RECURSIVE PREDICATES AND QUANTIFIERS(})

BY
S. C. KLEENE

This paper contains a general theorem on the quantification of recursive
predicates, with applications to the foundations of mathematics. The theorem
(Theorem 1II) is a slight extension of previous results on Herbrand-Godel
general recursive functions(?), while the applications include theorems of
Church (Theorem VII)(®) and Gédel (Theorem VIII)(*) and other incom-
pleteness theorems. It is thought that in this treatment the relationship of
the results stands out more clearly than before.

The general theorem asserts that to each of an enumeration of predicate
forms, there is a predicate not expressible in that form. The predicates con-
sidered belong to elementary number theory.

The possibility that this theorem may apply appears whenever it is pro-
posed to find a necessary and sufficient condition of a certain kind for some
given property of natural numbers; in other words, to find a predicate of a
given kind equivalent to a given predicate. If the specifications on the predi-
cate which is being sought amount to its having one of the forms listed in
the theorem, then for some selection of the given property a necessary and
sufficient condition of the desired kind cannot exist.

In particular, it is recognized that to find a complete algorithmic theory
for a predicate P(a) amounts to expressing the predicate as a recursive predi-
cate. By one of the cases of the theorem, this is impossible for a certain P(a),
which gives us Church’s theorem.

Again, when we recognize that to give a complete formal deductive theory
(symbolic logic) for a predicate P(a) amounts to finding an equivalent predi-
cate of the form (Ex)R(a, x) where R(a, x) is recursive, we have immediately
Godel’s theorem, as another case of the general theorem.

Still another application is made, when we consider the nature of a con-
structive existence proof. It appears that there is a proposition provable clas-
sically for which no constructive proof is possible (Theorem X).

The endeavor has been made to include a fairly complete exposition of
definitions and results, including rélevant portions of previous theory, so that
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the paper should be self-contained, although some details of proof are omitted.

The general theorem is obtained quickly in Part I from the properties of
the u-operator, or what essentially was called the p-function in the author’s
dissertation(®). Part II contains some variations on the theme of Part I, and
may be omitted by the cursory reader. The applications to foundational ques-
tions are in Part III, only a few passages of which depend on Part II.

I. THE GENERAL THEOREM ON RECURSIVE
PREDICATES AND QUANTIFIERS

1. Primitive recursive functions. The discussion belongs to the context of
the informal theory of the natural numbers

0,1,2,- -, 2 &,--+ .

The functions which concern us are number-theoretic functions, for which
the arguments and values are natural numbers.

We consider the following schemata as operations for the definition of a
function ¢ from given functions appearing in the right members of the equa-
tions (¢ is any constant natural number):

() o(x) = o/,

(II) ¢(xlr Tty xn) =

(III) ¢(x1’ T xn) = X4

(Iv) ‘#(xb sy %) = 00a(xy, -, Xn)y c t g Xm(%1, -0 0, Zn))s
$(0) = ¢

A%

(ve) {qb(y’) = x(5 ¢(3)),

¢(0’ 2 PIR xn) = ‘l/(xlr Tty xn)
Vb )
(Vb) {qb(y’, %1, vy %e) = x(3, ¢y, ®1, -0, Xn), X1y v 0, Xa)e

Schema (I) introduces the successor function, Schema (II) the constant
functions, and Schema (III) the identity functions. Schema (IV) is the
schema of definition by substitution, and Schema (V) the schema of primitive
recursion. Together we may call them (and more generally, schemata re-
ducible to a series of applications of them) the primitive recursive schemata. -

A function ¢ which can be defined from given functions ¥, - « -, Y& by
a series of applications of these schemata we call primitive recursive in the
given functions; and in particular, a function ¢ definable ab initio by these
means, primitive recursive.

Now let us consider number-theoretic predicates, that is, propositional
functions of natural numbers.

(®) Kleene [1, §18].
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- In asserting propositions, and in designating predicates, we use a logical
symbolism, as follows. Operations of the propositional calculus: & (and),
V (or), — (not), — (implies), = (equivalent). Quantifiers: (x) (for all x),
(Ex) (there exists an x such that). These operations may be taken either in
the sense of classical mathematics, or in the sense of constructive or intuition-
istic mathematics, except where one or the other of the two interpretations
is specified.

A predicate P(x1, - - -, %) is said to be primitive recursive, if there is a
primitive recursive function w(x;, + + -, x,) such that
(1) P(xy, -, %) =m(xy, - -+, 2) = 0.

We can without loss of generality restrict = to take only 0 and 1 as values,
and call it in this case the representing function of P.

Under classical interpretations, which give a dichotomy of propositions
into true and false, we can assign to any predicate P a representing function
which has 0 or 1 as value according as the value of P is true or false and then
say that P is primitive recursive if = is.

2. General recursive functions. We shall proceed to the Herbrand-Gédel
generalization of the notion of recursive function. We start with a preliminary
account, certain features of which we shall then restate carefully.

The way in which the function ¢ is defined from the given functions in
an application of one of the primitive recursive schemata amounts to this:
the values ¢(x1, * - -, x,) of ¢ for the various sets x1, - - -, x, of arguments
are determined unambiguously by the equations and the values of the given
functions, using only principles of determination which we can formalize as
a substitution rule and a replacement rule.

The formalization presupposes suitable conventions governing the sym-
bolism, which are easily supplied. In particular, we must distinguish between
the variables for numbers and the numerals, that is the expressions for the
fixed numbers in terms.of the symbols for 0 and the successor operation ’.
The rules are the following.

R1: to substitute, for the variables xi, + - +, X. of an equation, numerals
Xy, ¢+ *, Xn, respectively.

R2: to replace a part f(x1, - - -, X,) of the right member of an equation by x,
where { is a function symbol, where x1, - + -+, X, x are numerals, and where
f(x1, + - -, Xa) =x 15 a given equation.

By a given equation f(xy, - - -, x,) =x for R2, we mean an equation ex-
pressing one of the values of one of the given functions for the schema
application, or an equation of this form already derived by R1 and R2 from
the equations of the schema application.



44 S. C. KLEENE [January

Now let us consider any operation or schema, for the definition of a func-
tion in terms of given functions, which can be expressed by a system of equa-
tions determining the function values in this manner. In general the equations
shall be allowed to contain, besides the principal function symbol which repre-
sents the function defined, and the given function symbols which represent
the given functions, also auxiliary function symbols. The given function sym-
bols shall not appear in the left members of the equations. Such a schema we
shall call general recursive.

A function ¢ which can be defined from given functions ¥4, - -+, ¥x by a
series of applications of general recursive schemata we call general recursive
in the given functions; and in particular, a function ¢ definable ab initio by
these means we call general recursive.

Suppose that a function ¢ is defined, either from given functions
¥1, * + -, ¥, or ab initio, by a succession of general recursive operations.
Let us combine the successive systems of equations which effect the defini-
tion into one system, using different symbols as principal and auxiliary func-
tion symbols in each of the successive systems, and in the resulting system
considering as auxiliary all of the function symbols but that representing ¢
and those representing ¥4, + - -, ¥ The restriction imposed on a general
recursive schema that the given function symbols should not appear on the
left will prevent any ambiguity being introduced by the interaction under
R1 and R2 of equations in the combined system which were formerly in sepa-
rate systems. Thus the definition can be considered as effected in a single
general recursive operation.

In particular, any general recursive function can be defined ab initio in
one operation, so that in the defining equations there are no given function
symbols and what we have called the given equations for an application of R2
must all be derivable from the defining equations by previous applications
of R1 and R2. For the formal development, it is convenient to adopt the con-
vention that the principal function symbol shall be that one of the function
symbols occurring in the equations of the system which comes latest in a
preassigned list of function symbols. The function is then completely de-
scribed by giving the system of defining equations.

We now restate the definition of general recursive function from this point
of view.

A function ¢(xi, - - -, x,) is GENERAL RECURSIVE, if there is a sys-
tem E of equations which defines it recursively in the following sense. A
system E of equations defines recursively a GENERAL RECURSIVE func-
tion of n variables if, for each set x4, + - -, x, of natural numbers, an equation
of the form f(x, - - -, x,) =x, where { is the principal function symbol of E,
and where x;, + + -+, x, are the numerals representing the natural numbers
X1, * * *, %n, is derivable from E by R1 and R2 for EXACTLY one numeral x.
The function of n variables which is defined by E in this case is the func-
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tion ¢, of which the value ¢(x, - - -, x,) forxy, + « -, x, as arguments is THE
NATURAL NUMBER x REPRESENTED BY THE NUMERAL x.

A predicate P(xi, - - -, x) is general recursive, if there is a general recur-
sive function 7(xy, - * - , ¥.) taking only 0 and 1 as values such that (1) holds;
in this case, 7 is called the representing function of P. (Or, if we introduce the
representing function w first, P is general recursive if m is.)

3. The u-operator. Consider the operator: uy (the least y such that). If

this operator is applied to a predicate R(xy, - - -, x,, ¥) of the n+1 variables
X1, * + +, %, ¥, and if this predicate satisfies the condition
(2) (xl) Tt (xﬂ)(Ey)R(xly oty Xy y)y
we obtain a function uyR(x;, - - -, %,, ¥) of the remaining # free variables
X1y, X

Thence we have a new schema,
(VII) d)(xlr Sty xn) = ”y[p(xlr ct oty Xny y) = O]r

for the definition of a function ¢ from a given function p which satisfies the
condition

3) (%) -+ - () EW [o(1, - - -, 2, ) = O]

We now show that this schema, subject to the condition on p, is, like
(I)-(V), general recursive. For this purpose, we rewrite it in terms of equa-
tions, using an auxiliary function symbol “¢”:

{U(O)xh'"yxmy)=y
(VIf) U(z,r X1, "y Xny y) = U(P(xl» oty Xny 3")» X1y 0y Xy y,)
¢(xly Tty xn) = U(P(xly crty Xy O)y X1y * 0y Xy 0)

Assuming the values of p, these equations will lead us to the values of ¢ as
defined by (VI;), and to only those values, as follows.

