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THE present article is almost wholly devoted to a single prob- 

lem—the definition of truth. Its task is to construct—with 

reference to a given language—a materially adequate and 

formally correct definition of the term ‘true sentence’. This prob- 

Jem, which belongs to the classical questions of philosophy, 
raises considerable difficulties. For although the meaning of 
the term ‘true sentence’ in colloquial language seems to be 

quite clear and intelligible, all attempts to define this mean- 

ing more precisely have hitherto been fruitless, and many in- 

vestigations in which this term has been used and which started 

with apparently evident premisses have often led to paradoxes 
and antinomies (for which, however, a more or less satisfactory 
solution has been found). The concept of truth shares in this 

respect the fate of other analogous concepts in the domain of 

the semantics of language. 
The question how a certain concept is to be defined is cor- 

rectly formulated only if a list is given of the terms by means 

of which the required definition is to be constructed. If the 

definition is to fulfil its proper task, the sense of the terms in 

t Brsuiocrapnicat Norse. The results presented in this paper date for the 
most part from 1929. I discussed them, in particular, in two lectures given 
under the title ‘On the concept of truth in reference to formalized deduc- 
tive sciences’ at the Logic Section of the Philosophical Society in Warsaw (Octo- 
ber 8, 1930) and at the Polish Philosophical Society in Lwéw (December 5, 
1930). A short report of these lectures is in Tarski [73]. The paper was 
presented (by J. Lukasiewicz) to the Warsaw Scientific Society on March 21, 
1931. For reasons beyond my control, publication was delayed by two years. 

In the meantime the original text was supplemented by some substantial 
additions (see p. 247, footnote 1). Also, a summary of the chief results of the 
paper was published in Tarski [76]. 

The Polish original of the paper appeared finally in print as Tarski [76a]. 
It was subsequently translated in several languages, first in German (Tarski 
[76b]), and later, in addition to the present English translation, in Italian 
(Tarski [84b]) and French (Tarski (84c]). Each of these translations has been 

provided with a postscript in which some views stated in the Polish original 
have undergone a rather essential revision and modification. 

In two later articles, Tarski [82] and Tarski [84d], I have attempted to 
outline the main ideas and achievements of this paper in a non-technical way. 
In the first of these articles I have also expressed my views regarding some 
objections which have been raised to the investigation presented here.
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this list must admit of no doubt. The question thus naturally 

arises: What terms are we to use in constructing the definition 
of truth? In the course of these investigations I shall not neglect 

to clarify this question. In this construction I shall not make use 

of any semantical concept if I am not able previously to reduce 

it to other concepts. 

A thorough analysis of the meaning current in everyday life 

of the term ‘true’ is not intended here. Every reader possesses 
in greater or less degree an intuitive knowledge of the concept 

of truth and he can find detailed discussions on it in works on 

the theory of knowledge. I would only mention that throughout 

this work I shall be concerned exclusively with grasping the 
intentions which are contained in the so-called classical con- 
ception of truth (‘true—corresponding with reality’) in contrast, 

for example, with the utilitarian conception (‘true—in a certain 

respect useful’)? 

The extension of the concept to be defined depends in an 

essential way on the particular language under consideration. 
The same expression can, in one language, be a true statement, 

in another a false one or a meaningless expression. There will 

be no question at all here of giving a single general definition of 

the term. The problem which interests us will be split into a 

series of separate problems each relating to a single language. 
In § 1 colloquial language is the object of our discussion. The 

final conclusion is totally negative. In that language it seems 

to be impossible to define the notion of truth or even to use 

this notion in a consistent manner and in agreement with the 

laws of logic. 

In the further course of this discussion I shall consider ex- 

clusively the scientifically constructed languages known at the 

present day, i.e. the formalized languages of the deductive 

sciences. Their characteristics will be described at the beginning 

of § 2. It will be found that, from the standpoint of the present 

problem, these languages fall into two groups, the division being 
based on the greater or less stock of grammatical forms in a 
particular language. In connexion with the ‘poorer’ languages 

the problem of the definition of truth has a positive solution: 

there is a uniform method for the construction of the required 

1 Cf. Kotarbitski, T. (37), p. 126 (in writing the present article I have 

repeatedly consulted this book and in many points adhered to the terminology 
there suggested).
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definition in the case of each of these languages. In §§ 2 and 3 

I shall carry out this construction for a concrete language in full 

and in this way facilitate the general description of the above 
method which is sketched in § 4. In connexion with the ‘richer’ 

languages, however, the solution of our problem will be negative, 
as will follow from the considerations of § 5. For the languages 

of this group we shall never be able to construct a correct 

definition of the notion of truth. Nevertheless, everything 
points to the possibility even in these cases—in contrast to the 

language of everyday life—of introducing a consistent and 

correct use of this concept by considering it as a primitive notion 
of a special science, namely of the theory of truth, and its funda- 
mental properties are made precise through axiomatization. 

The investigation of formalized languages naturally demands 

a knowledge of the principles of modern formal logic. For the 

construction of the definition of truth certain purely mathemati- 
cal concepts and methods are necessary, although in a modest 
degree. I should be glad if this work were to convince the reader 

that these methods are now necessary tools even for the inves- 

tigation of some purely philosophical problems. 

§1. Tuer Concrrt or Trvuz SENTENCE IN EVERYDAY OR 

CottoguiaL LanauaGE 

For the purpose of introducing the reader to our subject, a 

consideration—if only a fleeting one—of the problem of defining 

truth in colloquial language seems desirable. I wish especially 

to emphasize the various difficulties which the attempts to solve 

this problem have encountered. 

1 The considerations which I shall put forward in this connexion are, for 

the most part, not the result of my own studies. Views are expressed in them 

which have been developed by 8. Le&niewski in his lectures at the University 
of Warsaw (from the year 1919/20 onwards), in scientific discussions and in 

+ Regarding this statement compare the Postscript.
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Amongst the manifold efforts which the construction of a 

correct definition of truth for the sentences of colloquial language 
has called forth, perhaps the most natural is the search for a 
semantical definition. By this I mean a definition which we can 

express in the following words: 

(1) a true sentence is one which says that the state of affairs is so 

and so, and the state of affairs indeed is so and sot 

From the point of view of formal correctness, clarity, and 

freedom from ambiguity of the expressions occurring in it, the 

above formulation obviously leaves much to be desired. Never- 

theless its intuitive meaning and general intention seem to be 
quite clear and intelligible. To make this intention more definite, 

and to give it a correct form, is precisely the task of a semantical 

definition. 

As a starting-point certain sentences of a special kind present 

themselves which could serve as partial definitions of the truth 

of a sentence or more correctly as explanations of various con- 

crete turns of speech of the type ‘x is a true sentence’. The 

general scheme of this kind of sentence can be depicted in the 

following way: 

(2) x is a true sentence if and only if p. 

In order to obtain concrete definitions we substitute in the 

private conversations; this applies, in particular, to almost everything which 
I shall say about expressions in quotation marks and the semantical antinomies. 

It remains perhaps to add that this fact does not in the least involve Lesniewski 

in the responsibility for the sketchy and perhaps not quite precise form in 
which the following remarks are presented. 

t Very similar formulations are found in Kotarbiriski, T. (37), pp. 127 and 
136, where they are treated as commentaries which explain approximately 
the classical view of truth. 

Of course these formulations are not essentially new ; compare, for example, 

the well-known words of Aristotle: ‘To say of what is that it is not, or of what 

is not that it is, is false, while to say of what is that it is, or of what is not 

that it is not, is true.’ (Aristotle, Metaphysica, T, 7, 27; Works, vol. 8, 
English translation by W. D. Ross, Oxford, 1908.)
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place of the symbol ‘p’ in this scheme any sentence, and in the 

place of ‘x’ any individual name of this sentence. 

Given an individual name of a sentence, we can construct an 

explanation of type (2) for it, provided only that we are able 
to write down the sentence denoted by this name. The most 

important and common names for which the above condition is 

satisfied are the so-called guotation-mark names. We denote by 

this term every name of a sentence (or of any other, even mean- 

ingless, expression) which consists of quotation marks, left- and 

right-hand, and the expression which lies between them, and 

which (expression) is the object denoted by the name in question. 
ae As an example of such a name of a sentence the name “‘it is 

snowing’” will serve. In this case the corresponding explanation 

of type (2) is as follows: 

(3) ‘it ts snowing’ is a true sentence if and only if it is snowing. 

Another category of names of sentences for which we can 
construct analogous explanations is provided by the so-called 

structural-descriptive names. We shall apply this term to names 

which describe the words which compose the expression denoted 

1 Statements (sentences) are always treated here as a particular kind of 
expression, and thus as linguistic entities. Nevertheless, when the terms 

‘expression’, ‘statement’, etc., are interpreted as names of concrete series of 

printed signs, various formulations which occur in this work do not appear 

to be quite correct, and give the appearance of a widespread error which 

consists in identifying expressions of like shape. This applies especially to the 

sentence (3), since with the above interpretation quotation-mark names must 

be regarded as general (and not individual) names, which denote not only 
the series of signs in the quotation marks but also every series of signs of like 
shape. In order to avoid both objections of this kind and also the introduction 
of superfluous complications into the discussion, which would be connected 
among other things with the necessity of using the concept of likeness of 

shape, it is convenient to stipulate that terms like ‘word’, ‘expression’, ‘sen- 

tence’, etc., do not denote concrete series of signs but the whole class of such 
series which are of like shape with the series given; only in this sense shall 
we regard quotation-mark names as individual names of expressions. Cf. 
Whitehead, A. N., and Russell, B. A. W. (90), vol. 1, pp. 661-6 and—for other 

interpretations of the term ‘sentence’——Kotarbitiski, T. (37), pp. 123~5. 

I take this opportunity of mentioning that I use the words ‘name’ and 
‘denote’ (like the words ‘object’, ‘class’, ‘relation’) not in one, but in many 
distinct senses, because I apply them both to objects in the narrower sense 

(i.e. to individuals) and also to all kinds of classes and relations, etc. From 

the standpoint of the theory of types expounded in Whitehead, A. N., and 
Russell, B. A. W. (90) (vol. 1, pp. 139-68) these expressions are to be regarded 

as systematically ambiguous.
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by the name, as well as the signs of which each single word is 

composed and the order in which these signs and words follow 

one another. Such names can be formulated without the help 

of quotation marks. For this purpose we must have, in the 
language we are using (in this case colloquial language), 
individual names of some sort, but not quotation-mark 

names, for all letters and all other signs of which the words and 

expressions of the language are composed. For example we 

could use ‘A’, ‘E’, ‘Ef’, ‘Jay’, ‘Pe’ as names of the letters ‘a’, 

‘e’, ‘f’, ‘J’, ‘p’. It is clear that we can correlate a structural- 

descriptive name with every quotation-mark name, one which 
is free from quotation marks and possesses the same extension 

(i.e. denotes the same expression) and vice versa. For example, 

corresponding to the name “ ‘snow’”’ we have the name ‘a 

word which consists of the four letters: Es, En, O, Double-U 

(in that order)’. It is thus evident that we can construct partial 

definitions of the type (2) for structural-descriptive names of 

sentences. This is illustrated by the following example: 

(4) an expression consisting of three words, of which the first is 

composed of the two letters I and Te (in that order), the second 

of the two letters I and E's (in that order), and the third of the 

seven letters Es, En, O, Double-U, I, En, and Ge (in that 

order), is a true sentence if and only tf it is snowing. 

Sentences which are analogous to (3) and (4) seem to be clear 

and completely in accordance with the meaning of the word 

‘true’ which was expressed in the formulation (1). In regard 

to the clarity of their content and the correctness of their form 
they arouse, in general, no doubt (assuming of course that no 

such doubts concern the sentences which we substitute for the 

symbol ‘p’ in (2)). 

But a certain reservation is nonetheless necessary here. Situa- 
tions are known in which assertions of just this type, in com- 
bination with certain other not less intuitively clear premisses, 

lead to obvious contradictions, for example the antinomy of 

the liar. We shall give an extremely simple formulation of this 
antinomy which is due to J. Lukasiewicz.
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For the sake of greater perspicuity we shall use the symbol 

‘ce’ as a typographical abbreviation of the expression ‘the sen- 

tence printed on this page, line 5 from the top’. Consider now 

the following sentence: 

c is not a true sentence. 

Having regard to the meaning of the symbol ‘c’, we can 
establish empirically: 

(a) ‘ce is not a true sentence’ is identical with c. 

For the quotation-mark name of the sentence c (or for any 

other of its names) we set up an explanation of type (2): 

(8) ‘c is not a true sentence’ is a true senience if and only if 

cis not a true sentence. 

The premisses (x) and (8) together at once give a contra- 

diction: 

c is a true sentence if and only if c is not a true sentence. 

The source of this contradiction is easily revealed: in order 

to construct the assertion (8) we have substituted for the 
symbol ‘p’ in the scheme (2) an expression which itself contains 

the term ‘true sentence’ (whence the assertion so obtained—in 

contrast to (3) or (4}—can no longer serve ag a partial definition 

of truth). Nevertheless no rational ground can be given why 

such substitutions should be forbidden in principle. 
I shall restrict myself here to the formulation of the above 

antinomy and will postpone drawing the necessary conse- 

quences of this fact till later. Leaving this difficulty aside I 

shall next try to construct a definition of true sentence by 

generalizing explanations of type (3). At first sight this task 

may seem quite easy—especially for anyone who has to some 
extent mastered the technique of modern mathematical logic. 

It might be thought that all we need do is to substitute in (3) 

any sentential variable (i.e. a symbol for which any sentence 
can be substituted) in place of the expression ‘it is snowing’ 
which occurs there twice, and then to assert that the resulting 

formula holds for every value of the variable; we would thus
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reach at once a sentence which comprehends all sentences of 

type (3) as special cases: 

(5) for all p, ‘p’ is a true sentence if and only if p. 

But the above sentence could not serve as a general definition 
of the expression ‘x is a true sentence’ because the totality of 

possible substitutions for the symbol ‘z’ is here restricted to 

quotation-mark names. In order to remove this restriction we 

must have recourse to the well-known fact that to every true 
sentence (and generally speaking to every sentence) there corre- 

sponds a quotation-mark name which denotes just that sen- 

tence. With this fact in mind we could try to generalize the 

formulation (5), for example, in the following way: 

(6) for all x, x is a true sentence if and only if, for a certain p, 
x is identical with ‘p’, and p. 

At first sight we should perhaps be inclined to regard (6) as 

a correct semantical definition of ‘true sentence’, which realizes 

in a precise way the intention of the formulation (1) and there- 

fore to accept it as a satisfactory solution of our problem. 

Nevertheless the matter is not quite so simple. As soon as we 

begin to analyse the significance of the quotation-mark names 

which occur in (5) and (6) we encounter a series of difficulties 

and dangers. 

Quotation-mark names may be treated like single words of 

a language, and thus like syntactically simple expressions. The 

single constituents of these names—the quotation marks and 

the expressions standing between them—fulfil the same func- 

tion as the letters and complexes of successive letters in single 

words. Hence they can possess no independent meaning. 
Every quotation-mark name is then a constant individual 
name of a definite expression (the expression enclosed by the 

quotation marks) and in fact a name of the same nature as the 

proper name of a man. For example, the name “‘ ‘p’” denotes one 

1 For example, this fact could be formulated in the following way: 

(5’) for all x; if x is a true sentence, then, for a certain p, x is identical with ‘p’; 

from the premisses (5) and (5’) the sentence (6) given below can be derived 
as a conclusion.
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of the letters of the alphabet. With this interpretation, which 
seems to be the most natural one and completely in accordance 

with the customary way of using quotation marks, partial 
definitions of the type (3) cannot be used for any significant 
generalizations. In no case can the sentences (5) or (6) be 

accepted as such a generalization. In applying the rule called 
the rule of substitution to (5) we are not justified in substituting 

anything at all for the letter ‘p’ which occurs as a component 

of a quotation-mark name (just as we are not permitted 

to substitute anything for the letter ‘t’ in the word ‘true’). 
Consequently we obtain as conclusion not (3) but the following 

sentence: ‘p’ is a true sentence if and only if it is snowing. We 
see at once from this that the sentences (5) and (6) are not 

formulations of the thought we wish to express and that they 

are in fact obviously senseless. Moreover, the sentence (5) leads 

at once to a contradiction, for we can obtain from it just as 

easily, in addition to the above given consequence, the contra- 

dictory consequence: ‘p’ is a true sentence if and only if it ts 
not snowing. Sentence (6) alone leads to no contradiction, but 
the obviously senseless conclusion follows from it that the letter 

‘p’ is the only true sentence. 

To give greater clarity to the above considerations it may 

be pointed out that with our conception of quotation-mark 

names they can be eliminated and replaced everywhere by, for 
example, the corresponding structural-descriptive names. If, 

nevertheless, we consider explanations of type (2) constructed 

by the use of such names (as was done, for example, in (4) above), 

then we see no way of generalizing these explanations. And ifin 

(5) or (6) we replace the quotation-mark name by the structural- 

descriptive name ‘Pe’ (or ‘the word which consists of the single 

letter Pe’) we see at once the absurdity of the resulting formula- 

tion. 
In order to rescue the sense of sentences (5) and (6) we 

must seek quite a different interpretation of the quotation- 

mark names. We must treat these names as syntactically com- 

posite expressions, of which both the quotation marks and the 

expressions within them are parts. Not all quotation-mark
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expressions will be constant names in that case. The expression 

““o’” occurring in (5) and (6), for example, must be regarded 

as a function, the argument of which is a sentential variable 

and the values of which are constant quotation-mark names of 

sentences. We shall call such functions quotation-functions. 

The quotation marks then become independent words belonging 
to the domain of semantics, approximating in their meaning to 

the word ‘name’, and from the syntactical point of view they 

play the part of functors.! But then new complications arise. 

The sense of the quotation-function and of the quotation marks 

themselves is not sufficiently clear. In any case such functors 

are not extensional; there is no doubt that the sentence ‘‘for 

all p and q, in case (p if and only if q), then ‘p’ ts identical with ‘¢’ ”’ 

is in palpable contradiction to the customary way of using 

quotation marks, For this reason alone definition (6) would 
be unacceptable to anyone who wishes consistently to avoid 
intensional functors and is even of the opinion that a deeper 
analysis shows it to be impossible to give any precise meaning 
to such functors.?, Moreover, the use of the quotation functor 

exposes us to the danger of becoming involved in various 

semantical antinomies, such as the antinomy of the liar. This 

will be so even if-—taking every care—we make use only of 

those properties of quotation-functions which seem almost 
evident. In contrast to that conception of the antimony of the 
liar which has been given above, we can formulate it without 

using the expression ‘true sentence’ at all, by introducing the 

1 We call such words as ‘reads’ in the expression ‘x reads’ functors (this is 
@ sentence-forming functor with one individual name as argument) ; also ‘sees’ 
in the expression ‘z sees y’ (a sentence-forming functor with two name argu- 
ments), and ‘father’ in the expression ‘the father of «’ (a name-forming functor 
with one name argument), as well as ‘or’ in the expression ‘p or q’ (a sentence- 

forming functor with two sentence arguments); quotation marks provide an 
example of a name-forming functor with one expression argument. The term 
‘functor’ we owe to T. Kotarbiriski, the terms ‘sentence-forming functor’ and 
‘name-forming functor’ to K. Ajdukiewiez; ef. Ajdukiewicez, K. (3). 

? I shall not discuss the difficult problem of extensionality in more detail 
here; ef. Carnap, R. (8) where the literature of the problem is given, and 
especially Whitehead, A. N., and Russell, B. A. W. (90), vol. 1, pp. 659-66. 
It should be noted that usually the terms ‘extensional’ and ‘intensional’ are 

applied to sentence-forming functors, whilst in the text they are applied to 
quotation marks and thus to name-forming functors.
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quotation-functions with variable arguments. We shall give a 
sketch of this formulation. 

Let the symbol ‘c’ be a typographical abbreviation of the 

expression ‘the sentence printed on this page, line 6 from the top’. 

We consider the following statement: 

for all p, if c ts identical with the sentence ‘p’, then not p 

(if we accept (6) as a definition of truth, then the above state- 

ment asserts that c is not a true sentence), 

We establish empirically: 

(x) the sentence ‘for all p, if ¢ is identical with the sentence 
‘p’, then not p’ ts identical with c. 

In addition we make only a single supplementary assumption 

which concerns the quotation-function and seems to raise no 

doubts: 

(B) for all p and q, if the sentence ‘p’ is identical with the 

sentence ‘q’, then p if and only if q. 

By means of elementary logical laws we easily derive a contra- 

diction from the premisses («) and (f). 

I should like to draw attention, in passing, to other dangers 

to which the consistent use of the above interpretation of quota- 
tion marks exposes us, namely to the ambiguity of certain 

expressions (for example, the quotation-expression which occurs 

in (5) and (6) must be regarded in certain situations as a func- 

tion with variable argument, whereas in others it is a constant 

name which denotes a letter of the alphabet), Further, I would 

point out the necessity of admitting certain linguistic construc- 

tions whose agreement with the fundamental laws of syntax is 

at least doubtful, e.g. meaningful expressions which contain 

meaningless expressions as syntactical parts (every quotation- 
name of a meaningless expression will serve as an example). 

For all these reasons the correctness of definition (6), even with 
the new interpretation of quotation marks, seems to be ex- 

tremely doubtful. 

Our discussions so far entitle us in any case to say that the 

altempt to construct a correct semantical definition of the expression 

‘true sentence’ meets with very real difficulties. We know of no
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general method which would permit us to define the meaning 
of an arbitrary concrete expression of the type ‘x is a true 

sentence’, where in the place of ‘x’ we have a name of some 
sentence. The method illustrated by the examples (3) and (4) 

fails us in those situations in which we cannot indicate for a 

given name of a sentence, the sentence denoted by this name 

(as an example of such a name ‘the first sentence which will be 

printed in the year 2000’ will serve). But if in such a case we 

seek refuge in the construction used in the formulation of 

definition (6), then we should lay ourselves open to all the 

complications which have been described above. 

Tn the face of these facts we are driven to seek other methods 
of solving our problem. I will draw attention here to only one 

such attempt, namely the attempt to construct a structural 

definition. The general scheme of this definition would be some- 

what as follows: a true sentence is a sentence which possesses such 

and such structural properties (i.e. properties concerning the form 

and order of succession of the individual parts of the expres- 

sion) or which can be obtained from such and such structurally 

described expressions by means of such and such structural trans- 

formations. As a starting-point we can press into service many 

laws from formal logic which enable us to infer the truth or 

falsehood of sentences from certain of their structural properties; 
or from the truth or falsehood of certain sentences to infer 

analogous properties of other sentences which can be obtained 

from the former by means of various structural] transforma- 

tions. Here are some trivial examples of such laws: every ex- 

pression consisting of four parts of which the first is the word ‘if’, 
the third is the word ‘then’, and the second and fourth are the same 
sentence, is a true sentence; if a true sentence consists of four parts, 

of which the first is the word ‘if’, the second a true sentence, the 

third the word ‘then’, then the fourth part is a true sentence. Such 

laws (especially those of the second type) are very important. 

With their help every fragmentary definition of truth, the ex- 

tension of which embraces an arbitrary class of sentences, can 
be extended to all composite sentences which can be built up 

from sentences of the given class by combining them by means
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of such expressions as ‘if... then’, ‘if and only if’, ‘or’, ‘and’, 

‘not’, in short, by means of expressions belonging to the sen- 

tential calculus (or theory of deduction). This leads to the idea 
of setting up sufficiently numerous, powerful, and general laws 
for every sentence to fall under one of them. In this way 
we should reach a general structural definition of a true 

sentence. Yet this way also seems to be almost hopeless, at 

least as far as natural language is concerned. For this lan- 

guage is not something finished, closed, or bounded by clear 

limits. It is not laid down what words can be added to this 

language and thus in a certain sense already belong to it 
potentially. We are not able to specify structurally those 

expressions of the language which we call sentences, still less 

can we distinguish among them the true ones. T'he aitempt to set 

up a structural definition of the term ‘true sentence’—applicable 

to colloquial language is confronted with insuperable difficulties. 

The breakdown of all previous attempts leads us to suppose 

that there is no satisfactory way of solving our problem. Im- 

portant arguments of a general nature can in fact be invoked 

in support of this supposition as I shall now briefly indicate. 

A characteristic feature of colloquial language (in contrast to 

various scientific languages) is its universality. It would not be 
in harmony with the spirit of this language if in some other 

language a word occurred which could not be translated into it; 

it could be claimed that ‘if we can speak meaningfully about 

anything at all, we can also speak about it in colloquial language’. 
If we are to maintain this universality of everyday language in 
connexion with semantical investigations, we must, to be con- 

sistent, admit into the language, in addition to its sentences and 

other expressions, also the names of these sentences and ex- 

pressions, and sentences containing these names, as well as such 

semantic expressions as ‘true sentence’, ‘name’, ‘denote’, etc. 

But it is presumably just this universality of everyday language 

which is the primary source of all semantical antinomies, like the 

antinomies of the liar or of heterological words. These anti- 

nomies seem to provide a proof that every language which is 
universal in the above sense, and for which the normal laws of
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logic hold, must be inconsistent. This applies especially to the 

formulation of the antinomy of the liar which I have given on 
pages 157 and 158, and which contains no quotation-function 
with variable argument. If we analyse this antinomy in the 
above formulation we reach the conviction that no consistent 

language can exist for which the usual Jaws of logic hold and 

which at the same time satisfies the following conditions: (I) for 

any sentence which occurs in the language a definite name of 

this sentence also belongs to the language; (II) every expression 
formed from (2) by replacing the symbol ‘p’ by any sentence 

of the language and the symbol ‘x’ by a name of this sentence 

is to be regarded as a true sentence of this language; (ITT) in 
the language in question an empirically established premiss 
having the same meaning as («) can be formulated and accepted 
as a true sentence.? 

If these observations are correct, then the very possibility of a 

consistent use of the expression ‘true sentence’ which is in harmony 

with the laws of logic and the spirit of everyday language seems to 
be very questionable, and consequently the same doubt aitaches to 

the possibility of constructing a correct definition of this expression. 

§ 2. ForMaLIzED LANGUAGES, ESPECIALLY THE LANGUAGE OF 

THE CALCULUS OF CLASSES 

For the reasons given in the preceding section I now abandon 

the attempt to solve our problem for the language of everyday 

life and restrict myself henceforth entirely to formalized lan- 
guages.* These can be roughly characterized as artificially con- 

1 The antinomy of heterological words (which I shall not describe here— 

cf. Grelling, K., and Nelson, L. (24), p. 307) is simpler than the antinomy of 

the liar in so far as no empirical premiss analogous to («) appears in its formula- 
tion; thus it leads to the correspondingly stronger consequence: there can 
be no consistent language which contains the ordinary laws of logic and 
satisfies two conditions which are analogous to (I) and (II), but differ from 
them in that they treat not of sentences but of names, and not of the truth 

of sentences but of the relation of denoting. In this connexion compare the 

discussion in § 5 of the present article—the beginning of the proof of Th. 1, and 
in particular p. 248, footnote 2. 

3 The results obtained for formalized language also have a certain validity 
for colloquial language, and this is owing to its universality: if we translate 

into colloquial language any definition of a true sentence which has been con- 

structed for some formalized language, we obtain a fragmentary definition of 
truth which embraces a wider or narrower category of sentences.
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structed languages in which the sense of every expression 

is uniquely determined by its form. Without attempting a 

completely exhaustive and precise description, which is a 

matter of considerable difficulty, I shall draw attention here 

to some essential properties which all the formalized languages 

possess: (x) for each of these languages a list or description 

is given in structural terms of all the signs with which the ex- 

pressions of the language are formed; (8) among all possible 

expressions which can be formed with these signs those called 
sentences are distinguished by means of purely structural pro- 

perties. Now formalized languages have hitherto been con- 
structed exclusively for the purpose of studying deductive 
sciences formalized on the basis of such languages. The language 

and the science grow together to a single whole, so that we speak 

of the language of a particular formalized deductive science, 

instead of this or that formalized language. For this reason 
further characteristic properties of formalized languages appear 
in connexion with the way in which deductive sciences are built 

up; (y) a list, or structural description, is given of the sentences 

called axioms or primitive statements; (8) in special rules, called 

rules of inference, certain operations of a structural kind are em- 
bodied which permit the transformation of sentences into other 

sentences; the sentences which can be obtained from given sen- 
tences by one or more applications of these operations are called 

consequences of the given sentences. In particular the conse- 

quences of the axioms are called provable or asserted sentences. 

It remains perhaps to add that we are not interested here 

in ‘formal’ languages and sciences in one special sense of the 
word ‘formal’, namely sciences to the signs and expressions of 
which no meaning is attached. For such sciences the prob- 

lem here discussed has no relevance, it is not even meaningful. 

1 The formalization of a science usually admits of the possibility of intro- 
ducing new signs into that science which were not explicitly given at the out- 
set. These signs—called defined signs (in contrast to the primitive signs)— 

appear in the science in the first instance in expressions of & special structure 
called definitions, which are constructed in accordance with special rules— 

the rules of definition. Definitions are sometimes regarded as asserted sen- 

tences of the science. This feature of the formalization of languages will not be 

considered in the sequel.
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We shall always ascribe quite concrete and, for us, intelligible 

meanings to the signs which occur in the languages we shall 

consider! The expressions which we call sentences still re- 

main sentences after the signs which occur in them have been 

translated into colloquial language. The sentences which are 
distinguished as axioms seem to us to be materially true, and in 

choosing rules of inference we are always guided by the prin- 

ciple that when such rules are applied to true sentences the 

sentences obtained by their use should also be true.? 

In contrast to natural languages, the formalized languages 

do not have the universality which was discussed at the end of 
the preceding section. In particular, most of these languages 

possess no terms belonging to the theory of language, i.e. no 

expressions which denote signs and expressions of the same or 

another language or which describe the structural connexions 

between them (such expressions I call—for lack of a better 
term—structural-descriptive). For this reason, when we investi- 

gate the language of a formalized deductive science, we must 

always distinguish clearly between the language about which we 

speak and the language in which we speak, as well as between 

the science which is the object of our investigation and the 

science in which the investigation is carried out. The names 
of the expressions of the first language, and of the relations 

between them, belong to the second language, called the meta- 

language (which may contain the first as a part). The descrip- 

tion of these expressions, the definition of the complicated 

concepts, especially of those connected with the construction 

of a deductive theory (like the concept of consequence, of 
provable sentence, possibly of true sentence), the determination 

of the properties of these concepts, is the task of the second 

theory which we shall call the metatheory. 
For an extensive group of formalized languages it is possible 

! Strictly speaking this applies only to the signs called constants. Variables 
and technical signs (such as brackets, dots, etc.) possess no independent mean- 

ing; but they exert an essential influence on the meaning of the expressions 
of which they form parts. 

2 Finally, the definitions are so constructed that they elucidate or determine 

the meaning of the signs which are introduced into the language by means of 
primitive signs or signs previously defined (cf. p. 166, note 1).
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to give a method by which a correct definition of truth can be 

constructed for each of them. The general abstract description 

of this method and of the languages to which it is applicable 

would be troublesome and not at all perspicuous. I prefer 

therefore to introduce the reader to this method in another 

way. J shall construct a definition of this kind in connexion 

with a particular concrete language and show some of its most 

important consequences. The indications which I shall then 

give in § 4 of this article will, I hope, be sufficient to show how 
the method illustrated by this example can be applied to other 

languages of similar logical construction. 

I choose, as the object of my considerations, the language of 

a deductive science of the utmost simplicity which will surely 
be well known to the reader—that of the calculus of classes. 

The calculus of classes is a fragment of mathematical logic and 

can be regarded as one of the interpretations of a formal science 

which is commonly called Boolean algebra or the algebra of logic.) 

