Abstract
During recent decades, nucleic acid aptamers have emerged as powerful biological recognition elements for electrochemical affinity biosensors. These bioreceptors emulate or improve on antibody-based biosensors because of their excellent characteristics as bioreceptors, including limitless selection capacity for a large variety of analytes, easy and cost-effective production, high stability and reproducibility, simple chemical modification, stable and oriented immobilization on electrode surfaces, enhanced target affinity and selectivity, and possibility to design them in target-sensitive 3D folded structures. This review provides an overview of the state of the art of electrochemical aptasensor technology, focusing on novel aptamer-based electroanalytical assay configurations and providing examples to illustrate the different possibilities. Future prospects for this technology are also discussed.
Graphical abstract
Access this article
Rent this article via DeepDyve
Similar content being viewed by others
References
Yáñez Sedeño P, Villalonga R, Pingarrón JM. Electroanalytical methods based on hybrid nanomaterials. In: Meyer RA, editor. Encyclopedia of analytical chemistry: applications, theory and instrumentation. Wiley; 2015. p. 1-18.
Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem. Soc. Rev. 2010;39:1747–63.
da Silva ETSG, Souto DEP, Barragan JTC, de F Giarola J, de Moraes ACM, Kubota LT. Electrochemical biosensors in point of care devices: recent advances and future trends. ChemElectroChem. 2017;4:778–94.
WiseGuy Reports (2017) Global electrochemical biosensors market trends & forecast 2017 To 2022. Report No. WGR2375992 (https://www.wiseguyreports.com/reports/2375992-global-electrochemical-biosensors-market-trends-forecast-2017-to-2022
Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A. Biosensor technology: recent advances in threat agent detection and medicine. Chem. Soc. Rev. 2013;42:8733–68.
Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 2016;76:195–212.
Wang L, Xiong Q, Xiao F, Duan H. 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens. Bioelectron. 2017;89:136–51.
Wang Z, Dai Z. Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale. 2015;7:6420–31.
Song S, Wang L, Li J, Fan C, Zhao J. Aptamer-based biosensors. Trends. Anal. Chem. 2008;27:108–17.
Plaxco KW, Soh HT. Switch-based biosensors: a new approach towards real-time, in vivo molecular detection. Trends. Biotechnol. 2011;29:1–5.
Kaur H, Bruno JG, Kumar A, Sharma TK. Aptamers in the therapeutics and diagnostics pipelines. Theranostics. 2018;8:4016.
Razmi N, Baradaran B, Hejazi M, Hasanzadeh M, Mosafer J, Mokhtarzadeh A, et al. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosens. Bioelectron. 2018;113:58–71.
Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818.
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.
Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature. 1996;380:548.
Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol. Adv. 2015;33:1141–61.
Wu YX, Kwon YJ. Aptamers: The “evolution” of SELEX. Methods. 2016;106:21–8.
Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, et al. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie. 2018;154:132–55.
Dunn MR, Jimenez RM, Chaput JC. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017;1:0076.
Cai S, Yan J, Xiong H, Liu Y, Peng D, Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst. 2018;143:5317–38.
Mayer G. The chemical biology of aptamers. Angew. Chem. 2009;48:2672–89.
Iliuk AB, Hu L, Tao WA. Aptamer in bioanalytical applications. Anal. Chem. 2011;83:4440–52.
Vermeer AW, Norde W. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys. J. 2000;78:394–404.
Nutiu R, Li Y. Structure-switching signaling aptamers. J. Am. Chem. Soc. 2003;125:4771–8.
Xiao Y, Lai RY, Plaxco KW. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nat. Protoc. 2007;2:2875–80.
Cheng AK, Sen D, Yu HZ. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Bioelectrochemistry. 2009;77:1–12.
Schoukroun-Barnes LR, Macazo FC, Gutierrez B, Lottermoser J, Liu J, White RJ. Reagentless, structure-switching, electrochemical aptamer-based sensors. Annu. Rev. Anal. Chem. 2016;9:163–81.