Consider informally any fixed set of values of x1, - « -, x, (formally, this
means to substitute the corresponding set of numerals for the variables
“x,7, + + +, “x,”). We seek to obtain the corresponding value of ¢(x1, - - -, x,)
by replacements on the third equation, and this is the only possibility we
have for obtaining that value under the two principles. First we can replace
p(%x1, - + -, x4, 0) by its value, and this is the only first replacement step pos-
sible on that equation. According as that value is 0 or is not 0, we seek the
value of o for the next replacement step from the first or second of the equa-
tions, and this is the only possible source for the next replacement value. In
the first case, we obtain 0 as that value; in the second, we use the value of
p(x1, - + -, x4, 1) in the second equation, and then seek another value of o.
We continue thus, with no choice in the procedure at any stage. The first case
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is first encountered when we come to use the value of p(x1, « - + , x4, ) for the
first y for which that value is 0, and hence certainly for at most the y given by
(3). When this happens, we can complete the pending replacements to obtain
that y as the value of ¢(xy, - - -, x,). Thus we get the intended value; and
because we had no choice at any stage of the procedure, we can get no other
value.

The general recursiveness of the new schema is thus established. Hence, if
R(x1, - - -, %n, ) is a general recursive predicate and (2) holds, by taking as p
the representing function of R, we can conclude that pyR(xy, + « +, x4, ¥) is
a general recursive function.

What can we conclude if (2) is not assumed to hold? In this case,
uyR(x1, - - -, xs, ¥) may not be completely defined as a function of the
variables x1, - + -, x,; but for any fixed set of values of x4, - - -, x,, the se-
quence of steps by which we attempt to determine a value for ¢(x1, - - -, x4)
from the equations remains as described for the preceding case, only with
now the matter of its termination in doubt. If (Ey)R(x1, + + -, %5, y) does
hold for that set of values of x;, - - -, x,, then it does terminate as described,
with uyR(xy, - + -, ., ¥) as the value; while conversely, if it does termi-
nate, this can only be in consequence of a 0 being encountered among
the values of p(x1, - - -, %, ¥), so that (Ey)R(xi, - - -, %, y) does hold,
and uyR(xi, « -+, %4, ) is the value.

Hence, in formal terms, if F is the system of equations obtained by ad-
joining, to any system E which defines p recursively, equations of the form
(VI,), with the notation so arranged that “¢” becomes the principal function
symbol f, then: an equation of the form f(xy, « -+, x,) =x, where x;, - - +, x5
are the numerals representing the natural numbers xy, - - +, x,, and where
x is a numeral, is derivable from F by R1 and R2 if and only if
(Ey)R(xl? sty Xny y)

4. The enumeration theorem. We introduce a metamathematical predi-
cate &, (for each particular %) as follows.

©Sa(Z, %1, + + + , Xn, Y): Z is a system of equations, and Y is a formal deduc-
tion from Z by R1 and R2 of an equation of the form f(x1, + + -, x,) =x, where {
1s the principal function symbol of Z, where x,, « + + , X, are the numerals repre-
senting the natural numbers xy, + « - , %,, and where x is a numeral.

With this notation, we can state the last result of the preceding section
symbolically:

(4) (Ey)R(xl) Tty Xy y) = (EY)@,,(F, X1ty Xy Y)-

From a like exploration of the possibility that the sequence of steps does not
terminate, or simply from (4) by contraposition, we have also:

(5) (y)R(xl’ Ty Xy Y) = (Y)@,,(F, X1, 00, Xy, Y).
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Using Gédel’s idea of arithmetizing metamathematics(®), suppose that
natural numbers have been correlated to the formal objects, distinct numbers
to distinct objects. The metamathematical predicate &,(Z, %1, - + + , %, Y) is
carried by the correlation intoa number-theoretic predicate S,(z,%1, * * *,%n, %),
the definition of which we complete by taking it as false for values of 2, y not
both correlated to formal objects.

For a suitably chosen Gédel numbering, we can show, with a little trouble
+ that S, is primitive recursive.

Now (4) translates under the arithmetization into

(63.) (Ey)R(xlv Tty Xy y) = (Ey)Sn(fr X1y * * g Xny y)
with f as the Gédel number of the system of equations F. The formula
(7a’) (y)R(xl’ Tty Xy y) = (y)Eﬂ(gr X1, 0ty Xy y)

is obtained likewise from (5), after changing the notation so that R is inter-
changed with R.

In stating these results for reference, we shall go over from S, to a new
predicate T, which entails no present disadvantage and proves to be of con-
venience in some further investigations(?). The predicate T, is defined from
S» as follows.

Tﬁ(zr X1ty Xny 3’)1 S,,(Z, X1, * 0y Xy y) & (t) [t < y—_)gn(z: X1y gy Xay t)]'

By a theorem of Godel(®), the primitive recursiveness of T, follows from that
of S,. The formulas (6) and (7) in the theorem follow from (6a) and (7a) by
the definition of T, in terms of .S,.

THEOREM 1. Given a general recursive predicate R(x1, * + - , %4, ¥), there are
numbers f and g such that

(6) (Ey)R(%1, - - - 5 2ny ) = (Ey)Tulfy 21, - - - 5 %ay 3),
(7 (y)R(xb crty Xmy y) = (y)Tn(g’ X1, "y Xny y)-

Now (Ey)T.(2, %1, - -+, %a, ¥) is a fixed predicate of the form
(Ey)R(z, x1, - - -, x4, y) where R is general recursive (in fact, as it happens,
primitive recursive). By the theorem, if we take successively 2=0,1,2, « - -,
we obtain an enumeration (with repetitions) of all predicates of the form
(Ey)R(xy, - - -, x4, y) where R is general recursive(?). Likewise, the theorem
gives us a fixed predicate of the form (y)R(z, x1, - - - , %, ¥) Where R is gen-
eral recursive which enumerates all predicates of the form (y)R(xy, * * + , %5, ¥)

() Godel [1].

(") A revision, April 13, 1942,

(®) Godel [1, IV].

(*) This result entered partly into the last theorem of Kleene [2], but the advantage of

using it at an earlier stage was overlooked. In anticipation, we may remark that XI-XVI of that
paper are essentially special cases of Theorem II below (with now a constructive proof for XVI).
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where R is general recursive. These enumerations form the basis for the ap-
plication of Cantor’s diagonal method in the next section.

5. The general theorem. By a familiar rule of classical logic, in each of
the following pairs of propositions (with a fixed R for a given pair),

(Ex)R(x)  (2)(Ey)R(x, y)  (Ex)(y)(Ez)R(x, y, 2)
(©)R(x)  (Ex)(»)R(% y) (2)(Ey)(2)R(x, , 2) e,

either member is equivalent to the negation of the other. Hence we may assert
non-equivalence between the members of the pair. This argument is not good
in the intuitionistic logic. However, the non-equivalence for the case of one
quantifier,

(®) (Ex)R(x) # (2)R(%),

does hold good intuitionistically.

Consider the predicate form (x)R(a, x) where R is general recursive. This
gives a particular predicate of the variable a, whenever we specify the general
recursive predicate R(a, x) of two variables. In particular, (x)Ti(a, a, x) is a
predicate of this form.

We shall show that this predicate is neither general recursive nor express-
ible in the form (Ex)R(e, x) where R is general recursive.

For this purpose, suppose we have selected any particular general recur-
sive R(a, x), giving a particular predicate of the latter form. By (6), there is
for this R a number f such that

9) (Ex)R(a, x) = (Ex)T\(f, a, ).
Substituting the number f for the variable a,

(10) (Ex)R(f, x) = (Ex)Tu(f, £, #).
By (8),

(11) (E)T(f, f, ) # O, f, ).
Combining (10) and (11),

(12) (Ex)R(f, 8) # (D)Ta(f, f, ).

This refutes, for a =f, the equivalence of (Ex)R(a, x) to (x)Ti(a, a, x). Since
this refutation can be effected, whatever general recursive R we chose, for
some f depending on the R, the predicate (x)7T1(a, a, x) is not expressible in
the form (Ex)R(a, x) where R is general recursive.

A fortiori, (x)T1(a, @, x) is not expressible in the form R(a) where R is
general recursive. For were it so expressed, we should then have it in the form
(Ex)R(a, x) where R is general recursive, by taking as R(a, x) the predicate
R(a) & x=x.

This completes the proof of one case of the next theorem.



1943] PREDICATES AND QUANTIFIERS 49

For another case, consider the predicate form (Ex)R(a, x) where R is gen-
eral recursive. We can show similarly, using (7) instead of (6), that the predi-
cate (Ex)Ti(a, a, x), which has this form, is neither general recursive nor ex-
pressible in the form (x)R(a, x) where R is general recursive.