Among the signs comprising the expressions of this language 
I distinguish two kinds, constants and variables.2 I introduce 
only four constants: the negation sign ‘N’, the sign of logical sum 

(disjunction) ‘A’, the universal quantifier ‘II’, and finally the 

inclusion sign ‘I’ I regard these signs as being equivalent in 

1 Cf. Schréder, E. (62), vol. 1 (especially pp. 160-3) and Whitehead, A. N., 
and Russell, B. A. W. (90), vol. 1, pp. 205-12. 

2 By making use of an idea of Lukasiewicz I avoid introducing any technical 
signs (liko brackets, dots, etc.) into the language, and this is due chiefly to 
the fact that I always write the functor before the arguments in every 

meaningful expression ; cf. Lukasiewicz, J. (51), especially pp. v and 40. 
5 Usually many other constants occur in the calculus of classes, e.g. the 

existence sign, the sign of implication, of logical product (conjunction), of 
equivalence, of identity, as well as of the complement, the sum, and the 

product of classes (see p. 168, note 1); for that reason only a fragment of the 
calculus of classes can—formally speaking—be constructed in the language 
under consideration, It is, however, to be noted that all constants of the 

calculus of classes could be introduced into this language as defined terms, 
if we complete its formalization by making the introduction of new signs 

possible by means of definitions (see p. 166, note 1). Owing to this fact our 

fragmentary language already suffices for the expression of every idea which 
can be formulated in the complete language of this science. I would also point 
out that even the sign of inclusion ‘J’ can be eliminated from our language by 
interpreting expressions of the type ‘zy’ (where any variables occur in the place 
of ‘x’ and ‘y’) in the same way in which in the sequel we shall interpret the 
expression ‘Izy’.
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meaning respectively with the expressions ‘not’, ‘or’, ‘for all’ 

{in the sense in which this expression was used in statement (6) 

of §1, for example) and ‘is included in’. In principle any 
arbitrary symbols could be used as variables, provided only 
that their number is not limited and that they are distinct 
in form from the constants. But for the further course of our 

work it is technically important to specify the form of these 

signs exactly, and in such a way that they can easily be ordered 
in a sequence. I shall therefore use as variables only such sym- 
bols as ‘z,’, ‘x,’, ‘,’, and analogous signs which consist of the 

symbol ‘a’ and a number of small strokes added below. The 

sign which has & such small strokes (k being any natural number 

distinct from 0) will be called the k-th variable. In the in- 

tuitive interpretation of the language, which I always have in 

mind here, the variables represent names of classes of indi- 
viduals. As expressions of the language we have either single 
constants and variables or complexes of such signs following one 

another, for example: ‘x,Nz.’, ‘Nix,2,’, ‘Alaa Ix, x7, 

Te,’, ‘Ta, Laan’, ‘It,%n’ and so on. Expressions of the type 

‘No’, ‘Apq’, ‘xp’, and ‘Ixy’, where in the place of ‘p’ and ‘q’ 

any sentences or sentential functions (this term will be explained 

below), and in the place of ‘z’ and ‘y’ any variables, appear, are 

read: ‘not p’ (or ‘it is not true that p’),! ‘p or q’, ‘for all classes x 

we have p’, and ‘the class vis included in the class y’, respectively. 

Regarding composite expressions, i.e. those which are not signs, 

we can say that they consist of two or more other, simpler expres- 

sions. Thus the expression ‘NJz,z,’ is composed of the two 
successive expressions ‘N’ and ‘Iz,x.’ or of the expressions 

‘NI’ and ‘z,2,’ or finally of the expressions ‘Jz,’ and ‘z,’. 

But the proper domain of the following considerations is not 

the language of the calculus of classes itself but the corresponding 

metalanguage. Our investigations belong to the metacalculus 

of classes developed in this metalanguage. From this springs 
the need to give the reader some account—if only a very brief 

1 For stylistic reasons we sometimes use the expression ‘it is not true that’ 
instead of the word ‘not’, the whole expression being regarded as a single word, 
no independent meaning being given to the separate parta, and in particular 
to the word ‘true’, which occur in it.
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one—of the structure of the metalanguage and of the metatheory. 
I shall restrict myself to the two most important points: (1) the 

enumeration of all the signs and expressions which will be used 

in the metalanguage, without explaining in more detail their 

importance in the course of the investigation, and (2) the setting 

up of a system of axioms which suffices for the establishment of 

the metatheory or at least will form a foundation for the results 

obtained in this article. These two points are closely connected 

with our fundamental problem; were we to neglect them, we 

should not be able to assert either that we had succeeded in 

correctly defining any concept on the basis of the metalanguage, 

or that the definition constructed possesses any particular con- 
sequences. But I shall not attempt at all to give the metatheory 

the character of a strictly formalized deductive science. J shall 

content myself with saying that—apart from the two points 

mentioned—the process of formalizing the metatheory shows no 

specific peculiarity. In particular, the rules of inference and of 
definition do not differ at all from the rules used in constructing 

other formalized deductive sciences. 

Among the expressions of the metalanguage we can distin- 

guish two kinds. To the first belong expressions of a general logi- 

cal character, drawn from any sufficiently developed system 

of mathematical logic.1 They can be divided into primitive 

expressions and defined expressions, but this would be point- 
less in the present case. First we have a series of expressions 

which have the same meaning as the constants of the science 

we are considering; thus ‘not’ or ‘tt 1s not true that’? ‘or’, ‘for all’, 

and ‘is included in’—in symbols ‘<’. Thanks to this cireum- 
stance we are able to translate every expression of the language 
into the metalanguage. For example, the statement ‘for all a 

(or for all classes a) a < a’ is the translation of the expression 

‘T[ x Zz2,’. To the same category belongs a series of analogous 

1 For example, from the work Whitehead, A. N., and Russell, B. A. W. 

(90). (But I do not intend to use here any special logical symbolism. Apart 
from the exceptions which I shall explicitly mention I shall use expressions 
of colloquial language.) For the meaning of the general logical expressions 
given below see Carnap, R. (8). 

2 See p. 169, note 1.
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expressions from the domain of the sentential calculus, of the 

first order functional calculus and of the calculus of classes, for 

example, ‘“f..., then’, ‘and’, ‘ifand only if’, ‘for some x’ (or ‘there 

isan x such that ...’), ‘is not included in’—in symbols ‘¢’, ‘“s 

identical with’—in symbols ‘=’, ‘is distinct from’—in symbols 

‘34’, ‘ts an element of ’—in symbols ‘e’, ‘ts not an element of ’—in 
symbols ‘€’, ‘individual’, ‘class’, ‘null class’, ‘class of all x such 

that’, and so on. We also find here some expressions from the 

domain of the theory of the equivalence of classes, and of the 

arithmetic of cardinal numbers, e.g. ‘finite class’, ‘infinite class’, 

‘power of a class’, ‘cardinal number’, ‘natural number’ (or ‘finite 

cardinal number’), ‘infinite cardinal number’, ‘0’, ‘1’, ‘2’, ‘<’, 

“>’, °<’, ‘DS’, ‘+’, ‘—’, .... Finally I shall need some terms 

from the logic of relations. The class of all objects x, to which 

there corresponds at least one object y such that Ry (ie. 
stands in the relation R to y) will be called the domain of the 

binary or two-termed relation R. Analogously, the counter domain 

of the relation R is the set of all objects y for which there is at 
least one object x such that zRy. In the case of many-termed 

relations we do not speak of domain and counter domain, but 

of the Ist, 2nd, 3rd,..., n-th domain of the relation. A relation 

having only one element x in its domain and only one element y 

in its counter domain (a relation which thus holds only between 
x and y and between no other two objects) is called an ordered 

pair, where x is the first and y the second member. Analogously 

using many-termed relations we define ordered triples, quadruples, 

and in general ordered n-tuples. If, for every object y belonging 

to the counter domain of a two-termed relation R, there is only 
one object x such that x Ry, then the relation # is called one-many. 

The concept of seguence will play a great part in the sequel. An 

infinite sequence is a one-many relation whose counter domain is 

the class of all natural numbers excluding zero. In the same way, 
the term ‘finite sequence of n terms’ denotes every one-many 

relation whose counter domain consists of all natural numbers 
k such that 1 < k < n (where 7 is any natural number distinct 

from 0). The unique x which satisfies the formula xRk (for a 

given sequence R and a given natural number &) is called the
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k-th term of the sequence R, or the term of the sequence R with 

index k, and is denoted by ‘R,’. We say that the sequences R 

and S differ in at most the k-th place, if any two corresponding 

terms of these sequences #, and, are identical with the exception 
of the kth terms R, and S, which may be distinct. In the follow- 

ing pages we shall deal with sequences of classes and of natural 

numbers, i.e. with sequences all of whose terms are either classes 
of individuals or natural numbers. In particular, a sequence all 

of whose terms are classes which are included in a given class a, 
will be called a sequence of subclasses of the class a. 

In contrast to the first kind of expression, those of the second 

kind are specific terms of the metalanguage of a structural-descrip- 

tive character, and thus names of concrete signs or expressions of 

the language of the calculus of classes.’ Among these are, in the 

first place, the terms ‘the negation sign’, ‘ the sign of logical sum’, 

‘the sign of the universal quantifier’, ‘the inclusion sign’, ‘the 

k-th variable’, ‘the expression which consists of two successive 

expressions x and y’ and ‘expression’. As abbreviations 

of the first six terms I shall use the symbols ‘ng’, ‘sm’, 

‘un’, ‘in’, ‘v,’, and ‘x~y’ (the sign ‘v’ thus denotes a sequence, 

the terms of which are the successive variables v,, v2, V3,...}. These 

terms have already been used in introducing the reader to the 

language of the calculus of classes. I hope that, thanks to the 

explanations already given, no doubt will remain concerning the 

meaning of these terms. With the help of these terms (and pos- 

sibly general logical terms) all other concepts of the meta- 

language of a structural-descriptive kind can be defined. It is 

easy to see that every simple or composite expression of the 

language under investigation has an individual name in the 

metalanguage similar to the structural-descriptive names of 

colloquial language (ef. pp. 156 and 157). For example, the 
symbolic expression ‘((ng~in)~v,)"v,’ can serve as a name of the 

expression ‘NV/z,x,’. The fact that the metalanguage contains 

both an individual name and a translation of every expression 

{and in particular of every sentence) of the language studied 

will play a decisive part in the construction of the definition of 

truth, as the reader will see in the next section. 

* The following fourteen-word (fifteen in the original German text) passage, 

which ends the sentence, was inadvertently omitted from the 1956 Woodger trans- 

lation and thus also omitted from all previous printings and reprintings: “, names 

of classes, of sequences of expressions and of structural relations existing 

between them.” For credits see p. viii.
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As variables in the metalanguage I shall use the symbols 

(1) ‘a’, ‘6’; (2) f’, 9’, ‘B's (8) h?, VU, ‘m’, ‘n’, “p's (4) 8’, “w’, “w’, 

‘x’, ‘y’, ‘2; and (5) ‘X’, ‘Y’. In this order they represent the 

names of (1) classes of individuals of an arbitrary character, 

(2) sequences of such classes, (3) natural numbers and sequences 

of natural numbers, (4) expressions and sequences of expressions, 

and (5) classes of expressions. 

We turn now to the axiom system of the metalanguage. First, 
it is to be noticed that—corresponding to the two kinds of ex- 

pressions in the metalanguage—this system contains two quite 
distinct kinds of sentences: the general logical axioms which 

suffice for a sufficiently comprehensive system of mathematical 

logic, and the specific axioms of the metalanguage which describe 

certain elementary properties of the above structural-descriptive 
concepts consistent with our intuitions. It is unnecessary to 
introduce explicitly the well-known axioms of the first kind.? 

As axioms of the second kind we adopt the following statements :3 

Axiom 1. 2g, sm, un, and in are expressions, no two of which 

are identical. 

Axiom 2. v, 1s an expression tf and only if k is a natural number 

distinct from 0; v, ts distinct from ng, sm, un, in, and also from v, 

if k 41. 
Axiom 3, 27y is an expression if and only if x and y are ex- 

pressions; xy is distinct from ng, sm, un, in, and from each of the 

CXPTESSIONS V,. 

Axiom 4. If x, y, 2, and t are expressions, then we have 

xy = xt if and only if one of the following conditions is satis- 

fied: (x) w = z and y = 1; (B) there is an expression u such that 

w= 2zuand t= uy; (y) there is an expression u such that 

z= a uand y = ut. 

Axiom 5. (The principle of induction.) Let X be a class 

which satisfies the following conditions: (x) ngeX, sme X,uneX 

1 Although in the cases (1) and (4) 1 use distinct variables I here treat 
expressions as special classes of individuals, namely as classes of concrete series 
of printed signs (cf. p. 156, note 1). 

2 They may again be taken from Whitehead, A. N., and Russell, B. A. W. 
(90), cf. p. 156, note 1. 

5 Ag far as I know the metatheory has never before been given in the form 

of an axiomatized system.



174 CONCEPT OF TRUTH IN FORMALIZED LANGUAGES VIII, § 2 

and in € X; (B) if k is a natural number distinct from 0, then 

vy, © X; (y) ffx Ee X and y © X, then xy © X. Then every ex- 

pression belongs to the class X. 

The intuitive sense of Axs. 1-4 requires no further elucidation. 

Ax. 5 gives a precise formulation of the fact that every expression 

consists of a finite number of signs.t 

It is possible to prove that the above axiom system is categorical. 
This fact guarantees to a certain degree that it will provide a 

sufficient basis for the construction of the metalanguage.! 
Some of the above axioms have a pronounced existential 

character and involve further consequences of the same kind. 

Noteworthy among these consequences is the assertion that the 

class of all expressions is infinite (to be more exact, denumer- 

able). From the intuitive standpoint this may seem doubtful 

and hardly evident, and on that account the whole axiom- 

system may be subject to serious criticism. A closer analysis 
would restrict this criticism entirely to Axs. 2 and 3 as the essen- 

tial sources of this infinite character of the metatheory. I shall 
not pursue this difficult problem any further here.2 The con- 

1 I use the term ‘categorical’ in the sense given in Veblen, O. (86). I do 
not propose to explain in more detail why I see in the categoricity of an 
axiom system an objective guarantee that the system suffices for the establish- 
ment of the corresponding deductive science ; a series of remarks on this question 
will be found in Fraenkel, A. (16). 

2 For example, the following truly subtle points are here raised. Normally 
expressions are regarded as the products of human activity (or as classes of 
such products). From this standpoint the supposition that there are infinitely 
many expressions appears to be obviously nonsensical. But another possible 

interpretation of the term ‘expression’ presents itself: we could consider all 
physical bodies of a particular form and size as expressions. The kernel of the 
problem is then transferred to the domain of physics. The assertion of the 
infinity of the number of expressions is then no longer senseless although it 
may not conform to modern physical and cosmological theories. 

t The axiom set formulated here was published for the first time in 1933, 

in the Polish original of the present paper. In the same year it also appeared 
in the German original of paper IX (see p. 282), The theory based on this 
axiom set is usually referred to as the theory of strings or theary of concatenation. 
From a mathematical point of view it is simply the theory of free semigroups 
(with a fixed, finite or infinite, number of generators). For further information 
and bibliographic references concerning the axiomatization of this theory see 
Corcoran-Frank-Maloney (14f).
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sequences mentioned could of course be avoided if the axioms 

were freed to a sufficient degree from existential assumptions. 

But the fact must be taken into consideration that the elimina- 

tion or weakening of these axioms, which guarantee the existence 

of all possible expressions, would considerably increase the 

difficulties of constructing the metatheory, would render im- 
possible a series of the most useful consequences and so intro- 
duce much complication into the formulation of definitions 

and theorems. As we shall see later this will become clear 

even in the present investigations. For these reasons it seems 

desirable, at least provisionally, to base our work on the axiom 
system given above in its initial unweakened form. 

Making use of the expressions and symbols of the meta- 

language which have now been enumerated, I shall define 

those concepts which establish the calculus of classes as a 

formalized deductive science. These are the concepts of sen- 

tence, axiom (primitive sentence), consequence and provable sen- 

tence. But first I introduce a series of auxiliary symbols which 
will denote various simple types of expression and greatly 

facilitate the later constructions. 

Derinition 1, x is the inclusion with y, as first and v, as second 

term—in symbols x = u,..—if and only if 2 = Gin yy. 

DEFINITION 2. x is the negation of the expression y—in symbols 

x = Y—tf and only if x = ng’ y. 

DEFINITION 3. z 18 the logical sum (disjunction) of the expressions 

y and z—in symbols x = ytz—if and only if x = (sm y)~z. 

DEFINITION 4. xz ts the logical sum of the expressions ty, to...) ta 

(or a logical sum of a finite n-termed sequence t of expressions)— 

in symbols a= > tif and only if t is a finite n-termed 
E 

sequence of expressions which satisfies one of the following con- 
-1 

ditions: («) n = 1 and x = ty (8)n>landx='S t+t,2 
k 

1 As will be seen, Def. 4 is a recursive definition which, as such, raises certain 

methodological misgivings. It is, however, well known that with the help of a 

general method, the idea of which we owe to G. Frege and R. Dedekind, every 
recursive definition can be transformed into an equivalent normal definition
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DEFINITION 5. x 28 the logical product (conjunction) of the 

expressions y and z—in symbols x = y.z—tf and only if 

u = F42. 

DEFINITION 6. x 7s the universal quantification of the expression 

y under the variable vy—in symbols x = (), y—if and only if 

x= (un y)7y. 

DEFINITION 7. x ts the universal quantification of the expression 

y under the variables vp, Upy.+) Up, —in symbols x = (\ES" y—if 
and only if p is a finite n-termed sequence of natural numbers 
which satisfies one of the following conditions: (a) n = 1 and 

z =f\p,y, (8) n > landx = NEE"? No, ¥- 

DEFINITION 8. x is a universal quantification of the expression 

y if and only if either x = y or there is a finite n-termed sequence p 

of natural numbers such that x = [\ES*y. 

DEFINITION 9. zx is the existential quantification of the expres- 

sion y under the variable y,—in symbols x = U,, y—if and only if 

a= (x9. 

We have thus introduced three fundamental operations by 
means of which compound expressions are formed from simpler 

ones: negation, logical addition, and universal quantification. 

(Logical addition is, of course, the operation which consists in 

forming logical sums of given expressions. The terms ‘negation’ 
and ‘universal quantification’ are used to refer both to certain 

operations on expressions and to expressions resulting from 

these operations.) If, beginning with the inclusions «, ,, we perform 

the above operations any number of times we arrive at an 

extensive class of expressions which are called  sentential 

functions. We obtain the concept of sentence as a special case 

of this notion. 

(cf. Dedekind, R. (15), pp. 33-40, and Whitehead, A. N., and Russell, B. A. W. 

(90), vol. 1, pp. 550-7, and vol. 3, p. 244). This, however, is unpractical in so 

far as the formulations so obtained have a more complicated logical structure, 

are less clear as regards their content, and are less suitable for further deriva- 
tions. For these reasons I do not propose to avoid recursive definitions in the 
sequel.
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DEFINITION 10. xis a sentential function if and only if x isan 

expression which satisfies one of the four following conditions: 

(a) there exist natural numbers k and l such that x = 4,;; (8) there 

exists a sentential function y such that x = i; (y) there exist sen- 
tential functions y and z such that « = y+2; (5) there exists a 

natural number k and a sentential function y such that x = T\,y-1 

The following expressions will serve as examples of sen- 

tential functions according to Def. 10: ‘Zaau’, ‘NIaxn’, 

‘Alx, tn Lam’, Tl NIx,av’, and so on. On the other hand 

the expressions ‘I’, ‘Iz,’, ‘AIx am’, ‘T[ Im2v’, ete., are not 

sentential functions. It is easily seen that for every sentential 

function in the language we can automatically construct a 

structural-descriptive name of this function in the metalanguage, 

by making use exclusively of symbols which were introduced 

in Defs. 1, 2, 3, and 6. For example, the following symbolic 

* Def. 10 is @ recursive definition of a somewhat different type from that 
of Def. 4 since the usual ‘transition from n—1 to n’ is lacking in it. In order 
to reduce this to an ordinary inductive definition we must first inductively 
define the expressions ‘x is a sentential function of the nth degree’ (inclusions 
ty,, would then be functions of the 0th degree, the negations and logical sums 
of these inclusions, as well as their universal quantification under any variable, 
functions of the 1st degree, and so on), and then simply stipulate that ‘x is a 
sentential function’ means the same as ‘there is a natural number n such that x 
is a sentential function of the nth degree’. Def. 10 could also be transformed 
into an equivalent normal definition in the following way: 

a ts a sentential function if and only if the formula x € X holds for every class 
X which satisfies the following four conditions: (x) if k and 1 are natural numbers 
distinct from 0, then ye X; (B) if ye X, then GEX; (y) ff yeX andzeX 

then yt+zEX; (8) of k ts a natural number distinct from 0 and ye X, then 

My eX. 
It should be emphasized that recursive definitions of the type of Def. 10 

are open to much more serious methodological objections than the usual 

inductive definitions, since in contrast to the latter, statements of this type 
do not always admit of a transformation into equivalent normal definitions 
(see p. 175, note 1). The fact that such a transformation is possible in the 
present case is owing to the special nature of the concepts occurring in the 

definition (to the fact, namely, that every expression has a finite length and 
also that the operations given in conditions (8)-(8) always lead from 
shorter to longer expressions). If, nevertheless, I sometimes give definitions 
of this kind in the present article in the place of equivalent normal! definitions 
(Defs. 10, 11, 14, 22, and 24), I do so because these definitions have important 
advantages of quite another kind: they bring out the content of the concept 
defined more clearly than the normal definition does, and—in contrast to the 

usual recursive definition—they require no previous introduction of accessory 

concepts which are not used elsewhere (e.g. the accessory concept of a sentential 
function of the nth degree).
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expressions serve as names of the above examples of sentential 

functions: ‘1,2’, ‘3,3’, ‘1,3 +¢3,1', and ‘fica?’ 

DEFINITION 11. v, is a free variable of ihe sentential function x 
if and only if kis a natural number distinct from 0, and x is a sen- 
tential function which satisfies one of the following four conditions: 

(a) there ts a natural number | such that x = 1, 0r x = uy; (B) there 

is a sentential function y such that v, 1s a free variable of y and 
x = ¥; (y) there are sentential functions y and z such that vu, is a 
free variable of yand x = ytzorx = z+y; (6) there isa number 1 
distinct from k and a sentential function y such that v, is a free 
variable of y and x = fy. 

Variables which occur in a sentential function but are not free 

variables of this function, are usually called bound (apparent) 

variables.+ 

DEFINITION 12. « is a sentence (or @ meaningful sentence)— 
in symbols x €¢ S—if and only if x is a sentential function and no 
variable v, ts a free variable of the function x. 

Thus the expressions: f}iui, MNase MiUeu2 
Ailaa+NA Uses) are sentences, but the functions: 4, (24,2, 
tri tfs Ue, are not sentences because they contain the free 
variable v,. By virtue of the above definition the symbol ‘8S’ 

denotes the class of all meaningful sentences. 
The system of primitive sentences of the calculus of classes 

will contain two kinds of sentences.? The sentences of the first 

kind are obtained by taking any axiom system which suffices 
as a basis for the sentential caleulus and contains the signs of 
negation and logical addition as the only constants—for example, 

the axiom system consisting of the following four axioms: 

‘ANAppp’, ‘ANpApg’, ‘ANApqAgp’, 

and ‘ANANpqANArpArg’? 

1 Cf. Hilbert, D., and Ackermann, W. (30), pp. 52-54. 
2 Concepts which ¥ shall discuss in the further course of § 2 do not occur in 

the definition of true sentence itself. I shall, however, make use of them in the 
preparatory discussions at the beginning of § 3 which establish the definitive 
form of the definition. I shall also use them in the formulation of certain 

consequences of this definition (Ths. 3-6 of § 3) which express characteristic 
and materially important properties of true sentences. 

3 This axiom system is the result of a modification and simplification of 
the axiom system which is found in Whitehead, A. N., and Russell, B. A. W. 
(90), vol. 1, pp. 96-97; ef. Hilbert, D., and Ackermann, W., (30), p. 22.
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Saad 6 In these axioms we replace the sentential variables ‘p’, ‘g’, and 

‘y by any sentential functions, and then to the expressions thus 

obtained, if they are not already sentences, we apply the opera- 

tion of universal quantification a sufficient number of times 

until all the free variables have disappeared. The following will 

serve as examples: 

‘ANA T[ a, Ix,a, T] x Ix, T] 2 Ix, 2,’, 

Ty « T] 2 AN I, tin A [20 tn [tn 2,’, etc. 

In order to obtain the sentences of the second kind we shall 
take as our starting-point some axiom system of the as yet 

unformalized calculus of classes which contains the inclusion 

sign as the only undefined sign,! and we then translate the 

axioms of this system into the language of the present article. 

Naturally we must first eliminate all constants which are defined 

by means of the inclusion sign, as well as all terms belonging to 
the sentential calculus and the functional calculus which are 
distinct in meaning from the universal quantifier, the negation 

sign and the sign of logical addition. As examples of sentences 

of this second kind we have 

‘TI a Ixx, and ‘TJ x Ty 2 TT et. ANI 2,2, AN Itty tm Et, 2m’. 

DEFINITION 13. x is an axiom (primitive sentence) if and only 

if x satisfies one of the two following conditions: (x) ae S and 

there exist sentential functions y, z, and u such that x is a universal 

quantification of one of the four functions ytyty, g+(y+2), 

yte+(z+y), and g+24-(u-+y+(u-+2)); (B) x is identical with 
one of the five sentences 

an “ap ‘an NM: Nal2+es+4,9), 

an Me Us(tzs- tase Nala toast a4) 

M1 M2 Uslt3,1-+3,0- Maly +eyetsa)), 
and 

th U.{Ns Mal(aateattaa) . (4a-t+teat+tas)) . 

15 (05,1-+ Ue (ce, 2- 2671-858). 

1 T have chosen here the system of postulates which is given in Huntington, 
E. V. (82), p. 297 (this system has, however, been simplified in particular by 
eliminating certain assumptions of an existential nature).
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In the formulation of the definition of the concept of con- 

sequence I shall use, among others, the following expression: 

‘u is an expression obtained from the sentential function w by sub- 
stituting the variable v, for the variable v;. The intuitive meaning of 

this expression is clear and simple, but in spite of this the defini- 

tion has a somewhat complicated form: 

DEFINITION 14. x ts an expression obtained from the sentential 

function y by substituting the (free) variable % for the (free) vari- 

able », uf and only if k and Lare natural numbers distinct from 0, and x 

and y are sentential functions which satisfy one of the following sia 

conditions: (a) % = tp, and y = 4; (B) there exists a natural num- 
ber m distinet from l, such thatx = y ,and y = Um OD = tm,pand 

Y = tna; (y) 0; ts not a free variable of the function y, and x = y; 

(8) there exist sentential functions z and t such that x = Z,y = f, 

and z is an expression obiained from t by substituting the variable 

v, for the variable v,; (e) there exist sentential functions z, t, u,and w, 

such that x = z+u, y = t+w, where z and u are obtained from t 

and w respectively by substituting the variable v, for the variable v;; 

(£) there exist sentential functions z, t and a natural number m 

distinct from kand 1 such that z = (\mz,y = (mt, and zis obtained 

from t by substituting the variable v, for the variable v;,.1 

For example, it follows from this definition that the expres- 

sions 4, (Ys (3; tes) and t34-Me%, are obtained from the 
functions: tg9, (s (ta2+4,) and te3+[)e%3 respectively by 

substituting v, for v,. But the expression (), 1,5 cannot be ob- 

tained in this way from the function (),.+,3; nor the expression 

N41 from the function Pg+1. 

1 The following is a normal definition which is equivalent to the above 
recursive one (cf. p. 177, note 1): 

a «3 an expression obtained from the sentential function y by substituting the 
variable v, for the variable v, if and only if k and L are natural numbers distinct 

from 0 and wf the formula xRy holds for every relation R which satisfies the 
following siz conditions: (a) ty, Rez,3 (8) if m is a natural number distinct from 
0 and 1, then tym Rem ANd tiny Rims (vy) Uf 2 ts @ sentential function and v;, is not 
a free variable of z, then zRz; (8) if zRi, then ZRt; (c) if zRt and uRw, then 

ztu Rt+w; (f) of m ts a natural number distinct from 0, k, and | and zRt, 
then nz BO mi. 

The definitions of substitution in Lesniewski, 8S. (46), p. 73 (T.E. xLvir), 
and (47), p. 20 (T.E. xivm°) depend on a totally different idea.
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Among the consequences of a given class of sentences we 

include first all the sentences belonging to this class, and all 

the sentences which can be obtained from these by applying, 

an arbitrary number of times, the four operations of substi- 

tution, detachment, and insertion and deletion of the universal 

quantifier.' If we had wished to apply these operations not 

only to sentences, but to arbitrary sentential functions, ob- 

taining thereby sentential functions as results, then the meaning 

of the operation of substitution would be completely deter- 
mined by Def. 14, the operation of detachment would correlate 
the function z with the functions y and g-++-2, the operation 

of introduction of the universal quantifier would consist in 

forming the function y+], 2 from the function y+2z (provided 

that v, is not a free variable of the function y), the operation of 

removal of the universal quantifier would proceed in the opposite 
direction—from the function ytf},z to the function y+z.! 
Here, however, we want to restrict ourselves exclusively to sen- 

tences (in the sense of Def. 12), and therefore we modify the 

above four operations by referring them, not to the sentential 

functions involved, but rather to the sentences that are universal 

quantifications of these functions. 

In order to simplify the construction I first define the auxiliary 

concept of consequence of the n-th degree. 

DEFINITION 15. 2 is a consequence of the nth degree of the 

class X of sentences if and only if xe 8, X = S,n is a natural 

number and either (a) n = 0 and x € X, or n > 0 and one of the 

following five conditions is satisfied: (B) x is a consequence of the 

n— lth degree of the class X ; (y) there exist sentential functions uand 
w, a sentence y and natural numbers k and | such that x is the univer- 

sal quantification of the function wu, y ts the universal quantification 

of the function w, wis obtainable from the function w by substituting 
the variable v;, for the variable v, and y is a consequence of the class 

X of the n—Ith degree; (8) there exist sentential functions u and w 
as well as sentences y and z such that x, y, and z are universal 

quantifications of the functions u, ®-+u, and w respectively, and y 
and z are consequences of the class X of the n—Ith degree; (e) there 
exist sentential functions wand w, a sentence yand a natural number 
k such that x is a universal quantification of the function ut+f,w, 

y is a universal quantification of the function u--w, v, 1s not a free 

variable of u, and y is a consequence of the class X of the n—lth 

1 Of. Lukasiewicz, J. (51), pp. 169-63; IV, p. 56.
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degree; (¢) there exist sentential functions u and w,a sentence y and 

a natural number k, such that xis a universal quantification of the 

function ut+w, y ts a universal quantification of the function 

utf),_w and y is a consequence of the class X of the n—1th degree. 

DEFINITION 16, 2 is a consequence of the class X of sentences— 

symbolically x e Cn(X)—if and only if there is a natural number n 

such that x is a consequence of the nth degree of the class X.1 

DEFINITION 17. x is a provable (accepted) sentence or a 

theorem—in symbols x « Pr—if and only if x is a consequence of 

the set of all axioms. 

