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Abstract

LetA=(A(, ]'))?,o‘:o be ag-automatic double sequence over afinite(3dtet g € 2 and assume
that the numbert”y (A, n) of g's in the nth row of A is finite for eachn. We provide a formula for
g (A, n) as a product of matrices according to the digits in the logsgpansion of. This formula
generalizes several results on Pascal’s triangle modulo a prime and on recurrence double sequences.
It allows us to relate the asymptotic typical behaviocbf, (A, n) to a certain Lyapunov exponent.
In some cases we determine this exponent exactly.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The distribution of the elements in Pascal’s triangle modulo a pgrhas been exten-
sively studied (cf[1,6,14,19]. Hexel and Sachfl5] obtained a general (complicated)
formula for the numbewV (n, g, p) of the elements in theth row which are congruent
to g modulop. (Seeg[5] for another formula which involves characters, §8d.6,17]for
similar formulas modulo some prime powers.) Garfield and Y¥ilf] defined the polyno-
mial R, (x) = Zf’;OZN(n, g', p)x’, whereg is a primitive root modulg. They showed
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how R, (x) can be obtained from thepolynomialsRo(x), ..., R,—1(x). (See Theorem 10
below for the precise formulation.)

Other researchers considered the numbét, g, p) of g's in the firstn rows of the
triangle modul. Fine[9] proved that the number of nonzero elements in the fifsbws
is (p(p + 1)/2)F and concluded that the density of 0’s in the triangle is 1. Barbolosi and
Grabnef5] related the behavior df (n, g, p) to a certain continuous real function (see also
[22]) and proved that the asymptotic frequency of each (Z/pZ)* among the nonzero
elements of Pascal’s triangle moduydds 1/(p — 1).

Similar questions have been asked18] on Pascal’s rhombus. Pascal’'s rhombus is a
variation of Pascal’s triangle in which values are computed as the sum of four terms, rather
than two. More precisely, it is defined by the recurrence relation

aij=ai-1j-1+ai-1; +ai-1j+1+ai-2j, 2<ieN, jel,
with the initial conditions

aio=1,
aij = 0, () e€{0,1} x Z\{(1, 0)}.

In [13], an explicit formula for the number of 1's in the first Bows of Pascal’'s rhombus
(mod 2 was obtained, which enables proving that the density of 0’s is 1. Also, the number
of 1's in thenth row is calculated for some special valuesof

Pascal’s triangle and Pascal’s rhombus, when viewed modulo a prime, are particular
instances of the following general family of (double) sequences. A double array
(A, j))?i’gj':foo over a finite fieldF is a double linear recurrence sequence of order
d with finite rows(henceforward DLR) if:

(1) (AG, j));,; satisfies a recurrence of the form

t
Al )= aAl—ix, j—jo), i>d, jeZ
k=1

Herecy € F\{0}, jk € Z, ix € N\{0}, r >1 are constants, antl= max; < x < ix-

(2) for everyi < d there are only finitely many elementss Z such thatA (i, j) # O.

In view of the above-mentioned results concerning Pascal’s triangle and rhombus, it is
natural to investigate the distribution of the elements in other DLR’s as weJRlhwe
obtained a general formula for the numbeg(#, ) of g's in the firstg” rows of a given
DLR, whereg is an arbitrary fixed element in the multiplicative grobip andg = |F|. We
used this formula to characterize the DLR’s in which the density of O's is 1.

In this paper we give a formula for the numhéf(A, n) = A" (A, n) of g's in thenth
row of a DLRA. In fact, we consider even a larger family of double arrayghich contains
the g-automatic double sequencesth finitely manyg's in each row. (See for example
[2,3] for a background on automatic sequences.) Given such a doublefar@gonstruct
g square matrice®y, ..., D,_1 and vectors, ¢g such that

N (A,n) =0 Dp,_, ... DpyDpgéo, n=0,1,..., (1)

wheren = Y"%Z1n,4" is the base expansion oh.
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We use this formula to study the “typical” behavior.@f (A, n), namely its behavior for
mostn’s. It turns out that, in many exampled;’ (A, n) behaves typically (approximately)
ase’®, wherek is the length of the base expansion of and / is the so-calledipper
Lyapunov exponen{See[4] for various Lyapunov exponents.)

