Advertisement
No access
Research Article
CLIMATE ECONOMICS

Persistent effect of El Niño on global economic growth

Science
18 May 2023
Vol 380, Issue 6649
pp. 1064-1069

Editor’s summary

The El Niño–Southern Oscillation (ENSO) affects weather globally and thus has many important socioeconomic impacts. How might possible changes to ENSO caused by anthropogenic climate change affect the economies of individual countries and the global economy? Callahan and Mankin show that El Niño persistently reduces economic growth and that national economies are sensitive to El Niño even when warming is taken into account. Future global economic growth could decline because of anthropogenic intensification of ENSO variability. —H. Jesse Smith

Abstract

The El Niño–Southern Oscillation (ENSO) shapes extreme weather globally, causing myriad socioeconomic impacts, but whether economies recover from ENSO events and how anthropogenic changes to ENSO will affect the global economy are unknown. Here we show that El Niño persistently reduces country-level economic growth; we attribute $4.1 trillion and $5.7 trillion in global income losses to the 1982–83 and 1997–98 El Niño events, respectively. In an emissions scenario consistent with current mitigation pledges, increased ENSO amplitude and teleconnections from warming are projected to cause $84 trillion in 21st-century economic losses, but these effects are shaped by stochastic variation in the sequence of El Niño and La Niña events. Our results highlight the sensitivity of the economy to climate variability independent of warming and the potential for future losses due to anthropogenic intensification of such variability.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Materials

This PDF file includes:

Materials and Methods
Supplementary Text
Figs. S1 to S17
Tables S1 to S7
References (4984)