From this definition, it is easy to see that we shall have, 

among the provable sentences, not only all the sentences which 

can be obtained from the theorems of the sentential calculus 

in the same way in which the axioms of the first kind (i.e. those 

satisfying the condition («) of Def. 13) were obtained from the 
axioms of the sentential calculus, but also all known theorems 

of the unformalized calculus of classes, provided they are first 

translated into the language under investigation. In order to 

become convinced of this we imitate in the metatheory, in every 
particular case, the corresponding proof from the domain 

of the sentential calculus or of the calculus of classes. For 

example, it is possible in this way to obtain the sentence 

an (at4,1) from the well-known theorem ‘ANpp’ of the 

1 The concept of consequence could also be introduced directly (i.e. without 
the help of consequence of the nth degree) in the following way: 

ze Cn(X) if and only if X CS and if the formula x € Y holds for every class 

Y which satisfies the following conditions: (a) X CY; (B) ify € S and is a universal 
quantification of the function u, z is a universal quantification of the function w, u 
is obtainable from the function w by substituting the variable v, for the variable v; 
andze Y, thenye VY; (y) if yeS, y, 2, and t are universal quantifications of the 
functions u, w+ u, and w respectively and ze Yandte Y, thenye Y; (8) if yes, 
u and w are sentential functions, y is a universal quantification of the function 
ut, w, z is a universal quantification of the function u+w, vp is not a free 
variable of the function uandz€ Y,thenyé Y;(e)ify €S, u and w are sentential 

functions, y is a universal quantification of the function u+-w, z a universal 

quantification of the function ut+ fy, w and ze Y, then ye Y. 

It is, however, to be noted that by transformation of the definition just given 
into a recursive sentence of the type of Def. 10 we obtain a sentence which 

igs equivalent neither with the above definition nor with any other normal 
definition (cf. p. 177, note 1).
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sentential calculus. Translating the proof of this theorem,! we 

show successively from Def. 13 that 

Avra teateas) Naat rates), 

and Naleyateat tit (qat (qataa)t+ (aa +43))) 

are axioms; consequently by Def. 15 

Ni(aat (qateaa)+ (qata.)) 

is a consequence of the Ist degree and Nila +as) is a conse- 

quence of the second degree of the class of all axioms. Hence, by 

Defs. 16 and 17, M(an+4,1) is a provable sentence. 

From examples of such inferences the difficulties can be 

imagined which would at once arise if we wished to eliminate 

from the axioms of the metatheory the assumptions which are 

of an existential nature. The fact that the axioms would no 

longer guarantee the existence of some particular sentences, 

whose provability we wish to establish, is not very relevant. Much 

more important is the fact that, even assuming the existence of 

some concrete sentence, we might be unable to establish its prov- 

ability ; since in the proof it might be necessary to refer to the exis- 

tence of other, as arule more complicated, sentences (as is seen from 

the proof of the theorem (h(iji+e:,1) © Pr’ which was sketched 

above). So long as we are dealing with special theorems of 

of the type ‘x € Pr’, we can take measures to provide these 

statements with premisses which guarantee the existence of the 

sentences necessary for the proof. The difficulties would increase 

significantly if we passed to statements of a general character 

which assert that all sentences of a certain kind are provable 

—or, still more generally, are consequences of a given class of 

sentences. It would then often be necessary to include among 

the premisses general existential assumptions which would not be 

weaker than those which, for intuitive reasons, we had elimi- 

nated from the axioms.? 

1 Cf. Whitehead, A. N., and Russell, B. A. W (90), vol. 1, p. 101, *2.1. 

2 This is easily seen from the examples of Ths. 11, 12, 24, and 28 in § 3.
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For these reasons the standpoint might be taken that Def. 
17, in case the existential assumptions are rejected, would no 

longer embrace all the properties which we ascribe to the con- 

cept of theorem. The problem of a suitable ‘correction’ of the 

above definition would then arise. More precisely expressed, 

it would be a question of constructing a definition of theorem 
which would be equivalent to Def. 17 under the existential 
assumptions and yet—quite independently of these assump- 
tions—would have as consequences all theorems of the type 

“if the sentence x exists, then x © Pr’, provided the corresponding 

theorem ‘x € Pr’ could be proved with the help of the existential 

assumptions. I shall give here a brief sketch of an attempt to 
solve this problem. 

Tt can easily be shown that the axiom system adopted in the 
metatheory possesses an interpretation in the arithmetic of the 

natural numbers. A one-one correspondence can he set up be- 

tween expressions and natural numbers where operations on 
numbers having the same formal properties are correlated with 

the operations on expressions. If we consider this correspon- 
dence, we can pick out, from the class of all numbers, those which 

are correlated with sentences; among these will be the ‘primitive’ 

numbers. We can introduce the concept of a ‘consequence’ of 

a given class of numbers, and finally define the ‘accepted’ 

numbers as ‘consequences’ of the class of all ‘primitive’ numbers. 

If we now eliminate the existential] assumptions from the axioms, 

the one-one correlation disappears: to every expression a natural 

number still corresponds, but not to every number, an expression. 

But we can still preserve the concept of ‘accepted’ number 

previously established and define the theorems as those which 
are correlated with ‘accepted’ numbers. If we try, on the basis 

of this new definition, to prove that a concrete sentence is a 
theorem, we shall no longer be compelled—as is easily seen—to 

refer to the existence of any other sentences. Nevertheless the 

proof will still require—and this must be emphasized—an 

existential assumption, the assumption, namely, that there 

exist sufficiently many natural numbers or—what amounts 

to the same thing—sufficiently many distinct individuals. Thus
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in order to derive all desired conclusions from the new definition, 

it would be necessary to include in the metatheory the axiom of 

infinity, i.e. the assumption that the class of all individuals is 

infinite... I know of no method, be it even less natural and more 

complicated than the one just discussed, which would lead to a 

satisfactory solution of our problem which is independent of 

the above axiom. 

In connexion with the concepts of consequence and of theorem 

I have mentioned rules of inference. When we have in mind the 

construction of a deductive science itself, and not the investiga- 

tion of such a science carried out on the basis of the metatheory, 
we give, instead of Def. 17, a rule by which we may add to the 

science as a theorem every consequence of the axioms. In our 

case this rule can be divided into four rules—corresponding to 

the four operations which we use in the construction of con- 

sequences. 

By means of the concepts of sentence and of consequence all 

the most important methodological concepts can be introduced 

into the metatheory, in particular the concepts of deductive 

system, of consistency and of completeness.” 

DEFINITION 18. X is a deductive system if and only if 

Cn{X)co Xo S8. 

DEFINITION 19. X is a consistent class of sentences if and only if 

X <8 and if, for every sentence x, either x E Cn(X) or ZECn(X). 

DEFINITION 20. X is a complete class of sentences if and only if 
X ¢ Sand if, for every sentence x, either # € Cn(X) or & € Cn(X). 

In the sequel yet another concept will prove useful: 

DEFINITION 21. The sentences x and y are equivalent with 

respect to the class X of sentences if and onlyifxe S,yeS,X oS 

and both +-y € Cn(X) and 9+ € Cn(X). 

A more detailed analysis of the concepts introduced in this 

section would exceed the limits of the present work. 

1 Cf. Whitehead, A. N., and Russell, B. A. W. (90), vol. 2, p. 203. 

2 Cf. pp. 70, 90, and 93 of the present volume.
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§3. Tae Concerr oF TRUE SENTENCE IN THE LANGUAGE OF 

THE CALCULUS OF CLASSES 

I pass on now to the chief problem of this article—the construc- 

tion of the definition of true sentence, the language of the calculus 
of classes still being the object of investigation. 

It might appear at first sight that at the present stage of our 

discussion this problem can be solved without further difficulty, 

that ‘true sentence’ with respect to the language of a formalized 

deductive science means nothing other than ‘provable theorem’, 

and that consequently Def. 17 is already a definition of truth 

and moreover a purely structural one. Closer reflection shows, 

however, that this view must be rejected for the following reason: 

no definition of true sentence which is in agreement with the 

ordinary usage of language should have any consequences which 

contradict the principle of the excluded middle. This principle, 

however, is not valid in the domain of provable sentences. A 

simple example of two mutually contradictory sentences (i.e. 

such that one is the negation of the other) neither of which is 

provable is provided by Lemma E below. The extension of the 
two concepts is thus not identical. From the intuitive stand- 

point all provable sentences are without doubt true sentences 

(the Defs. 13-17 of § 2 were formulated with that in mind). 

Thus the definition of true sentence which we are seeking must 

also cover sentences which are not provable.! 

1 The fact must also be taken into consideration that—in contrast to the 
concept of true sentence—the concept of provable sentence has a purely 
accidental character when applied to some deductive sciences, which is chiefly 

connected with the historical development of the science, It is sometimes 
difficult to give objective grounds for narrowing or widening the extension 

of this concept in a particular direction. For example, when we are dealing with 

the calculus of classes the sentence (},f)et1,2, which stipulates the existence of 
at least two distinct classes, is not accepted on the basis of the definitions of 

§ 2—-which will be expressed in Lemma E. Moreover, this sentence cannot 

be derived from the formal hypotheses upon which the work of Schroder is 
based, although in this case the matter is not quite clear (ef. Schroder, E. (62), 
vol. I, pp. 245 and 246; vol. 2, Part 1, p. 278; vol. 3, Part 1, pp. 17 and 18); 

but in many works this sentence occurs as an axiom of the algebra of logic 

or forms an obvious consequence of these axioms (cf. Huntington, EB. V. (32), 
p. 297, Post. 10). For quite different reasons, which will be discussed below 

in connexion with Th. 24 (cf. especially p. 207, footnote), it would be desirable 

to include the sentence (],(Mat1,2+ Ualeas- Asl Mote teat tz5))) among the
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Let us try to approach the problem from quite a different angle, 

by returning to the idea of a semantical definition as in § 1. As 

we know from § 2, to every sentence of the language of the cal- 
culus of classes there corresponds in the metalanguage not only a 

name of this sentence of the structural-descriptive kind, but 
also a sentence having the same meaning. For example, corre- 
sponding to the sentence ‘TJ 2, |] x, Ala, 2» Ia»z,’ is the name 

Thr Mel4,2+%21)’ and the sentence ‘for any classes a and 6 we 

havea ¢ borb < a’. In order to make clear the content of the 
concept of truth in connexion with some one concrete sentence 
of the language with which we are dealing we can apply the same 
method as was used in § 1 in formulating the sentences (3) and (4) 

(ef. p. 156). We take the scheme (2) and replace the symbol ‘x’ 

in it by the name of the given sentence, and ‘p’ by its translation 
into the metalanguage. All sentences obtained in this way, e.g. 

Ta NMelr,2+ 21) is & true sentence if and only if for any classes a 
and bwehavea < borb<a’,naturally belong to the metalanguage 

and explain in a precise way, in accordance with linguistic usage, 

the meaning of phrases of the form ‘x is a true sentence’ which 
occur in them. Not much more in principle is to be demanded of 
a general definition of true sentence than that it should satisfy 
the usual conditions of methodological correctness and include 
all partial definitions of this type as special cases; that it should 

be, so to speak, their logical product. At most we can also 

require that only sentences are to belong to the extension of the 

defined concept, so that, on the basis of the definition con- 

structed, all sentences of the type ‘x is not a true sentence’, in 
which in the place of ‘x’ we have the name of an arbitrary ex- 

pression (or of any other object) which is not a sentence, can 

be proved. 

Using the symbol ‘7'r’ to denote the class of all true sentences, 
the above postulate can be expressed in the following conven- 
tion: 

Convention T. A formally correct definition of the symbol 

theorems, although this is not usually done. In the course of this work I shall 
have several occasions to return to the problem of the mutual relations of 
these two concepts: of theorem and of true sentence,
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‘Tr’, formulated in the metalanguage, will be called an adequate 

definition of truth ¢f i has the following consequences: 

(x) all sentences which are obtained from the expression ‘x € Tr 

if and only if p’ by substituting for the symbol ‘x’ a structural- 

descriptive name of any sentence of the language in question and for 

the symbol ‘p’ the expression which forms the translation of this 

sentence into the metalanguage ; 

(B) the sentence ‘for any x, if xe Tr then x € S’ (in other words 

‘Tre 8’) 

It should be noted that the second part of the above con- 

vention is not essential; so long as the metalanguage already 

has the symbol ‘Zr’ which satisfies the condition (a), it is easy 
to define a new symbol ‘7'r’’ which also satisfies the condition (f). 

It suffices for this purpose to agree that 7J'r’ is the common part 

of the classes T'r and S. 

If the language investigated only contained a finite number of 
sentences fixed from the beginning, and if we could enumerate all 

these sentences, then the problem of the construction of a correct 

definition of truth would present no difficulties. For this purpose 

it would suffice to complete the following scheme: x € T'r if and 

only if either x = x, and p,, or # = x, and Po,... OFX = Xz and Pp, 

the symbols ‘w,’, ‘x,’,..., ‘x,’ being replaced by structural- 
descriptive names of all the sentences of the language investi- 
gated and ‘p,’, ‘p,’,..., ‘p,’ by the corresponding translation of 

these sentences into the metalanguage. But the situation is not 

like this. Whenever a language contains infinitely many sen- 

tences, the definition constructed automatically according to the 
above scheme would have to consist of infinitely many words, and 
such sentences cannot be formulated either in the metalanguage 

1 If we wished to subject the metalanguage and the metatheory expressed 

in it to the process of formalization, then the exact specification of the mean- 

ing of various expressions which oceur in the convention T would present 

no great difficulties, e.g. the expressions ‘formally correct definition of the 
given symbol’, ‘structural-descriptive name of a given expression of the language 
studied’, ‘the translation of a given sentence (of the language studied) into the 
metalanguage’. After unimportant modifications of its formulation the con- 
vention itself would then become a norma} definition belonging to the meta- 
theory.
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or in any other language. Our task is thus greatly com- 

plicated. 

The idea of using the recursive method suggests itself. Among 
the sentences of a language we find expressions of rather varied 
kinds from the point of view of logical structure, some quite 
elementary, others more or less complicated. It would thus 

be a question of first giving all the operations by which simple 

sentences are combined into composite ones and then deter- 

mining the way in which the truth or falsity of composite 

sentences depends on the truth or falsity of the simpler ones 
contained in them. Moreover, certain elementary sentences 

could be selected, from which, with the help of the operations 

mentioned, all the sentences of the language could be con- 

structed; these selected sentences could be explicitly divided 
into true and false, by means, for example, of partial definitions 
of the type described above. In attempting to realize this idea 

we are however confronted with a serious obstacle. Even asuper- 

ficial analysis of Defs. 10-12 of § 2 shows that in general com- 

posite sentences are in no way compounds of simple sentences. 

Sentential functions do in fact arise in this way from elementary 
functions, i.e. from inclusions; sentences on the contrary are cer- 

tain special cases of sentential functions. In view of this fact, no 

method can be given which would enable us to define the required 

concept directly by recursive means. The possibility suggests 

itself, however, of introducing a more general concept which 

is applicable to any sentential function, can be recursively 

defined, and, when applied to sentences, leads us directly to the 

concept of truth. These requirements are met by the notion of 

the satisfaction of a given sentential function by given objects, and 
in the present case by given classes of individuals. 

Let us try first to make clear by means of some examples the 

usual meaning of this notion in its customary linguistic usage. 

The way in which we shall do this represents a natural generaliza- 

tion of the method which we have previously used for the con- 

cept of truth. 

The simplest and clearest case is that in which the given sen- 
tential function contains only one free variable. We can then
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significantly say of every single object that it does or does not 

satisfy the given function.! Jn order to explain the sense of this 

phrase we consider the following scheme: 

for all a, a satisfies the sentential function x if and only if p 

and substitute in this scheme for ‘p’ the given sentential function 

(after first replacing the free variable occurring in it by ‘a’) 
and for ‘a’ some individual name of this function. Within 

colloquial language we can in this way obtain, for example, the 

following formulation: 

for all a, a satisfies the sentential function ‘x is white’ tf and only 
af a ts white 

(and from this conclude, in particular, that snow satisfies the 

function ‘x is white’). A similar construction will be familiar to 

the reader from school algebra, where sentential functions of a 

special type, called equations, are considered together with the 
numbers which satisfy these functions, the so-called roots of the 

equations (e.g. 1 is the only root of the equation ‘+2 = 3’). 
When, in particular, the function belongs to the language of 

the calculus of classes, and the corresponding explanation of the 

expression ‘a satisfies the given sentential function’ is to be 

formulated wholly in the terms of the metalanguage, then in the 
above scheme we insert for ‘p’ not the sentential function itself, 
but the expression of the metalanguage having the same mean- 
ing, and for ‘x’ we substitute an individual name of this function 

which likewise belongs to the metalanguage. For example, this 

method gives the following formulation in connexion with the 
function ‘T] 2 Ia 2,’: 

for all a, a satisfies the sentential function 124.2 if and only 
af for all classes b we havea < 6 

(whence it follows at once that the only class which satisfies the 

function ‘TJ 2, Iz,2,’ is the null class). 
In cases where the sentential function has two distinct free 

variables we proceed in an exactly analogous manner. The only 

1 Provisionally I ignore problems connected with semantical categories (or 
logical types); these problems will be discussed in § 4.
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difference is that the concept of satisfaction now refers not to 

single objects but to pairs (more accurately to ordered pairs) of 

objects. In this way we reach the following formulations: 

for all a and b, a and b satisfy the sentential function ‘x sees y’ 

af and only «f a sees b; for all a and b, a and b satisfy the sentential 

function tag (i.¢. ‘Tar 2tn’) if and only if ac b. 

Finally we pass to the general case, where the given sentential 

function contains an arbitrary number of free variables. For the 

sake of a uniform mode of expression we shall from now on not 

say that given objects but that a given infinite sequence of objects 

satisfies a given sentential function. If we restrict ourselves to 

functions from the calculus of classes, then the establishment of 

an unambiguous explanation of this expression is facilitated by 

the fact that all the variables which occur in the language of this 

science are ordered (enumerated) in a sequence. In considering 

the question of which sequences satisfy a given sentential func- 
tion, we shall always have in mind a one-many correspondence 

of certain terms of a sequence f with the free variables of the 

sentential function, where with every variable corresponds the 

term of the sequence with the same index (ie. the term f, will 
be correlated with the variable v,). No account will be taken of 
the terms which are not correlated with any variable. We can 

explain the procedure best by means of concrete examples. 

Consider the function (.],+,2 already mentioned. This function 

contains only one free variable v,, so that we consider only the 

first terms of sequences. We say that the infinite sequence f of 

classes satisfies the sentential function ()\o%1. if and only if the 

1 This is a simplification of a purely technical nature. Even if we could 
not order all the variables of a given language in a sequence (e.g. because we 

used symbols of arbitrary shapes as variables), we could still number all the 

signs, and thus all the variables, of every given expression, e.g. on the basis of 
the natural order in which they follow one another in the expression: the 
sign standing on the extreme left could be called the first, the next the second, 

and so on. In this way we could again set up a certain correlation between the 
free variables of a given function and the terms of the sequence. This correla- 
tion (in contrast to the one described in the text) would obviously vary with 
the form of the function in question; this would carry with it rather serious 
complications in the formulation of Def. 22 given below and especially of 

conditions (y) and (8).
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class f, satisfies this function in the former sense, 1.e. if for all 

classes b, we have f, < 6. In an analogous way the infinite sequence 

f of classes satisfies the sentential function ty ,if and only if the classes 

f, and f, satisfy the function in the previous sense, i.e. if f, < fy. 
This process may be described in general terms as follows. 

We consider the following scheme: 

f satisfies the sentential function x if and only if f ts 

an infinite sequence of classes, and p. 

Given any sentential function, say s, from the calculus of classes, 

we replace in the above scheme the symbol ‘2’ by an individual 

(structural-descriptive) name of s constructed in the metalanguage; 

at the same time, for all the free variables », , v,, etc. occurring in s 

we substitute the corresponding symbols ‘f,’, ‘f;’, etc. and we 

replace ‘p’ in the scheme by the expression thus obtained from s 

(or by its translation into the metalanguage). 

We shall use a recursive method in order to formulate a 

general definition of satisfaction of a sentential function by a 
sequence of classes, which will include as special cases all par- 

tial definitions of this notion that are obtained from the given 

scheme in the way described above. For this purpose it will 
suffice, bearing in mind the definition of sentential function, to 

indicate which sequences satisfy the inclusions .,, and then to 
specify how the notion we are defining behaves when the three 

fundamental operations of negation, disjunction, and universal 

quantification are performed on sentential functions. 

The operation of universal quantification calls for special 

consideration. Let x be any sentential function, and assume 

that we already know which sequences satisfy the function 2. 

Considering the meaning of the operation of universal quan- 

tification, we shall say that the sequence f satisfies the func- 

tion (],% (where & is a particular natural number) only if this 

sequence itself satisfies the function x and does not cease to 

satisfy it even when the &th term of this sequence varies in any 

way; in other words, if every sequence which differs from 

the given sequence in at most the kth place also satisfies the 

function. For example, the function (},1,, is satisfied by those, 
and only those, sequences f for which the formula f, ¢ f, holds 

without regard to the way in which the second term of this
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sequence is allowed to vary (as is easily seen, this is only possible 

when the first term is the null class). 

After these explanations the understanding of the following 
definition should not be difficult. 

DEFINITION 22. The sequence f satisfies the sentential function 

x if and only if fis an infinite sequence of classes and x 18 a sentential 
function and if f and x are such that etther (a) there exist natural 

numbers k and | such that x = u,, and f, C f,; (8) there ts a sententral 

function y such that x = 9 and f does not satisfy the function y; (y) 

there are sentential functions y and z such that x = y+z and f ecther 

satisfies y or satisfies z; or finally ‘8) there is a natural number k and 

a sentential function y such that x = Nyy and every infinite sequence 

of classes which differs from f in at most the k-th place satisfies the 

function y.! 

The following are examples of the application of the above 
definition to concrete sentential functions: the infinite sequence f 
satisfies the inclusion :,. if and only if f, < f,, and the function 

tog t¢32 if and only if f, ~ fs; the functions (],.1. and (s423 
are satisfied by those, and only those, sequences f in which /, 

is the null class and f, the universal class (i.e. the class of all 

individuals) respectively; finally, every infinite sequence of 

classes satisfies the function «,, and no such sequence satisfies 

the function tia-tie: 

The concept just defined is of the greatest importance for 

investigations into the semantics of language. With its help the 

meaning of a whole series of concepts in this field can easily be 

! The normal definition, which is equivalent to the above recursive one, is 
as follows (cf. pp. 177, 180, and 182): 

The sequence f satisfies the sentential function x if and only if we have fRx for 

every relation R which satisfies the following condition: 

For any g and y, in order that gRy tt is necessary and sufficient that g is an 
infinite sequence of classes, y is a sentential function and either (a) there are 

natural numbers k andl such that y = y1, and g, C g, or (B) there is a sentential 

function z such that y = 2 and the formula gRz does not hold; or (y) there are 
sentential functions z and t such that y = z+t and gRz or gRt; or finally (8) there 
is a@ natural number k and a sentential function z such that y = [.\,z and hRz 

for every infinite sequence h of classes which is distinct from g at the k-th place 

at most.
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defined, e.g. the concepts of denotation, definability,! and truth, 

with the last of which we are especially concerned here. 

The concept of truth is reached in the following way. On the 

basis of Def. 22 and the intuitive considerations which preceded 

it, it is easy to realize that whether or not a given sequence satisfies 

a given sentential function depends only on those terms of the 

sequence which correspond (in their indices) with the free 

variables of the function. Thus in the extreme case, when the 

function is a sentence, and so contains no free variable (which 

is in no way excluded by Def. 22), the satisfaction of a function 
by a sequence does not depend on the properties of the terms of 
the sequence at all. Only two possibilities then remain: either 

every infinite sequence of classes satisfies a given sentence, or 

no sequence satisfies it (cf. the Lemmas A and B given below). 

The sentences of the first kind, e.g. U,1,,, are the true sentences; 

those of the second kind, e.g. Nap can correspondingly be 

called the false sentences.t 

+ To say that the name x denotes a given object a is the same as to stipulate 

that the object a (or every sequence of which a is the corresponding term) 

satisfies a sentential function of & particular type. In colloquial language 

it would be a function which consists of three parts in the following order: 

a variable, the word ‘is’ and the given name x. As regards the concept 

of definability, I shall try to explain its content only in a particular case. 
If we consider which properties of classes we regard as definable (in reference 

to the system of the calculus of classes discussed here), we reach the following 
formulations: 

We say that the sentential function x defines the property P of classes if and 

only if for a natural number k (a) x contains v, as its only free variable, and 

(B) in order that an infinite sequence f of classes should satisfy x, it is necessary 
and sufficient that f, should have the property P; we say that the property P of 

classes is definable if and only if there is a sentential function x which defines P. 

On the basis of these stipulations it can be shown, for example, that such 

properties of classes as emptiness, of containing only one, two, three, etc., 

elements are definable. On the other hand the property of containing infinitely 

many elements is not definable (cf. the remarks given below in connexion 

with Ths. 14-16). It will also be seen that with this interpretation the concept 
of definability does not depend at all on whether the formalization of tho 
science investigated admits of the possibility of constructing definitions. More 

exact discussions of definability will be found in articles VI and XIII of the 
present volume. 

{ A method of defining truth which is essentially equivalent to the method 
developed in this work, but is based upon a different idea, has recently been 

suggested by J. C. C. McKinsey in his paper ‘A now definition of truth’, 

Synthése, vol. 7 (1948-9), pp. 428-33.
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DEFINITION 23. x is a truesentence—in symbols x « Tr—if and 

only ifxe S and every infinite sequence of classes satisfies #1 

The question now arises whether this definition, about the 

formal correctness of which there is no doubt, is also materially 

correct—at least in the sense previously laid down in the con- 

vention T. It can be shown that the answer to this question is 

affirmative: Def. 23 is an adequate definition of truth in the sense 

of convention T, since its consequences include ail those required 

by this convention. Nevertheless it can be seen without diffi- 

culty (from the fact that the number of these consequences is 

infinite) that the exact and general establishment of this fact 
has no place within the limits of the considerations so far brought 

forward. The proof would require the setting up of an entirely 

new apparatus: in fact it involves the transition to a level one 

step higher—to the meta-metatheory, which would have to be 

preceded by the formalization of the metatheory which forms 
the foundation of our investigations? If we do not wish to 

depart from the level of our previous discussions, only one 

1 In the whole of the above construction we could operate with finite 
sequences with a variable number of terms instead of with infinite sequences. 
It would then be convenient to generalize the concept of finite sequence. In 

the usual interpretation of this term a sequence which has an nth term 
must also have all terms with indices less than n—we must now relinquish 

this postulate and regard any many-one relation as a finite sequence if its 
counter domain consists of a finite number of natural numbers distinct from 0. 

The modification of the construction would consist in eliminating from the 

sequences which satisfy the given sentential function all ‘superfluous’ terms, 
which have no influence on the satisfaction of the function. Thus if vg, 1, etc., 

occur as free variables in tho function (of course in finite number), only those 
terms with the indices k, 1, etc., would remain in the sequence which satisfies 
this function. For example, those, and only those, sequences f of classes would 
satisfy the function ¢., which consist of only two terms f, and f, verifying the 
formula f,C fy. The value of such a modification from the standpoint of 

naturalness and conformity with the usual procedure is clear, but when we 

come to carry it out exactly certain defects of a logical nature show themselves: 

Def. 22 then takes on a more complicated form. Regarding the concept of 
truth, it is to be noted that—according to the above treatment—only one 

sequence, namely the ‘empty’ sequence which has no member at all, can 
satisfy a sentence, i.e. a function without free variables; we should then have 

to call those sentences true which are actually satisfied by the ‘empty’ 
sequence. A certain artificiality attaching to this definition will doubtless 

displease all those who are not sufficiently familiar with the specific procedures 

which are commonly used in mathematical constructions, 

* See p. 188, footnote.
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method, the empirical method, remains—the verification of the 

properties of Def. 23 in a series of concrete examples. 

Consider, for example, the sentence (},Ue4u4., ie. 

‘Tl NV [] 2, NIz,2x,’. According to Def. 22 the sentential 
function 1,, is satisfied by those, and only those, sequences f of 

classes for which f, < f, holds, but its negation, i.e. the function 

ties only by those sequences for which /, ¢ f, holds. Consequently 

a sequence f satisfies the function Nee if every sequence g 
which differs from f in at most the 2nd place satisfies the 

function de and thus verifies the formula g, ¢ g.. Since g, = fi 

and the class g, may be quite arbitrary, only those sequences f 

satisfy the function (]. ts which are suchthat f, ¢ bforany class 

b. If we proceed in an analogous way, we reach the result that the 

sequence f satisfies the function [J,4», ie. the negation of the 

function Nea2 only if there is a class 6 for which f, ¢ 6 holds. 

Moreover, the sentence f), 24.2 is only satisfied (by an arbi- 

trary sequence f) if there is for an arbitrary class a, a class b for 

whicha ¢ 6. Finally by applying Def. 23 we at once obtain one 

of the theorems which were described in the condition («) of the 

convention T: 

an Urei,2 € Tr «af and only if for every class a there is a class b 

such thata C b. 

From this we infer without difficulty, by using the known 
theorems of the calculus of classes, that 1}; Ua, is a true 

sentence. 

We can proceed in an exactly analogous way with every other 

sentence of the language we are considering. If for such a sen- 
tence we construct a corresponding assertion described in the 
condition («) and then apply the mode of inference used above, 
we can prove without the least difficulty that this assertion is a 

consequence of the definition of truth which we have adopted. 

In many cases, with the help of only the simplest laws of logic 
(from the domain of the sentential calculus and the calculus of 

classes), we can draw definitive conclusions from theorems ob- 
tained in this way about the truth or falsity of the sentences in
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question. Thus, forexample, (}, Usla et 4.) isshown to bea true 

and f}EiNh. 28 false sentence. With respect to other sentences, 

e.g. the sentence 1}; M2Ms (4,2++23+431) or its negation, the 
analogous question cannot be decided (at least so long as we do 
not have recourse to the special existential assumptions of the 
metatheory, cf. p. 174): Def. 23 alone gives no general criterion 

for the truth of a sentence.1 Nevertheless, through the theorems 

obtained, the meaning of the corresponding expressions of the 

type ‘x e Tr’ becomes intelligible and unambiguous. It should 
also be noted that the theorem expressed in the condition (8) 
of the convention T is also an obvious consequence of our 

definition. 

With these discussions the reader will doubtless have reached 

the subjective conviction that Def. 23 actually possesses the pro- 
perty which it is intended to have: it satisfies all the conditions 
of convention T. In order to fix the conviction of the material 

correctness of the definition which has been reached in this way, 

it is worth while studying some characteristic general theorems 

that can be derived from it. With a view to avoiding encumber- 
ing this work with purely deductive matter, I shall give these 
theorems without exact proofs.? 

THEOREM 1 (The principle of contradiction). For all sentences 

x, ettherx2e TrorZeTr. 

This is an almost immediate consequence of Defs. 22 and 23. 

Turorem 2 (The principle of excluded middle). For all 

sentences x, eitherze Trorie Tr. 

1 At least when it is regarded from the methodological viewpoint this is 
not a defect of the definition in question; in this respect it does not differ 
at all from the greater part of the definitions which occur in the deductive 

sciences, 
2 The proofs are based on the general laws of logic, the specific axioms of 

the metascience and the definitions of the concepts occurring in the theorems, 

In some cases the application of the general properties of the concepts of 

consequence, of deductive system, etc., which are given in article V of the 
present volume is indicated. We are able to use the results obtained there 
because it can easily be shown that the concepts of sentence and consequence 
introduced here satisfy all the axioms upon which the above-mentioned work 

was based.
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In the proof the following lemma, which follows from Defs. 

11 and 22, plays an essential part: 

Lemma A. If the sequence f satisfies the sentential function x, 

and the infinite sequence g of classes is such that for every k, fe = Gy 

if vu, 1s a free variable of x, then the sequence g also satisfies the 

function x. 