To illustrate the treatment of a case with more than one quantifier, con-
sider the predicate form (x)(Ey)(2)R(a, x, v, ) where R is general recursive.
The predicate (x)(Ey)(z)Ts(a, a, %, ¥, 2) has this form. Select any particular
general recursive R(a, x, v, 2). By (6), for some f depending on this R,

(13) (E2)R(a, %, ¥, 2) = (E2)Ts(f, a, x, y, 2).
By corresponding quantifications of these equivalent predicates,
(14) (Ex)(3)(E2)R(a, %, ¥, 2) = (Ex)(9)(E2)Ts(f, e, %, ¥, 2).

Classically, we can complete the argument as before, showing that
(x)(Ey)(2)Ts(a, a, x, ¥, 2) is not expressible in any of the forms

(Ex)R(a, x)  (x)(E¥)R(a, %, %)  (Ex)(y)(Ez)R(a, 2, y, 2)
(®)R(a, )  (Ex)(y)R(a, %, ¥)

where the R for the form is general recursive.

To obtain an alternative phrasing of the theorem, in which it holds for all
cases intuitionistically, we may omit in the classical proof the step which
interchanges the two kinds of quantifiers under the operation of nega-
tion. We thus show that the predicates (Ex)Ti(a, @, x), (x)T1(a, a, %),
(Ex)(y)(Ez) Ts(a, a, x, ¥, 2), and so on, are neither expressible in the respective
forms (Ex)R(a, x), (x)R(a, x), (Ex)(y)(Ez)R(e, x, v, 2), and so on, where R
is general recursive, nor in any of the forms with fewer quantifiers.

R(a)

THEOREM I1. Classically, and for the one-quantifier forms intuitionistically:
To each of the forms

(Ex)R(av x) (x)(EQ’)R(a» X, y) (Ex)()’)(EZ)R(dy %, Yy Z) e
(x)R(a, x) (Ex)(y)R(ar X, y) (x)(E}’)(Z)R(a, % Y Z) e

where the R for each is gemeral recursive, after the first, there is a predicate ex-
pressible in that form but not in the other form with the same number of quantifiers
nor in any of the forms with fewer quantifiers.

Classically, and intuitionistically: To each of the forms, after the first, there
15 a predicate expressible in the negation of that form but not in that form itself
nor in any of the forms with fewer quantifiers.

R(a)

For simplicity, we have given the theorem for predicates of one variable g,
but it holds:

Likewise, replacing the variable a throughout by n variables ay, + + + , aa, for
any fixed positive integer n.



S0 S. C. KLEENE [January

By an elementary predicate, we shall mean one which is expressible in terms
of general recursive predicates, the operations &, \/, —, —, = of the proposi-
tional calculus, and quantifiers.

Suppose given an expression for a predicate in these terms. By the classical
predicate calculus, we can transform the expression so that all quantifiers
stand at the front. For each m, let (x)1, - - -, ()= be a set of m primitive
recursive functions of x which as a set ranges, with or without repetitions, over
all m-tuples of natural numbers, as x ranges over all natural numbers (such
sets of functions are known). The equivalences

(15) (Exy) - - - (Exm)A (21, - - -, 2m) = (EQ)A((®)1, - -+ (#)m),
(16) (21) - - - (@m)A(21, - - -y @) = (D)A((B)1, -~ -5 (%))

enable us to eliminate consecutive occurrences of like quantifiers. These trans-
formations leave as operand of the prefixed quantifiers a general recursive
predicate of the free and bound variables. Hence, classically, the predicate
forms listed in the theorem for a given # suffice for the expression of every
elementary predicate of # variables.

The theorem then says that no finite sublist of the forms would suffice.

Classically, we are led to a classification of the elementary predicates ac-
cording to the minimum numbers of quantifiers which would suffice for their
expression in terms of general recursive predicates and quantifiers.

The analogy between the logical operations of existential and universal
quantification and geometrical operations of projection and intersection, re-
spectively, is well known(1?). The possibility of a connection between present
results and theories of Borel and Baire is suggested(1?).

II. PRIMITIVE, GENERAL, AND PARTIAL RECURSIVE
PREDICATES UNDER QUANTIFICATION

6. Partial recursive functions. The authot’s definition of partial recursive
function extends the Herbrand-Gédel definition of general recursive function
to functions ¢ of n variables which need not be defined for all n-tuples of
natural numbers as arguments, retaining the characteristic of that definition
with respect to each n-tuple for which the function is defined(!?). The partial
recursive functions include the general recursive functions as those which are
defined for all sets of arguments.

For a more complete description, take the definition of general recursive
function which is given at the end of §2, and replace the four capitalized
phrases by the following, respectively: PARTIAL RECURSIVE; PARTIAL
RECURSIVE; AT MOST; THE NATURAL NUMBER x REPRE-

(19) In particular, it has been discussed by Tarski.
(1) This suggestion was made to the author by Gédel and by Ulam.
() Kleene [4].
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SENTED BY THE NUMERAL x IF THAT NUMERAL EXISTS, AND
ISOTHERWISE UNDEFINED.
In dealing with functions which may not be completely defined, we inter-

pret the equation ¢(xy, - + -, %,) =¥(%x1, - - -, x,) as the assertion that ¢ and ¥
have the same value for x, - - + , x, as arguments, taking it as undefined (non-
significant) if either valueis undefined. We write¢(x1, - - -, %) > (x1, - - -, %5)

to express the assertion that, if either of ¢ and ¢ is defined for the arguments
X1, + + -, %, the other is and the values are the same, and if either of ¢ and ¥
is undefined for those arguments, the other is.

Similarly, in dealing with predicates which may not be completely defined,

P(xy, « + +, 20)=Q(x1, - - -, x,) expresses equivalence of value, and is unde-
fined if the value of either member is undefined; while P(xy, « - -, %x,)
~Q(x;, + + -, xn) expresses that the definition of either implies mutual defi-

nition with equivalence, and the indefinition of either implies mutual in-
definition.

A predicate P(xy, « -+, x,) not necessarily defined for all z#-tuples of natu-
ral numbers as arguments is partial recursive, if there is a partial recursive
function 7 (%, - + -, x,) taking only 0 and 1 as values such that

(17) P(xlr"' ’xn)gﬂ'(xl)"°)xn)=0;

in this case, 7 is called the representing function of P. (Or if we first introduce
a representing function w of P, the value of which is to be 0, 1, or undefined
according as the value of P is true, false, or undefined, then P is partial re-
cursive if = is.)

In §§2, 3, we remarked the general recursiveness of Schemata (I)-(VI)
with (VI) subjected to the condition (3); and we also considered Schema (V1)
for the case that p is general recursive but (3) is not required to hold. The
method of those sections applies equally well without the restrictions; in ex-
planation of the schemata when the given functions may not be completely
defined or (3) not hold for (VI), it will suffice here to remark that the condi-
tions of definition for the functions introduced by the schemata may be in-
ferred a posteriori from the metamathematical results.

THEOREM I11. The class of general recursive functions is closed under appli-
cations of Schemata (1)-(VI) with (3) holding for applications of (VI).

The class of partial recursive functions is closed under applications of
Schemata (1)-(VI).

COROLLARY. Every function obtainable by applications of Schemata (I)—(VI)
with (3) holding for applications of (VI) is general recursive.

Every function obtainable by applications of Schemata (1)—(VI) is partial re-
cursive. ' ‘

7. Normal form for recursive functions. We shall pursue a little further



52 S. C. KLEENE [January

the method of §4 to obtain the converse of this result. Besides the metamathe-
matical predicate &,, we now require a metamathematical function as follows.

U(Y): the natural number x which the numeral x represents, in case Y is a
formal deduction of an equation of the form t=x, where x is a numeral and t is
any term;and 0, otherwise.

According to the definition of general recursive function, if ¢ is a general
recursive function of » variables, there is a system E of equations such that

(18) (1) - - (%) (EY)Ou(E, 21, - - -, %5, Y),

(19) (%) - - - (@) (V) [Sa(E, 21, -+, 20, ¥) D W(Y) = (a1, - -, x) |5
and the function ¢(xy, - + -, x,) can be expressed in terms of E thus .
(20) (w1, - -y ®n) = U(WYSA(E, 21, - - -, %4, Y)),

if we understand the formal objects to be enumerated in some order, so that
the operator p can be applied with respect to the metamathematical varia-
ble Y; we may take the order to be that of the corresponding Godel numbers.

If ¢ is a partial recursive function of # variables, instead of asserting (18),
we can write

(EY)@,L(E, X1y 0y Xy Y)

as the condition on x3, - + -, x, that the function be defined for x1, « - -, x,
as arguments; we have (19), taking the implication to be true whenever the
first member is false, irrespective of the status of the second member; and
our convention calls for rewriting (20) thus,

(21) ¢(xly Ty xn) zu(ﬂY@ﬂ(E’ X1t 0y Xy Y))y

in order that it be true (and not sometimes undefined) for all values of
xl, e o e ’xn'

By the Giodel numbering already considered, the metamathematical func-
tion U(Y) is carried into a number-theoretic function U(y), the definition of
which we complete by taking the value to be 0 for any y not correlated to a
formal object. If the Gédel numbering was suitably chosen, U as well as S,
is primitive recursive.

Now (20), (18) and (19) in terms of &, and U are carried into formulas
of like form in terms of S, and U. On passing over from S, to T,, we then
have the (22), (23) and (24) of the theorem(!3). The part of the theorem which
refers to a partial recursive function is obtained similarly.

