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Abstract 

We address the question whether double sequences produced by one-dimensional linear 
cellular automata can also be generated by finite automata. A complete solution for binomial 
coefficients and Lucas’ numbers is given and some partial results for the general case are 
presented. 

1. Introduction 

The properties of binomial coefficients have attracted the attention of a large 
number of mathematicians and amateur mathematicians over the last centuries, cf. 
[6]. Two results are fundamental: Lucas’ lemma [21] and Kummer’s lemma [19, p. 
1151. Lucas’ lemma gives an explicit formula for the residues of binomial coefficients 
(k) modulo a prime number p in terms of the p-adic expansions of t and n: 

where 

t=t,p”+ ... +tlp+to, n=n,p”+ ... +nlp+no, ti,niE{O,l,...,p-1). 

Kummer’s lemma answers the question of the largest power k of a prime number 
p which divides the binomial coefficient (i): k is obtained as the number of carries 
generated in the p-adic subtraction of t - II. Thus, the explicit value of the residues 
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Fig. 1. A two-dimensional 2-automaton corresponding to the Lucas formula for binomial coefficients, 
p = 2. 

(A)modpk is not given; however, Kummer’s lemma tells us whether it is zero or not 
zero. For our considerations it is interesting to note that Lucas’ lemma can be 
interpreted as a two-dimensional p-automaton (a formal definition will be given later). 
Let us look at the example where p = 2. Here the 2-automaton has two states 0 and 
1 and two input maps (i,j): (0, l} + (0, l}, i, j E (0, l}, defined by (0, O).l = 
(0, l).l = (1, l).l = 1, (l,O).l = 0 and (i,j).O = 0 for all i,j = 0, 1. Using this notation 
Lucas’ formula can be written as 

’ 0 mod2 = (rr,,, to) . ..(n., tJ.1. 
n 

More conveniently the input maps are represented as arrows of a directed graph with 
nodes given by the states and a distinguished initial state 1, see Fig. 1. 

This graph is called the transition graph of the finite automaton. For the computa- 
tion of the residue of the binomial coefficient (i) we simply follow the arrows starting 
from the initial node (state) (n,, t,), (n,_ 1, t,_ 1), . . . , (no, to) and arriving to some final 
node which gives the residue of the binomial coefficient. Thus we see that the sequence 
((i) mod 2),,. z 0 can be generated by a (two-dimensional) 2-automaton. Observe that 
here we have read the dyadic representation from left to right and followed the 
corresponding arrows. We call such an automaton a p-automaton of the L-R kind. 
We could also read the dyadic representations from right to left. In this case we speak 
of a p-automaton of the R-L kind. For the 2-automaton corresponding to Lucas’ 
lemma the direction of reading is in fact irrelevant. Two-dimensional automata of the 
L-R kind are also known as matrix substitutions systems and are sometimes called 
two-dimensional substitutions [24-261. A (double) sequence generated by a two- 
dimensional p-automaton (of the L-R or the R-L kind, which is known to be 
equivalent) is called p-automatic [25]. Hence, the binomial coefficients modulo 
a prime number p form a p-automatic (double) sequence. Explicit p-automata of the 
R-L kind corresponding to Kummer’s lemma were given in [14]. However the 
presentation there was in a geometrical setting and was technically given in the 
language of hierarchical iterated function systems [22], see Fig. 2, where (two-dimen- 
sional) 2-automata dI of the R-L kind for p = 2 and 1 = 2,1= 3 are presented. Now 
we shall explain how these automata work. For every natural number I the sequence 

(al(n, t))n,t a o defined by 

a&i, r) = 
1 if 2’ does not divide (i), 
0 otherwise 
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Fig. 2. A two-dimensional 2-automaton corresponding to the Kummer lemma for binomial coefficients, 

with p = 2 and I = 2,3. 

is produced by the automaton G?~ as follows: 

al(n, t) = (k,, t,)(k,_ 1, t,_ I) ... (k,, t,).(initial state), 

where t = t,2” + ... + ti2 + to, t - n = k,2” + ... + k,2 + ko and tiy ki E (0, l}. 
Therefore the sequence (a,(n, t))n,t a ,, is 2-automatic. In this paper we will discuss 

several questions regarding automaticity of double sequences. The first question is 
whether the sequence ((L) mod m),, ,, 3 ,, is k-automatic (for some k and m). In fact, if it 
would be produced by some k-automaton then we would have some Lucas-like 
formulae for the binomial coefficients modulo m. The main result of this paper is that 
the sequence of binomial coefficients modulo m is k-automatic for some k if and only if 
m is the power of some prime number p. In fact, then it is p-automatic. The same 
question can be asked in a more general setting, i.e. for the double sequences which are 
generated by some (one-dimensional) linear cellular automaton (LCA). Recall that the 
binomial coefficients modulo m can be generated by the LCA corresponding to the 
polynomial 1 + X considered as a polynomial with coefficients in the ring of residues 
of the integers modulo m. A precise definition of a LCA will be given below. But before 
stating the general question we shall offer some explanations. An m-state LCA is 
basically a map A on the space of all sequences (called configurations) a = (a(n))‘?,, , 
with a(n) E (0, 1, . . . , m - l} for every integer n defined by a local transition rule 
cp:{O,...,m- l}d+’ -+ { 0, . . , m - l} as follows: 