References and Notes

1
M. J. McPhaden, S. E. Zebiak, M. H. Glantz, ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006).
2
J. Bjerknes, Atmospheric teleconnections from the equatorial pacific. Mon. Weather Rev. 97, 163–172 (1969).
3
S.-W. Yeh, W. Cai, S.-K. Min, M. J. McPhaden, D. Dommenget, B. Dewitte, M. Collins, K. Ashok, S.-I. An, B.-Y. Yim, J.-S. Kug, ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).
4
T. W. Corringham, D. R. Cayan, The effect of El Niño on flood damages in the western United States. Weather Clim. Soc. 11, 489–504 (2019).
5
F. J. Magilligan, P. S. Goldstein, El Niño floods and culture change: A late Holocene flood history for the Rio Moquegua, southern Peru. Geology 29, 431–434 (2001).
6
S. M. Hsiang, K. C. Meng, Tropical economics. Am. Econ. Rev. 105, 257–261 (2015).
7
T. Iizumi, J.-J. Luo, A. J. Challinor, G. Sakurai, M. Yokozawa, H. Sakuma, M. E. Brown, T. Yamagata, Impacts of El Niño Southern Oscillation on the global yields of major crops. Nat. Commun. 5, 3712 (2014).
8
S. M. Hsiang, K. C. Meng, M. A. Cane, Civil conflicts are associated with the global climate. Nature 476, 438–441 (2011).
9
W. Cai, G. Wang, B. Dewitte, L. Wu, A. Santoso, K. Takahashi, Y. Yang, A. Carréric, M. J. McPhaden, Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).
10
W. Cai, B. Ng, G. Wang, A. Santoso, L. Wu, K. Yang, Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Clim. Chang. 12, 228–231 (2022).
11
W. Cai, S. Borlace, M. Lengaigne, P. van Rensch, M. Collins, G. Vecchi, A. Timmermann, A. Santoso, M. J. McPhaden, L. Wu, M. H. England, G. Wang, E. Guilyardi, F.-F. Jin, Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 4, 111–116 (2014).
12
W. Cai, A. Santoso, M. Collins, B. Dewitte, C. Karamperidou, J.-S. Kug, M. Lengaigne, M. J. McPhaden, M. F. Stuecker, A. S. Taschetto, A. Timmermann, L. Wu, S.-W. Yeh, G. Wang, B. Ng, F. Jia, Y. Yang, J. Ying, X.-T. Zheng, T. Bayr, J. R. Brown, A. Capotondi, K. M. Cobb, B. Gan, T. Geng, Y.-G. Ham, F.-F. Jin, H.-S. Jo, X. Li, X. Lin, S. McGregor, J.-H. Park, K. Stein, K. Yang, L. Zhang, W. Zhong, Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2, 628–644 (2021).
13
M. Burke, S. M. Hsiang, E. Miguel, Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).
14
M. Burke, V. Tanutama, “Climatic constraints on aggregate economic output” (NBER Working Paper 25779, National Bureau of Economic Research, 2019); http://www.nber.org/papers/w25779.
15
M. Dell, B. F. Jones, B. A. Olken, Temperature shocks and economic growth: Evidence from the last half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).
16
M. Kalkuhl, L. Wenz, The impact of climate conditions on economic production. Evidence from a global panel of regions. J. Environ. Econ. Manage. 103, 102360 (2020).
17
M. Kotz, L. Wenz, A. Stechemesser, M. Kalkuhl, A. Levermann, Day-to-day temperature variability reduces economic growth. Nat. Clim. Chang. 11, 319–325 (2021).
18
P. Cashin, K. Mohaddes, M. Raissi, Fair weather or foul? The macroeconomic effects of El Niño. J. Int. Econ. 106, 37–54 (2017).
19
S. C. Smith, D. Ubilava, The El Niño Southern Oscillation and economic growth in the developing world. Glob. Environ. Change 45, 151–164 (2017).
20
R. Generoso, C. Couharde, O. Damette, K. Mohaddes, The growth effects of El Niño and La Niña: Local weather conditions matter. Ann. Econ. Stat. 140, 83–126 (2020).
21
A. D. Brunner, El Niño and world primary commodity prices: Warm water or hot air? Rev. Econ. Stat. 84, 176–183 (2002).
22
D. Ubilava, El Niño, La Niña, and world coffee price dynamics. Agric. Econ. 43, 17–26 (2012).
23
D. Ubilava, The ENSO effect and asymmetries in wheat price dynamics. World Dev. 96, 490–502 (2017).
24
F. C. Moore, D. B. Diaz, Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Chang. 5, 127–131 (2015).
25
S. Dietz, N. Stern, Endogenous growth, convexity of damage and climate risk: How Nordhaus’ framework supports deep cuts in carbon emissions. Econ. J. (London) 125, 574–620 (2015).
26
E. J. Moyer, M. D. Woolley, N. J. Matteson, M. J. Glotter, D. A. Weisbach, Climate impacts on economic growth as drivers of uncertainty in the social cost of carbon. J. Legal Stud. 43, 401–425 (2014).
27
K. Takahashi, A. Montecinos, K. Goubanova, B. Dewitte, ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).
28
E. M. Rasmusson, T. H. Carpenter, Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 110, 354–384 (1982).
29
D. Ubilava, M. Abdolrahimi, The El Niño impact on maize yields is amplified in lower income teleconnected countries. Environ. Res. Lett. 14, 054008 (2019).
30
S. Power, M. Haylock, R. Colman, X. Wang, The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Clim. 19, 4755–4771 (2006).
31