As an immediate consequence of this lemma and Def. 12 we 

obtain Lemma B which, in combination with Defs. 22 and 23, 

easily leads to Th. 2: 

Lemma B. If ze S and at least one infinite sequence of classes 
satisfies the sentence x, then every infinite sequence of classes 

satisfies x. 

THEOREM 3. If X © Tr then Cn(X) < Tr; thus in particular 

Cn(Tr) < Tr. 

This theorem is proved by complete induction based chiefly 

on Defs. 15, 16, 22, and 23; the following simple lemma is also 

useful in this connexion: 

Lemma .C. If y is a universal quantification of the sentential 

function x, then in order that every infinite sequence of classes 

should satisfy x, it is necessary and sufficient that every infinite 

sequence of classes satisfies y. 

The results contained in Ths. 1-3 may be summarized in the 

following (obtained with the help of Defs. 18-20): 

THEOREM 4. The class Tr is a consistent and complete deductive 

system, 

THEOREM 5. Every provable sentence is a true sentence, in other 
words, Pr <= Tr. 

This theorem follows immediately from Def. 17, from Th. 3, 

and from Lemma D, the proof of which (on the basis of Def. 13 

and Lemma C among others) presents no difficulty. 

Lemma D. Every axiom is a true sentence. 

Th. 5 cannot be inverted: 

THEOREM 6, There exist true sentences which are not provable, 

in other words, Tr £ Pr.
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This is an immediate consequence of Th. 2 and the following 
lemma, the exact proof of which is not quite easy: 

Lemma E. Both 1): Mle4.2¢ Pr and 1). Ne422€ Prt 

Asa corollary from Ths. 1, 5, and 6, I give finally the following 

theorem: 

THEOREM 7. The class Pr is a consistent, but not a complete 

deductive system. 

In the investigations which are in progress at the present day 

in the methodology of the deductive sciences (in particular in the 

work of the Géttingen school grouped around Hilbert) another 

concept of a relative character plays a much greater part than the 

absolute concept of truth and includes it as a special case. This 

is the concept of correct or true sentence in an indwidual domain 

a.*? By this is meant (quite generally and roughly speaking) every 

sentence which would be true in the usual sense if we restricted 

the extension of the individuals considered to a given class a, or 

—somewhat more precisely—if we agreed to interpret the terms 

‘individual’, ‘class of individuals’, etc., as ‘element of the class a’, 

‘subclass of the class a’, etc., respectively. Where we are dealing 

with the concrete case of sentences from the calculus of classes we 

must interpret expressions of the type ‘[] xp’ as ‘for every subclass x 

1 If we wish to include the sentence 1], M/2,, among the acceptable 
sentences (as is often the case, cf. p. 186, footnote) we could use here, instead of 

Lemma E, the following Lemma E’: 

Both iM altsa+ 21) € Pr and 1, Maltsa+ +21) € Pr. 

The idea of the proof of both of these lemmas is the same as that of the 
proofs of the consistency and incompleteness of the lower functional calculus 
which is found in Hilbert, D., and Ackermann, W. (30), pp. 65-68. 

2 The discussion of this relativized concept is not essential for the under- 
standing of the main theme of this work and can be omitted by those readers 
who are not interested in special studies in the domain of the methodology 
of the deductive sciences (only the discussions on pp. 208-9 are in closer 
connexion with our main thesis). 

4 In this connexion see Hilbert, D., and Ackermann, W. (30), especially 

pp. 72-81, and Bernays, P., and Schénfinkel, M. (5a). But it should be 
emphasized that the authors mentioned relate this concept not to sentences 
but to sentential functions with free variables (because in the language of the 

lower functional calculus which they use there are no sentences in the strict 
sense of the word) and, connected with this, they use the term ‘generally valid’ 
instead of the term ‘correct’ or ‘true’; cf. the second of the works cited above, 

pp. 347-8.
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of the class a we have p’, and expressions of the type ‘Izy’ as ‘the 

subclass x of the class a is contained in the subclass y of the class a’. 

We obtain a precise definition of this concept by means of a 

modification of Defs. 22 and 23. As derived concepts we intro- 

duce the notion of a correct sentence in an individual domain with 

k elements and the notion of a correct sentence in every individual 
domain. It is worthy of note that—in spite of the great impor- 

tance of these terms for metamathematical investigations—they 

have hitherto been used in a purely intuitive sense without any 

attempt to define their meaning more closely.? 

DEFINITION 24, The sequence f satisfies the sentential function x 

in the individual domain a if and only if ais a class of individuals, 

f an infinite sequence of subclasses of the class a and x a sentential 

function satisfying one of the following four conditions: (a) there 

exist natural numbers kand | such that x = t,,andf,, & fy (B) there 
isa sentential function y such that x = 7 and the sequence f does not 

satisfy y in the individual domain a; (y) there are sentential func- 
tions y and z such that x = y-+z and f satisfies either y or z in the 

individual domain a; (8) there is a natural number k and a sen- 

tential function y such that x = [),y and every infinite sequence 

g of subclasses of the class a which differs from f in at most the 

k-th place satisfies y in the individual domain a. 

DEFINITION 25. x is a correct (true) sentence in the individual 

domain a if and only if x — S and every infinite sequence of sub- 

classes of the class a satisfies the sentence x in the individual 
domain a. 

DEFINITION 26. x is a correct (true) sentence in an individual 
domain with & elements—in symbols x € Ct,—if and only tf there 

exists a class a such that kis the cardinal number of the class aand x 

as a correct sentence in the individual domain a. 

1 An exception is furnished by Herbrand, J. (26) in which the author 

defines the concept of true sentence in a finite domain (pp. 108-12). A com- 
parison of Herbrand’s definition with Defs. 25 and 26 given in the text will 
lead the reader at once to the conclusion that we have to do here with like- 
sounding terms rather than with a relationship of content. Nevertheless, it 

is possible that with respect to certain concrete deductive sciences, and under 

special assumptions for the corresponding metatheory, Herbrand’s concept 
has the same extension (and also the same importance for metamathomatical 
investigations) as a certain special case of the concept introduced in Def. 25.
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DEFINIvTIon 27, xisa correct (true) sentence in every individual 

domain—in symbols xe Ct—if and only if for every class a, 

x is a correct sentence in the individual domain a. 

If we drop the formula ‘xe S’ from Def. 25, and thereby 

modify the content of Defs. 26 and 27, we reach concepts of a 

more general nature which apply not only to sentences but also to 
arbitrary sentential functions. 

Examples of the application to concrete sentences of the 

concepts defined will be given below. In the interest of more 

convenient formulation of various properties of these concepts, 

I introduce some further symbolical abbreviations. 

DEFINITION 28. x = e, if and only if 

© = Ors ees: Cases tetera Geet uae) 

DEFINITION 29. x = a tf and only if 

% = (Me 22t+Ueles-«))- 

As is easily seen, the sentential function «, states that the class 

denoted by the variable v, consists of only one element; the 

sentence a, which plays a great part in subsequent investiga- 
tions, states that every non-null class includes a one-element 

class as a part. 

Derrnition 30. x =f, if and only if either n=0 and 
_ ntl_ nt 

x= ),4, orn 4 Vanda = nese*+( 2 €gt > D3 (cnpsa-ttsnp))- 

DEFINITION 31, x = y, if and only if either n = Oanda = By, 

orn #Oand « = B,_1.Bn- 

It follows from these definitions that the sentences 8, and y, 

(where n is any natural number) respectively assert that there are 

at most n and exactly ~ distinct one-element classes or, what 

amounts to the same thing, distinct individuals. 

DEFINITION 32. xisa quantitative sentence (or asentenceabout 

the number of individuals) if and only if there exists a finite sequence 
nr n 

p of n natural numbers such that either x = > yy, or 2 = x Vp, 
k
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I shall now give a series of characteristic properties of the 
defined concepts and the more important connexions which 

relate them with notions already introduced. This is the place 
for some results of a more special nature which are connected 
with the particular properties of the calculus of classes and 

cannot be extended to other disciplines of related logical struc- 

ture (e.g. Ths. 11-18, 24, and 28). 

THEOREM 8. If a is a class of individuals and k the cardinal 

number of this class, then in order that x should be a correct sentence 

in the individual domain a it is necessary and sufficient that 

re Ct, 

The proof is based on the following lemma (among other 

things) which follows from Def. 24: 

Lemma F. Let a and 6 be two classes of individuals and Ra 

relation which satisfies the following conditions: (x) for any f' 

and g', if f'Rg’ then f’ is an infinite sequence of subclasses of a, 

and g' of subclasses of b; (8) if f' is any infinite sequence of sub- 
classes of a, then there isa sequence g’ such that f’ Rg’; (y) if g’ is any 

infinite sequence of subclasses of b, then there is a sequence f' such 
that f' Rg’; (8) for all f', 9',f", 9", hand l, if f' Rg’, f" Rg’, and 

k and Lare natural numbers distinct from 0, thenf;, < fy if and only 

if 9, S gj. If [Rg and the sequence f satisfies the sentential function 

x in the individual domain a, then the sequence g also satisfies this 

function in the individual domain b. 

From this lemma, with the help of Def. 25, we easily obtain 

Lemma G which, together with Def. 26, at once gives Th. 8: 

Lemma G. If the classes a and b of individuals have the same 
cardinal number, and x is a correct sentence in the individual 

domain a, then xis also acorrect sentence in the individual domain b. 

According to Th. 8 (or Lemma G) the extension of the con- 

cept ‘a sentence which is correct in the individual domain a’ 

depends entirely on one property of the class a, namely on its 

cardinal number. This enables us to neglect in the sequel all 

results concerning this concept, because they can be derived 

immediately from the corresponding theorems relating to the 
classes Ci,.
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With the help of Defs. 24 and 25 the Ths. 1-6 and Lemmas 

A-D can be generalized by replacing the expressions ‘infinite 

sequence of classes’, ‘the sequence . . . satisfies the sentential func- 

tion ...’, ‘true sentence’, and so on, by ‘infinite sequence of sub- 
classes of the class a’, ‘the sequence . . . satisfies the sentential 
function ... in the individual domain a’, ‘correct sentence in the 

individual domain a’, and so on, respectively. As a consequence of 

Th, 8 the results so obtained can be extended to sentences which 
belong to the classes Ct,. In this way we reach, among other 
things, the following generalizations of Ths. 4-6: 

THEOREM 9. For every cardinal number k the class Ct, ts a 

consistent and complete deductive system. 

THEOREM 10. For every cardinal number k we have Pr < Ct, 
but Ch, £ Pr. 

In reference to Th. 10 the following problem presents itself: 
how is the list of axioms in Def. 13 to be completed, so that the 

class of all consequences of this extended class of axioms may 

coincide with the given class Ci,? Ths. 11 and 12 which follow 
immediately below contain the solution of this problem and also 

prove that——with respect to the language of the calculus of classes 

--the definition of a correct sentence in a domain with k elements 

(Def. 26) can be replaced by another equivalent one which is 

analogous to the definition of provable sentence (Def. 17) and 

therefore has a structural character. 

THEOREM 11, If k is a@ natural number, and X the class con- 

sisting of all the axioms together with the sentences « and y;,, then 

Cth, = Cn{X). 

THEOREM 12. If & is an infinite cardinal number, and X the 

class consisting of all the axioms together with the sentence « and all 

sentences y, (where | is any natural number), then Ct, = Cn(X). 

The proof of these theorems is based chiefly on Ths. 9 and 10 

and the three following lemmas: 

Lemma H, For every cardinal number k we have a € Cty. 

Lemma I. If k is a natural number and | a cardinal number 

distinct from k, then y, € Ct, and y, € Ct,, but y = Ct, and y, € Cty.
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Lemma K. If eS and X is the class consisting of all the 
axioms together with the sentence «, then there is a sentence y which 

is equivalent to the sentence x with respect to the class X and such 

that either y is a quantitative sentence, or ye Pr or ge Pr. 

Lemmas H and I are almost immediately evident, but the 

proof of the very important and interesting Lemma K is rather 

difficult.4 
By means of Th. 9 and Lemma I it is possible from Th. 12 to 

derive the following consequence which combined with Th. 11 

brings out the essential differences existing in the logical struc- 

ture of the classes Ct), according to whether the cardinal number & 

is finite or infinite: 

THEOREM 13. Ifkisan infinite cardinal number, then there is no 

class X which contains only a finite number of sentences which are 

not axioms, and also satisfies the formula 

Ch, = On(X)2 

From Lemma IJ and Ths. 11 and 12 we easily obtain the follow- 
ing consequences: 

THEOREM 14, If kis a natural number and la cardinal number 

distinct from k, then Ct, £ Chand Ct, £ Cty. 

Tseorem 15. If k and 1 are infinite cardinal numbers, then 
Ch, = Ct. 

THEOREM 16. If kis an infinite cardinal number and x € Ct,, 

then there is a natural number 1 such that x € Ct, (in other words, the 

class Ct, is included in the sum of all the classes Ct,). 

According to Ths. 14-16 (or Lemma I) there exists for every 

natural number k a sentence which is correct in every domain 

1 In its essentials this lemma is contained in the results to be found in 

Skolem, Th. (64), pp. 29-37. 

2 The idea of the proof of this theorem is the same as that of the proofs 
of Ths. 24 and 25 in article V of the present volume, pp. 78-9. If we take 
over from the latter Def. 3, p .76, and at the same time extend our present 

concept of consequence by adding the words ‘or x is an axiom’ to the condition 
(x) of Def. 15, then we could derive the following consequence from Ths, 11 
and 13: 

In order that the class Ct, should be an axiomatizable deductive system, it ts 
necessary and sufficient that k be a natural number.
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with & elements and in no domain with any other cardinal num- 

ber. On the other hand, every sentence which is correct in one 

infinite domain is also correct in every other infinite domain 

(without reference to its cardinal number) as well as in certain 

finite domains. From this we infer that the language in question 

allows us to express such a property of classes of individuals as 

their being composed of exactly k elements, where k is any 

natural number; but we find in this language no means by which 

we can distinguish a special kind of infinity (e.g. denumerability), 
and we are unable, either with the help of a single or of a finite 

number of sentences, to distinguish two such properties of 

classes as finiteness and infinity.+ 

By means of Ths. 9, 11, and 12 we can prove 

THEOREM 17. If X is a consistent class of sentences which 

contains all the axioms together with the sentence «, then there is a@ 

cardinal number k such that X < Ct,; if X is a complete deductive 

system, then X = Ct,. 

If we combine this theorem with Ths. 11 and 12, we obtain a 

structural description of all complete deductive systems which 

contain all the axioms and the sentence «. It should be noted that 

the presence of the sentence « is essential here; the multiplicity 

of the systems which do not contain this sentence is significantly 
greater and their exhaustive description would not at all be a 
simple matter.” 

The remaining considerations concern sentences which are 

correct in every individual domain, i.e. belong to the class Ct. 

1 These results, as well as Th. 19 given below, we owe to Lowenheim; cf. 

Léwenheim, L. (49) (especially Th. 4, p. 459) and Skolem, Th. (64). 

? IT have occupied myself in the years 1926-8 with problems of this type, 
i.e. with the structural description of all complete systems of a given science, 
in application to various elementary deductive sciences (algebra of logic, 
arithmetic of real numbers, geometry of straight lines, theory of order, theory 

of groups); on the results of these investigations, reports were made in the 

seminar exercises in the methodology of the deductive sciences which I con- 
ducted in Warsaw University in the years 1927/8 and 1928/9. Cf. Pres- 

burger, M. (61) (especially note 4 on p. 95), and XII, §5. For a detailed 

discussion of certain closely related problems (as well as for further biblio- 
graphical references) see also the recent publications of the author, Tarski, A. 
(84) and (84 a).
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THEOREM 18. In order that x € Ct it is necessary and sufficient 

that, for every cardinal number k, xe Ct, (in other words, the 

class Ctis the product of all the classes Ct,). 

This theorem, which is an immediate consequence of Def. 27 

and Th. 8, can be essentially sharpened by means of Ths. 9 and 16: 

THEOREM 19. In order that x & Ct it is necessary and sufficient 

that, for every natural number k, x © Cty. 

The correctness of a sentence in all finite domains thus entails 

its correctness in every individual domain. 
The following two corollaries are derivable from Ths. 9, 14, 

and 18: 

THEOREM 20. For every cardinal number kwehave Ct < Ct,, but 

Ct, £ Ct. 

THEOREM 21. The class Ct is a consistent but not a complete 

deductive system. 

THEOREM 22. Pr < Ct, but Ct € Pr. 

This theorem follows from Ths. 10 and 18 and Lemma L: 

Lemma L. ae Ct but « € Pr. 

That « € Ct follows at once from Lemma H and Th. 18. The 

exact proof of the second part of the lemma is considerably more 

difficult. 

THEOREM 23. If x is a quantitative sentence then x € Ct. 

The proof, which is based on Lemma I, Th. 18, and Def. 32, 

offers no difficulties. 

TuHEorEeM 24. If X is the class consisting of all the axioms 

together with the sentence a, then Ct = Cn(X). 

This theorem is most easily proved with the help of Ths. 11, 

12, and 18. By using Lemma K we obtain from it at once: 

THEOREM 25. Ifae 8S, x Ctand z E Ct, then there is a quant- 

tative sentence y, which is equivalent to the sentence x with respect 

to the class Ct. 

By reference to Lemma L and Th. 24 we notice that we have 

the following situation: the concept of a sentence which is cor- 

rect in every individual domain has a larger extension than the
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concept of provable sentence, since the sentence « belongs to the 

extension of the first concept but not to that of the second. But 

if we increase the system of axioms by just this single sentence a, 

the two concepts become identical in extension. Because it 

seems to me desirable that, with respect to the calculus of 

classes, the concepts of theorem and of correct sentence in 

every individual domain should not be distinct in extension,} 

I would advocate the inclusion of the sentence « among the 

axioms of this science. 

The problem still remains of clarifying the relation of the 
absolute concept of truth defined in Def. 23 to the concepts we 

have just investigated. 
If we compare Defs. 22 and 23 with Defs. 24 and 25 and apply 

Th. 8, we easily obtain the following result: 

THEOREM 26. If a is the class of all individuals then xe Tr uf 
and only if x is a correct sentence in the domain a; thus if k is the 
cardinal number of the class a, then Tr = Ct,,. 

As an immediate consequence of Ths. 20 and 26 we have: 

THEoreM 27. Cic Tr, but Tr ¢ Ct. 

If we bring together Ths. 26 and 14 or Ths. 11 and 12, we 

reach the conclusion that those assumptions of the metatheory 
which determine the cardinal number of the class of all indivi- 

duals (and which do not intervene in the proof of Th. 26 itself) 

exert an essential influence on the extension of the term ‘true 

sentence’, The extension of this term is different according to 
whether that class is finite or infinite. In the first case the 

extension even depends on how big the cardinal number of this 
class is. 

’ This tendency will be discussed in the next paragraph. It should be 

mentioned that Schréder, although beginning with other ideas, has made the 
suggestion of completing the system of hypotheses of the calculus of classes with 

the sentence « (and even with still other sentences which, however, as can easily 

be shown, follow in a simple way from the sentence a); cf. Schréder, E. (62), 
vol. 2, Part 1, pp. 318-49. In this connexion I may remark that it seems to 
me that the inclusion of the sentence a in the ‘formal’ system of the algebra 

of logic (of which the calculus of classes is an interpretation) would not be 

useful, for many interpretations of this system are known in which the sentence 

in question is not satisfied.
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Because we can show, on the basis of the system of assump- 

tions here adopted, that the class of all individuals is infinite, 

Th. 26 in combination with Th. 12 makes a structural character- 

ization of true sentences possible: 

THEOREM 28. In order that x € Tr, it is necessary and sufficient 

that x is a consequence of the class which consists of all the axioms 

together with the sentence « and all sentences y,, where 1 is any 

natural number. 

This sentence could, in its form, obviously be regarded as 

a definition of true sentence. It would then be a purely struc- 

tural definition, completely analogous to Def. 17 of provable 

theorem. But it must be strongly emphasized that the pos- 

sibility of constructing a definition of such a kind is purely 

accidental. We owe it to the specific peculiarities of the science 

in question (to those peculiarities which, among others, have 

been expressed in Lemma K, which is the most essential premiss 

in the proof of Ths. 12 and 28) as well as—in some degree—to the 

strong existential assumptions adopted in the metatheory. 
On the other hand—in contrast to the original definition—we 
have here no general method of construction which could be 

applied to other deductive sciences. 

It is worth noticing that by analysing the proof of Th. 28 and 
of the lemmas from which this theorem follows, we can obtain a 

general structural criterion of truth for all sentences of the 
language investigated. From Th. 28 such a criterion for quantita- 

tive sentences is easily derivable, and the proof of Lemma K 

allows us effectively to correlate with every sentence of the 

language a sentence which is equivalent to it and which, if it is 
not quantitative, is manifestly true or manifestly false. An 
analogous remark holds for the concept of correctness in a given, 
or in every, individual domain. 

Summarizing the most important results obtained in this 

section we can say: 

We have succeeded in doing for the language of the calculus of 

classes what we tried in vain to do for colloquial language: namely
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to construct a formally correct and materially adequate semantical 

definition of the expression ‘true sentence’. 

Moreover, by making use of the special peculiarities of the 

calculus of classes, we have been able to transform this definition 

into an equivalent structural definition which even yields a 

general criterion of truth for the sentences of the language 

of this calculus. 

§4. Tae Concepr or True SENTENCE IN LanauaGES oF 

Finite ORDER 

The methods of construction which I have used in the previous 

section for the investigation of the language of the calculus of 

classes can be applied, without very important changes, to 

many other formalized languages, even to those with a consider- 
ably more complicated logical structure. In the following pages 

the generality of these methods will be emphasized, the limits 
of their applicability will be determined, and the modifications 

which they undergo in their various concrete applications will be 

briefly described. 

It is by no means my intention, in these investigations, to con- 

sider all languages that can conceivably be imagined, or which 
any one at any time could or might wish to construct; such an 

attempt would be condemned to failure from the start. In what 

I shall say here I shall consider exclusively languages of the same 

structure as those which are known to us at the present day (in 

the perhaps unfounded conviction that they will form in the 

future, as they have done hitherto, a sufficient basis for the 

foundation of the whole of deductive knowledge). And even 

these languages show such great differences in their construction 

that their investigation in a perfectly general, but at the same 

time precise, way must encounter serious difficulties. These 

differences are, of course, rather of a ‘calligraphical’ nature. In 

some languages, for example, only constants and variables 

occur, in others it is not possible to avoid the use of so-called 

technical signs (brackets, points, and so on). In some languages 

symbols of an exactly specified form are used as variables, so 

that the form of the variables depends on the part they play
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and their significance. In others quite arbitrary symbols may 

be used as variables, so long as they are distinguished by their 

form from the constants. In some languages every expression is a 

system of linearly ordered signs, i.e. signs following one another 

in a line, but in others the signs may lie at different levels, not 

only alongside but also below one another. This calligraphy of 

the language nevertheless exerts a fairly strong influence on the 

form of the constructions in the domain of the metalanguage, as 

will doubtless be seen from a brief survey of the preceding para- 

graphs.’ For those reasons alone the following exposition will 
have the nature of a sketch; wherever it takes a more precise 

form, it is dealing with concretely described languages which are 
constructed in the same way as the language of the calculus of 
classes (i.e. languages without technical signs, with variables 

of an exactly specified form, with linear arrangement of the signs 

in every expression and so on).? 

Before we approach our principal task—the construction of 
the definition of true sentence—-we must undertake, in every 

concrete case, the construction of a corresponding metalanguage 

and the establishment of the metatheory which forms the proper 

field of investigation. A metalanguage which meets our require- 

ments must contain three groups of primitive expressions: 

(1) expressions of a general logical kind; (2) expressions having 

the same meaning as all the constants of the language to be dis- 
cussed or which suffice for the definition of such expressions 
(taking as a basis the rules of definition adopted in the meta- 

1 Cf, for example, p. 191, footnote. 
? In order to give the following exposition a completely precise, concrete, 

and also sufficiently general form, it would suffice if we chose, as the object 

of investigation, the language of some one complete system of mathematical 
logic. Such a language can be regarded as a universal language in the sense 
that all other formalized languages—apart from ‘calligraphical’ differences— 
are either fragments of it, or can be obtained from it or from its fragments 

by adding certain constants, provided that the semantical categories of these 
constants (cf. below, pp. 215 ff.) are already represented by certain expres- 
sions of the given language. The presence or absence of such constants exerts, 
as we shall show, only a minimal influence on the solution of the problem in 
which we are interested. As such a language we could choose the language 

of the general theory of sets which will be discussed in § 5, and which might 
be enriched by means of variables representing the names of two- and of 

many-termed relations (of arbitrary semantical categories).
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theory); (3) expressions of the structural-descriptive type which 

denote single signs and expressions of the language considered, 

whole classes and sequences of such expressions or, finally, the 
relations existing between them. That the expressions of the 
first group are indispensable is evident. The expressions of 
the second group enable us to translate every concrete sentence 

or, more generally, every meaningful expression of the language 

into the metalanguage, and those of the third group provide for 

the assignment of an individual name to every such expression. 
These last two circumstances taken together play an essential part 
in the final formulation of the desired definition. Corresponding 

to the three groups of primitive expressions, the full axiom system 

of the metatheory includes three groups of sentences: (1) axioms 

ofa general logical kind; (2) axioms which have the same meaning 

as the axioms of the science under investigation or are logically 

stronger than them, but which in any case suffice (on the basis 
of the rules of inference adopted) for the establishment of all 
sentences having the same meaning as the theorems of the 

science investigated;! finally, (3) axioms which determine the 

fundamental properties of the primitive concepts of a structural- 

descriptive type. The primitive expressions and axioms of the 

first group (as well as the rules of definition and inference) may 
be taken from any sufficiently developed system of mathematical 

logic; the expressions and axioms of the second group naturally 

depend on the special peculiarities of the language investigated; 

for the third group suitable examples are provided in the presen- 

tation of§ 2. Itis to be noted that the two first groups of primitive 

' Tt has already been mentioned (p. 166-7) that we are here interested ex- 

clusively in those deductive sciences which are not ‘formal’ in a quite special 
meaning of this word. I have, moreover, brought forward various conditions— 

of an intuitive not a formal nature—which are satisfied by the sciences here 

investigated: a strictly determinate and understandable meaning of the 
constants, the certainty of the axioms, the reliability of the rules of inference. 

An external characteristic of this standpoint is just the fact that, among the 
primitive expressions and the axioms of the metatheory the expressions and 
axioms of the second group occur. For as soon as we regard certain expressions 

as intelligible, or believe in the truth of certain sentences, no obstacle exists 

to using them as the need arises. This applies also to the rules of inference 

which we may, if need be, transfer from the theory to the metatheory. In 

the sequel we shall convince ourselves that this need actually exists in the 

cases given,
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expressions and axioms partly overlap one another, and in those 
cases in which mathematical logic, or a fragment of it, is the object 

of investigation (as is the case with the calculus of classes), they 
even combine to form one group. 

The establishment of the metatheory having been completed, 

our next task is to distinguish from the totality of expressions 

of the language the especially important category of sentential 

functions and in particular of sentences. The expressions of the 

language investigated consist of constants and variables. Among 

the constants, which are usually finite in number, we find, as a 

rule, certain signs belonging to the sentential calculus and the 

predicate calculus: for example the signs of negation, logical 
sum, logical product, implication, equivalence, as well as the 

universal and existential quantifiers, which we have already 

met in § 2. In addition to these we sometimes find other signs 

which are connected with the individual peculiarities of the 

language and denote concrete individuals, classes, or relations; 

such, for example, as the inclusion sign of the language of the 
calculus of classes, which denotes a particular relation between 
classes of individuals. Usually there are infinitely many vari- 

ables. According to their form, and the interpretation of the 

language, they represent names of individuals, classes, or rela- 

tions (sometimes there are also variables which represent sen- 

tenees, ie. the so-called sentential variables)! Among the 
expressions which are formed from the signs of both kinds, we 

distinguish first of all the primitive sentential functions, corre- 

sponding to the inclusions i, of the calculus of classes.{ The 

exact description of the form of these sentential functions and the 

specification of their intuitive sense will depend upon the special 
peculiarities of the language in question. In any case they are 
certain complexes of constants which are names of individuals, 

classes, or relations, and of variables which represent these 

‘In many languages various other categories of constants and variables 

occur, e.g. name-forming functors which, in combination with variables, form 
composite expressions by which names of individuals, classes, and relations 
are represented (e.g. the word ‘father’ in colloquial language, or the sign of 

complementation in the complete language of the calculus of classes—cf. p. 161, 
note 1, and p. 168, note3 The languages considered in the present article contain 
no signs and expressions of this kind. 

t It would be more proper to call these functions fundamental (or elemen- 
tary). In his later publications the author refers to them as atomic formulas.
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names. The first sign of such a complex is always the name of a 

class or a relation or a corresponding variable, and is called a 

(sentence forming) functor of the given primitive sentential func- 

tion;' the remaining signs are called arguments, namely Ist, 

2nd,..., kth argument—according to the place they occupy. 

For every constant and variable of the language studied—with 
the exception of the constants of the sentential calculus and the 

universal and existential quantifiers—a primitive function can 

be constructed which contains this sign (the sentential variables, 

even when they appear in the language, do not occur in the 

primitive functions as functors or arguments, but each is re- 

garded as a separate primitive function). Next we introduce 

the fundamental operations on expressions by means of which 

composite expressions are formed from simpler ones. In addition 

to the operations of negation, logical addition and universal 

quantification, which we have met with in § 2 (Defs. 2, 3, and 6), 

we consider here other analogously defined operations, such 
as logical multiplication, formation of implications and equiva- 

lences, as well as existential quantification. Each of these 

operations consists in putting in front of the expression con- 

sidered, or in front of two successive expressions (according to 

thekind of operation), either one of the constants of the sentential 
calculus which belongs to the language, or one of the two quanti- 

fiers together with the variables immediately following it. The 

expressions which we obtain from the primitive functions by 

applying to them any number of times and in any order any of 

1 Thus sentence-forming functors which have names as arguments are here 
identified with the names of classes or relations (in fact the one-argument 

functors with names of classes and the rest with names of two- or many- 
termed relations). This interpretation seems artificial with the interpretation 
of the term ‘functor’ which was given by some examples on p. 161, note 1; 
in any case it certainly does not agree with the spirit and formal structure 

of the language of everyday life. Without going into details, it seems to me 

for various reasons to be neither necessary nor useful to distinguish between 

these two categories of expressions (i.e. sentence-forming functors and names 

of classes or relations). Morcover, the whole question is rather of a termino- 
logical nature and is without influence on subsequent developments. We may 
either regard the definition of functor given in the text as purely formal and 
disregard the current interpretation of the term, or so extend the interpreta- 

tion of terms like ‘name of a class’, ‘name of a relation’ that we include 
expressions which are not names in the usual sense.
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the fundamental operations, we call sentential functions. Among 

the variables which occur in a given sentential function we can 

distinguish—by means of recursive definitions—free and bound 

variables. Sentential functions without free variables are called 

sentences (cf. Defs. 10-12 in § 2). 

Next we define yet other concepts which are closely con- 

nected with the deductive character of the science under in- 

vestigation, namely the concepts of axiom, consequence, and 

theorem. Among the axioms we include as a rule certain logical 

sentences which are constructed in a manner similar to that used 

for the first kind of axioms of the calculus of classes (cf. § 2, 
Def. 13). Moreover the definition of axiom depends wholly on 

the individual peculiarities of the science investigated, some- 

times even on accidental factors which are connected with its 
historical development. In the definition of the concept of 

consequence we follow—mutatis mutandis—the pattern of § 2. 