A(a)(n) = cp(a(n - d + l), . . . ,a(n)) 

and the map cp is linear, i.e. 

cp (x0, ..’ ,xd) = i rd-ixi, TiE{O,...,m- l}. 
0 
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The polynomial r(X) = r. + r,X + ... + rdXd is called the generating polynomial of 
the LCA A (for the binomial coefficients the generating polynomial is r(X) = 1 + X). 
An LCA A produces a (double sequence (r(n, L))“,~ a o as follows: 

r(n, r) = A’@)(fi), 

where 4 is the configuration d(O) = 1, 4(n) = 0 for IZ # 0 and A’ is the tth iteration of 
the map A. The main problem discussed in this paper is the question whether and 
when a sequence (r(n, t)),,t 9 o is k-automatic. It should be understood and noted that 
this question is connected with the question of deciphering the self-similarity proper- 
ties of the evolution patterns generated by a LCA starting with the simplest initial 
configuration 6. To study the evolution and pattern formation of (one-dimensional) 
cellular automaton A one usually represents the initial configuration a = (a(n)), as 
the 0th (in the Y-direction) row in a two-dimensional lattice and records state a(n) in 
site (n, 0). The successive transforms obtained by the iteration of the cellular automa- 
ton A are then recorded in the successive rows (in the positive Y-direction), i.e. 
configuration A’(a) is represented in the tth row. Considering only the set of sites in 
the lattice which have nonzero states we obtain an evolution pattern. It has been 
observed that for many cellular automata (all LCA with a few trivial exceptions) the 
evolution patterns starting from initial configurations with a finite number of nonzero 
states have a fractal structure with an often very convoluted self-similarity structure, 
cf. [31-34, lo]. To study the evolution pattern, which is an unbounded set for t + co, 
one has to apply a resealing. Willson proposed in [31] the following scaling procedure 
for p“-state LCA, where p is a prime number. Consider the evolution pattern of the 
automaton up to the time p”, n E N, and rescale it by the factor l/p”. One thus obtains 
a sequence of compact sets which converges towards a limit (called resealed evolution 
set in [17]). For that reason we call the sequence a scaling sequence for the LCA. It 
turns out that the resealed evolution set in fact does not depend on the particular 
initial configuration, as long as we start with initial configurations which have a finite 
number of nonzero states [31]. In Figs. 3 and 4 we provide resealed evolution sets for 
two examples of LCA. 

The self-similarity structure of the resealed evolution set of the binomial coefficients 
modulo a power of a prime number p is deciphered by the geometrical interpretation 
(hierarchical iterated function system) of a (two-dimensional) p-automaton of the R-L 
kind corresponding to Kummer’s lemma [14]. The patterns of those of the binomial 
coefficients which are not zero modulo a prime power are considered also in [28,18]. 

The problem of deciphering the geometrical self-similarity properties of LCA has 
been solved in some special cases by [29, 141 and in the general case in [15]. The 
general solution in [16, 173 uses special hierarchical iterated function systems which 
are generated by two-dimensional substitutions (matrix substitution systems), or as 
mentioned earlier by (two-dimensional) p-automata of the L-R kind. In the case of 
a p-state LCA this p-automaton produces the sequence (r(n, t))n,t generated by the 
LCA, i.e. this sequence is p-automatic. But in the case of pk-state LCA, k 2 2, this 
p-automaton generates only the sequence (r(n, pk-‘l)),,l. 
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Fig. 3. Resealed evolution sets for the LCA with generating polynomial 1 + X + X2 mod 2 

Fig. 4. Resealed evolution set for the LCA with generating polynomial 1 + X mod 4. 

Before presenting the 2-automaton constructed in [16,17] for the deciphering of 

the self-similarity properties of the binomial coefficients modulo 4, as an example, we 

make one remark. 
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It is common knowledge that the self-similarity properties of the evolution patterns 
of m-state LCA for m not a prime power are very complicated and there is no simple 
and natural way to define a resealed evolution set in this case. In Fig. 5 the evolution 
of the automaton with generating polynomial 1 + X mod 6 is shown. One observes 
easily that it is the superposition of the evolution sets of 1 + Xmod 2 and 
1 + X mod 3, respectively. 

Following Willson’s idea, we know that a resealing with l/2”, respectively l/3” gives 
a limit set for the evolution set of 1 + X mod 2, respectively 1 + Xmod 3. Therefore, 
the key idea to obtain a limit set for the evolution set is the following, find a sequence 

(tn)noiV such that t, is “close” both to a power of 2 and to a power of 3. But a theorem of 

Fig. 5. The evolution set for the LCA with generating polynomial 1 f Xmod 6 is the union of the evolution 

sets of the LCA with generating polynomial 1 + Xmod 2 and the LCA with generating polynomial 

1 + Xmod3. 
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number theory (more precisely in Diophantine approximation theory) asserts that the 

equation 

I I 

log2 P <I __-- 
log3 q 42’ 

with p, q E Z, p and q coprime, has infinitely many solutions. This equation yields 

110g(2~/3~) 1 < C/q. It is shown in [16], in a more general setting, that the sequence 

(2q)q is a scaling sequence for 1 + X mod 6. Moreover, the resealed evolution set is the 

union of the evolution sets of 1 + X mod 2 and 1 + X mod 3. This is shown in Fig. 6. 

