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Abstract

LetA= (A(i, j))∞
i,j=0 be aq-automatic double sequence over a finite set�. Letg ∈ � and assume

that the numberNg(A, n) of g’s in thenth row ofA is finite for eachn. We provide a formula for
Ng(A, n) as a product of matrices according to the digits in the baseq expansion ofn. This formula
generalizes several results on Pascal’s triangle modulo a prime and on recurrence double sequences.
It allows us to relate the asymptotic typical behavior ofNg(A, n) to a certain Lyapunov exponent.
In some cases we determine this exponent exactly.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The distribution of the elements in Pascal’s triangle modulo a primep has been exten-
sively studied (cf.[1,6,14,19]). Hexel and Sachs[15] obtained a general (complicated)
formula for the numberN(n, g, p) of the elements in thenth row which are congruent
to g modulop. (See[5] for another formula which involves characters, and[8,16,17]for
similar formulas modulo some prime powers.) Garfield and Wilf[11] defined the polyno-
mial Rn(x) = ∑p−2

i=0 N(n, g
i, p)xi , whereg is a primitive root modulop. They showed
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howRn(x) can be obtained from theppolynomialsR0(x), . . . , Rp−1(x). (See Theorem 10
below for the precise formulation.)
Other researchers considered the numberF(n, g, p) of g’s in the firstn rows of the

triangle modulop. Fine[9] proved that the number of nonzero elements in the firstpk rows
is (p(p + 1)/2)k and concluded that the density of 0’s in the triangle is 1. Barbolosi and
Grabner[5] related the behavior ofF(n, g, p) to a certain continuous real function (see also
[22]) and proved that the asymptotic frequency of eachg ∈ (Z/pZ)× among the nonzero
elements of Pascal’s triangle modulop is 1/(p − 1).
Similar questions have been asked in[13] on Pascal’s rhombus. Pascal’s rhombus is a

variation of Pascal’s triangle in which values are computed as the sum of four terms, rather
than two. More precisely, it is defined by the recurrence relation

ai,j = ai−1,j−1 + ai−1,j + ai−1,j+1 + ai−2,j , 2� i ∈ N, j ∈ Z,

with the initial conditions

a1,0 = 1,

ai,j = 0, (i, j) ∈ {0,1} × Z\{(1,0)}.
In [13], an explicit formula for the number of 1’s in the first 2n rows of Pascal’s rhombus
(mod 2) was obtained, which enables proving that the density of 0’s is 1. Also, the number
of 1’s in thenth row is calculated for some special values ofn.
Pascal’s triangle and Pascal’s rhombus, when viewed modulo a prime, are particular

instances of the following general family of (double) sequences. A double array
(A(i, j))

∞,∞
i=0,j=−∞ over a finite fieldF is a double linear recurrence sequence of order

d with finite rows(henceforward DLR) if:
(1) (A(i, j))i,j satisfies a recurrence of the form

A(i, j)=
t∑
k=1

ckA(i − ik, j − jk), i�d, j ∈ Z.

Hereck ∈ F\{0}, jk ∈ Z, ik ∈ N\{0}, t�1 are constants, andd =max1�k� t ik.
(2) for everyi < d there are only finitely many elementsj ∈ Z such thatA(i, j) 
= 0.
In view of the above-mentioned results concerning Pascal’s triangle and rhombus, it is

natural to investigate the distribution of the elements in other DLR’s as well. In[21] we
obtained a general formula for the number #g(A, n) of g’s in the firstqn rows of a given
DLR, whereg is an arbitrary fixed element in the multiplicative groupF× andq = |F|. We
used this formula to characterize the DLR’s in which the density of 0’s is 1.
In this paper we give a formula for the numberN(A, n) = Ng(A, n) of g’s in thenth

row of a DLRA. In fact, we consider even a larger family of double arraysAwhich contains
the q-automatic double sequenceswith finitely manyg’s in each row. (See for example
[2,3] for a background on automatic sequences.) Given such a double arrayAwe construct
q square matricesD0, . . . , Dq−1 and vectors�v, �e0 such that

N(A, n)= �vT Dnk−1 . . . Dn1Dn0�e0, n= 0,1, . . . , (1)

wheren=∑k−1
r=0 nrq

r is the baseq expansion ofn.
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We use this formula to study the “typical” behavior ofN(A, n), namely its behavior for
mostn’s. It turns out that, in many examples,N(A, n) behaves typically (approximately)
as e�k, wherek is the length of the baseq expansion ofn and� is the so-calledupper
Lyapunov exponent. (See[4] for various Lyapunov exponents.)