B. A. Bastien-Olvera, F. Granella, F. C. Moore, Persistent effect of temperature on GDP identified from lower frequency temperature variability. Environ. Res. Lett. 17, 084038 (2022).
32
M. Kotz, A. Levermann, L. Wenz, The effect of rainfall changes on economic production. Nature 601, 223–227 (2022).
33
N. S. Diffenbaugh, F. V. Davenport, M. Burke, Historical warming has increased U.S. crop insurance losses. Environ. Res. Lett. 16, 084025 (2021).
34
W. Cai, G. Wang, A. Santoso, M. J. McPhaden, L. Wu, F.-F. Jin, A. Timmermann, M. Collins, G. Vecchi, M. Lengaigne, M. H. England, D. Dommenget, K. Takahashi, E. Guilyardi, Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Chang. 5, 132–137 (2015).
35
M. K. van Aalst, S. Fankhauser, S. M. Kane, K. Sponberg, “Climate information and forecasting for development: lessons from the 1997/98 El Niño” (Environment Department Paper No. 79, Climate Change Series, World Bank Group, 2000); http://documents.worldbank.org/curated/en/451971468739263265/Climate-information-and-forecasting-for-development-lessons-from-the-1997-98-El-Nino.
36
W. Cai, B. Ng, T. Geng, L. Wu, A. Santoso, M. J. McPhaden, Butterfly effect and a self-modulating El Niño response to global warming. Nature 585, 68–73 (2020).
37
N. Maher, D. Matei, S. Milinski, J. Marotzke, ENSO change in climate projections: Forced response or internal variability? Geophys. Res. Lett. 45, 11390–11398 (2018).
38
C. Deser, R. Knutti, S. Solomon, A. S. Phillips, Communication of the role of natural variability in future North American climate. Nat. Clim. Chang. 2, 775–779 (2012).
39
K.-S. Yun, J.-Y. Lee, A. Timmermann, K. Stein, M. F. Stuecker, J. C. Fyfe, E.-S. Chung, Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship. Commun. Earth Environ. 2, 43 (2021).
40
K. Hu, G. Huang, P. Huang, Y. Kosaka, S.-P. Xie, Intensification of El Niño-induced atmospheric anomalies under greenhouse warming. Nat. Geosci. 14, 377–382 (2021).
41
A. T. Wittenberg, A. Rosati, T. L. Delworth, G. A. Vecchi, F. Zeng, ENSO modulation: Is it decadally predictable? J. Clim. 27, 2667–2681 (2014).
42
C. W. Callahan, C. Chen, M. Rugenstein, J. Bloch-Johnson, S. Yang, E. J. Moyer, Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat. Clim. Chang. 11, 752–757 (2021).
43
Council of Economic Advisers, “Discounting for public policy: Theory and recent evidence on the merits of updating the discount rate,” Issue Brief, January 2017; https://obamawhitehouse.archives.gov/sites/default/files/page/files/201701_cea_discounting_issue_brief.pdf.
44
M. Meinshausen, J. Lewis, C. McGlade, J. Gütschow, Z. Nicholls, R. Burdon, L. Cozzi, B. Hackmann, Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 604, 304–309 (2022).
45
M. Davis, Late Victorian Holocausts: El Niño Famines and the Making of the Third World (Verso Books, 2002).
46
C. W. Callahan, J. S. Mankin, Globally unequal effect of extreme heat on economic growth. Sci. Adv. 8, eadd3726 (2022).
47
B. O’Neill, M. van Aalst, Z. Zaiton Ibrahim, L. Berrang Ford, S. Bhadwal, H. Buhaug, D. Diaz, K. Frieler, M. Garschagen, A. Magnan, G. Midgely, A. Mirzabaev, A. Thomas, R. Warren, “Key risks across sectors and regions” in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2022), pp. 2411–2538.
48
A. French, R. Mechler, “Managing El Niño risks under uncertainty in Peru” (International Institute for Applied Systems Analysis, 2017); https://pure.iiasa.ac.at/id/eprint/14849/1/French_Mechler_2017_El%20Ni%c3%b1o_Risk_Peru_Report.pdf.
49
N. A. Rayner, D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, A. Kaplan, Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).
50
R. A. Rohde, Z. Hausfather, The Berkeley Earth Land/Ocean Temperature Record. Earth Syst. Sci. Data 12, 3469–3479 (2020).
51
U. Schneider, A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, M. Ziese, GPCC full data reanalysis version 6.0 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data, Global Precipitation Climatology Centre (2011); http://dx.doi.org/10.5676/DWD_GPCC/FD_M_V6_050.
52
Center for International Earth Science Information Network (CIESIN), Columbia University, Gridded Population of the World, Version 4 (GPWv4): Population Count (NASA Socioeconomic Data and Applications Center, 2016); http://dx.doi.org/10.7927/H4X63JVC.
53
R. C. Feenstra, R. Inklaar, M. P. Timmer, The next generation of the Penn World Table. Am. Econ. Rev. 105, 3150–3182 (2015).
54
A. Deaton, A. Heston, Understanding PPPs and PPP-based national accounts. Am. Econ. J. Macroecon. 2, 1–35 (2010).
55
The World Bank, World Development Indicators 2016 (World Bank, 2016).
56
V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, K. E. Taylor, Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
57
B. C. O’Neill, C. Tebaldi, D. P. van Vuuren, V. Eyring, P. Friedlingstein, G. Hurtt, R. Knutti, E. Kriegler, J.-F. Lamarque, J. Lowe, G. A. Meehl, R. Moss, K. Riahi, B. M. Sanderson, The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