In the last example we present a (two-dimensional) 2-automaton of the L-R kind 

which produces only the even rows of the binomial coefficients modulo 4. Its 

Fig. 6. Resealed evolution set for the LCA with generating polynomial 1 + X mod 6 
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geometrical interpretation as hierarchical iterated function system generates the 
corresponding resealed evolution set and thus deciphers, the self-similarity pro- 
perties of this set. For more examples and details see [15-173. The state set of the 
2-automaton deciphering the self-similarity properties of the binomial coeffi- 
cients modulo 4 is Q = {0,1,2,3}’ with initial state 01. The input maps 
(i, j) : Q --f Q, i,j E (0, 11, are defined by 

(i,j).(cl,/?) = M(iJ.10 + P(i,j).Ol 

and 

(O,O).Ol = 01, (l,O).Ol = 10, (0, l).Ol = 01, (1, l).Ol = 12, 

(O,O).lO = 00, (l,O).lO = 00, (0, l).lO = 21, (0, l).lO = 10. 

Then 

2t 0 mod4 = z((n,,, to) ...(Iz~, t,).Ol), 
n 

where 

t = &p” + ..’ + t# + to, n = n,ps + ... + n1p + no, ti,UiE{O,l,...,p-l}, 

are the p-adic representations of the numbers t, n and the output map z is simply the 
projection onto the right coordinate, ~(a, p) = /?. 0 ne of the general consequences of 
the results of this paper is that the sequences generated by any pk-state LCA are all 

p-automatic. 
Note that relations between one-dimensional cellular automata and one-dimensional 

transducers have also been studied; one can read for example [34, pp. 189-2311. 

2. Preliminaries 

2.1. Two-dimensional automata and double automatic sequences 

Let m E N, m z 2. A two-dimensional m-automaton d = (A, ao, 40, T, 7) consists of 
five objects: 
l state alphabet, a finite set A; 
l initial state, an element a0 E A; 
l inputmap,~:[m]2xA-+A,where[m]={0,1,...,m-1); 
l output alphabet, a finite set T; 
l output map, z: A -+ T. 
See [l, 2,25,24] or, for the equivalent notion of matrix (two-dimensional) substitu- 
tions, [26,5,4]. The general notions are defined in [12]. 

Instead of the input map q : [ml2 x A + A we shall consider the maps (i,j) : A --f A, 
i, je Cm], defined by (i,j).a = q((i,j),a) for a E A. For (n, t) E N2 we define the maps 
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(n, t): A -+ A recursively. Write n = n’m + no, t = t’m + to with n,, t,, E [ml, then 

(n, t) : A + A is defined as 

(n, r)’ a = (%, to).@‘, t’).a = cp((nrJ, to),(n’, t’).a). 

If the initial state a0 is a fixed point of the map (0,O) : A -+ A then the (two-dimen- 

sional) m-automaton d produces a double sequence 

(u(n, r))n.t z 0 = (r((n, r).ao)),,t 2 0 

in the output set T. The sequence (u(n, L))“,~ a o is called automatic (or m-automatic) 

[24,25]. 

2.2. Linear cellular automata 

Let R be a finite commutative ring with unit 1 # 0. Usually we deal with the ring 

Z/m& i.e. the residues of the integers modulo m where m is a natural number greater 

then 1. We denote by R((X - ‘)) the set of all formal Laurent series with coefficients in 

R. An element of R((X)) is denoted by 

gCx) = f Six’, 

i=-K 

where gi E R. 

Here we shall recall only the definition of a linear cellular automaton induced by 

a given polynomial r(X) E R [ X] (for a more general definition see [34]). A poly- 

nomial r(X) of degree d induces a linear cellular automaton, denoted by A,, which is 

defined as 

A,: R((X - ‘)) + R((X -I)), 

i.e. multiplication by r(X). The orbit of the Laurent series g(X) w.r.t. the linear cellular 

automaton A. is the set 

O(g) = (A:(g): t = 0,1,2, . . . } = {r(X)‘g(X): t = 0,1,2, . . . }. 

The Laurent series g(X) = C siXi is represented on the one-dimensional lattice 77. 

The site i E Z indicates the location of a cell and g(X) specifies the state gi of the lattice 

site or cell i. 

The orbit O(g) of the Laurent series g w.r.t. the cellular automaton A, is represented 

on the two-dimensional lattice 2’ of the plane R2. The sites (i, t) E Zz are referred to as 

cells. Then 

&g(X) = r(X)‘g(X) = f g(i, t)X’ 
i =-_cc 
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specifies the state of the cell at position i and time t. We shall consider the orbit 
representation as a formal Laurent series with coefficients in R, i.e. 