THEOREM IV. Given a general recursive function ¢(xy, - - -, %,), there is a

(1) Kleene [2, IV], with some changes in the formulation. The present S. corresponds to
the former T, using the Gédel numbering of proofs instead of the enumeration of provable
equations.
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number e such that

(22) &(21, - -+, %) = UuyTule, 21, -« -, %ny ),

(23) (%1) - (%) (EY)Tule, %1, - - - 5 %y 9)s

249 (%) - @O Tale, 21, - - -, 20 ) 2 UQ) = $(2, - -, 7))
Given a partial recursive function ¢(xy, - - -, X.), there is a number e such

that

(25) O(x1, -+ oy %) 2 UpyTale, 21, - -+, %uy ),

where

(Ey)Tale, #1, -+ + 4 %ay 9)
1s the condition of definition of the function, and (24) holds.

Thus any general recursive function (any partial recursive function) is
expressible in the form Y(uyR(x1, - - -, x4, ¥)) with (2) holding (in the form
Y(uyR(x1, - -+ +, %4, ¥))) where ¥ and R are primitive recursive. Hence:

CoOROLLARY. Every general recursive function is obtainable by applications
of Schemata (1)—(VI) with (3) kolding for applications of (VI).

Every partial recursive function is obtainable by applications of Schemata
(DH-(VI).

Formula (25) contains the substance of the theorem. For it implies the
condition of definition of the function; and, in the case that ¢(xy, - - -, x,)
is defined for all sets of arguments, itgives (22) and (23). Moreover by the
definition of T, in terms of S,, it implies (24).

We say that e defines ¢ recursively, or e is a Gidel number of ¢, if (25)
holds(*), in which case e has all the properties in relation to ¢ which are
specified in the theorem.

Itis here that the advantage of using T, instead of S, appears. A number e
which satisfies ¢(x1, - * -, X.)>U(uySa(e, x1, - -+, %X, ¥)) (which is equivalent
to (25)) does not necessarily satisfy (x1) - - - (x,)(¥) [Sa(e, 21, = -, %, ¥)
—U(y) =¢(x1, - - -, x,) ). While we could get around the difficulty by impos-
ing the latter as an additional condition on the Gédel numbers, it is more con-
venient simply to use T, instead of S,. (On the basis of Theorem III and the
results which we had in terms of S, before passing over to T',, one can set
up a primitive recursive function V such that, if e satisfies (25), then V(e) has
all the properties in terms of S,.)

The numbers f and g for Theorem I can be described now as any numbers
which define recursively the partial recursive functions uyR(x1, « « +, X, ¥)
and uyR(x1, - - -, %n, ¥), respectively.

(4) Kleene [2, Definition 2c, p. 738] and [4, top p. 153]. We have now also the changes in
the formulation of Theorem IV.
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8. Consistency. Let us review the arguments used in proof of Theorems I
and III. For rigor, these have to be put in metamathematical form. Let E
be the system of equations associated with a series of applications of Schemata
(ID-(VI). We shall review only the case that no given function symbols occur
in E.

In general, we easily establish that, for each of certain sets 1, - - -, x,
of natural numbers, an equation of the form f(x;, - - -, x,) =x, as described
in the definitions of general and partial recursive function, is derivable from
E by R1 and R2. In particular, if we are proving that E defines a general
recursive function, we must show this for all xy, - « -, x,; if we have a prior
interpretation of the schemata applications as definition of a (partial or com-
plete) function ¢(x1, - + -, %,), or require that E define a ¢(x1, - « -, x.) al-
ready known to us in some other manner, we must show this forallxy, - + -, x,
belonging to the range of definition of ¢, and also show that the x in the
equation is the numeral representing the value of ¢ for i, - - -, x, as argu-
ments. This property of the equations E and rules R1 and R2, the precise
formulation of which depends on the circumstances, we call the “complete-
ness property.” (When we wish merely to show that E defines a partial recur-
sive function, the function to be determined a posteriori from E, no complete-
ness property is required.)

The second part of the discussion consists in showing that an equation

of the described form f(x;, - - -, x,) =x is derivable from E for at most one
numeral x; or if we have already established completeness in one of the above
senses, that the equations f(xi, - - -, x,) =x referred to in the discussion of
completeness, for various x1, - - -, X,, are the only equations of that form
which are derivable from E by R1 and R2. This we call the “consistency
property.”

As we indicated in §2, it suffices to handle each of the schemata in turn,
assuming equations for use with R2 which give the values of the given func-
tions. The argument for consistency which we sketched in §3 for Schema (VI)
applies as well to the other schemata. For Schema (IV) there is indeed a
choice in the order in which the values of the several x’s are introduced, but
it is without effect on the final result. ’

This very easy consistency proof was gained by restricting the replace-
ment rule so that replacement is only performable on the right member of an
equation, a part f(x1, - - -, X,) where { is a function symbol and xi, - « -, x,
are numerals being replaced by a numeral x. This eliminates the possibility
of deriving an equation of the form g(y1, - + -, y») =y, where g is a fixed func-
tion symbol, y1, * + +, ¥m are fixed numerals, and y is any numeral, along es-
sentially different paths within the system, and therewith the possibility that
such an equation should be derivable for different y’s.

In some previous versions of the theories of general and partial recursive
functions, the replacement rule was not thus restricted. The consistency proof
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which we gave in the version with the unrestricted replacement rule was based
on the notion of verifiability of an equation(*%). This notion makes presup-
position of the values of the functions, and for the theory of partial recursive
functions also of the determinateness whether or not the values are defined.
In the latter case, it is not finitary. To give a constructive consistency proof
for the theory of partial recursive functions with the stronger replacement
rule seems to require the type of argument used in the Church-Rosser con-
sistency proof for A-conversion(!®), and in the Ackermann-von Neumann
consistency proof for a certain part of number theory in terms of the Hilbert
e-symbol (17). '

It is easily shown, by using the method of proof of Theorem IV to obtain
the same normal form with the stronger replacement rule, that every function
partial recursive under the stronger replacement rule is such under the weaker.

Thus we find the curious fact that the main difficulty in showing the equiv-
alence of the two notions of recursiveness comes in showing that the stronger
rule suffices to define as many functions as the weaker. This is because the
consistency of a stronger formalism is involved. The consistency of that for-
malism is of interest on its own account, but is extraneous for the theory of
recursive definition, including the applications corresponding to those of
Church in terms of the A-notation which presuppose the complicated Church-
Rosser consistency proof. All that is required for the theory of recursive
definition is some consistent formalism sufficient for the derivation of the
equations giving the values of the functions.

To this discussion we may add several supplementary remarks. We might
in practice have a system E of equations and a method for deriving from E
by R1 and the strong replacement rule, for all and only the #z-tuples of a
certain set, an equation of the form f(x;, - - -, x,) =x with a determinate x,
but lack the knowledge that unlimited use of the two rules could not lead to
other such equations. In this situation, a function is defined intuitively for
the n-tuples of the set, and undefined off the set. If we can characterize meta-
mathematically our method of applying the two rules, we shall obtain a
limited formalism known to be consistent, and the method used in establish-
ing Theorem IV can then be applied to obtain equations defining the function
recursively with the weak replacement rule.

For some types of equations which define a function recursively with the
strong replacement rule (consistency being known), a more direct method
may be available for obtaining a system defining the function recursively
with the weak replacement rule. For example, consider (in informal lan-
guage) the equation ¢(Y(x)) = x(x). To use this in deriving equations giving
values of ¢, we need to introduce values of ¥ by replacement on the left. After

(%) Kleene [2, p. 731] and [4, §2, the bracketed portion of the fifth paragraph].

(1) Church and Rosser [1].
(1) Hilbert and Bernays [1, §2, part 4, pp. 93-130, and Supplement 11, pp. 396-400].
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expressing the equation in the form ¢(y) = (uw [¥((w)1) =y & x((w)1) =_(w)2])2, _
and separating the latter into a series of equations without the u-symbol by
the method which the theory of the schemata affords, replacement will be re-
quired only on the right. This device is applicable to any equation of which
the left member has the form f(gi(x1, -+, Xz), * * =, gn(x1, * * -, X5)).

The precise form of the restriction which is used to weaken the replace-
ment rule is somewhat arbitrary, so long as it accomplishes its purpose of
channelling the deductions of equations giving the values of the functions.
The restriction as it was stated in the early Gédel version is now simplified,
since we need to consider only equations having the forms appearing in the
six schemata. Godel provided for equations the left members of which could
have the form f(gi(x1, * + +, Xa), - = =, gu(x1, - * +, X,)) where f is the prin-
cipal function symbol and g1, - - -, gm are given function symbols, and there-
fore allowed replacement on the left in the case of the g’s.

9. Predicates expressible in both one-quantifier forms. By Theorem IV,
for any general recursive predicate P(x, - « - , X»),

(26) P(xy, - - -, xa) = (Ey) [Tn<e’ Xy, 0, % ¥) & U®Y) = 0]!
(27) P(xlv Tty xn) = ()’) [Tn(e’ X1y, ° *y Xny y) i U()’) = 0]7

where ¢ is any Gédel number of the representing function of P.

Conversely, suppose that for a predicate P both P(xy, - - -, x5)
E(Ey)R(xlr oty Xy y) and P(xly C xn)E(y)S(xlr oty Xy y) where R
and S are general recursive. From the second of these equivalences, under
classical interpretations, P(x1, - - - , x,) =(Ey)S(x1, + - *, %», ¥). By the clas-
sical law of the excluded middle, (Ey) [R(x1, « « « , %a, ) VS(x1, + - -, %a, ) |-
Therefore

(28) P(xl» Tty xn) = R(xlr M ) I‘y[R(xly oty Xy y) Vg(xlr cr oty Xny y)]);
where the second member is general recursive by Theorem III.