2. Notations and main results

Let A0(i, j) be a DLR over a finite fieldF. Due to the nature of our questions we may
assume, by an appropriate shift of the rows, thatjk�0 for eachk and thatA0(i, j)= 0 for
everyj <0.HencewemayconsiderA0 asadoublearrayof the formA0=(A0(i, j))

∞,∞
i=0,j=0.

It is convenient to view the initial conditions as determined by an infinite matrix of
the form(B(i, j))d−1,∞

i=0,j=0, with B(i, j) 
= 0 for at most finitely many pairs(i, j), by the
requirement

A0(i, j)= B(i, j), i < d, j ∈ N.

Let � be a finite set andA = (A(i, j))∞i,j=0 be a double array over�. Let q�2 be an

integer and consider the decomposition ofA into q2 double arrays(As,t )q−1
s,t=0 according to

the values of the two indicesmoduloq: for each(s, t)with 0�s, t < q, letAs,t : N×N → F

be given by

As,t (i, j)= A(iq + s, jq + t), i�0, j�0.

Define a sequence(Xi)∞i=0 of finite sets of double arrays by

X0 = {A},
Xi+1 = {Cs,t : C ∈ Xi, 0�s, t < q}, i�0.

Put

X =
⋃
i∈N

Xi .

A is aq-automatic double sequenceif X (=X(A)) is a finite set (cf.[2]). Propositions 3, 4
of [21] imply that every DLR over a finite fieldF=GF(q) isq-automatic. (In fact, a similar
proof shows that ifpe is a prime power, then every DLR overZ/peZ is p-automatic.)
Assume from now on thatA is aq-automatic double sequence over� and that the number,

N(A, n), of g’s in each rown of A is finite. For everyC ∈ X(A), let j
C

= min{j |
∃i;C(i, j) 
= 0}, and consider the double arrayC given by

C(i, j)= C(i, j + j
C
), i�0, j�0.

(if C = 0 we putC = 0). Obviously,N(C, n) = N(C, n) for everyn. A double array
(C(i, j)) over� is g-trivial if it contains nog’s. Let T (=Tg) denote the set ofg-trivial
double arrays over� and letX′ =X′(A) be given by

X′(A)= {C : C ∈ X(A)\T }.
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Remark. The only reason for introducing the double arraysC is to minimize|X′| in our
examples. The removal of theg-trivial arrays fromX serves also in that we work withX′,
which is smaller thenX. Moreover, we use it in the proof of Theorem 4. However, it has no
effect on our main result—Theorem 1.

To avoid triviality we will assumeX′ 
= ∅ (otherwise,N(A, n)= 0 identically). Let us
enumerate the elements ofX′, sayX′ = {A0, . . . , Am−1}, whereA0=A. If A is a DLR over
GF(q), then so areA0, . . . , Am−1 [21, Proposition 3]. Moreover, eachAi satisfies exactly
the same recurrence asA. In such case we denote the initial conditions ofAi by Bi for
i�m− 1.
For eachs < q andi, j�m−1, letdsi,j be thenumberof elementst < q such thatA

s,t
j =Ai .

Them×m-matricesDs = (dsi,j )m−1
i,j=0, 0�s < q, will play an important role in the sequel.

Let {�ei : 0� i�m−1} be the standard basis ofZm, the vectors being considered as column
vectors. Let�v = (vi)m−1

i=0 be the column vector defined byvi = N(Ai,0).