O(g)(X, Y) = c g(i, t)X'Yf. 
i,tsZ 

We call O(g)(X, Y) the state evolution of g w.r.t. r. For the sake of simplicity, we shall 
speak of the polynomial r(x) instead of the cellular automaton induced by the 
polynomial Y. 

3. Main results 

We start with a formulation of the problem. Consider two polynomials g(X), 
r(X) E Z [Xl. Let m E N, m 2 2 and define the double sequence 

g&r, t) = g(n, t) mod m, (1) 

where 

sFWW = 1 s(n, t)Xn. 
n 

(2) 

Remarks. (1) If r(X) = 1 + X and g(X) = 1, the corresponding sequence given by 
Eq. (1) is the (double) sequence of the binomial coefficients (( L))n, t mod m. 

(2) For r(X) = 1 + X and g(X) = 1 + 2X, we obtain the Lucas numbers modulo m, 

C6 P. 221. 

Question -is the sequence (g,(n, t))n,t a O automatic? In particular, is the sequence of 
the binomial coefficients modulo m an automatic sequence? 

If m = p is a prime number, then there is an affirmative answer which follows for 
instance from a theorem of Salon [24,25, Theorem 5.11 (a generalization of the 
corresponding theorem of Christ01 et al. [7, Theorem 11). The key idea is to consider 
the power series 

F(X, Y) = c gp(n, t)X”Y’ 
n,t>O 

with coefficients in Z/pZ. The definition of gp(n, t) yields 

F(X, Y) = 1 g(X)r(X)'Y' = g(X) 
1 -r(X)Y 

mod p. 
f>O 

Therefore F(X, Y) is a rational function over the field Z/pZ. In particular, F(X, Y) is 
algebraic over the field of rational functions Z/pZ(X, Y) which yields the automaticity 
of the sequence (g,(n, t))n,t. 
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But for composite numbers m we have to apply different arguments. We shall prove 
the following assertions. 

Theorem 1. Let m > 2 be a natural number. Then 

(a) the (double) sequence of binomial coefficients modulo m is automatic if and only if 

m = p’, for some prime number p, 

(b) the (double) sequence of Lucas’ numbers modulo m is automatic if and only if 

m = p’, for some prime number p. 

Zf m = p’ for some prime number p, both sequences are p-automatic (or p’-automatic 
which is equivalent). 

The “if” conditions are consequences of the more general. 

Theorem 2. Let g(X), r(X) E Z [X] and let p be a prime number. Then the sequence 

(g,l(n, t))n,t a 0 (dejned by (1)) is p-automatic for every natural number 1. 

Remark. The assertion of Theorem 2 still holds for polynomials g(Xi, . . , X,), 

r(X1, . . . . X,) in E[Xi, . . . ,X,1. This implies that the (n-dimensional) multinomial 
coefficients mod p’ are (n-dimensional) p-automatic sequences. In the next section we 
shall define a class of polynomials over a finite commutative ring with a 1 for which 
Theorem 2 holds. 

4. Polynomials with the mFermat property 

In what follows we consider a commutative ring R (with a 1 # 0). 

Definition. Let r(X) E N, m > 2. The polynomial r(X) has the m-Fermat property if 

r(X)m = r(Xrn). 

Remark. In [23] the polynomials in Z/mZ[X] having this property are called 
self-similar polynomials with scaling exponent m. 

In this section we shall present some samples of polynomials with the m-Fermat 
property. 

Lemma 1. Let k E N\(O), p b ea rimenumberandriER,fori=O,...,d.IfpR=O p 
and r,!” = ri, i = 0, . , d, then the polynomial 

r(X)=r,+r,X+ ... +r,XdER[X] 

has the pk-Fermat property. 
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Proof. (Induction with respect to d). Let d = 1. Using the assumption, the property 
(5’) = Omodp for 1 < i d pk - 1 (Lucas’ lemma, [27, p. 53, Ex. 6a]), and the binomial 
formula we obtain the assertion. 

The induction step follows from the same arguments. 0 

Examples. (1) All polynomials with coefficients in the Galois field GF($‘) have the 
pk-Fermat property. 

(2) Let p, q be two different prime numbers. Then the polynomial r(X) = 1 + pX in 
Z/pqZ[X] has the q-Fermat property. The polynomial ps(X) has the q-Fermat 
property for every polynomial s(X) E Z/pqZ [Xl. 

Lemma 2. Let k E N, let p be a prime number, let R be a commutative ring and let 

r(X) = r. + r,X + ... + rdXd E R[X] 

be a polynomial. If pkR = 0 and r,!’ E rimodpR, i = 0, , . . , d, then the polynomial 
q(X) = r(X)““+’ has the p-Fermat property. 