2. Notations and main results

Let Ag(i, j) be a DLR over a finite field. Due to the nature of our questions we may
assume, by an appropriate shift of the rows, that 0 for eachk and thatAq(i, j) = O for
every;j < 0. Hence we may considdp as a double array of the forapy=(Ag(Z, j))l?'i’gf‘}zo.

It is convenient to view the initial conditions as determined by an infinite matrix of
the form(B(, j))f;é’jﬁo, with B(i, j) # 0 for at most finitely many pair§, j), by the
requirement

Ao(i, j) =BG, j), i<d, jeN.

Let Q be a finite set and = (A(, j))?)‘;zo be a double array ove®. Let g >2 be an

integer and consider the decompositiorAdhto ¢2 double array$A“’~f)§’;io according to
the values of the two indices modudofor each(s, r) with0<s, r < ¢, letAS! : NxN — [F
be given by

AN (i, )= A(ig+s, jg+1), =0, j=0.

Define a sequendeX; )2, of finite sets of double arrays by

Xo={A},

Xii1={C"":CeX; 0<s,t<gq}, i=0.
Put

X = U X;.

ieN
Ais ag-automatic double sequenideX (=X (A)) is a finite set (cf[2]). Propositions 3, 4
of [21] imply that every DLR over a finite fieldl = GF(g) is g-automatic. (In fact, a similar
proof shows that ifpp° is a prime power, then every DLR ovéy p¢Z is p-automatic.)
Assume from now on tha is ag-automatic double sequence o¥eand that the number,
A(A, n), of g's in each rown of A is finite. For everyC € X(A), let j. = min{;j |
3i; C(i, j) # 0}, and consider the double arr@ygiven by

C@i,j)=C(,j+j.), i=0, j=0.

(if C =0 we putC = 0). Obviously,./"(C,n) = ./°(C, n) for everyn. A double array
(C(@, j)) over Q is g-trivial if it contains nog's. Let T (=T,) denote the set af-trivial
double arrays oveR and letX’ = X’(A) be given by

X'(A) ={C:C e X(A\T}.
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Remark. The only reason for introducing the double arr&yss to minimize|X’| in our
examples. The removal of thgetrivial arrays fromX serves also in that we work witki’,
which is smaller theiX. Moreover, we use it in the proof of Theorem 4. However, it has no
effect on our main result—Theorem 1.

To avoid triviality we will assumeX’ # ¢ (otherwise, /"(A, n) = 0 identically). Let us
enumerate the elements®f, sayX’ ={Ao, ..., An—_1}, whereAg=A. If Ais a DLR over
GF(g), then so aredo, ..., A,,—1 [21, Proposition 3]Moreover, each; satisfies exactly
the same recurrence &s In such case we denote the initial conditionsAgfby B; for
i<m-—1.

Foreach <gandi, j<m—1, Ietdl:ij be the number of elements: ¢ such thatAj.”:A,-.

Them x m-matricesD; = (dl.ﬁj)jflj‘:lc, 0<s < ¢, will play an important role in the sequel.
Let{¢; : 0<i <m — 1} be the standard basis &f*, the vectors being considered as column

vectors. Lety = (vi);":‘ol be the column vector defined by = .4/"(A4;, 0).

Theorem 1. Let n be a non-negative integer. Write= Z’r‘;é n,q" with0<n, <q (where
some of the leading digits may vanjsihhen

N (Aj,n) =0T Dy, ... Dy, Dpyé;.

The following theorem generalizes the formula giverfiah] for #,(A;, n). (HereE,_1
plays the role of the matri® from [21].)