Theorem 1. Let n be a non-negative integer. Writen=∑k−1
r=0 nrq

r with 0�nr < q (where
some of the leading digits may vanish). Then

N(Ai, n)= �vT Dnk−1 . . . Dn1Dn0�ei .

The following theorem generalizes the formula given in[21] for #g(Ai, n). (HereEq−1
plays the role of the matrixD from [21].)

Theorem 2. LetF(Ai, n) denote the number of g’s in the first n rows ofAi and

Es =D0 + · · · +Ds, 0�s < q,
E−1 = 0.

Then

F(Ai, n)= �vT
(
k−1∑
r=0

Dn
k−1
Dn

k−2
. . . Dn

r+1
Enr−1E

r
q−1

)
�ei , (2)

and in particular,

#g(Ai, j)= F(Ai, q
j )= �vT Ejq−1�ei .

Note that the above formula enables us to computef (n)=F(Ai, n) in polynomial time
(the input being the list of digits in the baseq expansion ofn).

Example 3. Let A be a 2-automatic double sequence with finitely manyg’s in each row,
then

N(Ai,10)= �vT D1D0D1D0�ei ,
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and

F(Ai,10)= �vT (D1D0D1E−1 +D1D0E0E1 +D1E−1E
2
1 + E0E3

1)�ei
= �vT D1D

2
0E1�ei + �vT D0E

3
1�ei .

Using Theorem 2 one can prove that the number ofg’s in the firstN rows of A is
“approximately”N logq R, whereR=R(Eq−1) is the spectral radius ofEq−1.Moreprecisely,
there are constantsC, r >0 such that for large enoughN,

CN logq R <F(A,N)< (logq N)
rN logq R.

In particular, the average number ofg’s in those rows is “approximately”N logq R−1. It is
interesting to compare this average with the number ofg’s in a typical row n. Here, taking
a typicaln with (up to)k digits means that the digitsnr in the expansionn =∑k−1

r=0 nrq
r

are chosen at random independently uniformly from{0, . . . , q − 1}. The question is how
N(A, n) behaves for mostn’s ask → ∞. Since choosing the digitsnr randomly means
that the matrices appearing in (1) are random, we are naturally led to study certain random
matrix products.
Thus, we assume that the matrices(Dnr ) are chosen at random independently uniformly

from {D0, . . . , Dq−1}. By the theoremof Furstenberg andKesten[10] on product of random
matrices, the limit

� = lim
k→∞

1

k
ln ‖Dnk−1 . . . Dn1Dn0‖

existswithprobability 1.That is thenormofa typical productDnk−1 . . . Dn0 is approximately
e�k. The limit � is theupper Lyapunov exponentof D0, . . . , Dq−1. (For more on random
matrix products see, for example,[7].)
Since the formula forN(A, n) involves also product by the vectors�vT , �e0, it may

happen thatN(A, n) behaves differently than the above norm. However, in many cases
(for example, when each row ofA containg’s and there exists a wordnk−1 . . . n1n0 such
thatDnk−1 . . . Dn1Dn0 is a strictly positive matrix), we have

lim
k→∞

#(n ∈ [0, qk) : e� − �< k
√
N(A, n)< e� + �)

qk
= 1

for every�>0. This implies that,

(e� − �)logq n <N(A, n)< (e� + �)logq n

for almost everyn (i.e., for a set of density 1).
It turns out that in many examplese�<R/q and thus�/ ln(q)< logq R − 1. (See

Examples 5, 7, 8.) Since the number ofg’s in a typical rown<N is approximately
e� logq N = N�/ ln(q), this implies that the average number ofg’s in a rown<N is much
bigger than the number ofg’s in a typical row. The explanation for this difference is that
most of theg’s are concentrated in a relatively small number of rows (“most of the money
belongs to the rich people”).
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Unfortunately, it is only rarely possible to compute the upper Lyapunov exponent. For
example, in[20] Lima andRahibe computed the upper Lyapunov exponent of 2×2matrices
A, B, where det(A) = 0 (see also[18]). In our case, the sum of entries in any column of
the matricesDs is �q, and thus the upper Lyapunov exponent is� ln q. The following
theorem characterizes the cases where� = ln q. (See Examples 6, 9.)