Vallée-Bélisle A, Plaxco KW. Structure-switching biosensors: inspired by nature. Curr. Opin. Struct. Biol. 2010;20:518–26.
Mao Y, Luo C, Ouyang Q. Studies of temperature-dependent electronic transduction on DNA hairpin loop sensor. Nucleic Acids Res. 2003;31:108.
Hianik T, Ostatná V, Sonlajtnerova M, Grman I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry. 2007;70:127–33.
Pilehvar S, Jambrec D, Gebala M, Schuhmann W, De Wael K. Intercalation of proflavine in ssDNA aptamers: effect on binding of the specific target chloramphenicol. Electroanalysis. 2015;27:1836–41.
Kékedy-Nagy L, Shipovskov S, Ferapontova EE. Effect of a dual charge on the DNA-conjugated redox probe on DNA sensing by short hairpin beacons tethered to gold electrodes. Anal. Chem. 2016;88:7984–90.
Sachan A, Ilgu M, Kempema A, Kraus GA, Nilsen-Hamilton M. Specificity and ligand affinities of the cocaine aptamer: impact of structural features and physiological NaCl. Anal. Chem. 2016;88:7715–23.
Chen Y, Pui TS, Kongsuphol P, Tang KC, Arya SK. Aptamer-based array electrodes for quantitative interferon-γ detection. Biosen. Bioelectron. 2014;53:257–62.
Yu ZG, Lai RY. A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples. Talanta. 2018;176:619–24.
Das R, Dhiman A, Mishra SK, Haldar S, Sharma N, Bansal A, et al. Structural switching electrochemical DNA aptasensor for the rapid diagnosis of tuberculous meningitis. Int. J. Nanomed. 2019;14:2103.
Liu Y, Matharu Z, Rahimian A, Revzin A. Detecting multiple cell-secreted cytokines from the same aptamer-functionalized electrode. Biosens. Bioelectron. 2015;64:43–50.
Jia J, Feng J, Chen HG, Luo HQ, Li NB. A simple electrochemical method for the detection of ATP using target-induced conformational change of dual-hairpin DNA structure. Sens. Actuators B. 2016;222:1090–5.
Pividori MI, Merkoci A, Alegret S. Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens. Bioelectron. 2000;15:291–303.
Tabrizi MA, Shamsipur M, Saber R, Sarkar S, Besharati M. An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1,3,6,8-pyrenetetrasulfonate. Microchim. Acta. 2018;85:59.
Yu Z, Luan Y, Li H, Wang W, Wang X, Zhang Q. A disposable electrochemical aptasensor using single-stranded DNA-methylene blue complex as signal-amplification platform for sensitive sensing of bisphenol A. Sens. Actuators B. 2019;284:73–80.
Roushani M, Shahdost-fard F. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor. Mater. Sci. Eng. 2016;68:128–35.
Wei M, Zhang W. The determination of ochratoxin A based on the electrochemical aptasensor by carbon aerogels and methylene blue assisted signal amplification. Chem. Cent. J. 2018;12:45.
Raouafi A, Sánchez A, Raouafi N, Villalonga R. Electrochemical aptamer-based bioplatform for ultrasensitive detection of prostate specific antigen. Sens. Actuators B. 2019;297:126762.
Karimipour M, Heydari-Bafrooei E, Sanjari M, Johansson MB, Molaei M. A glassy carbon electrode modified with TiO2(200)-rGO hybrid nanosheets for aptamer based impedimetric determination of the prostate specific antigen. Microchim. Acta. 2019;186:33.
Arya SK, Zhurauski P, Jolly P, Batistuti MR, Mulato M, Estrela P. Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosens. Bioelectron. 2018;102:106–12.
Grabowska I, Sharma N, Vasilescu A, Iancu M, Badea G, Boukherroub R, et al. Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers. ACS Omega. 2018;3:12010–8.