The operations by means of which we form the consequences of a 

given class of sentences differ in no essential points from the 

operations which were given in Def. 15. The consequences of 

the axioms are called provable sentences or theorems. 

After this preliminary work we turn now to our principal task 

—the construction of a correct definition of true sentence. As we 
saw in§ 3, the method of construction available to us presupposes 

first a definition of another concept of a more general kind which 

is of fundamental importance for investigations in the semantics 

of language. I mean the notion of the satisfaction of a sentential 

function by a sequence of objects. In the same section I have 
attempted to clarify the customary meaning of this expression 

in its ordinary usage. J have pointed out that in drawing up a 

correct definition of the concept of satisfaction use can be made 

of recursive definition. For this purpose it suffices—recalling 

the recursive definition of sentential function and bearing in 

mind the intuitive sense of the primitive sentential functions 

and the fundamental operations on expressions—to establish 

two facts: (1) which sequences satisfy the fundamental func- 

tions, and (2) how the concept of satisfaction behaves under 

the application of any of the fundamental operations (or to put
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it more exactly: which sequences satisfy the sentential functions 

which are obtained from given sentential functions by means 

of one of the fundamental operations, assuming that it has 

already been established which sequences satisfy the sentential 

functions to which the operation is applied). As soon as we have 

succeeded in making precise the sense of this concept of satis- 
faction, the definition of truth presents no further difficulty: 

the true sentences may be defined as those sentences which are 
satisfied by an arbitrary sequence of objects. 

In carrying out the plan just sketched in connexion with various 

concrete languages we nevertheless meet with obstacles of a fun- 

damental kind; in fact, just at the point where we try finally to 

formulate the correct definition of the concept of satisfaction. In 

order to make clear the nature of these difficulties a concept 

must first be discussed which we have not hitherto had an oppor- 
tunity of introducing, namely the concept of semantical category. 

This concept, which we owe to E. Husserl, was introduced 
into investigations on the foundations of the deductive sciences 

by Lesniewski. From the formal point of view this concept plays 

a part in the construction of a science which is analogous to that 

played by the notion of type in the system Principia Mathematica 

of Whitehead and Russell. But, so far as its origin and content 

are concerned, it corresponds (approximately) rather to the 

well-known concept of part of speech from the grammar of 

colloquial language. Whilst the theory of types was thought 

of chiefly as a kind of prophylactic to guard the deductive 
sciences against possible antinomies, the theory of seman- 

tical categories penetrates so deeply into our fundamental 
intuitions regarding the meaningfulness of expressions, that it is 

scarcely possible to imagine a scientific language in which the 

sentences have a clear intuitive meaning but the structure of 
which cannot be brought into harmony with the above theory. 

1 Cf. Legniewski, 5. (46), especially pp. 14 and 68; Ajdukiewiez, K. (3), 

pp- 9 and 148. From the formal point of view the theory of semantical 
categories is rather remote from the original theory of types of Whitehead, A.N., 

and Russell, B. A. W. (90), vol. 1, pp. 37 ff.; it differs less from the simplified 

theory of types (cf. Chwistek, L. (12), pp. 12-14; Carnap, R. (8), pp. 19-22) 
and is an extension of the latter. Regarding the views expressed in the last 
paragraph of the text, compare the Postscript to this article (p. 268).
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For reasons mentioned at the beginning of this section we 

cannot offer here a precise structural definition of semantical 

category and will content ourselves with the following approxi- 

mate formulation: two expressions belong to the same semantical 

category if (1) there is a sentential function which contains one of 

these expressions, and if (2)no sentential function which contains 

one of these expressions ceases to be a sentential function if 

this expression is replaced in it by the other, It follows from 
this that the relation of belonging to the same category is re- 

flexive, symmetrical, and transitive. By applying the principle 

of abstraction,! all the expressions of the language which are 

parts of sentential functions can be divided into mutually 

exclusive classes, for two expressions are put into one and the 
same class if and only if they belong to the same semantical 

category, and each of these classes is called a semantical cate- 

gory. Among the simplest examples of semantical categories it 

suffices to mention the category of the sentential functions, 

further the categories which include respectively the names of 

individuals, of classes of individuals, of two-termed relations 

between individuals, and so on. Variables (or expressions with 
variables) which represent names of the given categories like- 

wise belong to the same category. 

In connexion with the definition of semantical category the 

following question arises: in order to establish the fact that two 
given expressions belong to one and the same semantical cate- 

gory, is it necessary to consider all possible sentential functions 

which contain one of the given expressions and to investigate 

their behaviour when one of these expressions is replaced by the 

other, or does it suffice to make this observation in some or even 

in only one case? From the standpoint of the ordinary usage of 

language the second possibility seems much more natural; in 
order that two expressions shall belong to the same semantical 
category, it suffices if there exists one function which contains 

one of these expressions and which remains a function when this 

expression is replaced by the other. This principle, which can be 

called the first principle of the theory of semantical categories, is 

2 Cf. Carnap, R. (8), pp. 48-50.
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taken strictly as a basis for the construction of the formalized 

languages here investigated.! It is especially taken into account 

in the definition of the concept of sentential function. It also 

exerts an essential influence on the definition of the operation of 
substitution, ie. one of those operations with the help of which 
we form the consequences of a class of sentences. For if we wish 

that this operation, when carried out on any sentence, should 

always give a new sentence as a result, we must restrict ourselves 
to substituting for the variables only those expressions which 
belong to the same semantical category as the corresponding 

variables.? Closely connected with this principle is a general 
law concerning the semantical categories of sentence-forming 

functors: the functors of two primitive sentential functions 

belong to the same category if and only if the number of argu- 
ments in the two functions is the same, and if any two arguments 

which occupy corresponding places in the two functions also 
belong to the same category. From this it follows that, in par- 

ticular, no sign can be simultaneously a functor of two functions 

which possess a different number of arguments, or of two such 

functions (even if they possess the same number of arguments) 

1 When applied to concrete languages the formulations given in the text— 

both the definition of semantical category and the above-mentioned principle— 

require various corrections and supplementations. They are in any case too 

general, for they also include expressions to which we do not usually ascribe 

independent meaning, and which we often include in the same semantical 

categories to which meaningful expressions belong (for example, in the language 

of the calculus of classes, the expressions ‘N’, ‘]] z,’, and ‘Al a,x,’ would 
belong to the same semantical category); in the case of these meaningless 
expressions, it can easily be shown that even the first principle of semantical 
categories loses its validity. This fact is of no essential importance for our 

investigations, for we shall apply the concept of semantical category, not to 
composite expressions, but exclusively to variables. On the other hand, the 

examples which we shall encounter in the sequel show that the above formula- 
tions admit of very far-reaching simplifications in concrete cases. Thanks to 
a suitable choice of the signs used in the construction of the expressions of 
the language, the mere shape of the sign (and even of the composite expression) 

decides to which category it belongs. Consequently it is possible that in 
methodological and semantical investigations concerning a concrete lan- 

guage, the concept of semantical category does not explicitly occur at 
all. 

? In the language of the calculus of classes, and in the languages which 
I shal) describe in more detail in the sequel, such expressions can only be 
other variables; this explains the formulation of Def. 14 in § 2.
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in which two arguments which occupy corresponding places 

belong to different categories. 
We require a classification of the semantical categories; to 

every category a particular natural number is assigned called the 

order of the category. This order is also assigned to all expressions 

which belong to this category.! The meaning of this term can 

be determined recursively. For this purpose we adopt the 

following convention {in which we have in mind only those 

languages which we shall deal with here and we take account 

only of the semantical categories of the variables): (1) the 

lst order is assigned only to the names of individuals and to 
the variables representing them; (2) among expressions of the 
n-+-lth order, where n is any natural number, we include the 

functors of all those primitive functions all of whose argu- 

ments are of at most the nth order, where at least one of them 

must be of exactly the nth order. Thanks to the above con- 

vention all expressions which belong to a given semantical 
category have the same order assigned to them, which is therefore 
called the order of that category.? On the other hand the category 

1 Cf. Carnap, R. (8), pp. 31-32. 
2 This classification by no means includes all semantical categories which 

are to be found in formalized languages. For example, it does not include 

sentential variables and functors with sentences as arguments—i.e. signs 
which occur in the sentential caleulus—neither does it include functors which, 

together with the corresponding arguments, form expressions which belong 
to one of the categories distinct from sentential functions, such as the name- 
forming functors mentioned on p. 213, footnote. 

In view of this, the definition of order given in the text could be widened 

in the following way: (1) to the lst order belong sentences, names of individuals 

and expressions representing them ; (2) armong expressions of the n+ 1th order 
we include those functors with an arbitrary number of arguments of order 
<n, which together with these arguments form expressions of order < n, 
but are not themselves expressions of the nth order. Even this definition 

does not yet cover all meaningful expressions which occur in the deductive 

aciences. No signs which ‘bind’ variables fall under this definition (thus such 
signs as the universal and existential quantifiers, the signs ‘X’ and ‘II’ of the 
theory of sete and analysis or the sign of integration), signs which—in contrast 

to the functors—can be called operators. (von Neumann speaks of abstractions 

in this connexion, see Neumann, J. v. (54).) On the other hand the latter 
classification is completely adapted to the system invented by Leéniewski 
and sketched by him in Lesniewski (46) and (47). This system contains no 

operators except the universal quantifier which belongs to no semantical 

category. I may add that, in my view, the lack of operators in Lesniewski’s 
system constitutes a deficiency which restricts its ‘universal’ character (in 

the sense of p. 210, note 2) to a certain degree,



VIII, §4 CONCEPT OF TRUTH IN FORMALIZED LANGUAGES 219 

is by no means specified by the order: every natural number 

which is greater than 1 can be the order of many different 
categories. Thus, for example, both the names of classes of 

individuals and the names of two-, three-, and many-termed 

relations between individuals are expressions of the 2nd 

order. 

It is desirable to classify the sentential functions of the lan- 

guage according to the semantical categories of the free variables 

occurring in them. We shall say of two functions that they possess 
the same semantical type if the number of free variables of every 

semantical category in the two functions is the same (or, in other 

words, if the free variables of the one function can be put into 

one-one correspondence with the free variables of the other in 

such a way that to every variable a variable of the same category 
corresponds). The class of all sentential functions which possess 
the same type as a given function we can call a semantical 

type. 

We sometimes use the term ‘semantical category’ in a deriva- 

tive sense, by applying it, not to the expressions of the language, 

but to the objects which they denote. Such ‘hypostatizations’ 

are not quite correct from a logical standpoint, but they simplify 

the formulation of many ideas. We say, for example, that all 

individuals belong to the same semantical category, but that no 

classes or relations belong to this category. From the general law 

stated above concerning sentence-forming functors we conclude 
that two classes belong to the same category if and only if all 

their elements belong to one and the same category. Two two- 

termed relations belong to the same category if and only if their 

domains belong to the same category and their counter domains 

belong to the same category. In particular, two sequences belong 

to the same category if and only if all their terms belong to the 
same category. A class and a relation, or two relations having 

different numbers of terms never belong to the same category. 
It also follows that there can be no class whose elements belong to 

two or more semantical categories ; in an analogous way there can 

be no sequence whose terms belong to distinct semantical cate- 

gories. Individuals are sometimes called objects of the 1st order,
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classes of individuals and relations between individuals objects 

of the 2nd order, and so on. 

The language of a complete system of logic should contain— 

actually or potentially—all possible semantical categories which 

occur in the languages of the deductive sciences. Just this 

fact gives to the language mentioned a certain ‘universal’ 

character, and it is one of the factors to which logic owes its 

fundamental importance for the whole of deductive knowledge. 

In various fragmentary systems of logic, as well as in other 

deductive sciences, the multiplicity of the semantical categories 

may undergo a significant restriction in both their number 
and their order. As we shall see, the degree of difficulty which 
we have to overcome in the construction of a correct definition 

of truth for a given concrete language, depends in the first 

place on this multiplicity of the semantical categories appear- 

ing in the language, or, more exactly, on whether the ex- 

pressions and especially the variables of the language belong 
to a finite or an infinite number of categories, and in the latter 

case on whether the orders of all these categories are bounded 

above or not. From this point of view we can distinguish 

four kinds of languages: (1) languages in which all the variables 

belong to one and the same semantical category; (2) languages 

in which the number of categories in which the variables are 

included is greater than 1 but finite; (3) languages in which 

the variables belong to infinitely many different categories 

but the order of these variables does not exceed a previously 

given natural number n; and finally (4) languages which 

contain variables of arbitrarily high order. We shall call the 

languages of the first three kinds languages of finite order, in 
contrast to languages of the fourth kind, the languages of infinite 

order. The languages of finite order could be further divided 

into languages of the Ist, 2nd order, and so on, according to 

the highest order of the variables occurring in the language. By 

way of supplementation of the sketch given at the beginning of 
this section of the construction of a metatheory, it must be 

noted here that the metalanguage, on the basis of which the 

investigation is conducted, is to be furnished with at least all the
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semantical categories which are represented in the language 

studied. This is necessary if it is to be possible to translate any 

expression of the language into the metalanguage.! 

From the point of view of their logical structure the languages 

of the Ist kind are obviously the simplest. The language of the 

calculus of classes is a typical example. We have seen in § 3 
that for this language the definition of the satisfaction of a 

sentential function by a sequence of objects, and hence the 

definition of true sentence, presents no great difficulties. The 

method of construction sketched there can be applied as a whole 
to other languages of the Ist kind. It is clear that in doing this 

certain small deviations in detail may occur. Among other things 

it may be necessary to operate not with sequences of classes but 

with sequences of other kinds, e.g. with sequences of individuals 

or relations, according to the intended interpretation and the 

semantical categories of the variables occurring in the language.* 

A particularly simple example of a language of the Ist kind 

which is worthy of attention is the language of the ordinary 
sentential calculus enlarged by the introduction of the uni- 

versal and existential quantifiers. The simplicity of this language 

lies, among other things, in the fact that the concept of variable 
coincides with that of primitive sentential function. In the 

metatheory of the sentential calculus two different definitions 
can be given of provable theorem, the equivalence of which is in 

no way evident: the one is based on the concept of consequence 

and is analogous to Defs. 15-17 of § 2, the second is connected with 
the concept of the two-valued matrix. By virtue of this second 

definition we can easily determine whether any sentence is 
provable provided its structure is known.’ If we now construct 
for this language a definition of true sentence strictly according 

1 Here-—mutatis mutandis—the remarks of p. 211, footnote, also apply. 

2 Certain complications, which I shall not discuss here, arise if in addition 
to variables, composite expressions of the same semantical category also occur 
in the language investigated ; the complete language of the calculus of classes 
which was mentioned on p. 168, note 3, will serve as an example, or the lan- 
guage of a system of arithmetic investigated in Presburger, M. (61) (ef. also 

p. 212, footnote). 
3 Cf. Hilbert, D., and Ackermann, W. (30), pp. 84-85; Tukasiewicz, J. (51), 

pp. 154 ff.; IV, § 4.
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to the pattern given in § 3, we can easily convince ourselves that 

it represents a simple transformation of the second of these 

definitions of provable sentence, and thus the two terms ‘prov- 

able theorem’ and ‘true sentence’ in this case have the same 

extension. This fact provides us, among other things, with a 

general structural criterion for the truth of the sentences of this 

language. The method of construction laid down in the present 

work could thus be regarded, in a certain sense, as a generalization 

of the matrix method familiar in investigations on the sentential 

calculus. 

Serious difficulties only arise when we consider languages of 

more complicated structure, e.g. languages of the 2nd, 3rd, 

and 4th kinds. We must now analyse these difficulties and de- 

scribe the methods which enable us at least partially to overcome 

them. In order to make the exposition as clear and precise as 

possible I shall discuss in somewhat greater detail some concrete 

formalized languages, one of each kind. I shall try to choose 

examples which are as simple as possible, are free from all less 

essential, subordinate complications, and are at the same time 

sufficiently typical to exhibit the difficulties mentioned to the 

fullest extent and in the most striking form. 

The language of the logic of two-termed relations will serve as an 

example of a language the 2nd kind.’ The only constants of 

this language are: the sign of negation ‘N’, the sign of logical 

sum ‘A’ and the universal quantifier ‘[]’. As variables we can 

use the signs ‘x,’, ‘z,’, ‘z.,’,...and ‘X,’, ‘X,,’, ‘X./,.... Thesign 

composed of the symbol ‘x’ and of k small additional strokes is 

called the k-th variable of the lst order, and is denoted by the 

symbol ‘v,’. The sign analogously constructed with the symbol 
‘X’ is called the k-th variable of the 2nd order, symbolically ‘V,’. 

The variables of the 1st order represent names of individuals, 
those of the 2nd order names of two-termed relations between 

individuals. From the material and also—in agreement with 

the further description of the language—from the formal 

1 This is a fragment of the language of the algebra of relations, the founda- 
tions of which are given in Schroder, E. (62), vol. 3—a fragment which never- 
theless suffices to express every idea which can be formulated in this language.
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point of view, the signs ‘vy,’ and ‘V,’ belong to two distinct 

semantical categories. Expressions of the form ‘Xyz’ are 

regarded as primitive sentential functions, where in the place 

of ‘X’ any variable of the 2nd order, and in the place of ‘y’ 

and ‘z’ any variables of the 1st order may appear. These expres- 

sions are read: ‘the individual y stands in the relation X to the 
individual z’ and they are denoted—according to the form of the 
variables—by the symbols ‘p,;,’. By the use of the sign ‘~’ 

from §2 we specify that pyrm_ = (Vi; %)~ tm. The definitions 

of the fundamental operations on expressions, as well as those 
of sentential function, sentence, consequence, provable sen- 

tence, and so on, are all quite analogous to the definitions of 

§ 2. But it must always be borne in mind that in this language 

two distinct categories of variables appear and that the expres- 

sions pyim Play the part of the inclusions «,). In connexion with 

the first of these facts we have to consider not one operation of 

quantification (Defs. 6 and 9) but two analogous operations: 

with respect to a variable of the Ist order as well as with respect 

to a variable of the 2nd order, the results of which are denoted 

by the symbols ‘f}},x’, and ‘(a or ‘U2’ and ‘Ui2’ respec- 

tively. Correspondingly there will be two operations of sub- 
stitution. Among the axioms of the logic of relations we include 
the sentences which satisfy the condition («) of Def. 13, i.e. 
substitutions of the axioms of the sentential calculus, and uni- 

versal quantifications of these substitutions, and also all sen- 

tences which are universal quantifications of expressions of the 

type hk ni Min Pxum-Y¥ +P Kam ), 

where k, 1, and m are any natural numbers (J + m) and y any 

sentential function in which the free variable ;, does not occur. 

Considering their intuitive meaning the axioms of the last 

category may he called pseudodefinitions.1 
1 This term we owe to Leéniewski, who has drawn attention to the necessity 

of including pseudodefinitions among the axioms of the deductive sciences in 
those cases in which the formalization of the science does not admit the 
possibility of constructing ‘suitable definitions (cf. p. 166, footnote). Pseudo- 
definitions can be regarded as a substitute for the axiom of reducibility of 

Whitehead, A. N., and Russell, B. A. W. (90), vol. 1, pp. 55 ff. It would not 

be difficult to show the connexion between these sentonces and a group of 

axioms adopted in Neumann, J. v. (54), p. 18.
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To obtain a correct definition of satisfaction in connexion 

with the language we are considering we must first extend our 

knowledge of this concept. In the first stage of operating with 

it we spoke of the satisfaction of a sentential function by one, 
two, three objects, and so on, according to the number of free 

variables occurring in the given function (cf. pp. 189 ff.). From 

the semantical standpoint the concept of satisfaction had there a 
strongly ambiguous character; it included relations in which the 

number of terms was diverse, relations whose last domain was a 

elags of sentential functions, whilst the other domains—in the 

case of the language of the calculus of classes—consisted of 

objects of one and the same category, namely classes of indi- 
viduals. Strictly speaking we were dealing not with one concept, 

but with an infinite number of analogous concepts, belonging to 
different semantical categories. If we had formalized the meta- 

language it would have been necessary to use infinitely many 

distinct terms instead of the one term ‘satisfies’. The semantical 

ambiguity of this concept increases still more when we pass to 

languages of more complicated logical structure. If we continue 

the intuitive considerations of § 3, analyse the examples given 

there and construct new ones after the same pattern, it soon 

becomes clear that a strict semantical correlation exists between 

the free variables of the sentential function and the objects which 

satisfy these functions: every free variable belongs to the same 
semantical category as the name of the object corresponding to 

it. If, therefore, at least two different categories occur among 

the variables of the language—as in the case we are investigating 

—it does not suffice to restrict consideration to only a single 

category of objects in dealing with the concept of satisfaction. 

The domains of the single relations which are covered by the 
term ‘satisfaction’, thus cease to be semantically unambiguous 

(only the last domain consists as before exclusively of sentential 

functions). But since the semantical category of a relation not 

only depends on the number of domains, i.e. the number of 

terms standing in the relation to one another, but also on the 

categories of these domains, the category of the concept of 

satisfaction, or rather the category of each single one of these
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concepts, also depends on two circumstances. It depends on 

the number and also on the categories of the free variables which 

appear in the sentential functions to which the concept of 
satisfaction relates. In brief, it depends on what we have called 

the semantical type of the sentential function. To functions 
which belong to two distinct types two semantically distinct 

concepts of satisfaction always correspond.1 Some examples 

will make this clear. We shall say that the objects R, a, and 6 

satisfy the function p, ., if and only if 2 is a relation and a and b 

are individuals and we have aR (i.e. a stands in the relation 

FR to b). The function p, 59. p39. is satisfied by the objects FR, a, 
and 8 if and only if # and S are relations, a is an individual and 

we have both aRa and aSa. The function (1); Ns(P1.23+P1,32) 

is satisfied by symmetrical relations and only by them, i.e. by 

relations such that, for all individuals a and 0, if we have 

aRb we also always have bRa. The function Nilpr2s+P13.2) 
is satisfied by those and only those individuals a and 6 which 
satisfy the following condition: for every relation R, if aRb, 

then Ra, i.e. individuals which are identical. In the above 

examples we have sentential functions belonging to four different 
semantical types, and we are, therefore, dealing with four differ- 

ent relations of satisfaction, in spite of the fact that the number 
of free variables and also the number of terms in the relations is 

the same in the first two examples. 

The semantical ambiguity attaching to the concept of satis- 
faction in its original conception renders an exact characteriza- 

tion of this concept in a single sentence, or even in a finite number 
of sentences, impossible, and so denies us the use of the only 

method so far known to us of constructing a definition of a true 

sentence. In order to avoid this ambiguity, in dealing with the 

calculus of classes we had recourse to an artifice which is used by 

logicians and mathematicians in similar situations. Instead of 
using infinitely many concepts of satisfaction of a sentential 

1 Moreover, functions of one semantical type can correspond to several 

semantically distinct concepts of satisfaction, provided the free variables of 

these functions belong to at least two distinct semantical categories; in addi- 
tion to the number and the categories of the variables their arrangement 
must also be taken into consideration.
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function by single objects, we tried to operate with the semanti- 

cally uniform, if somewhat artificial, concept of the satisfaction 

of a function by a sequence of objects. It happened that this 

concept is sufficiently more general than the previous one to 

include it—intuitively speaking—as a special case (to define the 

logical nature of this inclusion would, however, be a little diffi- 

cult). It will easily be seen that this method cannot be applied to 

the present problem without further difficulty. Satisfaction in 

its new form is a two-termed relation, whose domain consists of 

sequences and counter domain of sentential functions. As 

before, there exists between the free variables of a sentential 

function and the corresponding terms of the sequences which 

satisfy it, a strict semantical correlation. Thus if the language 

of the logic of relations contains variables of two different 

semantical categories, we must likewise use two categories of 

sequences in our investigations. For example, the function 

12 s(P1.23+P1,3,2) is satisfied exclusively by sequences of two- 
termed relations between individuals (namely by those and only 

those sequences F whose first term F, is a symmetrical relation). 
But the function ()i(p123+ 1,32) is satisfied exclusively by 

sequences of individuals (i.e. by sequences f for which f, = f; 

holds). The domain of the relation of satisfaction and eo ipso 

the relation itself thus again becomes semantically ambiguous. 

Again we are dealing not with one, but with at least two different 

concepts of satisfaction. But still worse, a closer analysis shows 
that the new interpretation of the concept of satisfaction can no 

longer as a whole be maintained. For one and the same sentential 

function often contains free variables of two different categories. 

To deal with such functions we must operate with sequences 
whose terms likewise belong to two categories. The first term, for 

example, of the sequence which satisfies the function p,., must 
be a relation, but the two following ones must be individuals. 

But it is known that the theory of semantical categories does 

not permit the existence of such heterogeneous sequences. 
Consequently the whole conception collapses. Thus changing 

the original interpretation of the concept of satisfaction has 
removed only one subsidiary cause of its ambiguity, namely the 
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diversity in the number of terms in the relations which are 

the object of the concept; another far more important factor, 

the semantical diversity of the terms of the relations, has lost 

none of its force. 

Nevertheless the methods used in § 3 can be applied to the 

language now being investigated, although with certain modifica- 

tions. In this case also it is possible to find an interpretation of 

the concept of satisfaction in which this notion loses its seman- 

tical ambiguity and at the same time becomes so general that it 

includes all special cases of the original concept. In fact, two 

different methods are available; I shall call them the method of 

many-rowed sequences and the method of semantical unification 

of the variables. 
The first method requires that we should treat satisfaction 

not as a two-termed, but as a three-termed relation which holds 

between sequences of individuals, between sequences of two- 

termed relations and between sentential functions. We use the 

following mode of expression: ‘the sequence f of individuals 

and the sequence F of relations together satisfy the sentential 

function 2’, The content of this phrase can easily be visualized 

by means of concrete examples. For example, the sequence f 

of individuals and the sequence F of relations together satisfy 

the function p;55 if and only if the individual f, stands in the 

relation F, to the individual f,. In order to formulate a general 

definition we proceed exactly in the manner of Def. 22 in § 3, 

care being taken to remember that, in the language we are con- 

sidering, the expressions p,,,, play the part of primitive senten- 

tial functions and that instead of one operation of universal 

quantification two related operations occur. The definition of 
true sentence is completely analogous to Def. 23. 

This method can now be modified to some extent by treating 

satisfaction as a two-termed relation between so-called two- 

rowed sequences and sentential functions. Every ordered pair 

which consists of two sequences f and F is called a two-rowed 
sequence (or two-rowed matrix), where the kth term of the sequence 

f or of the sequence F is called the &th term of the first or second 

row respectively of the two-rowed sequence. In the present
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case we have to deal with ordered pairs which consist of a 
sequence of individuals and a sequence of relations. It is easily 

seen that this modification is a purely formal one and has no 

essential effect on the construction as a whole. It is to this 

modification of the method that the term ‘method of many- 

rowed sequences’ is adapted. 

To understand the method of semantical unification of the 
variables we begin with certain considerations which are not 
immediately connected with the language we are at present 
investigating. It is known that with every individual a a definite 

two-termed relation a* can be correlated in such a way that to 
distinct individuals distinct relations correspond. For this pur- 

pose it suffices to take as a* an ordered pair whose terms are 

identical with a, i.e. the relation R which holds between any two 
individuals 5 and c if and only if 6 = a andc = a. On the basis 
of this correlation we can now correlate in a one-one fashion with 

every class of individuals a class of relations, with every many- 

termed relation between individuals a corresponding relation 

between relations, and so on. For example, to any class A of 

individuals there corresponds a class A* of all those relations a* 

which are correlated with the elements a of the class A. In this 

way every sentence about individuals can be transformed into 

an equivalent sentence about relations. 

Bearing these facts in mind we return to the language of the 

logic of relations and change the intuitive interpretation of the 

expressions of this language without in any way touching their 

formal structure. All constants will retain their previous mean- 
ing, whilst all variables both of the 1st and 2nd order are from 

now on to represent names of two-termed relations. To the 

primitive sentential functions of the type ‘Xyz’, where instead 

of ‘X’ some variable Vj, and instead of ‘y’ and ‘z’ any two vari- 

ables v, and v,, occur, we assign the following meaning: ‘there 

exist individuals a and 6 such that a stands in the relation X to 

b, y= a*, and z= b*.’ In this way the meaning of the composite 

sentential functions will likewise be modified. It is almost 

immediately evident that every true or false sentence in the 

earlier interpretation will remain true or false respectively in
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the new one. By virtue of this new interpretation all the vari- 

ables of the language now belong to one and the same semantical 

category, not indeed from the formal but from the intuitive 
point of view; they represent words of the same ‘part of speech’. 
Consequently the language we are considering can be investi- 
gated by exactly the same methods as all languages of the Ist 

kind; in particular, satisfaction can be treated as a two-termed 

relation between sequences of relations and sentential functions. 

At the same time a complication of a technical nature—although 

an unimportant one—presents itself. Since two free variables of 
different orders but the same indices, e.g. v, and Vj, may occur in 

the same sentential function, it is not clear without supplemen- 

tary stipulations which terms of the sequence are to correspond 

to the variables of the Ist, and which to those of the 2nd order. 

To overcome this difficulty we shall stipulate that to every 

variable v, a term of the sequence with an uneven index 2.k—1 
corresponds, and to every variable }, a term with even index 2.% 

corresponds. For example, the sequence F of relations satisfies 

the function p;), if and only if there are individuals a and 6 
such that a stands in the relation F,, to 6, Fy,. = a*, and 

Fm. = 6*. Apart from this detail the definitions of satisfaction 
and of true sentence differ in no essential point from the defini- 

tions given in § 3. 

The two methods described can be applied to all languages of 

the 2nd kind. If the variables of the language studied belong to 
n different semantical categories, we regard satisfaction—under 
the method of many-rowed sequences—as an n+1-termed 

relation holding between n sequences of the corresponding 

categories and the semantical functions, or as a two-termed 

relation whose domain consists of n-rowed sequences (i.e. ordered 

4 This holds even for languages in which variables occur which are not 
included in the classification on p. 218 (cf. p. 218, note 2). I shall not deal with 
certain (not particularly important) difficulties which may occur here. But 
I take this opportunity of mentioning that sentential variables, even if they 

occur in the language, do not complicate the construction at all, and that, 

in particular, it would not be worth while to include them in the process of 
semantical unification. Sentences which contain such variables can be ex- 
eluded by correlating with each of them, in one-many fashion, an equivalent 
sentence which does not contain sentential variables (cf. Hilbert, D., and 

Ackermann, W. (30), pp. 84-85).
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n-tuples of ordinary sequences) and whose counter domain 

consists of sentential functions. Constructions based on this 

method form the most natural generalization of the constructions 

in §3 and their material correctness appears to leave no 

doubts. 

In applying the method of semantical unification of the 

variables, the choice of the unifying category plays an essential 

part, i.e. that semantical category in which all the variables of 
the language studied can be interpreted. Only one thing is 

required of the unifying category: that with all objects of every 

semantical category which is represented by the variables of 

the given language, effective objects of the chosen category 
can be correlated in a one-one fashion (i.e. so that to distinct 

objects, distinct objects correspond). Nevertheless, the choice 

of the unifying category is not always so simple as in the example 

discussed above in connexion with the language of the logic of 

relations ; this choice cannot always be made from the categories 
which occur in the language. If, for example, the variables of 
the language represent names of two-termed relations between 

individuals and names of classes which consist of classes of indi- 

viduals, then the simplest unifying category seems to be the 

category of two-termed relations between classes of individuals. 