Theorem 4. The following properties are equivalent:

(1) � = ln q.
(2) The matricesD0, . . . , Dq−1 have a common(row) eigenvector corresponding to the

eigenvalue q.
(3) There exists a setI ⊆ {0, . . . , m − 1} of indices such that the sum of entries in each

column of each sub-matrix((D0)i,j )i,j∈I , . . . , ((Dq−1)i,j )i,j∈I is q.
(4)

lim
N→∞

#((i, j) ∈ [0, N)× [0, N) : A(i, j)= g)
N2 >0.

(5) R = q2

Remark. There are interesting examples where the matricesD0, . . . , Dq−1 commute (for
example, whenA is Pascal’s triangle modulo a prime). In those cases the numberN(A, n)

dependsonlyon thenumbersi(n)=si,q(n)ofoccurrencesof eachnonzerodigiti in thebaseq
expansion ofn, and not on the locations of those digits. For example, ifq=3 thenN(A,5)=
N(A,7)=N(A,33). Actually, using the Jordan form ofD0, . . . , Dq−1, one can obtain a
much simpler formula forN(A, n). (See Examples 5, 8.) In those examples it is possible
to compute the upper Lyapunov exponent explicitly. This can be done by triangulating
D0, . . . , Dq−1 simultaneously. If�di = (di(j))m−1

j=0 is the diagonal in the triangular form of
Di , then

� = max
0� j�m−1

1

q
ln(d0(j) · d1(j) . . . dq−1(j)).

Example 5. Let us use Theorem 1 to obtain the classical formula for the number of 1’s in
thenth row of Pascal’s triangle modulo 2 (cf.[12]). TakeA as Pascal’s triangle modulo 2
(Fig. 1), andg = 1, and calculateN(A, n).
It can be easily observed that

A0,0 = A1,0 = A1,1 = A, A0,1 = 0.

(Recall thatAs,t satisfies the same recurrence asA and thus it is enough to consider the
first row ofAs,t in order to determine the whole array.) ThusX′ = {A}, and the matrices
involved in Theorem 1 are the following 1× 1 matrices:

D0 = (1), D1 = (2), �v = (1), �e0 = (1).
By Theorem 1, the number of 1’s in thenth row is 2s1(n).
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Fig. 1. Pascal’s triangle modulo 2.

Fig. 2. The first rows ofA0 andA1.

In this example� = 1
2 ln 2. This implies that in most rowsn the number of 1’s is

“approximately”
√
n. Employing Theorem 2 we check easily that the average number of

1’s in the firstn rows is, as is well known (cf.[5]), “approximately”nlog2 3−1.
In a similar way, takingA0 as Pascal’s triangle modulo 3, we haveX′ = {A0, A1}, where

A1 = 2 · A0 (Fig. 2).
It can be easily checked that

A
0,0
0 = A1,0

0 = A1,1
0 = A2,0

0 = A2,2
0 = A0, A

2,1
0 = A1, A

s,t
0 = 0, s < t ,

A
0,0
1 = A1,0

1 = A1,1
1 = A2,0

1 = A2,2
1 = A1, A

2,1
1 = A0, A

s,t
1 = 0, s < t ,

and thus

D0 =
(
1 0
0 1

)
, D1 =

(
2 0
0 2

)
, D2 =

(
2 1
1 2

)
, �v =

{ �e0, g = 1
�e1, g = 2

.

Using Theorem 1, one can show routinely that the number of 1’s in thenth row is
2s1(n)−1(3s2(n) + 1), and similarly the number of 2’s is 2s1(n)−1(3s2(n) − 1) (cf. [5]).
We refer the reader to the proof of Theorem 10infra for the matricesDs in the case of

Pascal’s triangle modulo other primes.