Theorem 2. LetZ (A;, n) denote the number ofgjin the first n rows ofi; and

E;=Do+---+ D;, 0<s<gq,
E

k—1
F(A;j,n) = T (Z an71 an72 - Dnr+l E,l'__lE;_J_) Zi, (2)
r=0

and in particular,
#o(Ai, j) =T (Ai,q)) =0 E]_jé:.

Note that the above formula enables us to comgidte = 7 (A;, n) in polynomial time
(the input being the list of digits in the bagexpansion oh).

Example 3. Let A be a 2-automatic double sequence with finitely mgisyin each row,
then

A (A;, 10) = 3T D1DoD1Doé;,
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and

F (A;,10) =T (D1DoD1E_1 + D1DoEoE1 + D1E_1E? + EoE3)é;
=97 D1D3E1é; + ! DoE3e;.

Using Theorem 2 one can prove that the numbeg’sfin the firstN rows of A is
“approximately”N logy R whereR=R(E,_1) isthe spectral radius @, _1. More precisely,
there are constan, r > 0 such that for large enoudty

CN"°% R - 7(A,N) < (log, N)' N'°% R

In particular, the average number @ in those rows is “approximaterN'qu R=1 1tis
interesting to compare this average with the numbeyoin atypical row n Here, taking
a typicaln with (up to)k digits means that the digits. in the expansiom = Y"*_%n,4"
are chosen at random independently uniformly frifn. .., ¢ — 1}. The question is how
N(A, n) behaves for most's ask — oo. Since choosing the digits. randomly means
that the matrices appearing in (1) are random, we are naturally led to study certain random
matrix products.

Thus, we assume that the matri¢és,, ) are chosen at random independently uniformly
from{Dy, ..., D,_1}. By the theorem of Furstenberg and KedtHd] on product of random
matrices, the limit

) . 1
A= lim —In||Dy,_,...Dp Dyl
k—o0 k

exists with probability 1. Thatis the norm of a typical prodigf , ... D, isapproximately
e**_ The limit 4 is theupper Lyapunov exponenf Dy, ..., D,_1. (For more on random
matrix products see, for exampl&].)

Since the formula for/"(A, n) involves also product by the vectoig, ¢, it may
happen that/"(A, n) behaves differently than the above norm. However, in many cases
(for example, when each row éf containg’s and there exists a wong_1 . ..n1ng such
thatD,, , ... Dy, Dy, is a strictly positive matrix), we have

im #0110, q" et —e< YN (A n)<e* +e)
- -

k— o0 q

1

for everye > 0. This implies that,
(e —&)%% " < A(A,n) < (e* + )%™

for almost evenn (i.e., for a set of density 1).

It turns out that in many examples: < R/q and thusl/In(q) <log, R — 1. (See
Examples 5, 7, 8.) Since the number @i$ in a typical rown < N is approximately
e*1°% N — N4/IN@) | this implies that the average numberg¥ in a rown < N is much
bigger than the number @fs in a typical row. The explanation for this difference is that
most of theg's are concentrated in a relatively small number of rows (“most of the money
belongs to the rich people”).
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Unfortunately, it is only rarely possible to compute the upper Lyapunov exponent. For
example, if20] Lima and Rahibe computed the upper Lyapunov exponenkd thatrices
A, B, where detA) = 0 (see alsd18]). In our case, the sum of entries in any column of
the matricesD; is <g¢, and thus the upper Lyapunov exponentidn ¢g. The following
theorem characterizes the cases wheteln ¢. (See Examples 6, 9.)

Theorem 4. The following properties are equivalent

1) A=Ing.
(2) The matricesDy, ..., D,_1 have a commofrow) eigenvector corresponding to the

eigenvalue g
(3) There exists a set C {0, ..., m — 1} of indices such that the sum of entries in each

column of each sub-matriXDo); ;)i jers - -» (Dg-1)ij)i jer 1S G
4)

o CAG ) =
i (@i, j) € [0,N) x [0, N) : A(i, j) = g) 0.
N—o00 N2

(5) R=4q?