Proof. Let a E N, and let p be a prime number. We shall denote by v,(a) the largest 
power k such that pk divides a. It follows from Kummer’s lemma [19, pp. 115-1161 
that 

v,((:)) 3 up(n) - v,(t) and r,!” = rf’-‘. (3) 

Now, we proceed by induction with respect to the degree d of the polynomial r(X). 
Let d = 1, and r(X) = r. + rIX. Then 

q(X)p = ((r. + rIX)P)P’+’ = (rPg + rfXP + P?(X))~“_’ 

Applying the binomial formula one deduces from (3) that 

qLup = dXP). 

The induction step follows from the same arguments. 0 

Example (Robison [23]). Let p be a prime number and r(X) E Z/pkZ[X]. Then the 
polynomial r(X)P”-’ has the p-Fermat property. 

5. Two-dimensional mautomaton corresponding to a given polynomial 

Let R be a finite commutative ring with 1 # 0, r(X) E R[X] be a polynomial, 
k,mEN,ma2. 
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Here we shall define a two-dimensional m-automaton ~%!~(r), corresponding to the 

polynomial r(X). The m-automaton dk(r) has 

l state alphabet A = Rk, 
l initial state e, = (0, . . . ,O, l), 

l output alphabet T = R. 

The output map zi : Rk +R is defined, for (a_k+l,...,xO)E Rk, by 

zl(u-k+l, . ..>uO) = *O. 

For the definition of the input maps 

(i,j):Rk-+Rk, i,jE[m], 

we need some notations. 

The map 

bk:R((X-I))+ Rk 

bk(l(X)) = (l-k+l, . ..> lo), If’1 = Z(X) = ‘c” 1,X” E R((X-I)), 
“=-cc 

is called a k-block map. The map bk is an R-module homomorphism. By 

ei = 0, . . , k - 1, we shall denote the ith basis vector of the free R-module Rk defined 

by 

ei = bk(Xei). 

The input map (i, j) : Rk -+ Rk will be an R-module homomorphism. Since Rk is a free 

R-module with generators (eo, . . , ek_ 1 > we need to define the map (i, j) only on the 

elements er, 1 = 0, . . ..k - 1: 

(i,j).e[ = bk(X-im-ir(X)j) 

for i,jc {O,l,..., m - l}, 0 < 1 d k - 1. Observe that e. is a fixed point of the map 

(030). 
We shall use the m-automaton &k(r) to produce the sequence (g(n, t))n,t defined by 

Eq. (2) for g(X) = 1, and a given polynomial r(X) E R[X]. In the next section we shall 

consider the case of a polynomial r(X) which has the m-Fermat property for some 

integer m > 2. 

6. mautomaticity of a double sequence produced by a polynomial with the 

mFermat property 

Let R be a finite commutative ring (with a 1 # 0) and r(X) E R [Xl. The polynomial 

r(X) produces a double sequence (r(n, t))n,t z o of elements in R defined by 

r(X)’ = C r(n, l)Xn. 
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Theorem 3. If r(X) has the m-Fermat property, then the double sequence (r(n, t)),,t a 0 is 
m-automatic and the m-automaton dk(r) produces this sequence for any k 2 degr(X). 

Proof. The assertion of the theorem follows from 

(n, t).eo = bk(X-“r(X)t) 

since 

(4) 

zl(bk(X-“r(X)f)) = r(n, t) 

for n, t E N. Let 

n = no + nlm + ... + nSmS, t = to + tlm + ... + tsms, n4, t,E [ml, q =0 ,..., s. 

Assume that at least one of the digits n,, t, is different from zero. We shall prove (4) by 
induction with respect to s. 

Step 1: s = 0. In this case (4) coincides with the definition of the input maps (i,j). 
Step 2: Assume that (4) is proved for all numbers of the set (0, . . . , mSvl - 1) and 

that n, t are given by their m-expansions above. Then 

(n, t).eo = (no + n’m, to + t’m).eo = (no, to).(n’, t’).eo 

= (no, tO).bk(X-“‘r(X)fr) 

by the induction hypothesis 

k-l 

= #To r(n’ - u, t’Nn0, to).eu 

k-l 

= “z. I+’ - 2.4, t’)bk(X-um-nOr(X)t,) 

k-l 

= 1 r(n’m - urn, t’m)bk(X-““-“Or(X~) 
u=o 

from the m-Fermat property 

k-l 

= uzo r(n’m - urn, t’m)r(um -t 

k-l 

no - k + 1, to), . . . . 

Ugo r(n’m - urn, t’m)r(um + no, to) 
> 

= (r(n - k + 1, t), . . . , r(n, t)) 

as k 2 degr(X). 0 

Remark. Theorem 3 is proved in a more general setting, for n-dimensional m-Fermat 
(called strong Fermat) cellular automata in [16]. The proof presented here is simpler. 
Another proof based upon the notion of m-kernel (see [25]) will be presented in the 
next section. 
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Theorem 3 implies 

Corollary 1. Let r(X), g(X) E R[X] where R is a finite commutative ring and r(X) 
has the m-Fermat property. Then the sequence (g(n, t)),,,,, dejined by (2) is 

m-automatic. 