Example 6. LetA0(i, j) be the second-order DLR overZ/2Z generated by the recurrence

A0(i, j)= A0(i − 1, j)+ A0(i − 1, j − 1)+ A0(i − 2, j − 1), i�2, j ∈ Z,
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and the initial conditions given by

B0 = 0,0,0,0, . . . ,
1,0,0,0, . . . .

It can be observed directly that thenth row ofA0 consists ofn consecutive 1’s and thus
N(A0, n)= n.
In this exampleX′ = {A0, A1}, whereA1 is the double array generated by the same

recurrence asA0 and the matrixB1 of initial conditions given by

B1 = 1,0,0,0, . . . ,
1,1,0,0, . . . .

The matrices involved in Theorem 1 are

D0 =
(
2 1
0 1

)
, D1 =

(
1 0
1 2

)
, �v =

(
0
1

)
, �e0 =

(
1
0

)
.

An easy calculation yields

�vT Dnk−1 . . . Dn1Dn0�ei =
k−1∑
r=0

nr2
r , (3)

so that Theorem1gives again the resultN(A0, n)=n.We note that (3) provides an amusing
way of calculating a number by means of matrix products, by giving the base 2 expansion
of the number.
In this example� = ln 2,R = 4 and soe� = R/q.

Example 7. LetA0(i, j) be the first-order DLR overZ/2Z generated by the recurrence

A0(i, j)= A0(i − 1, j)+ A0(i − 1, j − 1)+ A0(i − 1, j − 2), i�1, j ∈ Z,

and the initial conditions given by

B0 = 1,0,0, . . . .

Thus, thenth row ofA0 consists of the coefficients in(1+ x + x2)n (mod 2).
A routine calculation shows thatX′ = {A0, A1}, where the initial conditions ofA1 are

given by

B1 = 1, 1, 0, 0, . . . .

The matricesD0,D1 and the vectors�v and�e0 are

D0 =
(
1 2
0 0

)
, D1 =

(
1 2
1 0

)
, �v =

(
1
2

)
, �e0 =

(
1
0

)
.

Here,N(A, n) is equal to the number of odd coefficients in(1+x+x2)n. Theorem1 shows
that this number is�vT Dnk . . . Dn1Dn0�e0. Thus, for example, there are�vT D1D0D1D1�e0=15
odd coefficients in(1+ x + x2)11.
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The matricesD0, D1 satisfy the condition in[20]. Hence we can express the upper
Lyapunov exponent as an infinite sum:

� =
∞∑
i=1

ln(13(2
i+2 − (−1)i))

2i+2 .

In this case the spectral radius of

E1 =
(
2 4
1 0

)

isR = 1+ √
5. One can check thate� ≈ 1.537<R/2.

Example 8. LetA0(i, j) be the second-order DLR overZ/2Z generated by the recurrence

A0(i, j)= A0(i − 1, j)+ A0(i − 1, j − 1)+ A0(i − 2, j)

+ A0(i − 2, j − 1)+ A0(i − 2, j − 2), i�2, j ∈ Z,

and the initial conditions which are given by

B0 = 0, 0, 0, 0, . . . ,
1, 1, 0, 0, . . . .

Here,X′ = {A0, A1, A2} and

B1 = 1, 0, 0, 0, . . . ,
0, 1, 0, 0, . . . ,

B2 = 1, 0, 0,0, . . . ,
1, 0, 0, 0, . . . .

The matricesD0,D1 and the vectors�v and�e0 are

D0 =
(1 0 0
0 0 1
0 1 0

)
, D1 =

(0 1 1
1 1 0
1 0 1

)
, �v =

(0
1
1

)
, �e0 =

(1
0
0

)
.

Note thatD0D1=D1D0, which enables us (as in Example 5) to obtain the following simple
formula for the number of 1’s in thenth row:

N(A0, n)= 2
3(2

s1(n) − (−1)s1(n)).

Here� = 1
2 ln 2,R = 3.