I do not propose to enter into a further analysis of this problem 
(it would presuppose a knowledge of certain facts belonging to 

set theory). I add only the following remarks: (1) the unifying 
category cannot be of lower order than any one category among 

those occurring in the language; (2) for every language of the 2nd 

kind a unifying category can be found, even infinitely many such 

categories and in fact among categories of the nth order, where n 

is the highest order of the variables occurring in the language. 
As soon as the unifying category is specified, and the primitive 
sentential functions correspondingly interpreted, the further 

course of the work does not differ at all from the methods of 

construction used for languages of the Ist kind. 

In contrast to the method of many-rowed sequences, there is 

no doubt that the second method is somewhat artificial. Never- 

theless the definitions constructed by this method prove, on
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closer analysis, to be intuitively evident to a scarcely less degree 

than the constructions based on the first method. At the same 

time they have the advantage of greater logical simplicity. In 
particular, when we are dealing with the definition of true sen- 
tence the proof of the equivalence of its two formulations presents 

no difficulty in any concrete case. The essential advantages of 

the method of unification of the variables only become clear, 

however, in the investigation of languages of the 3rd kind, since 

the method of many-rowed sequences here proves to be quite 
useless. 

As a typical example of a language of the 3rd kind we choose 
the language of the logic of many-termed relations.’ In this science 

we deal with the same constants ‘NV’, ‘A’, and ‘T[’ and with the 

same variables of the Ist order v,, as in the logic of two-termed 

relations. But we also find here variables of the 2nd order in 
greater multiplicity than before. As variables of this kind we 

shall use such signs as ‘X71’, ‘Xi’, ‘Xin’,..., ‘XP, Kn’, Xa ys 

‘Xr? Xn’, ‘Xn’,...and soon. The composite symbol constructed 

from the sign ‘X’ with & small strokes below and | such strokes 

above will be called the kth variable functor with | arguments, 

and denoted by ‘V},’. Intuitively interpreted, the variables 

v, represent, as before, names of individuals, whilst the variables 

Vi, represent names of J-termed relations between indivi- 

duals, in particular for 1 = 1 names of one-termed relations, 

i.e. names of classes. Both from the intuitive and the formal 

points of view the signs v,, V}, V2,... belong to infinitely many 
distinet semantical categories of the 1st and 2nd orders re- 

spectively. The primitive sentential functions are expressions of 

the type ‘Xay...z’, where in place of ‘X’ any variable functor 

with J arguments and in place of ‘x’, ‘y’,..., ‘z’ variables of the 

Ist order, / in number, occur. These expressions are read as 

follows: ‘the J-termed relation X holds between the / individuals 
x, y,...,2.” According to the number and form of the variables we 

denote the primitive functions by the symbols “py im’ ‘Pim + 

1 This is a language which resembles the language of the lower predicate 
calculus of Hilbert, D., and Ackermann, W. (30), pp. 43 ff., but is richer than 

the latter because variable functors can occur in it both as free and as bound 

variables.



232 CONCEPT OF TRUTH IN FORMALIZED LANGUAGES VIII, § 4 

putting prm = VEO ms Pigmn = VEO mn)” Up, and so on. In 

order to obtain a unified symbolism, which is independent 

of the number of variables, we shall use symbols of the type 

‘pl.»’ (where ‘p’ represents the name of a finite sequence of 

natural numbers), the meaning of which is determined by the 

formula pj. = (((Vi,7 Up,)~ Up,)~ +) Up, ~The further defi- 
nitions of the metatheory do not differ at all from the analogous 

definitions relating to the logic of two-termed relations and even 
to the calculus of classes. As operations of quantification we 

introduce quantification with respect to the variables v, and the 

variables V4, and denote the result of the operations by the 
symbols ‘f),x’ and ‘f)j,x’ respectively. The list of axioms in- 
cludes those which satisfy the condition (a) of Def. 13 of § 2, 

and pseudodefinitions which form a natural generalization of 
the pseudodefinitions from the logic of two-termed relations. 

Their more detailed description seems to be unnecessary. 

We turn now to the problem of how the concept of satisfaction 
is to be conceived and the definition of truth to be constructed for 
the language we are now considering. Any attempt to apply the 
method of many-rowed sequences in this case fails completely. 

In this method the term ‘satisfaction’—in whatever form— 

expresses the relation of dependence between nm sequences of 

various categories and the sentential functions, where x is exactly 
equal to the number of semantical categories represented by the 

variables of the given language. In the case we are investi- 
gating the number 7 is indefinitely large and the metalanguage 

we are using—like all other actually existing formalized lan- 

guages—provides no means for dealing with the relation of 

mutual dependence between objects which belong to infinitely 
many distinct semantical categories.? 

1 Strictly speaking the meaning of the symbol ‘phy? should be defined 
recursively. 

2 In those cases in which, in logical and mathematical constructions, we 

deal with the mutual dependence between an arbitrary, not previously 

determined number of objects of one and the same semantical category, we 
mostly use ordinary sequences. For objects which belong to a finite number 
of distinct categories many-rowed sequences fulfil the analogous function. 

But in the known formalized languages we find nothing like ‘sequences with 
infinitely many rows’ (of distinct semantical categories).



VIlI,§4 CONCEPT OF TRUTH IN FORMALIZED LANGUAGES 233 

The method of semantical unification of the variables can, how- 

ever, be applied to this language with complete success. To see 

this it suffices to note that we can correlate in a one-one fashion, 

with every n-termed relation R between individuals, a class R* 
which consists of n-termed sequences of individuals, namely the 
class of all sequences f which satisfy the following condition: the 

relation R holds between the individuals /,, f,,..., f,. For ex- 

ample, the class of all sequences f with two terms f, and f, such 
that f, Rf, corresponds to the two-termed relation R. Con- 

sequently every sentence concerning many-termed relations 

can be transformed into an equivalent sentence which asserts 

something about classes of sequences. It will be remembered 

that by sequences of individuals we mean two-termed relations 

between individuals and natural numbers. Accordingly all 

sequences of individuals, whatever the number of their terms, 

belong to one and the same semantical category and therefore 

the classes of these sequences, in contrast to many-termed 

relations, likewise belong to one and the same category. 

On the basis of these considerations we now partially unify 

the semantical categories of the variables in the following way. 
To the variables v, we give—at least provisionally—the same 

significance as before. But the variables V}, now represent the 

names of any classes which consist of finite sequences of indi- 

viduals or of other objects of the same category (i.e. the names 

of objects of at least the 3rd order, according to the order which 

we assign to the natural numbers).! The primitive functions of 

the form ‘Xzy...2’, which begin with a functor with ] arguments 

and hence contain / variables of the 1st order, are interpreted 

by phrases of the type: ‘the sequence of individuals the first term 
of which is z, the second y,... and the th (the last) is z, belongs to 

1 In systems of mathematical logic, e.g. in Whitehead, A. N., and Russell, 
B. A. W. (90), vol. 2, pp. 4 ff. the cardinal numbers and in particular the 
natural numbers are usually treated as classes consisting of classes of individuals 

(or other objects), namely as the classes of all those classes which are similar 

(in the Principia Mathematica sense) to a given class. For example, the number 
1 is defined as the class of all those classes which have exactly one element. 
With this conception the natural numbers are thus objects of (at least) the 3rd, 
sequences of individuals of the 4th, and classes of these sequences of the 5th 
order.
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the class X which consists of /-termed sequences’. From the 

intuitive, although not from the formal, standpoint, the variables 

from now on still belong to only two distinct semantical cate- 

gories; in view of this circumstance we can use, in the further 

course of our work, the same methods as we employed in investi- 

gating languages of the 2nd kind. 
By means of the phrase: ‘the sequence f of individuals and the 

sequence F, whose terms form classes of finite sequences of 

individuals, together satisfy the given sentential function’, we 

can bring into service the method of many-rowed sequences. 

To use this concept consistently we must first set up a one-one 

correlation between the variables Vj, and the terms of the 
sequence F in such a way that terms with different indices 

correspond to different variables. This is most easily done by 

putting every variable Vj, in correspondence with a term having 

the index (2.k—1).2)-!. For example, the terms Ff, Fy, F, Fi, 

F,, ¥,,... correspond to the variables V1, V3, Vi, V2, V3, V3,... 3 
With this convention the establishment of the meaning of the 
above phrase in its application to any concrete sentential func- 

tion, and even the construction of a general definition of the 

concept in question, presents no further difficulties. Thus 

concerning the primitive functions, those and only those 

sequences f and F (of the categories given above) will together 

satisfy the function p,,,, which satisfy the following condition: 
the sequence g of individuals, whose single term g, is identical 

with f,,, belongs to the class /,,_,. In an analogous way, those 

functions f and F will together satisfy the function py, which 

satisfy the following condition: the sequence g of individuals with 

two terms, where g, = /f,, and g, =/f,, belongs to the class 

Fx». In general, in order that the sequences f and F should 

together satisfy the function pj,,,, it is necessary and sufficient 

that the sequence g of individuals with 1 terms, where g, = f,, 

92 = Spy) 91 = fp, Should belong to the class Foe 4-9-1 (which 

consists of sequences with the same number of terms). 
1 Instead of the function f(k, l) = (2.k—1).21 we could use any other 

function f(&, 1) which correlates the natural numbers in one-one fashion with 

ordered pairs of natural numbers. Set theory offers many examples of such 

correlations; cf, Fraenkel, A. (16), pp. 30 ff. and 96 ff.
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If we wish to apply the method of unification of the variables 

we again make use of the fact that a one-one correlation can be 

set up between any individuals and certain classes of finite 

sequences, and in such a way that to every individual a there 

corresponds the class a* containing as its only element a 

sequence whose only member is just the given individual. 

Beginning in this way we next modify the interpretation of the 

variables of 1st order in exactly the same direction in which we 

formerly modified the interpretation of the variables of the 2nd 

order. The primitive functions of the form ‘Xzy...z’, containing 

1+ 1 signs, we now regard as having the same meaning as expres- 

sions of the type ‘the /-termed sequence g of individuals which 

satisfies the conditions: gf = 2, gi = y,..., gf =z, belongs to 

the class X, which consists of sequences with / terms’. With this 

intuitive interpretation all variables now belong to the same 

semantical category. The further construction contains no 

essentially new features and the reader will encounter no serious 
difficulties in carrying it out. 

The method of semantical unification of the variables can be 

applied with equal success to the investigation of any language of 

the 3rd kind. Determining the unifying category may sometimes 
be more difficult. As in the case of languages of the 2nd kind 

it is here impossible to restrict consideration to categories occur- 
ring in the language studied. In contrast to those languages it is 

never possible to make the choice from among the categories of 

one of the orders represented in the language. This difficulty 

is not, however, essential and exclusively concerns languages of 

the lowest order. For it is possible to prove that for those 
languages in which the order of the variables does not exceed a 

given number », where n > 3, any category of the nth order can 

serve as the unifying category. 

In this way the various methods at our disposal enable us to 

define the concept of satisfaction and with it to construct a correct 
definition of truth for any language of finite order. We shall see 
in the next section that these methods do not extend further; 

the totality of languages of finite order exhausts the domain of 

applicability of our methods. This is therefore the place in which
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to summarize the most important consequences which follow 

from the definitions we have constructed.t 

First, the definition of true sentence is a correct definition of 
truth in the sense of convention T of § 3. It embraces, as special 

cases, all partial definitions which were described in condition 

(x) of this convention and which elucidate in a more precise 

and materially correct way the sense of expressions of the 

type ‘x is a true sentence’. Although this definition alone 

provides no general criterion of truth, the partial definitions 
mentioned do permit us definitely to decide in many cases the 

question of the truth or falsity of the sentences investigated. 

In particular, it can be proved—on the basis of the axioms of 

the second group adopted in the metatheory (cf. p. 211)—that 

all axioms of the science under investigation are true sentences. Ina 

similar manner we can prove, making essential use of the fact 

that the rules of inference employed in the metatheory are not 

logically weaker than the corresponding rules of the science 

itself, that all consequences of true sentences are true. These two 

facts together enable us to assert that the class of true sentences 

contains all provable sentences of the science investigated (cf. 

Lemma D and Ths. 3 and 5 of § 3). 

Among the most important consequences of a general nature 

which follow from the definition of truth must be reckoned the 

principle of contradiction and the principle of the excluded middle. 

These two theorems, together with the theorem on the con- 

sequences of true sentences already mentioned, show that the 

class of all true sentences forms a consistent and complete deductive 

system (Ths. 1, 2, and 4). 

As an immediate, although a somewhat subsidiary, con- 

sequence of these facts we obtain the theorem that the class of all 

provable sentences likewise forms a consistent (although not neces- 
sarily complete) deductive system. In this way we are able to 

produce a proof of the consistency of various sciences for which 

we can construct definitions of truth. A proof carried out by 

+ Some further consequences of this type are discussed in the article of 
the author ‘On undecidable statements in enlarged systems of logic and the 
concept of truth’, Journal of Symbolic Logic, vol. 4 (1939), pp. 105-12; ef. in 
particular sect. 9, p. 111.
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means of this method does not, of course, add much to our know- 

ledge, since it is based upon premisses which are at least as strong 

as the assumptions of the science under investigation.1 Never- 

theless it seems to be worthy of note that such a general method of 

proof exists, which is applicable to an extensive range of deduc- 

tive sciences. It will be seen that from the deductive standpoint 

this method is not entirely trivial, and in many cases no simpler, 

and in fact no other, method is known. 

In those cases in which the class of provable sentences is not 
only consistent but also complete, it is easy to show that it co- 

incides with the class of true sentences. If, therefore, we identify 

the two concepts—that of true sentence and that of provable 

sentence—we reach a new definition of truth of a purely struc- 

tural nature and essentially different from the original semantical 

definition of this notion.?, Even when the provable sentences 

1 As Ajdukiewicz has rightly pointed out in a somewhat different connexion 
(ef. Ajdukiewicz, K. (2), pp. 39-40) it does not at all follow from this that this 
proof is not correct from the methodological standpoint—that it contains in 

some form a petitio principii. The assertion which we prove, i.e. the consistency 

of the science, does not occur in any way among the hypotheses of the proof. 
2 In the course of this work I have several times contrasted semantical 

definitions of true sentence with structural definitions. But this does not mean 
that I intend to specify the distinction between the two kinds of definitions 
in an exact way. From the intuitive standpoint these differences seem to be 
tolerably clear. Def. 23 in § 3—as well ag other definitions constructed in the 
same way—I regard as a semantical definition because in a certain sense 

{ In connexion with the problem discussed in the last three paragraphs see 
the recent publications: Mostowski, A. (53 ¢) as well as Wang, H. (87 ¢). From 
the results of these authors it is seen that in some cases, having succeeded 
in constructing an adequate definition of truth for a theory 7 in its meta- 
theory, we may still be unable to show that all the provable sentences of 7' 
are true in the sense of this definition, and hence we may also be unable to 
carry out the consistency proof for 7 in M. This phenomenon can roughly 

be explained as follows: in the proof that all provable sentences of T are 

true a certain form of mathematical induction is essentially involved, and the 
formalism of M may be insufficiently powerful to secure the validity of this 
inductive argument. Hence a certain clarification of the assumptions (on pp. 
174 ff.) concerning foundations of the metatheory may be desirable. In 
particular the phrase ‘from any sufficiently developed system of mathematical 
logic’ (p. 170) should be understood in a way which does not deprive the 
metatheory of any normally applied modes of inference. If the theory T' is 

of finite order our purpose will be fully achieved if we decide to provide the 

metatheory M with a logical basis as strong as the general theory of classes 

discussed in the following section.
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do not form a complete system the question of the construction 

of a structural definition is not a priori hopeless. Sometimes it is 

possible, by adding certain structurally described sentences, to 
extend the axiom system of the science in a suitable way so that 
it becomes a system in which the class of all its consequences 

coincides with the class of all true sentences. But there can be 

no question of a general method of construction. I suspect that 

the attempt to construct a structural definition, even in relatively 

simple cases—e.g. in connexion with the logic of two-termed 
relations studied in the preceding section—would encounter 

serious difficulties. These difficulties would certainly become 

much greater when it came to the question of giving a general 

structural criterion of truth, although we have already dealt 
with two languages, that of the calculus of classes and that of 

(which would be difficult to define) it represents a ‘natural generalization’, 

so to speak an ‘infinite logical product’, of those partial definitions which were 
described in convention T and which establish a direct correlation between 
the sentences of the language and the names of these sentences. Among the 

structural definitions, on the other hand, I include those which are con- 

structed according to the following scheme. First, a class C of sentences or 
other expressions is described in such a way that from the form of every ex- 

pression it is possible to know whether it belongs to the given class or not. 
Secondly, certain operations on expressions are listed such that from the form 
of any given expression a and those of all members ¢i,...,¢, belonging to a 
given finite collection of expressions, we can decide whether a can be obtained 
by performing on ¢;,...,e¢n any one of the listed operations. Finally, the true 
sentences are defined as those which are obtained by applying the listed 
operations to the expressions of the class C any number of times (it is to 
be noted that such a structural definition still in no way provides a gen- 
eral criterion of truth). Certain differences of a formal nature can be recog- 
nized between these two kinds of definitions. The semantical definition 
requires the use of terms of higher order than all variables of the language 
investigated, e.g. the use of the term ‘satisfies’; but for the formulation 
of a structural definition the terms of perhaps two or three of the lowest 
orders suffice. In the construction of a semantical definition we use—ex- 
plicitly or implicitly—those expressions of the metalanguage which are 
of like meaning with the expressions of the language investigated, whilst 
they play no part in the construction of a structural definition; it is easy 

to see that this distinction vanishes when the language studied is a frag- 
ment of logic. Moreover, the distinction as a whole is not very clear and 
sharp, as is shown by the fact that with respect to the sentential calculus 
the semantical definition can be regarded as a formal transformation of 
the structural definition based on the matrix method. At the same time 
it must be remembered that the construction of semantical definitions, 
based on the methods at present known to us, is essentially dependent upon 
the structural definitions of sentence and sentential function.
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the sentential calculus, for which this problem could be rela- 

tively easily solved.? 

In all cases in which we are able to define satisfaction and the 
notion of true sentence, we can—by means of a modification 
of these definitions—-also define two still more general concepts 

of a relative kind, namely the concepts of satisfaction and cor- 

rect sentence—both with respect to a given individual domain a.? 

This modification depends on a suitable restriction of the domain 

of objects considered. Instead of operating with arbitrary indivi- 

duals, classes of individuals, relations between individuals, and so 

on, we deal exclusively with the elements of a given class a of indi- 

viduals, subclasses of this class, relations between elements of 

this class, and so on. It is obvious that in the special case when a 

is the class of all individuals, the new concepts coincide with the 

former ones (ef. Defs. 24 and 25, and Th. 26). As I have already 

emphasized in § 3 the general concept of correct sentence in a 

given domain plays a great part in present day methodological 

researches. But it must be added that this only concerns re- 

searches whose object is mathematical logic and its parts. In 

connexion with the special sciences we are interested in correct 
sentences in a quite specific individual domain for which the 

general concept loses its importance. Likewise it is only in con- 

nexion with sciences which are parts of logic that some general 

properties of these concepts, which were proved in § 3 for the 

language of the calculus of classes, preserve their validity. For 

example, it happens that in these sciences the extension of the 

term ‘correct sentence in the individual domain a’ depends 

exclusively on the cardinal number of the class a. Thus in these 

investigations we can replace this term by the more convenient 

term ‘correct sentence in a domain with k& elements’ (Def. 26, 

Th. 8). The theorems previously discussed concerning the con- 

cept of truth, such as the principles of contradiction and the 
excluded middle can be extended to the concept of correct sen- 

tence in a given domain. The concept of correct sentence in every 

1 Cf. the remarks on pp. 207 f. and 221; I shall return to this problem in 
§ 5 (cf. p. 254, footnote). 

2 See p. 199, note 2.
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individual domain (Def. 27) deserves special consideration. In 
its extension it stands midway between the concept of provable 

sentence and that of true sentence ; the class of correct sentences 

in every domain contains all theorems and consists exclusively 
of true sentences (Ths. 22 and 27). This class is therefore in 

general narrower than the class of all true sentences ; it contains, 

for example, no sentences whose validity depends on the magni- 

tude of the number of all individuals (Th. 23). Ifit is desired to 

transform the system of the provable sentences of every science 
into a complete one, it is necessary at the outset to add sen- 

tences to the system which decide the question how many 
individuals exist. But for various reasons another point of view 
seems to be better established, namely the view that the decision 

regarding such problems should be left to the specific deductive 

sciences, whilst in logic and its parts we should try to ensure 

only that the extension of the concept of provable sentence 

coincides with that of correct sentence in every individual 
domain. For a supporter of this standpoint the question whether 
the extension of these two concepts is actually identical is of 
great importance. In the case of a negative answer the problem 

arises of completing the axiom system of the science studied in 

such a way that the class of provable sentences thus extended 

now coincides with the class of sentences which are correct in 

every domain, This problem, which properly is equivalent to 

the question of structurally characterizing the latter concept, 

can be positively decided only in a few cases (cf. Th. 24).1 Gene- 

rally speaking the difficulties presented by this question are no 

less essential than those connected with the analogous problem 

of a structural definition of true sentence. We meet with similar 

difficulties when we attempt to define structurally the concept of 

correct sentence in a domain with k elements. Only in the case 

where k is a finite number is it easy to give a general method, 

modelled on the method of matrices from investigations on the 

extended sentential calculus, which makes a structural definition 

' In the case of the lower functional caleulus this problem, which is raised 

in Hilbert, D., and Ackermann, W. (30), p. 68, has recently been decided by 

Godel, see Godel, K. (20).



VIII, §4 CONCEPT OF TRUTH IN FORMALIZED LANGUAGES 241 

of this concept possible. In this way we even obtain a general 

criterion which enables us to decide from the form of any sentence 

whether it is correct in a domain with a previously given finite 

number of elements.1 

I do not wish to enter here into a more detailed discussion of 

special investigations on the concepts just considered. Some 

results which are relevant here, relating to the calculus of classes, 

have already been given as examples in § 3. I will only mention 

that in recent years numerous results have been obtained which 
enable us to infer from the correctness of certain sentences in 

special individual domains or from their structural properties 

their correctness in every domain and thus their truth.? It is 
evident that all these results only receive a clear content and can 
only then be exactly proved, if a concrete and precisely formu- 

lated definition of correct sentence is accepted as a basis for the 

investigation. 

§5. Tae Concept or TrurE SENTENCE IN LANGUAGES OF 

INFINITE ORDER 

We come now to languages of the 4th kind, hence to those 

of infinite order and so lying beyond the scope of the methods of 
construction sketched in the preceding section. The language of 

the general theory of classes will serve as an example. This 
language is noteworthy because, in spite of its elementary 

structure and its poverty in grammatical forms, it suffices for 

1 Cf. Bernays, P., and Schénfinkel, M. (54), p. 352. 
2 According to the well-known theorems of Lowenheim and Skolem, certain 

categories of sentences are correct in every domain provided they are correct 

in all finite and denumerable domains. These sentences include, for example, 
all sentences of the logic of two- or many-termed relations, described in this 

section, which are generalizations of sentential functions in which variables 
of the 2nd order occur exclusively as free variables. In the case of the sentences 

of the calculus of classes this result—as is shown in Ths. 15 and 19 of § 3—can 

be essentially sharpened. Certain results of Bernays, Schénfinkel, and Acker- 

mann have a narrower domain of application. They allow us to correlate a 
particular natural number & with sentences of a special structure in such a 
way that from the correctness of a given sentence in the domain with k 

elements (thus—as we already know—from purely structural properties of the 

sentence) its correctness in every domain follows. Cf. Ackermann, W. (1), 
Bernays, P., and Schénfinkel, M. (5.a), Herbrand, J. (26), Lowenheim, L. (49), 

Skolem, Th. (64), (65), and (66). For a systematic presentation of the results 

in this direction including more recent ones, see Church, A. (11 a).
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the formulation of every idea which can be expressed in the whole 

language of mathematical logic. It is difficult to imagine a 

simpler language which can do this.? 
In the general theory of classes the same constants occur as 

in the previously investigated sciences, i.e. the signs of negation 

and of logical sum, as well as the universal quantifier. As 

variables we use such symbols as ‘X;’, ‘X,’, ‘X7’, and so on, ie. 

signs composed of the symbol ‘X’ and a number of small strokes 
above and below. The sign having n strokes above and k below 
is called the k-th variable of the n-th order and is denoted by the 
symbol ‘V?’. The variables Vi}, V3, V2,... represent respectively 

names of individuals, objects of the Ist order; classes of indivi- 

duals, objects of the 2nd order; classes of such classes, objects 

of the 3rd order, and so on. These variables obviously belong 

to infinitely many semantical categories. As primitive senten- 

tial functions we have expressions of the type ‘XY’ where in 

the place of ‘X’ any variable of the n+ 1th order, and instead 

of ‘Y’ a variable of the nth order occurs. This expression is 

1 The language of the general theory of classes is much inferior to the 

language of Whitehead, A. N., and Russell, B. A. W. (90) in its stock of 

semantical categories, and still more inferior in this respect to the language used 
by Legniewski in his system (cf. p. 210, note 2; p. 218, note 2). In particular, in 
this language no sentential variables and neither names of two- or many-termed 

relations, nor variables representing these names, occur. The dispensability 

of sentential variables depends on the fact mentioned on p. 229, footnote: to 

every sentence which contains sentential variables there is a logically equiva- 
lent sentence which does not contain such variables. The results of § 2, 

especially Defs. 13-17, suffice to show how such variables are to be avoided in 
setting up lists of axioms and in the derivation of theorems; cf. also Neumann, 

J. v. (54) (especially note 9, p. 38). The possibility of eliminating two-termed 
relations results from the following consideration. With every relation R we 

can correlate, in one-one fashion, a class of ordered pairs, namely, the class 

of all ordered pairs whose terms x and y satisfy the formula, zRy. If the 

relation is homogeneous, i.e. if the domain and counter domain of this relation 

belong to the same semantical category, then the ordered pair can be inter- 
preted otherwise than we have done on p. 171, namely as classes having two 
classes as elements: the class whose only element is x and the class consisting 
of the two elements x and y. In order to apply an analogous method to in- 
homogeneous relations we must first correlate homogeneous relations with 

them in one-one fashion, and this presents no great difficulty. We proceed 

in an analogous way with many-termed relations. In this way every statement 
about two- or many-termed relations of arbitrary category can be transformed 
into an equivalent statement about individuals, classes of individuals, classes 
of such classes, and so on. Cf. Kuratowski, C. (38), p. 171, and Chwistek, L. 

(13), especially p. 722.
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read: ‘the class X (of n+-1th order) has as an element the object 

Y (of nth order)’, or ‘the object Y has the property X’. For the 

designation of the primitive functions we employ the symbol 
‘ef,, setting «2, = VZi~ VP. The further development of the 

science differs in no essential way from that of the logic of two- 
or many-termed relations. The quantifications of the sentential 

functions x with respect to the variable V? are denoted by the 

symbols ‘()i«’ and ‘U2’. The axioms consist of (1) sentences 
which satisfy the condition (a) of Def. 13 of § 2, which are thus 

derived from the axioms of the sentential calculus by substitu- 

tion, sometimes also followed by generalization; (2) pseudodefini- 

tions, i.e. statements which are quantifications of sentential 

functions of the type 

UE Ni ir-¥ + b0-D)> 
where y is any sentential function which does not contain the 
free variable Vi*+1; (3) the laws of extensionality, i.e. sentences 
of the form 

NE NE NB MUR Pn Rant efn- Rn) thi +eRn), 
which state that two classes which do not differ in their elements 

do not differ in any of their properties and are thus identical. 

In order to obtain in this science a sufficient basis for the estab- 

lishment of various parts of mathematics and in particular of 

the whole of theoretical arithmetic, we must add to the above 

still one more axiom: (4) the axiom of infinity, i.e. the sentence 

Uti ta Nile t+ Uae 2- Milela tea) Uileir- 21), 

which guarantees the existence of infinitely many individuals.? 
In the derivation of consequences from the axioms we apply 
the operations of substitution, detachment, and the intro- 

duction and removal of the universal quantifier, analogous to 

the operations described in conditions (y)~({) of Def. 15 in § 2. 

When we try to define the concept of satisfaction in connexion 

with the present language we encounter difficulties which we 

cannot overcome. In the face of the infinite diversity of seman- 

1 In adopting the axiom of infinity we admittedly give up the postulate 
according to which only the sentences which are correct in every individual 
domain are to be provable sentences of logic (ef. p. 240).
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tical categories which are represented in the language, the use 

of the method of many-rowed sequences is excluded from the 

beginning, just as it was in the case of the logic of many-termed 
relations. But the situation here is still worse, because the 

method of semantical unification of the variables also fails us. 

As we learnt in§ 4, the unifying category cannot be of lower order 

than any one of the variables of the language studied. Sequences 
whose terms belong to this category, and still more the relation 
of satisfaction, which holds between such sequences and the 

corresponding sentential functions, must thus be of higher order 

than all those variables. In the language with which we are now 

dealing variables of arbitrarily high (finite) order occur: con- 
sequently in applying the method of unification it would be 
necessary to operate with expressions of ‘infinite order’. Yet 

neither the metalanguage which forms the basis of the present 

investigations, nor any other of the existing languages, contains 

such expressions. It is in fact not at all clear what intuitive 
meaning could be given to such expressions. 

These considerations seem to show that it is impossible to 
construct a general, semantically unambiguous concept of 

satisfaction for the language we are studying which will be 

applicable to all sentential functions without regard to their 

semantical type. On the other hand there appear to be no 

difficulties which would render impossible in principle a con- 
sistent application of the concept of satisfaction in its original 

formulation, or rather—in view of the semantical ambiguity of 

that formulation—of an infinite number of such concepts. Each 

of these concepts is, from the semantical standpoint, already 
specified and would relate exclusively to functions of a specific 

semantical type (e.g. to functions which contain a variable of the 
lst order as the only free variable). Actually—independently 

of the logical structure of the language—the intuitive sense of 

none of these expressions raises any doubt. For every par- 

ticular sentential function we can in fact define this meaning 
exactly by constructing for every phrase of the type ‘the 

objects a, 6, c,... satisfy the given sentential function’ an in- 
tuitively equivalent phrase which is expressed wholly in terms
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of the metalanguage. Nevertheless the problem of the construc- 

tion of a correct definition for each of these concepts again 

presents us with difficulties of an essential nature. On the basis 
of the languages which we have previously studied it was easy 
to obtain each special concept of satisfaction by a certain 

specialization of the general concept; in the present case this 

way is clearly not open to us. A brief reflection shows that 

the idea of using the recursive method analogously to the 

definition of sentential function proves, in spite of its natural- 

ness, to be unsuitable. It is easily seen that the composite 
functions of a particular semantical type cannot always be 

formed from simpler functions of the same type. On the con- 

trary, if we are to be able to construct arbitrary functions of a 

given type, we must use for that purpose all possible semantical 

types. It would, therefore, be necessary, in the recursive defi- 

nition of any one of the special concepts of satisfaction, to cover, 
in one and the same recursive process, infinitely many analogous 

concepts, and this is beyond the possibilities of the language. 
The central problem of our work, the construction of the 

definition of truth, is closely connected with these considera- 

tions. If we were successful in defining, if not the general, at 

least any one of the special concepts of satisfaction, then this 

problem would not offer the least difficulty.2 On the other 

1 An external expression of this state of affairs is that in the definition of 
satisfaction not only is it essential to take free variables into account but also 
all the bound variables of the function in question, although these variables 
have no influence on the semantical type of the function; and whether the 

relation of satisfaction holds or not does not depend in any way on the terms 

of the sequence which correspond to these variables (cf. Def. 22 of § 3, condition 

(8))}. It is to be remembered that analogous difficulties to those mentioned in 
the text appeared earlier in the attempt to construct a recursive definition 
of truth by a direct route (cf. p. 189). 