Proof. Let k = max(degr(X), 1 + degg(X)). We consider the m-automaton iPllk(r) 

with a new output map zg: Rk + R defined by 

k-l 

zg(xpk+l, ... 3x0) = 1 X-ig(C 0). 

i=O 

Then the double sequence (g(n, t)),,t a o is produced by the m-automaton &k(r) with 

output map zg. Indeed, from (4) it follows that 

k-l 

T4((n, t).eo) = Zg(bk(Xenr(X)‘)) = c r(n - i, t)g(i 0) = g(n, t). 
i=O 

As a next step we consider double sequences generated by a polynomial 

r(X) E R[X] which satisfies r(X)k” = r(Xm)k, i.e. r(X)k has the m-Fermat property. In 

order to prove the automaticity of the sequence (g(n, t))n,t we need a “shuffling” 

property of automatic sequences. 

Proposition 1. Let (u(n, t))“,* a o be a sequence with values in ajinite set such that there 

exist two integers a > 1 and b 3 1 for which all the sequences (u(an + c, bt + d)),,, a o 

with c E [0, a - 11, d E [0, b - l] are m-automatic for some integer m 2 2. Then the 

sequence (u(n, t))n,t z o itself is m-automatic. 

Proof. Our proof will mimic the proof of the analogous claim for the one-dimensional 

case (see for example the related proof for k-regular one-dimensional sequences in [3, 

Theorem 2.71). First note that it suffices to prove the following assertions. 

(Al) If (w(un + c, t)),,t is m-automatic for every c E [0, a - 11, then (w(n, t))n,t is 

m-automatic. 

(A2) If (w(n, bt + d)),,, is m-automatic for every d E [0, b - 11, then (w(n, t)),.t is 

m-automatic. 

Assume that (Al) and (A2) are proved and (u(n, t)),,t has the property of the 

proposition. Then for every fixed d E [0, b - l] the sequence (u(an + c, bt + d)),,, is 

m-automatic for any c E [0, a - 11. By (Al), the sequence (u(n, bt + d)),,, is m-auto- 

matic for all d E [0, b - 11. Now, (A2) implies that (u(n, t))n,t is m-automatic. 

We conclude the proof by showing the validity of (Al) and (A2): to prove (Al) (same 

proof for (A2)), suppose that for some integer m 3 2, for some integer a >, 2, and for 

every c E [0, a - l] the sequence (w(an + c, t))n,t is m-automatic. Then from the 

theorem of Salon [25] the kernels of all these sequences are finite. 
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To prove that the sequence w itself is m-automatic, one has to prove that the 

m-kernel of w, i.e. the set of subsequences 

{(w(m% + /?, mat + Y)).,~: c( 2 0, 0 d /I, y < ma - l}, 

is finite, see [25,9,7]. Therefore it suffices to prove that there are only finitely many 

sequences of the type 

(w(m’(gn + c) + A mar + Y)L c E [0, a - 11, c( 3 0, 0 d p, y < ma - 1. 

Now write m’c + /I = ax + y, with 0 < y 6 a - 1. One has ax d ax + y = m”c + 

/I < ma(c + 1) < urna. Hence x < ma, i.e. x d ma - 1. Then (w(m”(un + c) + b, 

mat + y)) = w(u(man + x) + y, mat + y). The numbers x and y do not depend on 

(n, t), but only on c(, /3 and c. Moreover, y d a - 1 and x d ma - 1. 

Hence the sequence (w(u(man + x) + y, mat + Y)),,~ is in the m-kernel of the se- 

quence (w(an + Y, t))n,f, i.e. the kernel of the sequence w is contained in the union 

(w.r.t. y) of the kernels of the sequences w(un + y, t) and since all of them are finite (see 

for instance [25]), the assertion follows. 0 

Corollary 2. Let g and Y be two polynomials in R[X] such that there exists an integer 

k > 2 for which the polynomial r(X)k has the m-Fermat property. Then the double 

sequence (g(n, t))n,t a 0 (defined by (2)) is m-automatic. 

Proof. From Corollary 1, the sequences u,(n, t),,t, s = 0, . . . , k - 1, defined by 

r(X)kt+s g(X) = 1 n,(n, t)X’ 
n 

are m-automatic. Then the assertion follows from Proposition 1 applied to the 

sequence (g(n, t))n,t (defined by (2)) and a = 1, b = k. 0 

Corollary 3. Let r(X) E GF(p’)[X], a, b, c,d E N. Then the power series 

1 r(un + b, ct + d)X”Y’ 
n,t 

is algebraic over theBeld of rational functions GF(p’)(X, Y). 

Proof. From Corollary 1 we know that the double sequence (r(n, t)),,* induced by the 

polynomial r(X) with the initial polynomial g(X) = 1 (see (2)) is p-automatic since the 

polynomial r(X) has the p’-Fermat property. From [25, Proposition 7.61 it follows 

that the sequence (r(un + b, cd + d)),,, is p-automatic. Then the assertion follows 

from Theorem 5.1 of [25]. 0 

Remark. The case a = 0, c = 1, d = 0 has been proved in [20] with a theorem of 

Furstenberg [13]. 
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7. Another proof of the mautomaticity of a sequence produced by a polynomial 

with the mFermat property 

We now give another proof of Theorem 3, which actually also proves directly 

Corollary 1. This proof is based upon the notion of m-kernel of a sequence [25]: the 

m-kernel of a sequence (g(n, t)),,t is by definition the set of subsequences 

The sequence (r(n, L))~,~ is m-automatic if and only if its m-kernel is finite (see [24, 2.51). 