58
C. Tebaldi, K. Debeire, V. Eyring, E. Fischer, J. Fyfe, P. Friedlingstein, R. Knutti, J. Lowe, B. O’Neill, B. Sanderson, D. van Vuuren, K. Riahi, M. Meinshausen, Z. Nicholls, K. B. Tokarska, G. Hurtt, E. Kriegler, J.-F. Lamarque, G. Meehl, R. Moss, S. E. Bauer, O. Boucher, V. Brovkin, Y.-H. Byun, M. Dix, S. Gualdi, H. Guo, J. G. John, S. Kharin, Y. Kim, T. Koshiro, L. Ma, D. Olivié, S. Panickal, F. Qiao, X. Rong, N. Rosenbloom, M. Schupfner, R. Séférian, A. Sellar, T. Semmler, X. Shi, Z. Song, C. Steger, R. Stouffer, N. Swart, K. Tachiiri, Q. Tang, H. Tatebe, A. Voldoire, E. Volodin, K. Wyser, X. Xin, S. Yang, Y. Yu, T. Ziehn, Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).
59
S. Hoyer, J. Hamman, xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 5, 10 (2017).
60
F. Jia, W. Cai, B. Gan, L. Wu, E. Di Lorenzo, Enhanced North Pacific impact on El Niño/Southern Oscillation under greenhouse warming. Nat. Clim. Chang. 11, 840–847 (2021).
61
B. Ng, W. Cai, T. Cowan, D. Bi, Impacts of low-frequency internal climate variability and greenhouse warming on El Niño–Southern Oscillation. J. Clim. 34, 2205–2218 (2021).
62
E. Tziperman, M. A. Cane, S. E. Zebiak, Y. Xue, B. Blumenthal, Locking of El Niño’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J. Clim. 11, 2191–2199 (1998).
63
M. Newman, P. D. Sardeshmukh, Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?Geophys. Res. Lett. 44, 8520–8529 (2017).
64
C. D. Kolstad, F. C. Moore, Estimating the economic impacts of climate change using weather observations. Rev. Environ. Econ. Policy 14, 1–24 (2020).
65
M. Burke, W. M. Davis, N. S. Diffenbaugh, Large potential reduction in economic damages under UN mitigation targets. Nature 557, 549–553 (2018).
66
S. M. Hsiang, A. S. Jina, “The causal effect of environmental catastrophe on long-run economic growth: Evidence from 6,700 cyclones” (NBER Working Paper 20352, National Bureau of Economic Research, 2014); http://www.nber.org/papers/w20352.
67
S. Hsiang, Climate econometrics. Annu. Rev. Resour. Econ. 8, 43–75 (2016).
68
J. H. Stock, M. W. Watson, Vector autoregressions. J. Econ. Perspect. 15, 101–115 (2001).
69
N. S. Diffenbaugh, M. Burke, Global warming has increased global economic inequality. Proc. Natl. Acad. Sci. U.S.A. 116, 9808–9813 (2019).
70
E. Guilyardi, A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, T. Stockdale, Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Am. Meteorol. Soc. 90, 325–340 (2009).
71
R. Seager, M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, H. Zhang, Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Chang. 9, 517–522 (2019).
72
C. Karamperidou, F.-F. Jin, J. L. Conroy, The importance of ENSO nonlinearities in tropical pacific response to external forcing. Clim. Dyn. 49, 2695–2704 (2017).
73
A. C. Baker, D. F. Larcker, C. C. Y. Wang, How much should we trust staggered difference-in-differences estimates?J. Financ. Econ. 144, 370–395 (2022).
74
C. de Chaisemartin, X. D’Haultfoeuille, “Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: A survey” (NBER Working Paper 29691, National Bureau of Economic Research, 2022); http://www.nber.org/papers/w29691.
75
J. Roth, P. H. C. Sant’Anna, A. Bilinski, J. Poe, What’s trending in difference-in-differences? A synthesis of the recent econometrics literature. arXiv:2201.01194 [econ.EM] (2023).
76
B. Callaway, P. H. C. Sant’Anna, Difference-in-differences with multiple time periods. J. Econom. 225, 200–230 (2021).
77
B. Callaway, A. Goodman-Bacon, P. H. C. Sant’Anna, Difference-in-differences with a continuous treatment. arXiv:2107.02637 [econ.EM] (2021).
78
C. de Chaisemartin, X. D’Haultfœuille, Two-way fixed effects estimators with heterogeneous treatment effects. Am. Econ. Rev. 110, 2964–2996 (2020).
79
C. de Chaisemartin, X. D’Haultfoeuille, F. Pasquier, G. Vazquez-Bare, Difference-in-differences estimators for treatments continuously distributed at every period. arXiv:2201.06898 [econ.EM] (2022).
80
P. Jakiela, Simple diagnostics for two-way fixed effects. arXiv:2103.13229 [econ.GN] (2021).
81
R. Knutti, J. Sedláček, B. M. Sanderson, R. Lorenz, E. M. Fischer, V. Eyring, A climate model projection weighting scheme accounting for performance and interdependence. Geophys. Res. Lett. 44, 1909–1918 (2017).
82
R. Knutti, The end of model democracy?Clim. Change 102, 395–404 (2010).
83
P. Huang, J. Ying, A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J. Clim. 28, 4706–4723 (2015).
84
D. Chen, M. A. Cane, S. E. Zebiak, R. Cañizares, A. Kaplan, Bias correction of an ocean-atmosphere coupled model. Geophys. Res. Lett. 27, 2585–2588 (2000).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 380 | Issue 6649
9 June 2023