THEOREM V. Every general recursive predicate P(xy, - - - , X.) 15 expressible
in both of the forms (Ey)R(x1, « - -, %a, ¥) and (y)R(x1, - - -, %n, y) where the R
for each is primitive recursive. Under classical interpretations, conversely, every
predicate expressible in both of these forms where the R for each is general recur-
sive is general recursive.

Now consider any predicate expressible in one of the forms of Theorem I1
after the first. According as the innermost quantifier in this form is existential
or universal, we can apply (26) or (27), and then absorb the extra quantifier
by (15) or (16), respectively, to obtain the original form but with a primitive
recursive R. For example,

(D)(Ey)R(a, 5, 3) = (2)(Ey)(Ey2) [Tale, o 2, yu, 32) & U(y) = 0]
= (x)(Ey)[Ts(e, a, x, (9)1, ()2) & U((3)2) = 0].
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COROLLARY. Tke class of predicates expressible in a given one of the forms of
Theorem 11 after the first (for a given n variables) is the same whether a primitive
recursive or a general recursive R be allowed.

This generalizes the observation of Rosser that a class enumerable by a
general recursive function is also enumerable by a primitive recursive func-
tion(18).

The formulas for the one-quantifier cases are

(Ey)R(%1, - -+ 5 %ny 9)
= (Ey) [Taale, 21, - -, %y (91, (9)2) & U((3)2) = 0],
(MR(x1, - -, %ny 9)
= (3 [Tuia(e, %1, - -+ ) %, (M1 ()2 = U((5)2) = 0],

where e is any Gédel number of the representing function of R. These afford
a new proof of the enumeration theorem of §4, with new enumerating predi-
“cates, and thence a new proof of Theorem II.

10. Partial recursive predicates. Let P(x,, - - - , x,) be a predicate which
may not be defined for all #-tuples of natural numbers as arguments. By a
completion of P we understand a predicate Q such that, if P(x;, - - -, x,)
is defined, then Q(x, - - -, x,) is defined and has the same value, and if
P(xy, + - -+, %) is undefined, then Q(xy, - - + , x,) is defined. In particular, the
completion P*+(xy, - + -, x,) which is false when P(x,, - - -, x,) is undefined,
and the completion P~(xy, - - -, x,) which is true when P(xy, - - -, %,) is un-
defined, we call the positive completion and negative completion of P(xy, - « -, x,),
respectively. (In P and P*, the “positive parts” coincide; in P and P-, the
“negative parts” coincide.)

If P(xy, - - -, x,) is a partial recursive predicate, then by Theorem IV,

(31) P+(xl’ T xn) = (Ey) [T"(e’ X1, "ty Xny y) & U(y) = 0]:
(32) P, - -+, %) = (3’) [Tn(e» X1, 00ty Xny }’) - U()’) = 0]’

where ¢ is any Gédel number of the representing function of P.
Conversely, if R(xi, + - -, x,, ¥) is any general recursive predicate, then
by Theorem III,

(33) (Ey)R(x1, -+, %n, ¥) = uyR(x1, - - -, %4, y) =T pyR(21, - - -, %ny ¥),
(34) (y)R(xl’ c oty Xy y) = I‘yﬁ(xl) ct oy Xy )’) 75—#}’?(901, R ) y)'

THEOREM VI. The positive completion Pt(xy, - - -, x,) of a partial recursive
predicate P(x,, - - -, x,) 15 expressible in the form (Ey)R(xy, - + + , Xa, ) Where
R is primitive recursive; and conversely, any predicate expressible in the form
(Ey)R(x1, « - +, %, y) where R is general recursive is the positive completion
Pt(xy, - - -, x,) of a partial recursive predicate P(x1, - - - , Xn).

(29)

(30)

(*8) Rosser [1, Lemma I, Corollary I, p. 88].
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Dually, for negative completions P—(xy, - - -, x,) and the predicate form
(y)R(xlr sty Xy 3’)-

It follows that, for the predicate forms of Theorem II which have an exist-
ential quantifier (universal quantifier) innermost, we may, without altering
the class of predicates expressible in that form, take R to be the positive com-
pletion (negative completion) of a partial recursive predicate.

Let us abbreviate U(uyT (2, %1, * « +, Xa, ¥)) as ®.(z, x1, - - -, xa) (1.
Then &, is a fixed partial recursive function of #41 variables, from which any
partial recursive function ¢ of # variables can be obtained thus (rewriting

(29)),
(35) ¢(x1) Y xn) ~ <I’,.(8, X1, 0, xn)

where e is any Godel number of ¢. Since for a constant z, ®,.(z, x1, - + -, x)
is always a partial recursive function of the remaining # variables,
®,(3, x1, + + -, x,) therefore gives for 2=0, 1, 2, - - - an enumeration (with ,
repetitions) of the partial recursive functions of # variables. It follows that
®,(2, %1, + + -, x,) =01is a partial recursive predicate of #-+41 variables which
enumerates (with repetitions) the partial recursive predicates of # variables.

This, seen in the light of Theorem VI, has as consequence the enumeration
theorem of §2 (with other enumerating predicates), and thence by Cantor’s
diagonal method Theorem II.

Elsewhere, the enumeration theorem for partial recursive functions gave
by Cantor’s diagonal method what may be called the fundamental theorem
for proofs of recursive definability(2?).

This fundamental theorem, and the existence of partial recursive func-
tions and predicates, no completions of which are general recursive(?!), are
what occasioned the introduction of the notion of a partial recursive function.

I1I. INCOMPLETENESS THEOREMS IN THE FOUNDATIONS
OF NUMBER THEORY

11. Introductory remarks. We entertain various propositions about natu-
ral numbers. These propositions have meaning, independently of or prior to
the consideration of formal postulates and rules of proof. We pose the problem
of systematizing our knowledge about these propositions into a theory of
some kind. For certain definitions of our objectives in constructing the theory,
and certain classes of propositions, we shall be able to reach definite answers
concerning the possibility of constructing the theory.

The naive informal approach which we are adopting may be contrasted

(1) Using the notation of Kleene [4, bottom p. 152], but with the changes in the formula-
tion of Theorem IV.

(3°) Kleene [4, the last result in §2].

(3) Kleene [4, Footnote 3].
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with that form of the postulational approach which consists in first listing
formal postulates, which are then said to define the content of the theory
based on them. In the case of number theory, the formal approach cannot
render entirely dispensable an intuitive understanding of propositions of the
kind which we commonly interpret the theory to be about. For the explicit
statement of the postulates and characterization of the manner in which they
are to determine the theory belong to a metatheory on another level of dis-
course; and the ultimate metatheory must be an intuitive mathematics un-
regulated by explicit postulates, and having the essential character of num-
ber theory.

Of course the informality of our investigation does not preclude the enu-
meration, from another level, of postulates which would suffice to describe it.
Indeed, such regulation may perhaps be considered necessary from an intui-
tive standpoint for that part of it which belongs to the context of classical
mathematics. -

The propositions about natural numbers which we shall consider will con-
tain parameters. We shall thus have infinitely many propositions of a given
form, according to the natural numbers taken as values by the parameters.
In other words, we have predicates, for which these parameters are the inde-
pendent variables. Generally, in a theory, a number of predicates are dealt
with simultaneously; but for our investigations it will suffice to consider a
theory with respect to some one predicate without reference to other predi-
cates which might be present. Usually, we shall write a one-variable predicate
P(a), though the discussion applies equally well to a predicate P(a1, * * * , @s)
of n variables.

12. Algorithmic theories. As one choice of the objective, we can ask that
the theory should give us an effective means for deciding, for any given one
of the propositions which are taken as values of the predicate, whether that
proposition is true or false. Examples of predicates for which a theoretical
conquest of this kind has been obtained are: a is divisible by b (that is,
in symbols, (Ex)[a=bx]), ax+by=c is solvable for x and y (that is,
(Ex)(Ey) [ax4by=c]). We shall call this kind of theory for a predicate
a complete algorithmic theory for the predicate.

Let us examine the notion of this kind of theory more closely. In setting
up a complete algorithmic theory, what we do is to describe a procedure,
performable for each set of values of the independent variables, which pro-
cedure necessarily terminates and in such manner that from the outcome
we can read a definite answer, “Yes” or “No,” to the question, “Is the predi-
cate value true?”

We can express this by saying that we set up a second predicate: the pro-
cedure terminates in such a way as to give the affirmative answer. The second
predicate has the same independent variables as the first, is equivalent to the
first, and the determinability of the truth or falsity of its values is guaranteed.
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This last property of the second predicate we designate as the property of
being effectively decidable.

Of course the original predicate becomes effectively decidable, in a deriva-
tive sense, as soon as we have its equivalence to the second; extensionally,
the two are the same. But while our terminology is ordinarily extensional,
at this point the essential matter can be emphasized by using the intensional
language. The reader may if he wishes write in more explicit statements re-
ferring to the (generally) differing objects or processes with which the two
predicates are concerned.

Now, the recognition that we are dealing with a well defined process which
for each set of values of the independent variables surely terminates so as to
afford a definite answer, “Yes” or “No,” to a certain question about the man-
ner of termination, in other words, the recognition of effective decidability in
a predicate, is a subjective affair. Likewise, the recognition of what may be
called effective calculability in a function. We may assume, to begin with,
an intuitive ability to recognize various individual instances of these notions.
In particular, we do recognize the general recursive functions as being effec-
tively calculable, and hence recognize the general recursive predicates as be-
ing effectively decidable.