Example 9. LetA′
0 be the DLR generated by the same recurrence relation as in Example

8, but this time let the initial conditions be given by

B ′
0 = 0, 0, 0, 0, . . . ,

1, 0, 0, 0, . . . .

Asimple calculation shows thatX′={A′
0, A

′
1, A

′
2}whereA′

1,A
′
2 satisfy the initial conditions

B ′
1 = 1, 0, 0, 0, . . . ,

0, 0, 0, 0, . . . .
B ′
2 = 1, 0, 0, 0, . . . ,

1, 1, 0, 0, . . . ,
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respectively, and

D0 =
(2 1 1
0 0 1
0 1 0

)
, D1 =

(1 2 0
1 0 0
0 0 2

)
, �v =

(0
1
1

)
, �e0 =

(1
0
0

)
.

Using Theorem 4 we have� = ln 2, which is bigger than the Lyapunov exponent of the
previous example. Thus, the asymptotic behavior ofN(A, n) may depend on the initial
conditions. (In fact, according to several examples we investigated, this phenomenon seems
to occur frequently.)

Finally, as an application of Theorem 1, we give a new proof for the following result of
Garfield andWilf.

Theorem 10(Garfield and Wilf[11]). Let p be a prime and g a primitive root modulo p.
Denote byN(n, g, p) the number of g’s in the nth row of Pascal’s triangle modulo p.Define
a polynomial sequence(Rn(x))∞n=0 byRn(x)=∑p−2

i=0 N(n, g
i, p)xi . Letn=∑k−1

r=0 nrp
r

be an integer expanded in base p.ThenRn(x) is the remainder of the Euclidean division of
the polynomialP(x)= Rn0(x)Rn1(x) . . . Rnk−1(x) byxp−1 − 1.

3. Proofs

Lemma 11. For all n�0 ands ∈ {0, . . . , q − 1}:

N(A, qn+ s)=
q−1∑
t=0

N(As,t , n).

Proof. The lemma follows straightforwardly from the definition ofAs,t . �

Proof of Theorem 1. For everyn�0 define a rowm-vector, �vn = (vni )
m−1
i=0 , by v

n
i =

N(Ai, n) (thus we have�v0 = �vT ). Let us prove that�vqn+s = �vnDs for everyn�0, s < q.
Using Lemma 11, theith entry of�vqn+s is

v
qn+s
i = N(Ai, qn+ s)=

q−1∑
t=0

N(A
s,t
i , n)=

q−1∑
t=0

N(A
s,t
i , n).

Thus, by the definition of the numbers(dsi,j ) we obtain

v
qn+s
i =

m−1∑
r=0

dsr,i · N(Ar, n).

This sum is exactly theith entry in the product�vnDs and hence we have�vqn+s = �vnDs .
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Using induction on the lengthk of the expansionn = ∑k−1
r=0 nrq

r , we conclude that
�vn = �v0Dnk−1 . . . Dn1Dn0. In particular,

N(Ai, n)= vni = �vn�ei = �vT Dnk−1 . . . Dn1Dn0�ei . �

Proof of Theorem 2. Letn�0 andassume thatn=∑k−1
r=0 nrq

r wherek >0 and0�ni < q
for i�k − 1 (if n= 0 thenni = 0 for eachi). Define

N(n)=Dnk−1 . . . Dn0,

F(n)=
∑{

Dmk−1 . . . Dm0

∣∣∣∣∣
k−1∑
r=0

mrq
r <

k−1∑
r=0

nrq
r

}
.

It can be easily observed that for anyn′>0 andn′′ ∈ {0, . . . , q − 1} we have
F(qn′ + n′′)= F(n′) · Eq−1 +N(n′) · En′′−1. (4)

Repeatedly using (4) (and noting thatF(nk−1)= En
k−1−1) we have

F(n)= F
(
k−1∑
r=0

nrq
r

)
= F

(
k−2∑
r=0

nr+1q
r

)
· Eq−1 +Dnk−1 . . . Dn1En0−1

= · · · = En
k−1−1E

k−1
q−1 +Dnk−1Enk−2−1E

k−2
q−1 + · · · +Dnk−1 . . . Dn1En0−1.