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 12 October 2022
Accepted: 2 May 2023
Published in print: 9 June 2023

Permissions

Request permissions for this article.

Acknowledgments

We thank Dartmouth’s Research Computing and the Discovery Cluster for computing resources. We thank the World Climate Research Programme, which, through its Working Group on Coupled Modeling, coordinated and promoted CMIP6.
Funding: This work was supported by National Science Foundation Graduate Research Fellowship 1840344 to C.W.C. and grants from Dartmouth’s Neukom Computational Institute, the Wright Center for the Study of Computation and Just Communities, and the Nelson A. Rockefeller Center for Public Policy to J.S.M.
Author contributions: Both authors designed the analysis. C.W.C. performed the analysis. Both authors interpreted the results and wrote the paper.
Competing interests: The authors declare no competing interests.
Data and materials availability: All data and code that support this study are available at https://github.com/ccallahan45/CallahanMankin_ENSOEconomics/.
License information: Copyright © 2023 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse

Authors

Affiliations

Funding Information

National Science Foundation Graduate Research Fellowship: 1840344

Notes

*
Corresponding author. Email: christopher.w.callahan.gr@dartmouth.edu

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Hysteresis of the El Niño–Southern Oscillation to CO2 forcing, Science Advances, 9, 31, (2023)./doi/10.1126/sciadv.adh8442
    Abstract
Loading...