3 For example, let us imagine that we have succeeded in some way in 
defining the concept of satisfaction in the case of sentential functions which 
contain a variable of Ist order as the only free variable. We could then operate 
freely with phrases of the type ‘the individual a satisfies the sentential func- 
tion y’. If we now consider some one concrete sentential function, e.g. U? ey. 
which is satisfied by every arbitrary individual, we obtain at once the follow- 

ing definition of true sentence: z is a true sentence tf and only uf every individual 

a satisfies the function z.\J} el, (i.e. the conjunction of the sentence x and the 
function U? 4). In an exactly analogous way we can pass from every other 
specific concept of satisfaction to the eoncept of truth.
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hand we know of no method of construction which would not— 

directly or indirectly—-presuppose a previous definition of the 

concept of satisfaction. Therefore we can say——considering the 

failure of previous attempts—that at present we can construct 

no correct and materially adequate definition of truth for the 

language under investigation.f 

In the face of this state of affairs the question arises whether 

our failure is accidental and in some way connected with defects 

in the methods actually used, or whether obstacles of a funda- 

mental kind play a part which are connected with the nature 

of the concepts we wish to define, or of those with the help 

of which we have tried to construct the required definitions. If 

the second supposition is the correct one all efforts intended to 

improve the methods of construction would clearly be fruitless. 

If we are to answer this question we must first give it a rather 

less indefinite form. It will be remembered that in the con- 

vention T of §3 the conditions which decide the material 

correctness of any definition of true sentence are exactly stipu- 

lated. The construction of a definition which satisfies these 
conditions forms in fact the principal object of our investigation. 

From this standpoint the problem we are now considering takes 

on a precise form: it is a question of whether on the basis of the 
metatheory of the language we are considering the construction of a 

correct definition of truth in the sense of convention 'T is in principle 
possible. As we shall see, the problem in this form can be defi- 

nitely solved, but in a negative sense. 

It is not difficult to see that this problem exceeds the bounds of 

our previous discussion. It belongs to the field of the meta- 
metatheory. Its definitive solution, even its correct formulation, 

would require new equipment for investigation and especially 

the formalization of the metalanguage and the metatheory 

which uses it. But without going so far, and still avoiding 

+ The problem of the possibility of defining satisfaction and truth for the 
language under investigation will be considerably clarified by the discussion 

in the Postscript. It should be mentioned that the method of defining truth 

recently suggested in McKinsey, J. C. C. (53 6) is not based on a preliminary 
definition of satisfaction. Instead, McKinsey has to consider formalized 

languages with non-denumerably many constants and has to use a meta- 

language which is provided with a very strong set-theoretical apparatus.
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various technical complications, I believe I am able to give a 
fairly clear account of everything of a positive nature that can 

at present be established in connexion with the above problem. 
In operating with the metalanguage we shall adhere to the 

symbolism given in §§ 2 and 3. To simplify the further develop- 
ments and avoid possible misunderstandings we shall suppose 
the metalanguage to be so constructed that the language we are 

studying forms a fragment of it ; every expression of the language 
is at the same time an expression of the metalanguage, but not 

vice versa. This enables us in certain cases (e.g. in the formula- 

tion of condition (a) of convention T) to speak simply of the 

expressions of the language itself, instead of expressions of the 
metalanguage which have the same meaning. 

After these reservations and conventions we turn to the 
formulation and proof of the fundamental result. 

THEOREM I. (a) In whatever way the symbol ‘Tr’, denoting a 

class of expressions, is defined in the metatheory, it will be possible 
to derive from it the negation of one of the sentences which were 

described in the condition (x) of the convention T; 
(B) assuming that the class of all provable sentences of the meta- 

theory is consistent, it is impossible to construct an adequate 

definition of truth in the sense of convention 'T on the basis of the 

metatheory. 

The idea of the proof of this theorem can be expressed in the 

following words:! (1) a particular interpretation of the meta- 

1 We owe the method used here to Godel, who has employed it for other 

purposes in his recently published work, Gédel, K. (22), ef. especially pp. 174-5 
or 187-90 (proof of Th. VI). This exceedingly important and interesting article 

is not directly connected with the theme of our work—it deals with strictly 
methodological problems: the consistency and completeness of deductive 

systems ; nevertheless we shall be able to use the methods and in part also the 
results of Godel’s investigations for our purpose. 

I take this opportunity of mentioning that Th. I and the sketch of its 
proof was only added to the present work after it had already gone to press. 

At the time the work was presented at the Warsaw Society of Sciences (21 

March 1931), Gédel’s article—so far as I know—had not yet appeared. In 
this place therefore I had originally expressed, instead of positive results, only 
certain suppositions in the same direction, which were based partly on my own 
investigations and partly on the short report, Gédel, K, (21), which had been 

published some months previously. 
After I had become acquainted with the above mentioned article I con- 

vinced myself, among other things, that the deductive theory which Gédel
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language is established in the language itself and in this way with 

every sentence of the metalanguage there is correlated, in one- 

many fashion, a sentence of the language which is equivalent to 

it (with reference to the axiom system adopted in the meta- 

theory); in this way the metalanguage contains as well as every 
particular sentence, an individual name, if not for that sentence 

at least for the sentence which is correlated with it and equivalent 

to it. (2) Should we succeed in constructing in the metalanguage 

a correct definition of truth, then the metalanguage—with 
reference to the above interpretation—would acquire that 

universal character which was the primary source of the seman- 
tical antinomies in colloquial language (cf. p. 164). It would 
then be possible to reconstruct the antinomy of the liar in the 

metalanguage, by forming in the language itself a sentence x 

such that the sentence of the metalanguage which is correlated 

with x asserts that xis not a true sentence. In doing this it would 

be possible, by applying the diagonal procedure! from the theory 

of sets, to avoid all terms which do not belong to the meta- 

language, as well as all premisses of an empirical nature which 

have played a part in the previous formulations of the antinomy 

of the liar.? 

had chosen as the object of his studies, which he called the ‘system P’, was 

strikingly similar to the general theory of classes considered in the present 
section. Apart from certain differences of a ‘calligraphical’ nature, the only 

distinction lies in the fact that in the system P, im addition to three logical 
constants, certain constants belonging to the arithmetic of the natural numbers 
also occur (a far-reaching analogy also exists between the system P and the 
system of arithmetic sketched in VI (see pp. 113-16)). Consequently the results 

obtained for the system P can easily be carried over to the present discussion. 
Moreover, the abstract character of the methods used by Gédel renders the 

validity of his results independent to a high degree of the specific peculiarities 
of the science investigated. 

1 Cf. Fraenkel, A. (16}, pp. 48 ff. 

2 If we analyse the sketch of the proof given below we easily note that an 
analogous reconstruction could be carried out even on the basis of colloquial 
language, and that in consequence of this reconstruction the antinomy of 
the har actually approximates to the antinomy of the expression ‘hetero- 
logical’. For a rather simple reconstruction of the antinomy of the liar in this 
direction see Tarski, A. (82), note 11, p. 371. It seems interesting that in this 
reconstruction all the technical devices are avoided which are used in the proof 

of Th. 1 (such as interpretation of the metalanguage in arithmetic or the 

diagonal procedure), In connexion with the last paragraph of the text cf. 
the concluding remarks of § 1, pp. 164 f., and in particular p. 165, note 1.
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We shall sketch the proof a little more exactly.1 

Let us agree for the moment to use the symbol ‘n’ instead of 

‘X,;". The existential quantifiation of the sentential function y 
with respect to the variable ‘n’ will be denoted by the symbol 

‘U3y’ as before. The variable ‘x’ thus represents names of 
classes the elements of which are classes of individuals. Among 

these classes we find, among other things, the natural numbers 

and generally speaking the cardinal numbers.” 

J have already mentioned that all facts belonging to the arith- 
metic of the natural numbers can be expressed in the language of 

the general theory of classes. In particular, if a natural number 

k is given, a sentential function «, is easily constructed in this 

language which contains the symbol! ‘n’ as the only free variable 

and which asserts that the class whose name is represented by this 

symbol is identical with the number & (i.e., with the class con- 

sisting of just those classes of individuals which have exactly k 

elements).? For example: 

= Aiketa Ui M2 Malet (eta eda t2)) + 

fa Mi U2 Ualet at et2-€21-€2,.2))- 

A general recursive definition of the sequence of functions ¢, 

within the metalanguage presents no great difficulty. 

As I have already pointed out in § 2 (p. 184) a one-one corre- 

spondence can be set up without difficulty between the expres- 

sions of the language and thenatural numbers ; we can define in the 

metalanguage an infinite sequence ¢ of expressions in which every 

expression of the language occurs once and only once. With 

the help of this correlation we can correlate with every operation 

on expressions an operation on natural numbers (which possesses 
the same formal properties), with every class of expressions a 

class of natural numbers, and so on. In this way the meta- 

language receives an interpretation in the arithmetic of the 

1 For tho sake of simplicity we shall in many places express ourselves as 
though the demonstration which follows belonged to the metatheory and not 
to the meta-metatheory ; in particular, instead of saying that a given sentence 
is provable in the metatheory, we shall simply assert the sentence itself. In 

any case it must not be forgotten that only a sketch of the proof is given here 

and one which is far from complete. 
7 See p. 233, note 1.
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natural numbers and indirectly in the language of the general 

theory of classes. 

Let us suppose that we have defined the class 7'r of sentences 

in the metalanguage. There would then correspond to this class a 

class of natural numbers which is defined exclusively in the terms 

of arithmetic. Consider the expression “U3(.,.¢,) € Zr’. This is 

a sentential function of the metalanguage which contains ‘n’ as 

the only free variable. From the previous remarks it follows that 
with this function we can correlate another function which is 

equivalent to it for any value of ‘n’, but which is expressed 

completely in terms of arithmetic. We shall write this new 

function in the schematic form ‘s(n)’. Thus we have: 

(1) for any n, U3, bn) € Tr tf and only tf b(n). 

Since the language of the general theory of classes suffices 

for the foundation of the arithmetic of the natural numbers, we 

can assume that ‘¢(n)’ is one of the functions of this language. 

The function “%(n)’ will thus be a term of the sequence ¢, e.g. 

the term with the index &, “j(n)’ = ¢,. If we substitute ‘k’ for 
‘n’ in the sentence (1) we obtain: 

(2) U3. 4,) € Tr if and only if (hk). 

The symbol ‘U?(u,.¢4;,)’ denotes, of course, a sentence of the 

language under investigation. By applying to this sentence 
condition («) of the convention T we obtain a sentence of the 
form ‘a e Tr if and only if p’, where ‘x’ is to be replaced by a 

structural-descriptive or any other individual name of the 

statement (J3(:,.¢,), but ‘p’ by this statement itself or by any 

statement which is equivalent to it. In particular we can sub- 

stitute ‘U3(.,.¢,)’ for ‘x’ and for ‘p’—in view of the meaning of 

the symbol ‘:,,’—the statement ‘there is an » such that n = k 

and %(n)’ or, simply “f(&)’. In this way we obtain the folowing 

formulation: 

(3) Uilex-4,) € Tr if and only if i(k). 

The sentences (2) and (3) stand in palpable contradiction to 

one another; the sentence (2) is in fact directly equivalent to the 
negation of (3). In this way we have proved the first part of
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the theorem. We have proved that among the consequences of 

the definition of the symbol ‘Tr’ the negation of one of the sen- 
tences mentioned in the condition (a) of the convention T must 

appear. From this the second part of the theorem immediately 
follows. 

The assumption of consistency appearing in the part (8) of 

this theorem is essential. If the class of all provable sentences 

of the metatheory contained a contradiction, then every de- 
finition in the metatheory would have among its consequences 

all possible sentences (since they all would be provable in the 
metatheory), in particular those described in the convention 
T. On the other hand, as we now know,! there is no prospect of 

proving the consistency of the metatheory which we are working 

with, on the basis of the meta-metatheory. It is to be noted 

that, in view of the existence of an interpretation of the meta- 

theory in the science itself (a fact which has played such an 
essential part in the proof sketched above), the assumption of 

the second part of Th. I is equivalent to the assumption of the 

consistency of the science investigated itself and from the 
intuitive standpoint is just as evident. 

The result reached in Th. I seems perhaps at first sight un- 

commonly paradoxical. This impression will doubtless be 
weakened as soon as we recall the fundamental distinction 

between the content of the concept to be defined and the nature 

of those concepts which are at our disposal for the construction 

of the definition. 

The metalanguage in which we carry out the investigation 

contains exclusively structural-descriptive terms, such as names 

of expressions of the language, structural properties of these 

expressions, structural relations between expressions, and so 

on, as well as expressions of a logical kind among which (in the 

present case) we find all the expressions of the language studied. 

What we call metatheory is, fundamentally, the morphology 

of language—a science of the form of expressions—a correlate 

of such parts of traditional grammar as morphology, etymology, 
and syntax. 

1 Cf. Gédel, K. (22), p. 196 (Th. XI).
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The fact that the language studied and the deductive science 

carried out in this language are formalized has brought about an 

interesting phenomenon ; it has been possible to reduce to struc- 

tural-descriptive concepts certain other notions of a totally 

different kind, which are distinguished from the former both in 

their origin and in their usual meaning, namely the concept of 

consequence together with a series of related notions.! It has 

been possible to establish what may be called the logic of the 

given science as a part of morphology. 

Encouraged by this success we have attempted to go further 

and to construct in the metalanguage definitions of certain 

concepts belonging to another domain, namely that called the 
semantics of language—i.e. such concepts as satisfaction, de- 

noting, truth, definability, and so on. A characteristic feature 

of the semantical concepts is that they give expression to 

certain relations between the expressions of language and the 

objects about which these expressions speak, or that by means 

of such relations they characterize certain classes of expressions 

or other objects. We could also say (making use of the suppositio 
materialis) that these concepts serve to set up the correlation 

between the names of expressions and the expressions them- 

selves. 
For a long time the semantical concepts have had an evil 

reputation among specialists in the study of language. They have 
resisted all attempts to define their meaning exactly, and the 

properties of these concepts, apparently so clear in their content, 

have led to paradoxes and antinomies. For that reason the 

tendency to reduce these concepts to structural-descriptive ones 

must seem quite natural and well-founded. The following fact 

seemed to favour the possibility of realizing this tendency: 

it has always been possible to replace every phrase which con- 

tains these semantical terms, and which concerns particular 

1 The reduction of the concept of consequence to concepts belonging to 
the morphology of language is a result of the deductive method in its latest 

stagos of development. When, in everyday life, we say that a sentence fol- 
lows from other sentences we no doubt mean something quite different from 
the existence of certain structural relations between these sentences. In the 
light of the latest results of Godel it seems doubtful whether this reduction 
has been effected without remainder.
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structurally described expressions of the language, by a phrase 

which is equivalent in content and is free from such terms. In 

other words it is possible to formulate infinitely many partial 

definitions for every semantical concept, which in their totality 

exhaust all cases of the application of the concept to concrete 

expressions and of which the sentences adduced in condition (a) 

of convention T are examples. It was with just this end in view 

that, as a rule, we included in the metalanguage, with regard 
to the content of the semantical concepts, not only the names 

of expressions but all expressions of the language itself or ex- 
pressions having the same meaning (even when these expressions 

were not of a logical kind, cf. pp. 210 f.), although such an enrich- 
ment of the metalanguage has no advantages for the pursuit of 

the ‘pure’ morphology of language. 
In the abstract the fact mentioned has no decisive importance; 

it offers no path by which an automatic transition from the 
partial definitions to a general definition is possible, which 
embraces them all as special cases and would form their infinite 

logical product.! Only thanks to the special methods of con- 
struction which we developed in §§ 3 and 4 have we succeeded in 

carrying out the required reduction of the semantical concepts, 

and then only for a specified group of languages which are poor in 
grammatical forms and have a restricted equipment of seman- 

tical categories—namely the languages of finite order. Let it 

be remembered that the methods there applied required the use 

in the metalanguage of categories of higher order than all 

categories of the language studied and are for that reason funda- 

mentally different from all grammatical forms of this language. 

The analysis of the proof of Th. I sketched above shows that this 

1 In the course of our investigation we have repeatedly encountered similar 
phenomena: the impossibility of grasping the simultaneous dependence be- 
tween objects which belong to infinitely many semantical categories; the lack 

of terms of ‘infinite order’; the impossibility of including, in one process of 
definition, infinitely many concepts, and so on (pp. 188 f., 282 f., 243, 245), 

I do not believe that these phenomena can be viewed as a symptom of the 

formal incompleteness of the actually existing languages—their cause is to be 

sought rather in the nature of language itself: language, which 1s a product 
of human activity, necessarily possesses a ‘finitistic’ character, and cannot 
serve as an adequate tool for the investigation of facts, or for the construction 

of concepts, of an eminently ‘infinitistic’ character.
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circumstance is not an accidental one. Under certain general 

assumptions, it proves to be impossible to construct a correct 

definition of truth if only such categories are used which appear in 

the language under consideration.! For that reason the situation 

had fundamentally changed when we passed to the ‘rich’ lan- 

guages of infinite order. The methods used earlier proved to be 

inapplicable; all concepts and all grammatical forms of the meta- 

language found an interpretation in the language and hence we 
were able to show conclusively that the semantics of the language 

could not be established as a part of its morphology. The signifi- 
cance of the results reached reduces just to this. 

But, apart from this, Th. I has important consequences of a 

methodological nature. It shows that it is impossible to define in 

the metatheory a class of sentences of the language studied 

which consists exclusively of materially true sentences and is at 

the same time complete (in the sense of Def. 20 in § 2). In par- 

ticular, if we enlarge the class of provable sentences of the science 

investigated in any way—whether by supplementing the list of 

axioms or by sharpening the rules of inference—then we either 

add false sentences to this class or we obtain an incomplete 

system. This is all the more interesting inasmuch as the enlarge- 

1 From this, or immediately from certain results contained in Gédel, K. (22) 
(pp. 187-91), it can easily be inferred that a structural definition of truth— 

in the sense discussed on pp. 236 ff., especially on p. 237, note 2—cannot be 

constructed even for most languages of finite order. From other investiga- 
tions of this author (op. cit., p. 193, Th. TX) it follows that in certain ele- 
mentary cases in which we can construct such a definition, it is nevertheless 
impossible to give a general structural criterion for the truth of a sentence. 
The first of these results applies, for instance, to the logic of two-termed 
and many-termed relations discussed in § 4. The second result applies, for 
example, to the lower predicate calculus (‘engere Funktionenkalkul’) of Hilbert- 

Ackermann (80), pp. 43 ff.; in this case, however, the result is applied, 

not to the notion of a true sentence, but to the related notion of a universally 
valid (‘allgemeingultig’) sentential function. 

At this point we should like to call attention to the cloge connexion between 
the notions of ‘structural definition of truth’, and of ‘general structural 

criterion of truth’ discussed in this work, and the notions of recursive enu- 
merability and general recursiveness known from the recent literature (see, 

for example, Mostowski, A. (53f), chap. 5). In fact, whenever the set of all 
true sentences in a given formalized theory has been proved to be recursively 
enumerable, we may say that there is a structural definition of truth for this 
theory. On the other hand, we say that there is a general structural criterion 
of truth when, and only when, the set of all true sentences is (general) 
recursive.
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ment of the class of provable sentences to form a complete and 

consistent system in itself presents no difficulties. 

An interpretation of Th. I which went beyond the limits 
given would not be justified. In particular it would be incorrect 

to infer the impossibility of operating consistently and in agree- 
ment with intuition with semantical concepts and especially with 

the concept of truth. But since one of the possible ways of con- 

structing the scientific foundations of semantics is closed we 

must look for other methods. The idea naturally suggests itself 
of setting up semantics as a special deductive science with a 

system of morphology as its logical substructure. For this 
purpose it would be necessary to introduce into morphology a 

given semantical notion as an undefined concept and to estab- 

lish its fundamental properties by means of axioms. The 
experience gained from the study of semantical concepts in 

connexion with colloquial language, warns us of the great 

dangers that may accompany the use of this method. For that 

reason the question of how we can be certain that the axiomatic 
method will not in this case lead to complications and antinomies 

becomes especially important. 

In discussing this question I shall restrict myself to the theory 

of truth, and in the first place I shall establish the following 
theorem, which is a consequence of the discussion in the pre- 

ceding section: 

THEoreM II. For an arbitrary, previously given natural number 

k, tt ts possible to construct a definition of the symbol ‘Tr’ on the 

basis of the metatheory, which has among its consequences all those 
sentences from the condition (a) of the convention T in which in 

the place of the symbol ‘p’ sentences with variables of at most the 

k-th order occur (and moreover, the sentence adduced in the condition 

(B) of this convention). 

By way of proof it suffices to remark that this theorem no 

longer concerns the language studied in its whole extent but only 

a fragment of it which embraces all those expressions which 

contain no variable of higher order than the kth. This fragment 

1 Cf. V, Th. 56, a result of Lindenbaum’s (see p. 98 of the present volume).
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is clearly a language of finite order and in fact a language of the 

2nd kind. We can therefore easily construct the required 

definition by applying one of the two methods described in § 4. 

It is to be noted that the definition obtained in this way (together 

with the consequences given in Th. IT) yields a series of theorems 

of a general nature, like the Ths. 1-5 in § 3, for example, if the 

formulations of these theorems are suitably weakened by re- 

stricting the domain of their applicability to sentences with 

variables of at most the kth order. 

Hence it will be seen that, in contrast to the theory of truth 

in its totality, the single fragments of this theory (the objects of 

investigation of which are sentences which contain only variables 

whose order is bounded above) can be established as fragments 
of the metatheory. If, therefore, the metatheory is consistent 

we shall not find a contradiction in these fragments. This last 

result can be extended in a certain sense to the whole theory of 

truth, as the following theorem shows: 

Tueorem IIT. If the class of all provable sentences of the meta- 

theory is consistent and if we add to the metatheory the symbol 

‘Tr as a new primitive sign, and all theorems which are described 

in conditions (x) and (B) of the convention T as new axioms, then 

the class of provable sentences in the metatheory enlarged in this way 

will also be consistent. 

To prove this theorem we note that the condition (a) contains 

infinitely many sentences which are taken as axioms of the 
theory of truth. A finite number of these axioms—even in union 

with the single axiom from condition (8)—cannot lead to a 

contradiction (so long as there is no contradiction already in the 

metatheory). Actually in the finite number of axioms obtained 

from (a) only a finite number of sentences of the language studied 
appears and in these sentences we find a finite number of vari- 

ables. There must, therefore, be anatural number k such that the 

order of none of these variables exceeds k. From this it follows, 

by Th. I, that a definition of the symbol ‘7'r’ can be constructed 

in the metatheory such that the axioms in question become con- 
sequences of this definition. In other words: these axioms, with
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a suitable interpretation of the symbol ‘Tr’, become provable 

sentences of the metatheory (this fact can also be established 

directly, i.e. independently of Th. II). If any class of sentences 
contains a contradiction, it is easy to show that the contra- 
diction must appear in a finite part of this class.1 Since, however, 
no finite part of the axiom system described in Th. III contains 

a contradiction, the whole system is consistent, which was to be 

proved. 

The value of the result obtained is considerably diminished 

by the fact that the axioms mentioned in Th. ITI have a very 

restricted deductive power. A theory of truth founded on them 

would be a highly incomplete system, which would lack the most 

important and most fruitful general theorems. Let us show this 
in more detail by a concrete example. Consider the sentential 

function ‘sé Tr or &é Tr’. fin this function we substitute for 
the variable ‘x’ structural-descriptive names of sentences, we 

obtain an infinite number of theorems, the proof of which on 

the basis of the axioms obtained from the convention T presents 

not the slightest difficulty. But the situation changes fundamen- 

tally as soon as we pass to the universal quantification of this sen- 

tential function, i.e. to the general principle of contradiction. 
From the intuitive standpoint the truth of all those theorems is 

itself already a proof of the general principle; this principle 

represents, so to speak, an ‘infinite logical product’ of those 
special theorems. But this does not at all mean that we can 

actually derive the principle of contradiction from the axioms or 
theorems mentioned by means of the normal modes of inference 

usually employed. On the contrary, by a slight modification in 

the proof of Th, III it can be shown that the principle of contra- 

diction is not a consequence (at least in the existing sense of the 

word) of the axiom system described. 

We could, of course, now enlarge the above axiom system by 
adding to it a series of general sentences which are independent 

of this system. We could take as new axioms the principles of 

contradiction and excluded middle, as well as those sentences 

which assert that the consequences of true sentences are true, 

1 Cf. V, Th. 48, p. 91 of the present volume.
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and also that all primitive sentences of the science investigated 

belong to the class of true sentences. Th. ITI could be extended 

to the axiom system enlarged in this way.1 But we attach little 

importance to this procedure. For it seems that every such 

enlargement of the axiom system has an accidental character, 

depending on rather inessential factors such, for example, as the 

actual state of knowledge in this field. In any case, various 

objective criteria which we should wish to apply in the choice of 

further axioms prove to be quite inapplicable. Thus it seems 

natural to require that the axioms of the theory of truth, together 

with the original axioms of the metatheory, should constitute a 
categorical system.? It can be shown that this postulate co- 
incides in the present case with another postulate, according to 

which the axiom system of the theory of truth should un- 

ambiguously determine the extension of the symbol ‘7'r’ which 

occurs in it, and in the following sense: if we introduce into the 

metatheory, alongside this symbol, another primitive sign, e.g. 
the symbol ‘7r’’ and set up analogous axioms for it, then the 
statement ‘Z'r = Tr’’ must be provable. But this postulate 
cannot be satisfied. For it is not difficult to prove that in the 

contrary case the concept of truth could be defined exclusively 

by means of terms belonging to the morphology of language, 

which would be in palpable contradiction to Th. I. For other 

reasons of a more general nature there can be no question of an 
axiom system that would be complete and would consequently 

suffice for the solution of every problem from the domain of the 

theory under consideration. This is an immediate methodo- 
logical consequence of Th. I applied not to the language of the 

general theory of classes but to the richer language of the meta- 

theory and the theory of truth (cf. the remarks on p. 254). 
There is, however, quite a different way in which the founda- 

tions of the theory of truth may be essentially strengthened. 

1 For this purpose we must nevertheless to some extent sharpen the pre- 

misses of the theorem by assuming that the class of all provable sentences 

of the metatheory is not only consistent, but also w-consistent in the sense 
of Godel, K. (22), p. 187, or in other words, that this class remains consistent 
after a single application of the rule of infinite induction, which will be dis- 
cussed below, 

2 See p. 174, note 1,
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The fact that we cannot infer from the correctness of all sub- 

stitutions of such a sentential function as ‘x € Tr or E Tr’ the 

correctness of the sentence which is the generalization of this 
function, can be regarded as a symptom of a certain imperfection 
in the rules of inference hitherto used in the deductive sciences. 
In order to make good this defect we could adopt a new rule, 

the so-called rule of injinite induction, which in its application 

to the metatheory may be formulated somewhat as follows: if a 

given sentential function contains the symbol ‘x’, which belongs 
to the same semantical category as the names of expressions, 

as its only free variable, and if every sentence, which arises 

from the given function by substituting the structural-descrip- 

tive name of any expression of the language investigated for the 

variable ‘x’, is a provable theorem of the metatheory, then the 

sentence which we obtain from the phrase ‘for every x, if x is an 

expression then p’ by substituting the given function for the 

symbol ‘p’, may also be added to the theorems of the metatheory. 

This rule can also be given another formulation which differs 

from the foregoing only by the fact that in it, instead of speaking 
about expressions, we speak of natural numbers; and instead of 

structural-descriptive names of expressions, the so-called specific 

symbols of natural numbers are dealt with, i.e. such symbols 

as ‘0’, ‘1’, ‘I+1’, ‘1+141’, and so on. In this form the rule of 

infinite induction recalls the principle of complete induction, 

which it exceeds considerably in logical power. Since it is possible 
to set up effectively a one-one correspondence between expres- 

sions and the natural numbers (cf. the proof of Th. I) it is easy to 

see that the two formulations are equivalent on the basis of the 

metatheory. But in the second formulation no specific concepts 

of the metalanguage occur at all, and for this reason it is applic- 

able to many other deductive sciences. In the case where we are 
dealing with a science in the language of which there are no 

specific symbols for the natural numbers this formulation re- 

quires certain external modifications. For example, in order to 
formulate the rule for the general theory of classes, instead of 

substitutions of a given sentential function we must operate 

with expressions of the type ‘U?(,.~)’, where, in the place of
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‘p’ the function in question occurs and the symbol ‘:,’ has the 

same meaning as in the proof of Th. I? 

On account of its non-finitist nature the rule of infinite in- 

duction differs fundamentally from the normal rules of infer- 

ence. On each occasion of its use infinitely many sentences must 

be taken into consideration, although at no moment in the 

development of a science ig such a number of previously proved 

theorems effectively given. It may well be doubted whether 

there is any place for the use of such a rule within the limits of 

the existing conception of the deductive method. The question 

whether this rule does not lead to contradictions presents no less 
serious difficulties than the analogous problem regarding the 
existing rules, even if we assume the consistency of the existing 

rules and permit the use of the new rule not only in the theory 

but also in the corresponding metatheory and in particular in 

any attempted proof of consistency. Nevertheless from the in- 

tuitive standpoint the rule of infinite induction seems to be 
as reliable as the rules normally applied: it always leads from 

true sentences to true sentences. In connexion with languages 

of finite order this fact can be strictly proved by means of the 

definition of truth constructed for these languages. The fact that 

this rule enables many problems to be solved which are not 

solvable on the basis of the old rules is in favour of the accept- 
ance of the new rule, not only in the theory but also in the meta- 
theory. By the introduction of this rule the class of provable 

sentences is enlarged by a much greater extent than by any 

supplementation of the list of axioms.” In the case of certain 
elementary deductive sciences, this enlargement is so great that 

the class of theorems becomes a complete system and coincides 

1 I have previously pointed out the importance of the rule of infinite in- 

duction in the year 1926. In a report to the Second Polish Philosophical Con- 

greas, in 1927, I have given, among other things, a simple example of a con- 

sistent deductive system which after a single application of this rule ceases to 
be consistent, and is therefore not w-consistent (cf. p. 258, note 1; see also IX, 

p. 282, note 2). Some remarks on this rule are to be found in Hilbert, D. 
(29), pp. 491-2. 

* Thus, for example, if we adopt this rule in the metalanguage without 
including it in the language, we can prove that the class of provable sentences 

of the science is consistent, which previously was not possible. In connexion 

with this problem cf. Gédel, K. (22), pp. 187-91 and 196.



VIII, §5 CONCEPT OF TRUTH IN FORMALIZED LANGUAGES 261 

with the class of true sentences. Elementary number theory 

provides an example, namely, the science in which all variables 

represent names of natural or whole numbers and the constants 

are the signs from the sentential and predicate calculi, the signs 

of zero, one, equality, sum, product and possibly other signs 

defined with their help. 

If it is decided to adopt the rule of infinite induction in the 

metatheory, then the system of axioms to which Th. ITI refers 

already forms a sufficient foundation for the development of 

the theory of truth. The proof of any of the known theorems 

in this field will then present no difficulty, in particular the 

Ths. 1-6 in § 3 and the theorem according to which the rule of 

infinite induction when applied to true sentences always yields 

true sentences. More important still, these axioms, together 

with the general axioms of the metatheory, form a categorical 

(although not a complete) system, and determine unambiguously 

the extension of the symbol ‘7'r’ which occurs in them. 