Fenzl C, Nayak P, Hirsch T, Wolfbeis OS, Alshareef HN, Baeumner AJ. Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens. 2017;2:616–20.
Singh NK, Thungon PD, Estrela P, Goswami P. Development of an aptamer-based field effect transistor biosensor for quantitative detection of Plasmodium falciparum glutamate dehydrogenase in serum samples. Biosens. Bioelectron. 2019;123:30–5.
Argoubi W, Sánchez A, Parrado C, Raouafi N, Villalonga R. Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sens. Actuators B. 2018;255:309–15.
Jolly P, Tamboli V, Harniman RL, Estrela P, Allender CJ, Bowen JL. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens. Bioelectron. 2016;75:188–95.
Wang YH, Xia H, Huang KJ, Wu X, Ma YY, Deng R, et al. Ultrasensitive determination of thrombin by using an electrode modified with WSe2 and gold nanoparticles, aptamer-thrombin-aptamer sandwiching, redox cycling, and signal enhancement by alkaline phosphatase. Microchim. Acta. 2018;185:502.
Kim SH, Nam O, Jin E, Gu MB. A new coccolith modified electrode-based biosensor using a cognate pair of aptamers with sandwich-type binding. Biosens. Bioelectron. 2019;123:160–6.
Seo HB, Gu MB. Aptamer-based sandwich-type biosensors. J. Biol. Eng. 2017;11:11.
Shui B, Tao D, Cheng J, Mei Y, Jaffrezic-Renault N, Guo Z. A novel electrochemical aptamer-antibody sandwich assay for the detection of tau-381 in human serum. Analyst. 2018;143:3549–54.
Lee S, Hayati S, Kim S, Lee HJ. Determination of protein tyrosine kinase-7 concentration using electrocatalytic reaction and an aptamer-antibody sandwich assay platform. Catal. Today. 2019. https://doi.org/10.1016/j.cattod.2019.05.029.
Chung S, Moon JM, Choi J, Hwang H, Shim YB. Magnetic force assisted electrochemical sensor for the detection of thrombin with aptamer-antibody sandwich formation. Biosens. Bioelectron. 2018;117:480–6.
Wang QL, Cui HF, Song X, Fan SF, Chen LL, Li MM, et al. A label-free and lectin-based sandwich aptasensor for detection of carcinoembryonic antigen. Sens. Actuators B. 2018;260:48–54.
Paniagua G, Villalonga A, Eguílaz M, Vegas B, Parrado C, Rivas G, et al. Amperometric aptasensor for carcinoembryonic antigen based on the use of bifunctionalized Janus nanoparticles as biorecognition-signaling element. Anal. Chim. Acta. 2019;1061:84–91.
Jiang B, Li F, Yang C, Xie J, Xiang Y, Yuan R. Target-induced catalytic hairpin assembly formation of functional Y-junction DNA structures for label-free and sensitive electrochemical detection of human serum proteins. Sens. Actuators B. 2017;244:61–6.
Shi K, Dou B, Yang J, Yuan R, Xiang Y. Target-triggered catalytic hairpin assembly and TdT-catalyzed DNA polymerization for amplified electronic detection of thrombin in human serums. Biosens. Bioelectron. 2017;87:495–500.
Zhang R, Gu Y, Wang Z, Li Y, Fan Q, Jia Y. Aptamer cell sensor based on porous graphene oxide decorated ion-selective-electrode: double sensing platform for cell and ion. Biosens. Bioelectron. 2018;117:303–11.
Aktas GB, Skouridou V, Masip L. Sandwich-type aptasensor employing modified aptamers and enzyme-DNA binding protein conjugates. Anal.Bioanal. Chem. 2019; 411:3581.
Chen X, Wang Y, Zhang Y, Chen Z, Liu Y, Li Z, et al. Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer–graphene electrode interface. Anal. Chem. 2014;86:4278–86.
Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. U. S. A. 2006;103:11838–43.