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media

Check Access

Check Access

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

References

References

1
M. J. McPhaden, S. E. Zebiak, M. H. Glantz, ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006).
2
J. Bjerknes, Atmospheric teleconnections from the equatorial pacific. Mon. Weather Rev. 97, 163–172 (1969).
3
S.-W. Yeh, W. Cai, S.-K. Min, M. J. McPhaden, D. Dommenget, B. Dewitte, M. Collins, K. Ashok, S.-I. An, B.-Y. Yim, J.-S. Kug, ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).
4
T. W. Corringham, D. R. Cayan, The effect of El Niño on flood damages in the western United States. Weather Clim. Soc. 11, 489–504 (2019).
5
F. J. Magilligan, P. S. Goldstein, El Niño floods and culture change: A late Holocene flood history for the Rio Moquegua, southern Peru. Geology 29, 431–434 (2001).
6
S. M. Hsiang, K. C. Meng, Tropical economics. Am. Econ. Rev. 105, 257–261 (2015).
7
T. Iizumi, J.-J. Luo, A. J. Challinor, G. Sakurai, M. Yokozawa, H. Sakuma, M. E. Brown, T. Yamagata, Impacts of El Niño Southern Oscillation on the global yields of major crops. Nat. Commun. 5, 3712 (2014).
8
S. M. Hsiang, K. C. Meng, M. A. Cane, Civil conflicts are associated with the global climate. Nature 476, 438–441 (2011).
9
W. Cai, G. Wang, B. Dewitte, L. Wu, A. Santoso, K. Takahashi, Y. Yang, A. Carréric, M. J. McPhaden, Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).
10
W. Cai, B. Ng, G. Wang, A. Santoso, L. Wu, K. Yang, Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Clim. Chang. 12, 228–231 (2022).
11
W. Cai, S. Borlace, M. Lengaigne, P. van Rensch, M. Collins, G. Vecchi, A. Timmermann, A. Santoso, M. J. McPhaden, L. Wu, M. H. England, G. Wang, E. Guilyardi, F.-F. Jin, Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 4, 111–116 (2014).
12
W. Cai, A. Santoso, M. Collins, B. Dewitte, C. Karamperidou, J.-S. Kug, M. Lengaigne, M. J. McPhaden, M. F. Stuecker, A. S. Taschetto, A. Timmermann, L. Wu, S.-W. Yeh, G. Wang, B. Ng, F. Jia, Y. Yang, J. Ying, X.-T. Zheng, T. Bayr, J. R. Brown, A. Capotondi, K. M. Cobb, B. Gan, T. Geng, Y.-G. Ham, F.-F. Jin, H.-S. Jo, X. Li, X. Lin, S. McGregor, J.-H. Park, K. Stein, K. Yang, L. Zhang, W. Zhong, Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2, 628–644 (2021).
13
M. Burke, S. M. Hsiang, E. Miguel, Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).
14
M. Burke, V. Tanutama, “Climatic constraints on aggregate economic output” (NBER Working Paper 25779, National Bureau of Economic Research, 2019); http://www.nber.org/papers/w25779.
15
M. Dell, B. F. Jones, B. A. Olken, Temperature shocks and economic growth: Evidence from the last half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).
16
M. Kalkuhl, L. Wenz, The impact of climate conditions on economic production. Evidence from a global panel of regions. J. Environ. Econ. Manage. 103, 102360 (2020).
17
M. Kotz, L. Wenz, A. Stechemesser, M. Kalkuhl, A. Levermann, Day-to-day temperature variability reduces economic growth. Nat. Clim. Chang. 11, 319–325 (2021).
18
P. Cashin, K. Mohaddes, M. Raissi, Fair weather or foul? The macroeconomic effects of El Niño. J. Int. Econ. 106, 37–54 (2017).
19
S. C. Smith, D. Ubilava, The El Niño Southern Oscillation and economic growth in the developing world. Glob. Environ. Change 45, 151–164 (2017).
20
R. Generoso, C. Couharde, O. Damette, K. Mohaddes, The growth effects of El Niño and La Niña: Local weather conditions matter. Ann. Econ. Stat. 140, 83–126 (2020).
21
A. D. Brunner, El Niño and world primary commodity prices: Warm water or hot air? Rev. Econ. Stat. 84, 176–183 (2002).
22
D. Ubilava, El Niño, La Niña, and world coffee price dynamics. Agric. Econ. 43, 17–26 (2012).
23
D. Ubilava, The ENSO effect and asymmetries in wheat price dynamics. World Dev. 96, 490–502 (2017).
24
F. C. Moore, D. B. Diaz, Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Chang. 5, 127–131 (2015).
25
S. Dietz, N. Stern, Endogenous growth, convexity of damage and climate risk: How Nordhaus’ framework supports deep cuts in carbon emissions. Econ. J. (London) 125, 574–620 (2015).
26
E. J. Moyer, M. D. Woolley, N. J. Matteson, M. J. Glotter, D. A. Weisbach, Climate impacts on economic growth as drivers of uncertainty in the social cost of carbon. J. Legal Stud. 43, 401–425 (2014).
27
K. Takahashi, A. Montecinos, K. Goubanova, B. Dewitte, ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).
28
E. M. Rasmusson, T. H. Carpenter, Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 110, 354–384 (1982).
29
D. Ubilava, M. Abdolrahimi, The El Niño impact on maize yields is amplified in lower income teleconnected countries. Environ. Res. Lett. 14, 054008 (2019).
30
S. Power, M. Haylock, R. Colman, X. Wang, The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Clim. 19, 4755–4771 (2006).