Conversely, as a heuristic principle, such functions (predicates) as have
been recognized as being effectively calculable (effectively decidable), and
for which the question has been investigated, have turned out always to be
general recursive, or, in the intensional language, equivalent to general recur-
sive functions (general recursive predicates). This heuristic fact, as well as
certain reflections on the nature of symbolic algorithmic processes, led Church
to state the following thesis(?2). The same thesis is implicit in Turing’s de-
scription of computing machines(%).

Tugsis 1. Every effectively calculable function (effectively decidable predicate)
is general recursive.

Since a precise mathematical definition of the term effectively calculable
(effectively decidable) has been wanting, we can take this thesis, together
with the principle already accepted to which it is converse, as a definition of
it for the purpose of developing a mathematical theory about the term. To
the extent that we have already an intuitive notion of effective calculability
(effective decidability), the thesis has the character of an hypothesis—a point
emphasized by Post and by Church(?). If we consider the thesis and its con-
verse as definition, then the hypothesis is an hypothesis about the application
of the mathematical theory developed from the definition. For the acceptance
of the hypothesis, there are, as we have suggested, quite compelling grounds.

(32) Church [1].

(2%) Turing [1].

(2) Post [1, p. 105], and Church [2].
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A full account of these is outside the scope of the present paper(*). We are
here concerned rather to present the consequences.

In the intensional language, to give a complete algorithmic theory for a
predicate P(a) now means to find an equivalent effectively decidable predi-
cate Q(a). It would suffice that Q(a) be given as a general recursive predicate;
and by Thesis I, if Q(a) is not so given, then at least there is a general recur-
sive predicate R(a) equivalent to Q(a) and hence to P(a). Thus to give a
complete algorithmic theory for P(a) means to find an equivalent general
recursive predicate R(a), or more briefly, to express P(a) in the form R(a)
where R is general recursive. This predicate form is the one listed first in
Theorem II; and Theorem II gives to each of the other forms a predicate not
expressible in that form. Thus, while under our interpretations there is a com-
plete algorithmic theory for each predicate of the form R(a) where R is gen-
eral recursive, to each of the other forms there is a predicate for which no
such theory is possible. We state this in the following theorem, using the par-
ticular examples for the one-quantifier forms which were exhibited in the
proof of Theorem II.

THEOREM VII. There exists no complete algorithmic theory for either of the
predicates (Ex)T1(a, a, x) and (x)T:(a, a, x).

Of course, once the definition of effective decidability is granted, which
affords an enumeration of the effectively decidable predicates, Cantor’'s meth-
ods immediately give other predicates. This theorem, as additional content,
shows the elementary forms which suffice to express such predicates.

Abstracting from the particular examples used here, the theorem is
Church’s theorem on the existence of an unsolvable problem of elementary
number theory, and the corresponding theorem of Turing in terms of his
machine concept(?®). The unsolvability is in the sense that the construction
called for by the problem formulation, which amounts to that of a recursive
R with a certain property, is impossible. The theorem itself constitutes solu-
tion in a negative sense. )

13. Formal deductive theories. A second possibility for giving theoretic
cohesion to the totality of true propositions taken as values of a predicate
P(a) is that offered by the postulational or deductive method. We should like
all and only those of the predicate values which are true to be deducible from
given axioms by given rules of inference. To make the axioms and principles
of inference quite explicit, according to modern standards of rigor, we shall
suppose them constituted into a formal system (symbolic logic), in which
the propositions taken as values of the predicate are expressible. Those and
only those of the formulas expressing the true instances of the predicate

(#) For a resume, see Kleene [4, Footnote 2], where further references are given.
(%) Turing [1, §8].
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should be provable. We call this kind of theory for a predicate P(a) a com-
plete formal deductive theory for the predicate.

This type of theory should of course not be confused with incompletely
formalized axiomatic theories, such as the theory of natural numbers itself
as based on Peano’s axioms.

It is convenient in discussing a formal system to name collectively as the
“postulates” the rules describing the formal axioms and the rules of inference.

Let us now examine more closely the concept of provability in a stated
formal system. If the formalization does accomplish its purpose of making
matters explicit, we should be able effectively to recognize each step of a
formal proof as an application of a postulate of the system. Furthermore, if
the system is to constitute a theory for the predicate P(a), we should be able
effectively to recognize, to each natural number @, a certain formula of the
system which is taken as expressing the proposition P(a). Together, these
conditions imply that we should be able, given any sequence of formulas
which might be submitted as a proof of P(a) for a given a, to check it, thus
determining effectively whether it is actually such or not.

Let us introduce a designation for the metamathematical predicate with
which we deal in making this check, for a given formal system and predicate
P(a).

R(e, X): X is a proof in the formal system of the formula expressing the
proposition P(a).

Then the concept of provability in the system of the formula expressing
P(a), or briefly, the provability of P(a), is expressible as (EX)R(a, X).

As we have just argued, the predicate R(e, X) should be an effectively
decidable metamathematical predicate. Here the formal objects over which X
ranges, if the notation of the system is explicit, should be given in some man-
ner which affords an effective enumeration of them. Using the indices in this
enumeration, or generally any effective Gédel numbering of the formal ob-
jects, the metamathematical predicate R (a, X) will be carried into a number-
theoretic predicate R(a, x), taken as false for any x not correlated to a formal
object, which should then also be effectively decidable. By Thesis I, the effec-
tive decidability of the latter implies its general recursiveness. We are thus
led to state a second thesis.

Tugsts I1. For any given formal system and given predicate P(a), the predi-
cate that P(a) is provable is expressible in the form (Ex)R(a, x) where R is gen-
eral recursive.

This thesis corresponds to the standpoint that the role of a formal deduc-
tive system for a predicate P(a) is that of making explicit the notion of what
constitutes a proof of P(a) for a given a. If a proposed “formal system” for
P(a) does not do this, we should say that it is not a formal system in the
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strict sense, or at least not one for P(a). Taken this way, the thesis has a
definitional character.

Presupposing, on the other hand, a prior conception of what constitutes a
formal system for a given predicate in the strict sense, the thesis has the char-
acter of an hypothesis, to which we are led both heuristically and from Thesis
I by general considerations.

Conversely, if a predicate of the form (Ex)R(a, x) where R is general re-
cursive is given, it is easily seen that we can always set up a formal system
of the usual sort, with an explicit criterion of proof,in which all true instances
of this predicate and only those are provable.

Using the thesis, and this converse, we can now say that to give a com-
plete formal deductive theory for a predicate P(z) means to find an equiva-
lent predicate of the form (Ex)R(a, x) where R is general recursive, or more
briefly, to express the predicate in this form. By Theorem II, there are predi-
cates of the other one-quantifier form, and of the forms with more quantifiers,
not expressible in this form. Hence while there are complete formal deductive
theories to each predicate of either of the forms R(a) and (Ex)R(a, x) where
R is general recursive, to each of the other forms there is a predicate for which
no such theory is possible. Specifically, using the one-quantifier example given
in the proof of Theorem II:

THEOREM VIII. There is no complete formal deductive theory for the predi-
cate (x)T1(a, a, x).

This is the famous theorem of Gédel on formally undecidable proposi-
tions, in a generalized form. A proposition is formally undecidable in a given
formal system if neither the formula expressing the proposition nor the for-
mula expressing its negation is provable in the system. Gédel gave such a
proposition for a certain formal system (by a method evidently applying to
similar systems), subject to the assumptions of the consistency and w-consist-
ency of the system. Later Rosser gave another proposition, for which the
latter assumption is dispensed with(?7).

In the present form of the theorem, we have a preassigned predicate
(x)Ti(a, a, x) and a method which, to any formal system whatsoever for this

- predicate, gives a number f for which the following is the situation.

Suppose that the system meets the condition that the formula expressing
the proposition (x)T:(f, f, x) is provable only if that proposition is true. Then
the proposition is true but the formula expressing it unprovable. This state-
ment of results uses the interpretation of the formula, but if the system has
certain ordinary deductive properties for the universal quantifier and recur-
sive predicates, our condition on the system is guaranteed by the metamathe-
matical one of consistency.

If the system contains also a formula expressing the negation of

(?7) Resser [1].
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(%)T:1(f, f, x), and if the system meets the further condition that this formula
is provable only if true, then this formula cannot be provable, and we have
a formally undecidable proposition. The further condition, if the system has
ordinary deductive properties, is guaranteed by the metamathematical one
of w-consistency.

Moreover, we can incorporate Rosser’s elimination of the hypothesis of
w-consistency into the present treatment. To do so, we replace the predicate
(Ex)R(a, %) for the application of Theorem II by (Ex)[R(a, x) & () [y<=x
—35(a, y)]] where (Ex)S(a, v) is the predicate expressing the provability of
the negation of (x)T1(a, a, x). This changes the f for the system.

Thus we come out with the usual metamathematical results for a given
formal system.

For the case that a formal system is sought which should not only prove
the true instances of P(a) but also refute the false ones, if the classical law
of the excluded middle is applied to the propositions P(e), then the Gédel
theorem (Theorem VIII) comes under the Church theorem (Theorem VII).
For had we completeness with respect both to P(a) and to P(a), we could
obtain a general recursive R(a) equivalent to the given predicate by the
method used in proving the second part of Theorem V. Informally, this
amounts merely to the remark that we should have the algorithm for P(a)
which consists in searching through some list of the provable formulas until
we encounter either the formula expressing P(a) or the formula expressing
P(a).