Under these circumstances the question whether the theory 

erected on these foundations contains no inner contradiction 

acquires a special importance. Unfortunately this question 

cannot be finally decided at present. Th. T retains its full validity: 

in spite of the strengthening of the foundations of the metatheory 

the theory of truth cannot be constructed as a part of the morpho- 

logy of language. On the other hand for the present we cannot 
prove Th. III for the enlarged metalanguage. The premiss which 

has played the most essential part in the original proof, i.e. the 

reduction of the consistency of the infinite axiom system to the 

consistency of every finite part of this system, now completely 
loses its validity—as is easily seen—on account of the content of 
the newly adopted rule. The possibility that the question cannot 

be decided in any direction is not excluded (at least on the basis of 

a ‘normal’ system of the meta-metatheory, which is constructed 

¢ This last remark enables us to construct a rather simple definition of 
truth for elementary number theory without using our general method. The 
definition thus constructed can be further simplified. In fact we can first 
structurally describe all true sentences which contain no variables (or quanti- 
fiers), and then define an arbitrary sentence to be true if and only if it can 
be obtained from those elementary true sentences by applying the rule of 

infinite induction arbitrarily many times.
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according to the principles given at the beginning of § 4 and does 

not contain the semantics of the metalanguage). On the other 

hand the possibility of showing Th. III to be false in its new 

interpretation seems to be unlikely from the intuitive viewpoint. 

One thing seems clear: the antinomy of the liar cannot be directly 

reconstructed either in the formulation met with in § 1 or in the 

form in which it appeared in the proof of Th. I. For here the 

axiomsadopted in the theory of truth clearly possess, in contrast to 
colloquial language, the character of partial definitions. Through 

the introduction of the symbol ‘77’ the metalanguage does not 

in any way become semantically universal, it does not coincide 
with the language itself and cannot be interpreted in that 
language (cf. pp. 158 and 248).1 

No serious obstacles stand in the way of the application of the 

results obtained to other languages of infinite order. This is 

especially true of the most important of these results—Th. [. 

The languages of infinite order, thanks to the variety of mean- 
ingful expressions contained in them, provide sufficient means 

for the formulation of every sentence belonging to the arithmetic 

? This last problem is equivalent to a seemingly more general problem of 

a methodological nature which can be formulated as follows. We presuppose 
the consistency of the metatheory supplemented by the rule of infinite in- 
duction. We consider an infinite sequence ¢ of sentences of the metatheory ; 

further we take into the metathcory a new primitive sign ‘N’, and add 
as axioms those and only those sentences which are obtained from the 

scheme ‘n € N if and only if p’ by substituting for the sign ‘n’ the kth specific 

symbol of the natural numbers (i.e. the expression composed of k signs ‘1’ 

separated from one another by the signs ‘+ ’) and for the sign ‘p’ the kth 

term of the sequence t (k being here an arbitrary natural number). The question 

now arises whether the class of provable sentences of the metatheory, when 
enlarged in this way, remains consistent. This problem may be called the 

problem of infinite inductive definitions. The axiom system described in it 
can—from the intuitive standpoint—be regarded as a definition sui generis 
of the symbol ‘N’, which is distinguished from normal definitions only by the 

fact that it is formulated in infinitely many sentences. In view of this character 

of the axioms the possibility of a negative solution of the problem does not 

seem very probable. From Th. II and the interpretation of the metatheory in 

the theory itself, it is not difficult to infer that this problem can be solved in 

& positive sense in those cases in which the order of all variables which occur 
in the sentences of the sequence ¢ is bounded above. It is then even possible 

to construct a definition of the symbol ‘N’ in the metatheory such that all the 

axioms mentioned follow from it. This problem obviously does not depend on 

the specific properties of the metatheory as such; it can also be presented in the 

same or in a somewhat modified form for other deductive sciences, e.g. for the 

general theory of classes.



VIII, §5 CONCEPT OF TRUTH IN FORMALIZED LANGUAGES 263 

of natural numbers and consequently enable the metalanguage 

to be interpreted in the language itself. It is thanks to just this 

circumstance that Th, I retains its validity for all languages of 
this kind.! 

Some remarks may be added about those cases in which not 
single languages but whole classes of languages are investigated. 
As J have already emphasized in the Introduction, the concept 

of truth essentially depends, as regards both extension and 

content, upon the language to which it is applied. We can only 
meaningfully say of an expression that it is true or not if we treat 

this expression as a part of a concrete language. As soon as the 

discussion concerns more than one language the expression 

‘true sentence’ ceases to be unambiguous. If we are to avoid this 

ambiguity we must replace it by the relative term ‘a true sen- 

tence with respect to the given language’. In order to make the 
sense of this term precise we apply to it essentially the same pro- 
cedure as before: we construct a common metalanguage for all 

the languages of the given class; within the metalanguage we 

try to define the expression in question with the help of the 

methods developed in §§ 3 and 4. If we are not successful we add 

this term to the fundamental expressions of the metalanguage 
and by the axiomatic method determine its meaning according 
to the instructions of Th. III of this section. On account of the 

relativization of this term we should nevertheless expect a priori 

that in carrying out the plan sketched above the earlier diffi- 

culties would be significantly increased and quite new complica- 
tions might arise (connected for example with the necessity of 

1 A reservation is necessary here: if we choose as our starting-point the 
classification of semantical categories sketched on p. 218, note 2, then we 
again encounter languages of infinite order for which Th. I loses its validity. 
A typical example is furnished by the language of Legniewski’s Protothetic 
(cf. LeSniewski, S. (46)). In consequence of the ‘finitistic’ character of all the 
semantical categories of this language, it is easy to construct, in the meta- 
language, a correct definition of truth, by choosing as model the matrix method 

from the extended sentential calculus. Moreover, such a definition can be 
obtained in other ways: as Leéniewski has shown, the class of provable 

sentences of the protothetic is complete, and therefore the concept of provable 

sentence coincides in its extension with that of true sentence. Th. I on the 
other hand applies without restriction to all languages in which the order of 
the semantical categories from the domain of Leéniewski’s Ontology (cf. 
Lesniewski, 8. (47)) is not bounded above.
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defining the word ‘language’). I do not propose to discuss the 
problem touched upon in more detail in this place. The prospects 

for such investigations at the present time seem to be rather 
limited. In particular it would be incorrect to suppose that the 

relativization of the concept of truth—in the direction mentioned 

above—would open the way to some general theory of this 

concept which would embrace all possible or at least all formal- 

ized languages. The class of languages which is chosen as the 

object of simultaneous study must not be too wide. If, for 

example, we include in this class the metalanguage, which forms 

the field of the investigations and already contains the concept 

of truth, we automatically create the conditions which enable 

the antinomy of the liar to be reconstructed. The language of 
the general theory of truth would then contain a contradiction 

for exactly the same reason as does colloquial language. 

In conclusion it may be mentioned that the results obtained 

can be extended to other semantical concepts, e.g. to the concept 
of satisfaction. For each of these concepts a system of postulates 
can be set up which (1) contains partial definitions analogous to 

the statements described in condition («) of the convention T 

which determine the meaning of the given concept with respect 

to all concrete, structurally described expressions of a given 

class (e.g. with respect to sentences or sentential functions of a 

specific semantical type), and (2) contains a further postulate 
which corresponds to the sentence from the condition (8) of the 
same convention and stipulates that the concept in question 

may be applied only to expressions of the given class. We should 

be prepared to regard such a definition of the concept studied as 

a materially adequate one if its consequences included all the 

postulates of the above system. Methods which are similar to 

those described in §§ 3 and 4 enable the required definition to be 

constructed in all cases where we are dealing with languages of 

finite order, or, more generally, in which the semantical concept 

studied concerns exclusively linguistic expressions in which the 

order of the variables is bounded above (cf. Th. II). In the 

remaining cases it can be shown—after the pattern of the proof of 
Th. I—that no definition with the properties mentioned can be
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formulated in the metalanguage.1 In order to construct the 

theory of the concept studied in these cases also, it must be in- 

cluded in the system of primitive concepts, and the postulate 

described above must be included in the axiom system of the 

metatheory. A procedure analogous to the proof of Th. TI 

proves that the system of the metalanguage supplemented in this 

way remains internally consistent. But the deductive power 

of the added postulates is very restricted. They do not suffice 

for the proof of the most important general theorems concerning 

the concept in question. They do not determine its extension 

unambiguously and the system obtained is not complete, nor 

is it categorical. To remove this defect we must strengthen 

the foundations of the metatheory itself by adding the rule of 

infinite induction to its rules of inference. But then the proof 

of consistency would present great difficulties which we are not 

able at present to overcome. 

§ 6. SUMMARY 

The principal results of this article may be summarized in the 

following theses: 

A. For every formalized language of finite order a formally 

correct and materially adequate definition of true sentence can be 

constructed in the metalanguage, making use only of expressions of 
a general logical kind, expressions of the language itself as well as 

terms belonging to the morphology of language, i.e. names of lin- 

guistic expressions and of the structural relations existing between 

them. 

B. For formalized languages of infinite order the construction 

of such a definition is impossible. 

1 This especially concerns the concept of definability (although in this case 
both the formulation of the problem itself, as well as the method of solution, 

require certain modifications in comparison with the scheme put forward in 
the text). In VI, I have expressed the conjecture that it is impossible to 
define this concept in its full extent on the basis of the metalanguage. I can 
now prove this conjecture exactly. This fact is all the more noteworthy in 
that it is possible—as I have shown in the article mentioned—to construct 
the definitions of the particular cases of the concept of definability which 
apply, not to the whole language, but to any of its fragments of finite order, 

not only in the metalanguage but also in the language itself.
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C. On the other hand, even with respect to formalized languages 

of infinite order, the consistent and correct use of the concept of truth 

is rendered possible by including this concept in the system of primt- 

tive concepts of the metalanguage and determining its fundamental 

properties by means of the axiomatic method (the question whether 
the theory of truth established in this way contains no contra- 

diction remains for the present undecided). 

Since the results obtained can easily be extended to other 
semantical concepts the above theses can be given a more general 

form: 

A’. The semantics of any formalized language of finite order can 

be buili up as a part of ihe morphology of language, based on corre- 

spondingly constructed definitions. 

B’. It is impossible to establish the semantics of the formalized 

languages of infinite order in this way. 
C’. But the semantics of any formalized language of infinite 

order can be established as an independent science based upon its 

own primitive concepts and its own axioms, possessing as its logical 

foundation a system of the morphology of language (although a full 

guarantee that the semantics constructed by this method con- 

tains no inner contradiction is at present lacking). 

From the formal point of view the foregoing investigations 
have been carried out within the boundaries of the methodology 

of the deductive sciences. Some so to speak incidental results 

will perhaps be of interest to specialists in this field. I would 

draw attention to the fact that with the definition of true 

sentence for deductive sciences of finite order a general method 

has been obtained for proving their consistency (a method which, 

however, does not add greatly to our knowledge). I would point 

out also that it has been possible to define, for languages of finite 

order, the concepts of correct sentence in a given and in an arbi- 

trary individual domain—concepts which play a great part in 

recent methodological studies. 

But in its essential parts the present work deviates from the 
main stream of methodological investigations. Its central
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problem—the construction of the definition of true sentence 

and establishing the scientific foundations of the theory of truth 

—belongs to the theory of knowledge and forms one of the chief 
problems of this branch of philosophy. I therefore hope that this 

work will interest the student of the theory of knowledge above 
all and that he will be able to analyse the results contained in it 

critically and to judge their value for further researches in this 

field, without allowing himself to be discouraged by the appara- 

tus of concepts and methods used here, which in places have been 

difficult and have not hitherto been used in the field in which he 

works. 

One word in conclusion. Philosophers who are not accustomed 

to use deductive methods in their daily work are inclined to 

regard all formalized languages with a certain disparagement, 

because they contrast these ‘artificial’ constructions with the 

one natural language—the colloquial language. For that reason 

the fact that the results obtained concern the formalized lan- 

guages almost exclusively will greatly diminish the value of 

the foregoing investigations in the opinion of many readers. It 
would be difficult for me to share this view. In my opinion the 

considerations of § 1 prove emphatically that the concept of 

truth (as well as other semantical concepts) when applied to 

colloquial language in conjunction with the normal laws of logic 

leads inevitably to confusions and contradictions. Whoever 

wishes, in spite of all difficulties, to pursue the semantics of 

colloquial language with the help of exact methods will be 

driven first to undertake the thankless task of a reform of 

this language. He will find it necessary to define its structure, 

to overcome the ambiguity of the terms which occur in it, 

and finally to split the language into a series of languages of 
greater and greater extent, each of which stands in the same 

relation to the next in which a formalized language stands to its 

metalanguage. It may, however, be doubted whether the 

language of everyday life, after being ‘rationalized’ in this way, 
would still preserve its naturalness and whether it would not 
rather take on the characteristic features of the formalized 
languages.
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§ 7. PosTscrier 

In writing the present article I had in mind only formalized 

languages possessing a structure which is in harmony with 

the theory of semantical categories and especially with its 

basic principles. This fact has exercised an essential influence on 

the construction of the whole work and on the formulation of its 

final results. It seemed to me then that ‘the theory of the seman- 

tical categories penetrates so deeply into our fundamental 

intuitions regarding the meaningfulness of expressions, that it is 
hardly possible to imagine a scientific language whose sentences 
possess a clear intuitive meaning but whose structure cannot be 

brought into harmony with the theory in question in one of its 

formulations’ (cf. p. 215). Today I can no longer defend de- 

cisively the view I then took of this question. In connexion with 

this it now seems to me interesting and important to inquire 

what the consequences would be for the basic problems of the 
present work if we included in the field under consideration 

formalized languages for which the fundamental principles of the 
theory of semantical categories no longer hold. In what follows 

I will briefly consider this question. 

Although in this way the field to be covered is essentially en- 

larged, I do not intend—-any more than previously—to consider 

all possible languages which someone might at some time con- 
struct. On the contrary I shall restrict myself exclusively to 

languages which—apart from differences connected with the 

theory of semantical categories—exhibit in their structure the 

greatest possible analogy with the languages previously studied. 

In particular, for the sake of simplicity, I shall consider only 
those languages in which occur, in addition to the universal 

and existential quantifiers and the constants of the sentential 

calculus, only individual names and the variables representing 

them, as well as constant and variable sentence-forming functors 
with arbitrary numbers of arguments. After the manner of 

the procedure in §§ 2 and 4 we try to specify for each of these 

languages the concepts of primitive sentential function, funda- 

mental operations on expressions, sentential function in general,
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axiom, consequence, and provable theorem. Thus, for example, 

we include as a rule among the axioms—just as in the language 

of the general theory of classes in § 5—the substitutions of the 
axioms of the sentential calculus, the pseudo-definitions and the 

law of extensionality (perhaps also other sentences, according to 
the specific peculiarities of the language). In determining the 

concept of consequence we take as our model Def. 15 in § 2. 

The concept introduced in § 4 of the order of an expression 

plays a part which is no Jess essential than before in the con- 
struction of the language we are now considering. It is advisable 
to assign to names of individuals and to the variables represent- 

ing them the order 0 (and not as before the order 1). The order 

of a sentence-forming functor of an arbitrary (primitive) sen- 

tential function is no longer unambiguously determined by the 
orders of all arguments of this function. Since the principles of 

the theory of the semantical categories no longer hold, it may 
happen that one and the same sign plays the part of a functor in 

two or more sentential functions in which arguments occupying 

respectively the same places nevertheless belong to different 

orders. Thus in order to fix the order of any sign we must take 

into account the orders of all arguments in all sentential func- 
tions in which this sign is a sentence-forming functor. If the 

order of all these arguments is smaller than a particular natural 

number n, and if there occurs in at least one sentential function 

an argument which is exactly of order n— 1, then we assign to the 
symbol in question the order n. All such sentence-forming 

functors—as well as the names of individuals and the variables 

representing them—are included among the signs of finite order. 

But account must also be taken of the possibility that yet other 

sentence-forming functors may occur in the language to which 

an infinite order must be assigned. If, for example, a sign is a 

sentence-forming functor of only those sentential functions which 
have all their arguments of finite order, where, however, these 

orders are not bounded above by any natural number, then this 

sign will be of infinite order. 

In order to classify the signs of infinite order we make use of 
the notion of ordinal number, taken from the theory of sets, which
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is a generalization of the usual concept of natural number. 

As is well known, the natural numbers are the smallest ordinal 

numbers. Since, for every infinite sequence of ordinal numbers, 

there are numbers greater than every term of the sequence, 

there are, in particular, numbers which are greater than all 

natural numbers. We call them transfinite ordinal numbers. It is 
known that in every non-empty class of ordinal numbers there 

is a smallest number. In particular there is a smallest transfinite 

number which is denoted by the symbol ‘w’. The next largest 

number is w+1, then follow the numbers w+2, w1+3...., w.2, 

w.2+1, w.2+2,..., w.3,..., and so on. To those signs of infinite 

order which are functors of sentential functions containing 
exclusively arguments of finite order we assign the number w 
as their order. A sign which is a functor in only those sentential 

functions in which the arguments are either of finite order or of 

order w (and in which at least one argument of a function is 

actually of order w), is of the order w+1. The general recursive 

definition of order is as follows: the order of a particular sign is 
the smallest ordinal number which is greater than the orders of all 
arguments in all sentential functions in which the given sign 

occurs as a sentence-forming functor.? 

Just as in§ 4, we can distinguish languages of finite and infinite 

order. We can in fact assign to every language a quite specific 
ordinal number as its order, namely the smallest ordinal number 
which exceeds the orders of all variables occurring in this lan- 
guage (the former languages of the nth order—as can easily be 

shown—retain their former order under this convention because 

the order of the names of individuals has been diminished. The 

language of the general theory of classes has the order w). 
It does not at all follow from these stipulations that every 

variable in the languages in question is of a definite order. On 

the contrary it seems to me (by reason of trials and other con- 

siderations) almost certain that we cannot restrict ourselves to 

the use of variables of definite order if we are to obtain languages 

1 Cf. Fraenkel, A. (16), pp. 185 ff. 
? Cf. the introduction of the system of levels in Carnap, R. (10), pp. 139 ff. 

(p. 186 in English translation).
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which are actually superior to the previous languages in the 

abundance of the concepts which are expressible by their means, 
and the study of which could throw new light on the problems in 

which we are here interested. We must introduce into the 
languages variables of indefinite order which, so to speak, ‘run 

through’ all possible orders, which can occur as functors or 

arguments in sentential functions without regard to the order of 
the remaining signs occurring in these functions, and which at 
the same time may be both functors and arguments in the same 
sentential functions. With such variables we must proceed with 

the greatest caution if we are not to become entangled in 

antinomies like the famous antinomy of the class of all classes 
which are not members of themselves. Special care must be 

taken in formulating the rule of substitution for languages which 
contain such variables and in describing the axioms which we 

have called pseudodefinitions. But we cannot go into details here. 

There is obviously no obstacle to the introduction of variables 

of transfinite order not only into the language which is the object 

investigated, but also into the metalanguage in which the investi- 
gation is carried out. In particular it is always possible to con- 

struct the metalanguage in such a way that it contains variables 

! From the languages just considered it is but a step to languages of another 
kind which constitute a much more convenient and actually much more 
frequently applied apparatus for the development of logic and mathematics. 
In these new languages all the variables are of indefinite order. From the 

formal point of view these are languages of a very simple structure; accord- 
ing to the terminology laid down in §4 they must be counted among the 

languages of the first kind, since all their variables belong to one and the same 
semantical category. Nevertheless, as is shown by the investigations of 
E. Zermelo and his successors (cf. Skolem, Th. (66), pp. 1-12), with a suit- 
able choice of axioms it is possible to construct the theory of sets and 
the whole of classical mathematics on the basis provided by this language. 
In it we can express so to speak every idea which can be formulated in the 
previously studied languages of finite and infinite order. For the languages 
here discussed the concept of order by no means loses its importance; it no 
longer applies, however, to the expressions of the language, but either to the 

objects denoted by them or to the language as a whole. Individuals, i.e. 
objects which are not sets, we call objects of order 0; the order of an arbitrary 

set is the smallest ordinal number which is greater than the orders of all 
elements of this set; the order of the language is the smallest ordinal number 
which exceeds the order of all sets whose existence follows from the axioms 
adopted in the language. Our further exposition also applies without restric- 
tion to the languages which have just been discussed.
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of higher order than all the variables of the language studied. 

The metalanguage then becomes a language of higher order and 

thus one which is essentially richer in grammatical forms than 

the language we are investigating. This is a fact of the greatest 

importance from the point of view of the problems in which we 

are interested. For with this the distinction between languages 

of finite and infinite orders disappears—a distinction which was 

80 prominent in §§ 4 and 5 and was strongly expressed in the 

theses A and B formulated in the Summary. In fact, the setting 

up of a correct definition of truth for languages of infinite order 
would in principle be possible provided we had at our disposal in 
the metalanguage expressions of higher order than all variables 
of the language investigated. The absence of such expressions in 

the metalanguage has rendered the extension of these methods of 

construction to languages of infinite order impossible. But now 

we are in a position to define the concept of truth for any language 

of finite or infinite order, provided we take as the basis for our 
investigations a metalanguage of an order which is at least 
greater by 1 than that of the language studied (an essential part 

is played here by the presence of variables of indefinite order in 

the metalanguage). It is perhaps interesting to emphasize that 
the construction of the definition is then to a certain degree 

simplified. We can adhere strictly to the method outlined in 

§3 without applying the artifice which we were compelled 

to use in § 4 in the study of languages of the 2nd and 3rd 

kinds. We need neither apply many-rowed sequences nor 

carry out the semantical unification of the variables, for 

having abandoned the principles of the theory of semantical 

categories we can freely operate with sequences whose terms 

are of different orders. On the other hand the considerations 

brought forward in § 5 in connexion with Th. I lose none of their 

importance and can be extended to languages of any order. It is 
impossible to give an adequate definition of truth for a language 
in which the arithmetic of the natural numbers can be con- 
structed, if the order of the metalanguage in which the investiga- 

tions are carried out does not exceed the order of the language 

investigated (cf. the relevant remarks on p. 253).
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Finally, the foregoing considerations show the necessity of 

revising, to a rather important extent, the Theses A and B given 

in the conclusions of this work and containing a summary of its 

chief results: 

A. For every formalized language a formally correct and materi- 

ally adequate definition of true sentence can be constructed in the 

metalanguage with the help only of general logical expressions, of 

expressions of the language tself, and of terms from the morphology 

of language—but under the condition that the metalanguage possesses 

a higher order than the language which is the object of investigation. 

B. If the order of the metalanguage is at most equal to that of the 

language itself, such a definition cannot be constructed. 

From a comparison of the new formulation of the two theses 

with the earlier one it will be seen that the range of the results 

obtained has been essentially enlarged, and at the same time the 

conditions for their application have been made more precise. 

Tn view of the new formulation of Thesis A the former Thesis C 
loses its importance. It possesses a certain value only when the 
investigations are carried out in a metalanguage which has the 

same order as the language studied and when, having abandoned 

the construction of a definition of truth, the attempt is made to 

build up the theory of truth by the axiomatic method. It is easy 
to see that a theory of truth built up in this way cannot contain 

an inner contradiction, provided there is freedom from contra- 

diction in the metalanguage of higher order on the basis of which 

an adequate definition of truth can be set up and in which those 

theorems which are adopted in the theory of truth as axioms 

can be derived.1 
Just as in the conclusion of this work, the Theses A and B 

can be given a more general formulation by extending them 
to other semantical concepts: 

A’. The semantics of any formalized language can be established 

as a part of the morphology of language based on suitably constructed 

1 In particular, the question broached on p. 261 has a positive answer. The 
same also holds for the problem of infinite inductive definitions mentioned 

on p. 262, footnote.
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definitions, provided, however, that the language in which the mor- 

phology is carried out has a higher order than the language whose 

morphology tt is. 

B’. It is ampossible to establish the semantics of a language in 

this way if the order of the language of its morphology is at most 

equal to that of the language itself. 

The Thesis A in its new generalized form is of no little impor- 

tance for the methodology of the deductive sciences. Its con- 

sequences run parallel with the important results which Gédel 
has reported in this field in recent years. The definition of truth 

allows the consistency of a deductive science to be proved on the 
basis of a metatheory which is of higher order than the theory 

itself (cf. pp. 199 and 236). On the other hand, it follows from 

Godel’s investigations that it is in general impossible to prove 

the consistency of a theory if the proof is sought on the basis of a 

metatheory of equal or lower order.1 Moreover Gédel has given a 
method for constructing sentences which—assuming the theory 
concerned to be consistent—cannot be decided in any direction 

in this theory. All sentences constructed according to Gédel’s 

method possess the property that it can be established whether 

they are true or false on the basis of the metatheory of higher 
order having a correct definition of truth. Consequently it is 
possible to reach a decision regarding these sentences, i.e. they 

can be either proved or disproved. Moreover a decision can be 

reached within the science itself, without making use of the 

concepts and assumptions of the metatheory—provided, of 

course, that we have previously enriched the language and the 

logical foundations of the theory in question by the introduction 
of variables of higher order.* 

Let us try to explain this somewhat more exactly. Consider 

an arbitrary deductive science in which the arithmetic of 
natural numbers can be constructed, and provisionally begin 
the investigation on the basis of a metatheory of the same order 
as the theory itself. Goédel’s method of constructing undecidable 

sentences has beeu outlined implicitly in the proof of Th. I in 

? Cf. Gédel, K. (22), p. 196 (Th. XI). 
2 Cf. Godel, K. (22), pp. 187 ff., and in particular, p. 191, note 48 a.
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§5 (p. 249 ff.). Everywhere, both in the formulation of the 

theorem and in its proof, we replace the symbol ‘7'r’ by the 

symbol ‘Pr’ which denotes the class of all provable sentences 
of the theory under consideration and can be defined in the 
metatheory (cf. e.g. Def. 17 in § 2). In accordance with the first 
part of Th. I we can obtain the negation of one of the sentences 
in condition (a) of convention T of § 3 as a consequence of the 

definition of the symbol ‘Pr’ (provided we replace ‘7'r’ in this 

convention by ‘Pr’). In other words we can construct a sen- 

tence x of the science in question which satisfies the following 

condition: 
at ts not true that x © Pr if and only if p 

or in equivalent formulation: 

(1) x é Pr if and only of p 

where the symbol ‘p’ represents the whole sentence x (in fact 

we may choose the sentence (J}(:,.¢,,.) constructed in the proof 
of Th. T as 2). 

We shall show that the sentence z is actually undecidable 

and at the same time true. For this purpose we shall pass to a 

metatheory of higher order; Th. I then obviously remains valid. 
According to Thesis A we can construct, on the basis of the 
enriched metatheory, a correct definition of truth concerning 

all the sentences of the theory studied. If we denote the class 

of all true sentences by the symbol ‘Tr’ then—in accordance 

with convention T—the sentence x which we have constructed 

will satisfy the following condition: 

(2) xe Tr if and only tf p; 

from (1) and (2) we obtain immediately 

(3) x€ Pr if and only if x € Tr. 

Moreover, if we denote the negation of the sentence x by the 
symbol ‘z’ we can derive the following theorems from the defini- 

tion of truth (cf. Ths. 1 and 5 in § 3): 

(4) either x E Trorze Tr; 

(5) if xe Pr, then xe Tr; 

(6) if xe Pr, then ae Tr;
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From (3) and (5) we infer without difficulty that 

(7) xeTr 

and that 

(8) xe Pr. 

In view of (4) and (7) we have £€ 7'r, which together with (6) 

gives the formula 

(9) £E Pr. 

The formulas (8) and (9) together express the fact that z is an 
undecidable sentence; moreover from (7) it follows that a is a 

true sentence. 

By establishing the truth of the sentence « we have eo ipso 

—by reason of (2)—-also proved 2 itself in the metatheory. 

Since, moreover, the metatheory can be interpreted in the 
theory enriched by variables of higher order (cf. p. 184) and 

since in this interpretation the sentence z, which contains no 

specific term of the metatheory, is its own correlate, the proof of 

the sentence x given in the metatheory can automatically be 

carried over into the theory itself: the sentence x which is 
undecidable in the original theory becomes a decidable sentence 

in the enriched theory. 

T should like to draw attention here to an analogous result. 

For every deductive science in which arithmetic is contained 

it is possible to specify arithmetical notions which, so to speak, 

belong intuitively to this science, but which cannot be defined 
on the basis of this science. With the help of methods which 

are completely analogous to those used in the construction 

of the definition of truth, it is nevertheless possible to show 

that these concepts can be so defined provided the science is 
enriched by the introduction of variables of higher order. 

In conclusion it can be affirmed that the definition of truth and, 

more generally, the establishment of semantics enables us to 

match some important negative results which have been obtained 

1 Cf. my summary, ‘Uber definierbare Mengen reeller Zahlen,’ Annales de la 
Société Polonaise de Mathématique, t. ix, année 1930, Krakéw, 1931, pp. 206-7 
(report on a lecture given on 16 December 1930 at the Lemberg Section of the 
Polish Mathematical Society); the ideas there sketched were in part developed 
later in VI. Cf. VI, p. 110, Bibliographical Note.
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in the methodology of the deductive sciences with parallel 

positive results, and thus to fil up in some measure the gaps 

thereby revealed in the deductive method and in the edifice of 
deductive knowledge itself. 

Historica, Notes. During the six-year period, beginning with 1929 when 

T arrived at the final formulation of the definition of truth along with most 

of the remaining results presented in this work and ending with 1935 when 

the whole work appeared for the first time in a language internationally 

accepted for the exchange of scientific ideas, the problems investigated here 

were discussed several times. Thus in the German language, in addition to 

my summary, Tarski (76), works by Carnap have appeared in which quite 

similar ideas were developed (cf. Carnap (10a), 1934, and Carnap (11), 1935). 

It was to be expected that, in consequence of this lapse of six years, 
and of the nature of the problem and perhaps also of the language of 
the original text of my work, errors regarding the historical connexions 

might oecur. And in facet Carnap writes in the second of the above- 
mentioned articles regarding my investigations that they have been 

carried out ‘...in connexion with those of Gédel ...’. It will there- 

fore not be superfluous if I make some remarks in this place about the 
dependence or independence of my studies. 

I may say quite generally that all my methods and results, with the 
exception of those at places where I have expressly emphasized this— 
ef. footnotes, pp. 154and 247—-were obtained by me quite independently. 

The dates given in footnote, p. 154, provide, I believe, sufficient basis 

for testing this assertion. I may point out further that my article which 

appeared in French (VI), about which I had already reported in Decem- 

ber 1930 (cf. the report in German in A. Tarski (74)) contains precisely 

those methods of construction which were used there for other purposes 
but in the present work for the construction of the definition of truth. 

T should like to emphasize the independence of my investigations 
regarding the following points of detail: (1) the general formulation of 
the problem of defining truth, cf. especially pp. 187-8; (2) the positive 

solution of the problem, i.e. the definition of the concept of truth for the 

case where the means available in the metalanguage are sufficiently rich 

(for logical languages this definition becomes that of the term ‘analytical’ 
used by Carnap). Cf. pp. 194 and 236; (3) the method of proving con- 
sistency on the basis of the definition of truth, cf. pp. 199 and 236; 
(4) the axiomatic construction of the metasystem, cf. pp. 173 ff., and in 

connexion with this (5) the discussions on pp. 184 f. on the interpreta-
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tion of the metasystem in arithmetic, which already contain the so- 
called ‘method of arithmetizing the metalanguage’ which was developed 
far more completely and quite independently by Gédel. Moreover, I 

should like to draw attention to results not relating to the concept of 

truth but to another semantical concept, that of definability reported 

on p. 276, 

In the one place in which my work is connected with the ideas of 
Gédel—in the negative solution of the problem of the definition of truth 
for the case where the metalanguage is not richer than the language 
investigated—I have naturally expressly emphasized this fact (ef. 

p. 247, footnote) ; it may be mentioned that the result so reached, which 

very much completed my work, was the only one subsequently added 

to the otherwise already finished investigation.