31
B. A. Bastien-Olvera, F. Granella, F. C. Moore, Persistent effect of temperature on GDP identified from lower frequency temperature variability. Environ. Res. Lett. 17, 084038 (2022).
32
M. Kotz, A. Levermann, L. Wenz, The effect of rainfall changes on economic production. Nature 601, 223–227 (2022).
33
N. S. Diffenbaugh, F. V. Davenport, M. Burke, Historical warming has increased U.S. crop insurance losses. Environ. Res. Lett. 16, 084025 (2021).
34
W. Cai, G. Wang, A. Santoso, M. J. McPhaden, L. Wu, F.-F. Jin, A. Timmermann, M. Collins, G. Vecchi, M. Lengaigne, M. H. England, D. Dommenget, K. Takahashi, E. Guilyardi, Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Chang. 5, 132–137 (2015).
35
M. K. van Aalst, S. Fankhauser, S. M. Kane, K. Sponberg, “Climate information and forecasting for development: lessons from the 1997/98 El Niño” (Environment Department Paper No. 79, Climate Change Series, World Bank Group, 2000); http://documents.worldbank.org/curated/en/451971468739263265/Climate-information-and-forecasting-for-development-lessons-from-the-1997-98-El-Nino.
36
W. Cai, B. Ng, T. Geng, L. Wu, A. Santoso, M. J. McPhaden, Butterfly effect and a self-modulating El Niño response to global warming. Nature 585, 68–73 (2020).
37
N. Maher, D. Matei, S. Milinski, J. Marotzke, ENSO change in climate projections: Forced response or internal variability? Geophys. Res. Lett. 45, 11390–11398 (2018).
38
C. Deser, R. Knutti, S. Solomon, A. S. Phillips, Communication of the role of natural variability in future North American climate. Nat. Clim. Chang. 2, 775–779 (2012).
39
K.-S. Yun, J.-Y. Lee, A. Timmermann, K. Stein, M. F. Stuecker, J. C. Fyfe, E.-S. Chung, Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship. Commun. Earth Environ. 2, 43 (2021).
40
K. Hu, G. Huang, P. Huang, Y. Kosaka, S.-P. Xie, Intensification of El Niño-induced atmospheric anomalies under greenhouse warming. Nat. Geosci. 14, 377–382 (2021).
41
A. T. Wittenberg, A. Rosati, T. L. Delworth, G. A. Vecchi, F. Zeng, ENSO modulation: Is it decadally predictable? J. Clim. 27, 2667–2681 (2014).
42
C. W. Callahan, C. Chen, M. Rugenstein, J. Bloch-Johnson, S. Yang, E. J. Moyer, Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat. Clim. Chang. 11, 752–757 (2021).
43
Council of Economic Advisers, “Discounting for public policy: Theory and recent evidence on the merits of updating the discount rate,” Issue Brief, January 2017; https://obamawhitehouse.archives.gov/sites/default/files/page/files/201701_cea_discounting_issue_brief.pdf.
44
M. Meinshausen, J. Lewis, C. McGlade, J. Gütschow, Z. Nicholls, R. Burdon, L. Cozzi, B. Hackmann, Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 604, 304–309 (2022).
45
M. Davis, Late Victorian Holocausts: El Niño Famines and the Making of the Third World (Verso Books, 2002).
46
C. W. Callahan, J. S. Mankin, Globally unequal effect of extreme heat on economic growth. Sci. Adv. 8, eadd3726 (2022).
47
B. O’Neill, M. van Aalst, Z. Zaiton Ibrahim, L. Berrang Ford, S. Bhadwal, H. Buhaug, D. Diaz, K. Frieler, M. Garschagen, A. Magnan, G. Midgely, A. Mirzabaev, A. Thomas, R. Warren, “Key risks across sectors and regions” in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2022), pp. 2411–2538.
48
A. French, R. Mechler, “Managing El Niño risks under uncertainty in Peru” (International Institute for Applied Systems Analysis, 2017); https://pure.iiasa.ac.at/id/eprint/14849/1/French_Mechler_2017_El%20Ni%c3%b1o_Risk_Peru_Report.pdf.
49
N. A. Rayner, D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, A. Kaplan, Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).
50
R. A. Rohde, Z. Hausfather, The Berkeley Earth Land/Ocean Temperature Record. Earth Syst. Sci. Data 12, 3469–3479 (2020).
51
U. Schneider, A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, M. Ziese, GPCC full data reanalysis version 6.0 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data, Global Precipitation Climatology Centre (2011); http://dx.doi.org/10.5676/DWD_GPCC/FD_M_V6_050.
52
Center for International Earth Science Information Network (CIESIN), Columbia University, Gridded Population of the World, Version 4 (GPWv4): Population Count (NASA Socioeconomic Data and Applications Center, 2016); http://dx.doi.org/10.7927/H4X63JVC.
53
R. C. Feenstra, R. Inklaar, M. P. Timmer, The next generation of the Penn World Table. Am. Econ. Rev. 105, 3150–3182 (2015).
54
A. Deaton, A. Heston, Understanding PPPs and PPP-based national accounts. Am. Econ. J. Macroecon. 2, 1–35 (2010).
55
The World Bank, World Development Indicators 2016 (World Bank, 2016).
56
V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, K. E. Taylor, Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
57