The connection between Gédel’s theorem and the paradoxes has been
much noted. The author gave a proof of Gédel’s theorem along much the
present lines but as a refinement of the Richard paradox rather than of the
Epimenides(?8). That gave the undecidable propositions as values of a predi-
cate of the more complicated form (x)(Ey)R(a, x, v) where R is general re-
cursive. The Epimenides paradox now appears as the more basic. Currently,
Curry has noted the same phenomenon in connection with the Kleene-Rosser
inconsistency theorem(®).

14. Discussion, incomplete theories. In the present form of Gédel’s theo-
rem, several aspects are brought into the foreground which perhaps were not
as clearly apparent in the original version.

Not merely, to any given formal system of the type considered, can a

' proposition be formulated with respect to which that system is incomplete,
but all these propositions can be taken as values of a preassignable elementary
predicate, with respect to which predicate therefore no system can be com-
plete. This depends on the thesis giving a preassignable form to the concept
of provability in a formal system.

(3®) Kleene [2, XIII].
(#%) Kleene and Rosser [1], Curry [2].
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For the interpretation of the propositions we have required, as minimum,
only the notions of effectively calculable predicates and of the quantifiers used
constructively. It seems that lesser presuppositions, if one is to allow any
mathematical infinite, are hardly conceivable.

Beyond that the system should fulfil the structural characteristic ex-
pressed in Thesis II, and should yield results correct under this modicum
of interpretation, we have need of no reference whatsoever to its detailed
constitution.

In particular, the nature of the intuitive evidence for the deductive proc-
esses which are formalized in the system plays no role.

Let us imagine an omniscient number theorist, whom we should expect,
through his ability to see infinitely many facts at once, to be able to frame
much stronger systems than any we could devise. Any correct system which
he could reveal to us, telling us how it works without telling us why, would
be equally subject to the Gédel incompleteness.

It is impossible to confine the intuitive mathematics of elementary propo- |
sitions about integers to the extent that all the true theorems will follow from
explicitly stated axioms by explicitly stated rules of inference, simply because
the complexity of the predicates soon exceeds the limited form representing
the concept of provability in a stated formal system. -

We selected as the objective in constructing a formal deductive system
that what constitutes proof should be made explicit in the sense that a pro-
posed proof could be effectively checked, and either declared formally correct
or declared formally incorrect.

Let us for the moment entertain a weaker conception of a formal system,
under which, if we should happen to discover a correct proof of a proposition
or be presented with one, then we could check it and recognize its formal cor-
rectness, but if we should have before us an alleged proof which is not correct,
then we might not be able definitely to locate the formal fallacy. In other
words, under this conception a system possesses a process for checking, which
terminates in the affirmative case, but need not in the negative. Then the
concept of provability would have the form (Ex)Pt(a, x) where Pt is the
positive completion of a partial recursive predicate P(a, x).. By Theorem VI,
P+(a, x) is expressible in the form (Ey)R(a, x, y) where R is general recursive.
Then the provability concept has the form (Ex)(Ey)R(a, x, ¥), or by contrac-
tion of quantifiers (Ex)R(a, (x)1, (x)2). This is of the form (Ex)R(a, x) where
R is general recursive. Thus the concept of provability has the usual form,
and Godel’s theorem applies as before. If we take a new concept of proof
based on R(a, x), that is, if we redesignate the steps in the checking process as
the formal proof steps, the concept of proof assumes the usual form.

We gave no attention, when we formulated the objectives both of an algo-
rithmic and of a formal deductive theory, to the nature of the evidence for
the correctness of the theory, or to various other practical considerations,
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simply because the crude structural objectives suffice to entail the correspond-
ing incompleteness theorems. In this connection, it may be of some interest
to give the corresponding definitions, although these may not take into ac-
count all the desiderata, for the case of incomplete theories of the two sorts.
We shall state these for predicates of # variables a,, - - - , @, as we could also
have done for the case of the complete theories.

To give an algorithmic theory (not necessarily complete) for a predicate

P(ay, - - -, a,) is to give a general recursive function w(ay, - - -, @.), taking
only 0, 1, and 2 as values, such that

w(ay, - -+, a,) =0—> Play, - -, a,)
(36) { (a1 _( 1

w(ay, -+, a.) = 1> Play, -+, @)
The algorithm always terminates, but if w(ai, - - -, @,) has the value 2 we
can draw no conclusion about P(ay, - - -, @x).

To give a formal deductive theory (not necessarily complete) for a predicate
P(ay, - - -, a,) is to give a general recursive predicate R(a, - - * , @x, ¥) such
that
37 (Ex)R(ay, - - - , @n, x) > P(ay, * + * , @n).

In words, to give a formal deductive theory for a predicate P(ay, * - -, @,) is

to find a sufficient condition for it of the form (Ex)R(ay, - * - , an, ¥) where R
is general recursive. Here, according to circumstances, the sufficiency may be
established from a wider context, or it may be a matter of postulation (hy-
pothesis), or of conviction (belief).

From the present standpoint, the setting up of this sufficient condition
is the essential accomplishment in the establishment of a so-called metatheory
(in the constructive sense) for the body of propositions taken as the values of
a predicate. We note that this may be accomplished without necessarily going
through the process of setting up a formal object language, from which R is
obtainable by subsequent arithmetization, although as remarked above, we
can always set up the object language, if we have the R by some other means.

In the view of the present writer, the interesting variations of formal tech-
nique recently considered by Curry have the above as their common feature
with formalization of the more usual sort(®®). This is stated in our terminol-
ogy, Curry's use of the terms “meta” and “recursive” being different. He
gives examples of “formal systems,” in connection with which he introduces
some predicates by what he calls “recursive definitions,” but what we should
prefer to call “inductive definitions.” This important type of definition, under
suitable precise delimitation so that the individual clauses are construc-
tive, can be shown to lead always to predicates expressible in the form
(Ex)R(ay, - - -, @., x) where R is recursive in our sense. Indeed, this fact

(%) Curry [1].
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can be recognized by substantially the method indicated above for the case
of the inductive definition establishing the notion of provability for a formal
system of the usual sort.

Conversely, given any predicate expressible in the form (Ex)R(a,, * - -,
@, x) where R is recursive, we can set up an inductive definition for it.

15. Ordinal logics. In ordinal logics, studied by Turing(3!), the require-
ment of effectiveness for the steps of deduction is relaxed to allow dependence
on a number (or A-formula) which represents an ordinal in the Church-
Kleene theory of constructive ordinals(®?). A presumptive proof in an ordinal
logic cannot in general be checked objectively, since the proof character de-
pends on the number which occupies the role of a Church-Kleene representa-
tive of an ordinal actually being such, for which there is no effective criterion.
Nevertheless it was hoped that ordinal logics could be used to give complete
orderings (with repetitions) of the true propositions of certain forms into
transfinite series, by means of the ordinals represented in the proofs, in such
a way that the proving of a proposition in the ordinal logic (and therewith
the determination of a position for it in the series) would somehow make it
easier to recognize the truth of the proposition.

Turing obtained a number of interesting results, largely outside the scope
of this article, but among them the following. There are ordinal logics which
are complete for the theory of a predicate of the form (x)(Ey)R(a, x, y) where
R is general recursive; however, for the example of such a logic which is given,
its use would afford no theoretic gain, since the recognition that the number
which plays the role of ordinal representative in a proof of the logicis actually
such comes to the same as the direct recognition of the truth of the proposi-
tion proved.

Now let us approach the topic by inquiring whether, and if so where, the
property of being provable in a given ordinal logic is located in the scale of
predicate forms of Theorem II. First, it turns out that the property of a
number ¢ of being the representative of an ordinal is expressible in the form
(x)(Ey)R(a, x, y) where R is recursive(?3). Now we may use the definition of
ordinal logic in terms of A-conversion, or we may take the notion in general
terms as described above, and state the thesis that for a given predicate P(a)
and given ordinal logic the provability of P(a) is expressible in the form
(Ea)(Ex)R(a, a, x) where o ranges over the ordinal representatives and R
is general recursive. In either case, it then follows that the provability of P(a)
is expressible in the form (Ex)(y)(Ez)R(a, x, v, z) where R is general recursive.
Conversely, to any predicate of the latter form, we can find an ordinal logic

(®) Turing [2]. Turing gave a somewhat restricted definition of “ordinal logic” in terms of
the theory of A-conversion for predicates expressible in the form (x)(Ey)R(a, x, y) where R is
recursive,

() Church and Kleene [1], Church [2], Kleene [4].

() Kleene [5].
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in the more general sense such that provability in the logic expresses the predi-
cate. Hence there is a complete ordinal logic to each predicate of each of the
forms

(Ex)R(a, x)  (2)(Ey)R(a, %, )  (Ex)(y)(E2)R(a, =, ¥, 2)
(©)R(a, x)  (Ex)(»)R(a, , y)

where R is general recursive, but by Theorem 11, classically there are predi-
cates of the form (x)(Ey)(2)R(a, x, y, 2) and of each of the forms with more
quantifiers, or classically and intuitionistically of the form (Ex)(y)(Ez)R(a, x,
¥, 2) and of the negation of each of the forms with more quantifiers, for which
no complete ordinal logic is possible. Specifically:

R(a)

__ THEOREM IX. There is mno complete ordinal logic for the predicate
(Ex)(y)(Ez)Ts(a, a, %, , 2).

Ordinal logics form a class of examples of the systems of propositions
which have recently come under discussion, in which more or less is retained
of the ordering of propositions in deductive reasoning, but with an extension
into the transfinite, or a sacrifice of constructiveness in individual steps. These
may be called “non-constructive logics,” in contrast to the formal deductive
systems in the sense of §§13—-14 which are “constructive logics.” In general,
the usefulness of a non-constructive logic may be considered to depend on the
degree to which the statement of the non-constructive proof criterion is re-
moved from the direct statement of the propositions.