Clearly, this is equivalent to the existence of a set of sequences Y such that 

l the set Y is finite, 

l the sequence r belongs to Y, 

l the set Y is invariant under the maps cpU,” defined for 0 d u, c d m - 1 and any 

sequence a by 

cpu.,((4c t)),,J = ((4mn + u, mt + ~)LJ. 

Now, if h is a polynomial in R[X], say h(X) = C b(n)X”, define Q,(h), for 

0 d u < m - 1, to be the polynomial Qi,(h)(X) = 1 b(mn + u)X”. Note that deg@, 

(h) d (degh)/m, and that for two polynomials A and B one has @,(A(X) 

B(Xrn)) = B(X)@,(A(X)) [I71. 
Let g and r be two polynomials in R[X] and define the sequence (g(n, t)),,t by 

Eq. (2). Let M = degg + (m - l)degr, and let Y be the set 

Y = (a(n, t)),,t; 3h, deg h d M; h(X)r(X)’ = c a(n, t)Xn 
n 

As h belongs to a finite set of polynomials (R is finite), the set Y is finite. This set 

contains the sequence (g(n, L)),,~ (take h = g). Let us show that .Y is stable under the 

maps cpU, LV. 
Let a be a sequence in Y and h be such that h(X)r(X)’ = C, a(n, t)X”, b’r. Then for 

all v < m - 1 and for all integers t we have that 

m-1 

h(X)r(X)mtft’ = 1 a(n, mt + v)X” = C X” 1 a(mn + u, mt + u)Xmn. 
n u=o n 

On the other hand, h(X)r(X)“‘+” = (h(X)r(X)‘)(r(X”‘))‘. Hence 

@,(hr”)r’ = 1 a(mn + u, mt + 0)X”. 

As deg@,(hr”) < (M + (m - l)degr)/m d M (m 3 2) one deduces that the sequence 

(a(mn + u, mt + v)),,, belongs to Y. 
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8. Proofs of Theorems 1 and 2 

Theorem 2 follows from Lemma 2 and Corollary 2. Theorem 2 implies the 
assertions on automaticity in Theorem 1. Note that a different proof of Theorem 
2 could also be deduced from [ll]. 
Proof of the nonautomaticity assertion in Theorem 1 

We begin with the binomial coefficients. Curiously enough the proof we have found 
breaks into two cases: 

(a) The integer m admits two different odd prime divisors. We first note the formula 
(valid on the rational numbers, see for example [27, p. 521 

a 220 

:’ X’ = (1 -4x)-‘/Z. 

Hence, defining the formal power series F(X) = C, ~ o (:‘)X’, one has 

(1 - 4X)P(X)2 - 1 = 0. 

As this relation holds in Z[ [Xl], the ring of power series with integer coefficients, it 
also holds in Z/pZ[[X]], the ring of power series with coefficients in Z/pZ, for every 
prime number p. This proves that the series F is algebraic over the field of rational 
functions Z/pZ(X). Moreover, if p # 2 this series is not rational. If one had F = P/Q 
for two polynomials P and Q in Z/pZ[X], P and Q coprime, then (1 - 4X)P’ = Q2, 
hence Q’ would divide (1 - 4X). This would imply that Q is a constant polynomial 
and give the desired contradiction, (note that a different proof of the nonperiodicity 
has just been given in [30]). 

Hence, from the theorem of Christ01 et al. [7] the sequence ((:f))Imodp is p- 
automatic and not ultimately periodic if p is an odd prime number. 

Now suppose that the sequence ((i)),,, B o modm is k-automatic for some integer 
k > 2, and let p1 and p2 be two different odd prime divisors of m. Therefore the 
one-dimensional sequence (( ?))t mod m is k-automatic (see for instance [25]). By 
“projection” (i.e. using the canonical map from Z/miZ to Z/piZ), the sequence 
(( :f))tmodp, is k-automatic. From what precedes we know that this sequence is 
pi-automatic and not ultimately periodic. Hence from Cobham’s theorem [S], k is 
necessarily a power of pl. 

In the same way k must be a power of p2, which is a contradiction. 
(b) The integer m is equal to 2”pb, where p is a prime odd number and a, b > 1. Here 

we shall study the coefficients (:‘) mod 2. The previous method does not work as the 
sequence ((:‘))tmod 2 is ultimately periodic. Remember that Lucas’ lemma asserts 
that if n and t have binary expansions given respectively by n = 1, aoe,(n)24 
and t = I,, oeq(t)2q, then 
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Using this theorem and defining the sequence u by 

mod2, 

the reader can check that the following relations hold: 

vt, u(2t) = u(t), u(4t + 1) = u(t), u(4t -t 3) = 0. 