Kiernan JA. Localization of α-D-glucosyl and α-D-mannosyl groups of mucosubstances with concanavalin A and horseradish peroxidase. Histochemistry. 1975;44:39–45.
Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens. Bioelectron. 2015;68:149–55.
Brosel-Oliu S, Ferreira R, Uria N, Abramova N, Gargallo R, Muñoz-Pascual FX, et al. Novel impedimetric aptasensor for label-free detection of Escherichia coli O157: H7. Sens. Actuators B. 2018;255:2988–95.
Li Z, Yin J, Gao C, Sheng L, Meng A. A glassy carbon electrode modified with graphene oxide, poly (3, 4-ethylenedioxythiophene), an antifouling peptide and an aptamer for ultrasensitive detection of adenosine triphosphate. Microchim. Acta. 2019;186:90.
Eissa S, Siaj M, Zourob M. Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Biosens. Bioelectron. 2015;69:148–54.
Kazane I, Gorgy K, Gondran C, Spinelli N, Zazoua A, Defrancq E, et al. Highly sensitive bisphenol-A electrochemical aptasensor based on poly(pyrrole-nitrilotriacetic acid)-aptamer film. Anal. Chem. 2016;88:7268–73.
Wu M, Kempaiah R, Huang PJJ, Maheshwari V, Liu J. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir. 2011;27:2731–8.
Liu B, Sun Z, Zhang X, Liu J. Mechanisms of DNA sensing on graphene oxide. Anal. Chem. 2013;85:7987–93.
Park JS, Goo NI, Kim DE. Mechanism of DNA adsorption and desorption on graphene oxide. Langmuir. 2014;30:12587–95.
Ahour F, Ahsani MK. An electrochemical label-free and sensitive thrombin aptasensor based on graphene oxide modified pencil graphite electrode. Biosens. Bioelectron. 2016;86:764–9.
Eissa S, Zourob M. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosens. Bioelectron. 2017;91:169–74.
Yu SH, Lee CS, Kim TH. Electrochemical detection of ultratrace lead ion through attaching and detaching DNA aptamer from electrochemically reduced graphene oxide electrode. Nanomaterials. 2019;9:817.
Aceta Y, Del Valle M. Graphene electrode platform for impedimetric aptasensing. Electrochim. Acta. 2017;229:458–66.
Jain P, Das S, Chakma B, Goswami P. Aptamer-graphene oxide for highly sensitive dual electrochemical detection of Plasmodium lactate dehydrogenase. Anal. Biochem. 2016;514:32–7.
Stephanopoulos N, Freeman R. DNA-based materials as self-assembling scaffolds for interfacing with cells. In: Azevedo HS, da Silva RMP, editors. Self-assembling biomaterials. Elsevier; 2018, p. 157-175.
Taghdisi SM, Danesh NM, Ramezani M, Emrani AS, Abnous K. A novel electrochemical aptasensor based on Y-shape structure of dual-aptamer-complementary strand conjugate for ultrasensitive detection of myoglobin. Biosens. Bioelectron. 2016;80:532–7.
Wang D, Xiao X, Xu S, Liu Y, Li Y. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay. Biosens. Bioelectron. 2018;99:431–7.
Qing Y, Li X, Chen S, Zhou X, Luo M, Xu X, et al. Differential pulse voltammetric ochratoxin A assay based on the use of an aptamer and hybridization chain reaction. Microchim. Acta. 2017;184:863–70.
Acknowledgment
Financial support from the Spanish Ministry of Economy and Competitiveness (projects CTQ2014-58989-P, CTQ2015-71936-REDT, and CTQ2017-87954-P) is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Dedicated to the memory of our friend Prof. Marco Mascini.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Villalonga, A., Pérez-Calabuig, A.M. & Villalonga, R. Electrochemical biosensors based on nucleic acid aptamers. Anal Bioanal Chem 412, 55–72 (2020). https://doi.org/10.1007/s00216-019-02226-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-019-02226-x