Theorem IX is a “Gédel theorem” for the ordinal logics. The ordinal logics
were at least conceived with somewhat of a constructive bias. Rosser has
shown how Gédel theorems arise on going very far in the direction of non-
constructiveness(**), and Tarski has stated the Gédel argument for systems
of sentences in general(®). Incidental of Rosser’s results for finite numbers of
applications of the Hilbert “rule of infinite induction,” also called “Carnap’s
rule,” can easily be inferred from Theorem II, through the obvious corre-
spondence of an application of this rule to a universal quantifier in the proof
concept. However, the proof concepts for non-constructive logics soon outrun
the scale of predicate forms of Theorem II. This appears to be the case even
for the extension to protosyntactical definability given by Quine(%). If one
is going very far in the direction of non-constructiveness, and is not interested
in considerations of the sort emphasized in §§12-14, there is no advantage in
starting from the theory of recursive functions. But the more general results
do not detract from the special significance which attaches to the Gédel theo-
rems associated with provability criteria of the forms R(a) and (Ex)R(a, x)

(#) Rosser [2].
(3) Tarski [2]
(%) Quine [1].
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where R is general recursive, that is, Church’s theorem and Gédel’s theorem,
for which forms only it is true that a given proof is a finite object.

16. Constructive existence proofs. A proof of an existential proposition
(Ey)A(y) is acceptable to an intuitionist, only if in the course of the proof
there is given a y such that 4 (y) holds, or at least a method by which such a y
could be constructed. Consider the case that 4 (y) depends on other variables.
Say that there is one of these, x, and rewrite the proposition as (x) (Ey)A4(x, ).
The proposition asserts the existence of a y to each of the infinitely many
values of x. In this case, the only way in which the constructivist demand
could in general be met would be by giving the y as an effectively calculable
function of x, that is, by giving the function. According to Thesis I, this func-
tion would have to be general recursive. Hence we propose the following thesis
(and likewise for n variables x1, - - -, %) :

THesis I11. A proposition of the form (x)(Ey)A(x, y) containing no free
variables is provable constructively, only if there is a general recursive function
@(x) such that (x)A (x, p(x)).

When such a ¢ exists, we shall say that (x)(Ey)4 (x, y) is recursively ful-
Sfillable(37).

" This thesis expresses what seems to be demanded from the standpoint of
the intuitionists. Whether such explicit rules of proof as they have stated do
conform to the thesis is a further question which will be considered else-
where(®8). However, in its aspect as restriction on all intuitionistic existence
proofs, the possibilities for which, as we know by Theorem VIII, transcend
the limitations of any preassignable formal system, the thesis is more general
than a metamathematical result concerning a given system.

We now examine the notion of recursive fulfillability as it applies to the
values of a given predicate of the form (x) (Ey)(2)R(a, x, ¥, 2) where R is gen-
eral recursive. Select any fixed value of a. Given a recursive ¢ which fulfils the
corresponding proposition, by Theorem IV there is a number e such that
(x)(Ey)Ti(e, x, ¥) and (x)(y) [T1(e, x, y)—(2)R(a, x, U(y), 2)]. Conversely, if
such an e exists, the proposition is fulfilled by the general recursive function
U(uyTi(e, x, y)). Thus

(Ee) { (x)(Ey)Tl(e’ X, y) & (x)(y) [Tl(ev X, y) - (Z)R(d, X, U(y)’ z)]}

is a necessary and sufficient condition for recursive fulfillability. When the
quantifiers are suitably brought to the front and contracted, this assumes the
form (Ex)(y)(Ez)R(a, x, v, z) with another general recursive R depending on
the original R.

By Theorem II, classically, there is a predicate of the original form

(37) A further analysis of the implications of constructive provability is given in Kleene [6].
(38) Nelson [1].
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(x)(Ey)(2)R(a,x,y,2) whichisnotexpressiblein this form (Ex) (y) (Ez) R(a, x,, 2),
in which the condition of its recursive fulfillability is expressible.

Using the example of such a predicate given in the proof of Theorem II,
we have then

(38) - {(x)(Ey)(z)Ts(a, a, %, ¥, 3) rec. fulf.} = (Ex)(y)(Ez)R(a, %, ¥, 2)

for a certain general recursive R. Substituting the number f of (14) for ¢ in
(14) and (38),

(39) (Ex)(y)(Ez)R(f, %, Y, z) = (Ex)()’)(Ez)Ta(f’ f' % Y z)’
40)  {(D(ENRT(, f, %, 9, 2) rec. fulf.} = (Ex)(9)(ER(f, x, 3, 2).

By the definition of recursive fulfillability,

#)  {@(EN@Ts(, f, % v, 2) rec. fulf.} — (D)(EN) @ T, f, #, 3, 2).

Suppose that (x)(Ey)(z)Ts(f, f, x, v, z) were recursively fulfillable. We
could then conclude by (40) and (39), (Ex)(y)(E2) T:(f, f, x, ¥, 2), and by (41),
(%) (Ey)(2)Ts(f, f, x, v, 2). These results are incompatible. Therefore by reduc-
tio ad absurdum, (x)(Ey)(2)Ts(f, f, x, ¥, 2) is not recursively fulfillable, and
hence by Thesis 111 not constructively provable.

Now by (40) and (39), we have (Ex)(y)(Ez)Ts(f, f, x, ¥, 2); and thence
classically we can proceed to (x)(Ey)(2)Ts(f, £, x, v, 2).

THEOREM X. For a certain number f, the proposition (x)(Ey)(2)Ts(f,f, x, ¥, 2)
1s true classically, but not constructively provable.

Notice that we have here a fixed unprovable proposition for all construc-
tive methods of reasoning, whereas in the preceding incompleteness theorems.
we had only an infinite class of propositions, some of which must be unprov-
able in a given theory.

Intuitionistic number theory has been presented as a subsystem of the
classical, so that the intuitionistic results hold classically, though many classi-
cal results are not asserted intuitionistically. The possibility now appears of
extending intuitionistic number theory by incorporating Thesis III in the
form

(%)(Ey)A(x, y) — {for some general recursive ¢, (x)4(x, $(x))},

so that the two number theories should diverge, with the proposition of
Theorem X true classically, and its negation true intuitionistically(%).
For the classical proof, an application of

(®)A(x) = (Ex)4(2)
suffices as the sole non-intuitionistic step; therewith that law of logic would

(%) This is perhaps hinted in Church [1, first half of p. 363].
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be refuted intuitionistically, for a certain 4. Hitherto the intuitionistic re-
futations of laws of the classical predicate calculus have depended on the
interpretation of the quantifiers in intuitionistic set theory(4?).
The result of Theorem X, with another proposition as example, can be
reached as follows. Consider the proposition,
DEN{ (B To(x, 2,2) &y = 0] V [@)Tn(x, %, 2) & y = 1]}.

This holds classically, by application of the law of the excluded middle in the
form

(®) {(ED)A(x, 2) V (94 (x, 2)},
or the form
(2)(A(2) V 4(x)),

from which the other follows by substituting (Ez)4 (x, 2) for A(x). But it is
not recursively fulfillable, since it can be fulfilled only by the representing
function of the predicate (Ez)T:(x, %, 2), which, as we saw in the proof of
Theorem 11, is non-recursive.

17. Non-elementary predicates. The elementary predicates are enumer-
able. By Cantor’s methods, there are therefore non-elementary number-theo-
retic predicates. However let us ask what form of definition would suffice to
give such a predicate. Under classical interpretations, the enumeration of
predicate forms given in Theorem II for » variables suffices for the expression
of every elementary predicate of # variables. By defining relations of the form
shown in the next theorem, we can introduce a predicate M(a, k) so that it
depends for different values of k on different numbers of alternating quanti-
fiers. On the basis of Theorem 11, it is possible to do this in such a way that
the predicate will be expressible in none of the forms of Theorem II.

THEOREM XI. Classically, there is a non-elementary predicate M(a, k) de-
finable by relations of the form

M(a, 0) = R(a)
M(a, 2k + 1) = (Ex)M(¢(a, x), 2k)
M(a, 2k + 2) = (x)M(¢(a, x), 2k + 1)
where R and ¢ are primitive recursive.

We are dealing here with essentially the same fact which Hilbert-Bernays
discover by setting up a truth definition for their formal system (Z)(4!).

The system (Z) has as primitive terms only ’/, +, -, = and the logical
operations. The predicates expressible in these terms are elementary. Con-

(49) Heyting [1, p. 65].
(4) Hilbert and Bernays [1, pp. 328-340].
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versely, using Theorem IV and Goédel's reduction of primitive recursive func-
tions to these terms(#2), every elementary predicate is expressible in (Z).
The Hilbert-Bernays result is an application to (Z) of Tarski's theorem
on the truth concept(#), with the determination of a particular form of rela-
tions which give the truth definition for (Z). If (Z) is consistent, a formal
proof that the relations do define a predicate is beyond the resources of (Z).
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