B. C. O’Neill, C. Tebaldi, D. P. van Vuuren, V. Eyring, P. Friedlingstein, G. Hurtt, R. Knutti, E. Kriegler, J.-F. Lamarque, J. Lowe, G. A. Meehl, R. Moss, K. Riahi, B. M. Sanderson, The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
58
C. Tebaldi, K. Debeire, V. Eyring, E. Fischer, J. Fyfe, P. Friedlingstein, R. Knutti, J. Lowe, B. O’Neill, B. Sanderson, D. van Vuuren, K. Riahi, M. Meinshausen, Z. Nicholls, K. B. Tokarska, G. Hurtt, E. Kriegler, J.-F. Lamarque, G. Meehl, R. Moss, S. E. Bauer, O. Boucher, V. Brovkin, Y.-H. Byun, M. Dix, S. Gualdi, H. Guo, J. G. John, S. Kharin, Y. Kim, T. Koshiro, L. Ma, D. Olivié, S. Panickal, F. Qiao, X. Rong, N. Rosenbloom, M. Schupfner, R. Séférian, A. Sellar, T. Semmler, X. Shi, Z. Song, C. Steger, R. Stouffer, N. Swart, K. Tachiiri, Q. Tang, H. Tatebe, A. Voldoire, E. Volodin, K. Wyser, X. Xin, S. Yang, Y. Yu, T. Ziehn, Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).
59
S. Hoyer, J. Hamman, xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 5, 10 (2017).
60
F. Jia, W. Cai, B. Gan, L. Wu, E. Di Lorenzo, Enhanced North Pacific impact on El Niño/Southern Oscillation under greenhouse warming. Nat. Clim. Chang. 11, 840–847 (2021).
61
B. Ng, W. Cai, T. Cowan, D. Bi, Impacts of low-frequency internal climate variability and greenhouse warming on El Niño–Southern Oscillation. J. Clim. 34, 2205–2218 (2021).
62
E. Tziperman, M. A. Cane, S. E. Zebiak, Y. Xue, B. Blumenthal, Locking of El Niño’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J. Clim. 11, 2191–2199 (1998).
63
M. Newman, P. D. Sardeshmukh, Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?Geophys. Res. Lett. 44, 8520–8529 (2017).
64
C. D. Kolstad, F. C. Moore, Estimating the economic impacts of climate change using weather observations. Rev. Environ. Econ. Policy 14, 1–24 (2020).
65
M. Burke, W. M. Davis, N. S. Diffenbaugh, Large potential reduction in economic damages under UN mitigation targets. Nature 557, 549–553 (2018).
66
S. M. Hsiang, A. S. Jina, “The causal effect of environmental catastrophe on long-run economic growth: Evidence from 6,700 cyclones” (NBER Working Paper 20352, National Bureau of Economic Research, 2014); http://www.nber.org/papers/w20352.
67
S. Hsiang, Climate econometrics. Annu. Rev. Resour. Econ. 8, 43–75 (2016).
68
J. H. Stock, M. W. Watson, Vector autoregressions. J. Econ. Perspect. 15, 101–115 (2001).
69
N. S. Diffenbaugh, M. Burke, Global warming has increased global economic inequality. Proc. Natl. Acad. Sci. U.S.A. 116, 9808–9813 (2019).
70
E. Guilyardi, A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, T. Stockdale, Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Am. Meteorol. Soc. 90, 325–340 (2009).
71
R. Seager, M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, H. Zhang, Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Chang. 9, 517–522 (2019).
72
C. Karamperidou, F.-F. Jin, J. L. Conroy, The importance of ENSO nonlinearities in tropical pacific response to external forcing. Clim. Dyn. 49, 2695–2704 (2017).
73
A. C. Baker, D. F. Larcker, C. C. Y. Wang, How much should we trust staggered difference-in-differences estimates?J. Financ. Econ. 144, 370–395 (2022).
74
C. de Chaisemartin, X. D’Haultfoeuille, “Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: A survey” (NBER Working Paper 29691, National Bureau of Economic Research, 2022); http://www.nber.org/papers/w29691.
75
J. Roth, P. H. C. Sant’Anna, A. Bilinski, J. Poe, What’s trending in difference-in-differences? A synthesis of the recent econometrics literature. arXiv:2201.01194 [econ.EM] (2023).
76
B. Callaway, P. H. C. Sant’Anna, Difference-in-differences with multiple time periods. J. Econom. 225, 200–230 (2021).
77
B. Callaway, A. Goodman-Bacon, P. H. C. Sant’Anna, Difference-in-differences with a continuous treatment. arXiv:2107.02637 [econ.EM] (2021).
78
C. de Chaisemartin, X. D’Haultfœuille, Two-way fixed effects estimators with heterogeneous treatment effects. Am. Econ. Rev. 110, 2964–2996 (2020).
79
C. de Chaisemartin, X. D’Haultfoeuille, F. Pasquier, G. Vazquez-Bare, Difference-in-differences estimators for treatments continuously distributed at every period. arXiv:2201.06898 [econ.EM] (2022).
80
P. Jakiela, Simple diagnostics for two-way fixed effects. arXiv:2103.13229 [econ.GN] (2021).
81
R. Knutti, J. Sedláček, B. M. Sanderson, R. Lorenz, E. M. Fischer, V. Eyring, A climate model projection weighting scheme accounting for performance and interdependence. Geophys. Res. Lett. 44, 1909–1918 (2017).
82
R. Knutti, The end of model democracy?Clim. Change 102, 395–404 (2010).
83
P. Huang, J. Ying, A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J. Clim. 28, 4706–4723 (2015).
84
D. Chen, M. A. Cane, S. E. Zebiak, R. Cañizares, A. Kaplan, Bias correction of an ocean-atmosphere coupled model. Geophys. Res. Lett. 27, 2585–2588 (2000).