Hence [9, 71, the sequence u is 2-automatic as its 2-kernel is equal to 

I(u(t))t, (u(2t + l)),, 01. 

Moreover, defining the formal power series G in 2/2Z[[X]] by 

G(X) = 1 u(t)X’, 
I20 

the previous relations imply that 

XG3+G+1=0. 

This proves that the formal power series G is algebraic over the field of rational 

functions 2/22(X), which is not surprising [7]. We can use this relation to prove that 

G is not a rational function (i.e. the sequence u is not ultimately periodic). If one has 

G = P/Q for two polynomials in 2/2Z[X], P and Q coprime, then 

XP3 + PQ2 + Q3 = 0. 

Hence Q divides X. If Q is constant we obtain 

XP3+P+1=0, 

which is not possible (compute the degrees). If Q = X we get 

XP3 + X2P + x3 = 0; 

hence 

P3+XP+X2=0. 

That would imply that X divides P, which is not possible as P and Q are coprime. 

Now suppose that the sequence (( A))n,t b o modm is k-automatic for some integer 

k 3 2, and remember that m = 2”pb, a, b >, 1. By the same reasoning as in the first case, 

k must be a power of p. On the other hand, the hypothesis implies that the one- 

dimensional sequence ((:‘))tmodm is k-automatic [25]. Hence, by projection, the 

sequence (( :‘)), mod 2 is k-automatic. As it is 2-automatic and not ultimately periodic, 

Cobham’s theorem [S] again implies that k must be a power of 2, which is impossible. 

Now let us consider the Lucas numbers. They are defined by 

(1 + 2X)( 1 + x)’ = c L(n, t)XH. 
n 
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Hence 

which implies easily 

(n + l)L(n + 1, t) - (t - n + l)L(n, t) = t 
0 

. 
n 

Hence if (L(n, t)),,tmod m is automatic, then ((i))n, f mod m is automatic, too. There- 

fore m = p’ for some prime number p. 

9. mautomaticity of sequences generated by several polynomials 

In this section we consider sequences which are slightly more general than the 

sequences studied above: 

Definition. Let ro(X),...,r,_,(X)~RIX], .B= {ro(X),...,r,-,(X)}. The sequence 

(u&n, t))n,t is generated by the polynomials B with initial polynomial g(X) E R[X] 

if 

@-0(X) ... ra- l(X)ProW) ... r,=- l(X)g(X) = C udn, t)X”, 

where t = at, + s,, t, E N, 0 < s, d a - 1 (we take Y- 1 = 0). 

Examples. (1) The Gaussian binomial coefficients G(n, t; q), q, n, t E N, k 2 2 [27, p. 

261 are defined by 

kfil (1 + qkelX) = i G(t, n; q)q”(“-‘)‘2X”. 
n=O 

Let m E N and (q, m) = 1. Let a be the smallest natural number with q3 E 1 modm. 

The sequence (G(n, t; q)qn(n-1J’2),,r modm is generated by the polynomials 

r,(X)= 1 +X,..,,ra_l(X)= 1 +q”-‘XeZ/mZ[X] 

and the initial polynomial g(X) = 1. Defining w(n) = q’“- 1)(n(n-1)‘2)modm, one no- 

tices that w(n + 2a) = w(n)modm, i.e. this sequence is periodic. As 

G(n, t; q) = G(n, t; q)q n(n- i)/2.q(a- i)n(n-1)/2 modm, 

one sees that (G,(n, t; q)),,t = (G(n, t; q)),,t modm is the product of a periodic one- 

dimensional sequence and of the sequence (G(n, t; q)q”‘“- ‘)12) mod m generated by the 

polynomials ro, . . . , r, _ 1 and the initial polynomial g = 1. 
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(2) The Stirling numbers of first kind S(t, n) [27, p. 181 are defined by 

f-1 

,V” (X + i) = i S(t, n)XV. 
VI=0 

Let m E N, m >, 2. Then the sequence (S,(n, t))n,t (Stirling numbers modm): 

S,(n, t) = S(t, n)modm 

is generated by the polynomials ri(X) = X + i, 0 d i < m - 1, and the initial poly- 

nomial .4(X) = 1. 

From Corollary 2 and Proposition 1 follows 

Corollary 4. Let rO(X), . . . ,T~_~(X)ER[X], r(X) = ro(X)...r,-,(X). Zf r(X)” has 
the m-Fermat property for some k E N, k 3 2, then the sequence (~,~,~(n, t))n,r is m- 

automatic for every polynomial g(X) E R[X]. 

From Corollary 2 and Lemma 2 follows (remember that p-automaticity and pk- 

automaticity are equivalent) 

Corollary 5. Let p be a prime number and k, q E FU. 
(1) If (q, p) = 1 then the sequence (G,k(n, t; q))n,r of the Gaussian binomial co@c.ients 

mod pk is p-automatic. 
(2) The sequence (S,k(n, t)),,, of the Stirling numbers of first kind modpk is p- 

automatic. 
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