The formula forF(Ai, n) is obtained from the last equation, observing thatF(Ai, n) =
�vT F (n)�ei .
Taken= qj . SinceE−1 = 0, there is only one nonzero summand in Eq. (2). Thus,

F(Ai, q
j )= �vT E0Ejq−1�ei = �vT D0E

j
q−1�ei .

Theorem 1 implies that�vT D0N(n
′)�ei = �vT N(n′)�ei for every n′. Hence,F(Ai, qj ) =

�vT Ejq−1�ei . �

Proof of Theorem 4. (5) ⇒ (4): the proof is similar to the proof that (1)⇒(2) in
[21, Theorem 10]. (Observing that the opposite of property (4) is that the limit converges
to 0.)
(4) ⇒ (3): exactly as in[21, Theorem 4], we obtain that there exists a setI ⊆ {0, . . . ,

m − 1} such that the sum of entries in each column of the matrix((Eq−1)i,j )i,j∈I is q2.
Since the sum of entries in any column of the matricesD0, . . . , Dq−1 is at mostq, this set
I satisfies the required property.
(3)⇒ (2): let �w = (wi)m−1

i=0 where,wi = 1 if i ∈ I andwi = 0 otherwise. Then�wT is a
common eigenvector as required.
(2)⇒ (1): denote the commoneigenvector by�wT . Then�wTDnk−1 . . . Dn0=qk �wT for any

n0, . . . , nk−1 ∈ {0, . . . , q−1}, and thus‖Dnk−1 . . . Dn0‖�qk, which implies that�� ln q.
(1)⇒ (5): since� = ln q, we obtain that for every�<q,

lim
k→∞

#((nk−1, . . . , n0) ∈ {0, . . . , q − 1}k : ‖Dnk−1 . . . Dn0‖��k)

qk
= 1.



102 Y. Moshe / Discrete Mathematics 297 (2005) 91–103

Noting that

Ekq−1 =
∑

{Dnk−1 . . . Dn0 | 0�n0, n1, . . . , nk−1<q},
we conclude that‖Ekq−1‖ = �(qk · �k). On the other hand, using the Jordan form ofEq−1,

we have‖Ekq−1‖ = O(km−1 · Rk). Thus we must haveR�q · �, and since�<q has been
chosen arbitrarily, we haveR�q2. Observing that the sumof entries in any column ofEq−1
is at mostq2, we conclude thatR�q2. Thus,R = q2. �

Proof of Theorem 10. Let A denote the DLR corresponding to Pascal’s triangle modulo
p. It can be observed that in this caseX′ = {aA | 0<a<p}. Enumerate the elements of
X′ byX′ = {A0, . . . , Ap−2} whereAi = giA. One can easily observe thatAs,tj =Ai if and
only if As,tj+1 =Ai+1, where the indices are taken modulop − 1, and thusdsi,j = dsi+1,j+1.

Moreover, using the definition ofDs , we conclude thatdsi,0 =N(s, gi, p). Those two facts
imply thatDs = ∑p−2

i=0 N(s, g
i, p)Ci , whereC = (Ci,j )

p−2
i,j=0 is the permutation matrix

given by

Ci,j =
{
1 i ≡ j + 1(modp − 1),
0 otherwise.

In other words,Ds = Rs(C) for eachs <p.
By Theorem 1, we have

N(n, gi, p)= Ngi (A0, n)= �eTi Rnk−1(C) . . . Rn1(C)Rn0(C)�e0 = �eTi P (C)�e0.
Note that the definition ofRn(x) implies that�eTi Rn(C)�e0 = N(n, gi, p) as well, and thus
we must haveP(C)= Rn(C). Since the minimal polynomial of the matrixC is xp−1 − 1,
we obtain

P(x) ≡ Rn(x) (mod xp−1 − 1).

Observing that Deg(Rn(x))<p−1, we conclude thatRn(x) is the remainder ofP(x) upon
division byxp−1 − 1. �
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