is reached.) 
Is there an easy way to prove that the same expected value occurs in both problems? The 

distributions are different, but the mean values are the same. 

5. The limiting behavior. Now that M(z) has been put into a fairly simple form, we are ready 
to deduce the asymptotic value of M 11 ( p) for fixed p as n --+ oo. 

Let's assume first that p '* q. Then 4pq < 1, and the function C(pqz) = 1{1 - J1 - 4pqz) is 
analytic for Jzl < 1j(4pqz); so it is analytic in a neighborhood of z = 1. In fact, a simple 
computation proves that its Taylor series at the point z = 1 involves the Catalan numbers once 
again: 

C(pqz) = min(p,q) +(max(p,q)- min(p,q))c(pq(z -
1
} )· 

(p- q) 

(This formula generalizes our previous observation that C(pq) = min(p, q).) 
If q < p, our formula for M(z) reduces to 

M ( z) = z q - p C ( pq ( z - 1) ) 
(1-z)2 q (p-q)2 

= _z ___ P_- z(c p2q 
1-zp-q 2(p-q)3 

z p 
= 1 - z p- q + f(z ), 

where f(z) is analytic in the region Jzl < 1/(4pq). This determines the value of M 11 (p) quite 
accurately: 

THEOREM 1. Let r be any value greater than 4pq. Then 

M (p) = {pj(p- q) + O(r"), 
11 

((q- p)jq)n + pj(q- p) + O(r"), 

if q < p; 

if q > p. 

(The constants implied by 0 in these formulas depend on p and r, but not on n.) 

Proof. If q < p, the value of Mn(P) is the coefficient of z" in M(z), which is pj(p- q) plus 
the coefficient of z" in f(z). But f(z) converges absolutely when z = 1jr, hence its nth 
coefficient is O(r"). 

If q > p, the stated result follows from the formula for q < p, using the identity 

qMn(P) + pn = pM11 (q) + qn 

which is an immediate consequence of the formula for M
11 

( p) in section 4. QED. 

For example, if p = 2/3 and q = 1/3, so that big-choosers outnumber little-choosers by 
2 to 1, the average size of the remaining roll will be very close to 2, when n is large; but when 
p = 1/3 and q = 2/3 the average will be approximately ~n + 1. 

This agrees with our intuition: If little-choosers predominate, the size of the larger roll will tend 
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to be proportional to n, when the smaller roll is used up. But if big-choosers are in the majority, 
the larger roll will tend to be reduced to a bounded size, independent of the initial size n. 

6. The transition point. But what about the boundary case, p = q? Does it lead to lengths of 
order n, or order 1, or something in between? 

This is actually the simplest case to analyze, because p = q = 1/2 is equivalent to saying that 
everybody is a random-chooser; the problem reduces to a fairly simple "random walk." In fact, 
we are essentially dealing here with "Banach's match box problem" as discussed by Feller [2, 
IX.3(f)]. According to our general formula, the generating function in this case is simply 

z 
M(z) = 3/2' 

(1 - z) 

so there is a solution in closed form: 

M (!) = ( -3/2)( _ 1r-1 = 2n( 2n). 
n 2 n- 1 4" n 

By Stirling's approximation we have the following result: 

THEOREM 2. 

M (p) = 2- fn - _!_ · [1 + O(n- 312 ), " y;- 4V-;n 
whenp = q. 

The function Mn ( p) is a polynomial in p of degree 2 n - 3, for n ~ 2, and it decreases 
monotonically from n down to 1 as p increases from 0 to 1. The remarkable thing about this 
decrease is that it changes in character rather suddenly when p passes 1/2. 

We can't use the formulas of Theorem 1 when p is too close to 1/2, even if n is extremely 
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large. For example, if n = 1010 and p = t ± 10- 20
, both approximations in Theorem 1 give the 

ridiculous estimate Mn(P) = ! X 1020
. Indeed, we know that Mn(l/2) is of order Vn, so the 

approximations can be valid only when IP - !I is of order 1/ rn at least. 
The slope of Mn ( p) at p = 1/2 can be calculated by differentiating M ( z) with respect to p 

and extracting the coefficient of zn. The derivative is 

z d ( C(p(1- p)z) z 
(1 - z )2 dp 1 - p = - (1 - z )2 

X ( (1- 2p)zC'(p(1- p)z) + C(p(1- p)z)) 
1- p (1- p )2 

and at p = 1/2 this equals -2z(1- z)- 2 + 2z(1 - z)- 312
• Hence 

M;(1/2) = -2n + 2Mn(l/2); 

this is consistent with Mn(P) dropping from n to a small value asp goes from 0 to 1/2. The 
graph of M100(p) is shown on page 469. 
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THE LOGIC OF PROVABILITY 

GEORGE BOOLOS 
Department of Linguistics and Philosophy, Massachusetts Institute of Technology, Cambridge, MA 02139 

The subject of this article is the way in which an ancient branch of logic, first investigated by 
Aristotle and known as modal logic, has recently been found to shed light on a branch of logic of 
much later date, the mathematical study of mathematics itself, a study begun by David Hilbert 
and brought to fruition by Kurt Gooel. 

The fundamental concepts studied in modal logic are those of necessity and possibility: a 
statement is called "necessary" if it must be true, and "possible" if it might be true. Thus, since 
there might be a war in the year 2000, the statement "there will be a war in 2000" is possible, but 
it is not necessary, as there might not be a war then. On the other hand, the statement "there will 

George Boo/os: After an undergraduate degree in mathematics at Princeton, where my supervisor was Raymond 
Smullyan, and a graduate degree in philosophy at Oxford, I became the first person ever to receive a Ph.D. in 
philosophy from MIT, writing a thesis on hierarchy theory under Hilary Putnam. I taught for three years at 
Columbia and in 1969 returned to MIT, where I am now a professor of philosophy. In addition to a book on the 
topic of this article, The Unprovability of Consistency, and a textbook, Computabi/i~v and Logic (co-authored with 
Richard Jeffrey), I have written a number of articles in logic and philosophy. 


	1. Introduction.
	2. Recurrence Relations.
	3. Special power series.
	4. Generating functions.
	5. The limiting behavior.
	Theorem 1.

	6. The transition point.
	Theorem 2.
	Figure: the monotonically decreasing M_n(p)

	Acknowledgements.
	References