Remark. There are interesting examples where the matiags . ., D,_1 commute (for
example, wher\ is Pascal’s triangle modulo a prime). In those cases the nunfilier, n)
depends only onthe numbgtn)=s; , (n) of occurrences of each nonzero digitthe base
expansion ofi, and not on the locations of those digits. For exampleAB then A" (A, 5) =
N(A,T)=A(A, 33). Actually, using the Jordan form @y, ..., D,_1, one can obtain a
much simpler formula for/" (A, n). (See Examples 5, 8.) In those examples it is possible
to compute the upper Lyapunov exponent explicitly. This can be done by triangulating
Do, ..., D41 simultaneously. Iﬁi = (di(j));Vz‘ol is the diagonal in the triangular form of

D;, then

1
) = ZIn(do(j) - di(j) .. .ds—1())).
) ng/ngﬁ_lqn( o(j) - d1(j) a—1(J))

Example 5. Let us use Theorem 1 to obtain the classical formula for the number of 1's in
the nth row of Pascal’s triangle modulo 2 (¢fL2]). TakeA as Pascal’s triangle modulo 2
(Fig. 1), andg = 1, and calculatet”(A, n).

It can be easily observed that

AO’OIALO:AL]-:A, AO,].:O

(Recall thatA*! satisfies the same recurrencefaand thus it is enough to consider the
first row of A% in order to determine the whole array.) Thk§= {A}, and the matrices
involved in Theorem 1 are the followingx 1 matrices:

Do=(1), D1=(2), v=(1), é=(1.

By Theorem 1, the number of 1’s in timth row is 2109,
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1

11

101
1111
10001
110011
1010101
11111111

Fig. 1. Pascal’s triangle modulo 2.

1 2

11 22
121 212
1001 2002
11011 22022

121121 212212
Fig. 2. The first rows ofAg andA1.

In this example/ = 3 In 2. This implies that in most rows the number of 1's is
“approximately”./n. Employing Theorem 2 we check easily that the average number of
1's in the firstn rows is, as is well known (c{5]), “approximately”n'°%3-1,

In a similar way, takingdg as Pascal’s triangle modulo 3, we haXe={Ag, A1}, where
A1=2- Ag (Fig. 2.

It can be easily checked that

00_ ,10_ ,11_ ,20_ ,22_ 21 st
A= AT = ATt = AR = AP =40, AZT=4A1, Ay =0, s<i,

00_ ,10_ ,11_ ,20_ 422 21 st
AP =Ar0 =7t =70 =A% =41, AT' =40, A} =0, s<i,

and thus

(1 0O (2 0 (2 1 - |é g=1
DO_(O 1>’ Dl_(o 2)’ D2—<1 2)’ ”—{21, g =2
Using Theorem 1, one can show routinely that the number of 1's inntherow is
2s1m=1(352(1) 1 1), and similarly the number of 2's ig?)~1(3%20" — 1) (cf. [5]).

We refer the reader to the proof of Theoremidfa for the matricesD;, in the case of
Pascal’s triangle modulo other primes.

Example 6. Let Ag(i, j) be the second-order DLR ovéy27 generated by the recurrence

Aoi, ) =Ao0l( =1 )+ Ao -1 j-D+Ac(i—-2,-1D, i=22 jelZ,
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and the initial conditions given by

~.0,0,0,0,...,
°=1,000,....

It can be observed directly that timth row of Ag consists ofn consecutive 1's and thus
N (Ag, n) =n.

In this exampleX’ = {Ao, A1}, where A1 is the double array generated by the same
recurrence ado and the matrixB; of initial conditions given by

~1,00,0,...,
~1,1,00,....

The matrices involved in Theorem 1 are

2 1 10y - (0 . (1
=5 3) »=(2) =) #=(o)

An easy calculation yields

B

B

k-1
5" Dyy_y .. Doy Dygéi = Y 1,2, ®3)
r=0

so that Theorem 1 gives again the restltAg, n) =n. We note that (3) provides an amusing
way of calculating a number by means of matrix products, by giving the base 2 expansion
of the number.

In this examplel =In 2, R =4 and s&* = R/q.

Example 7. Let Ag(i, j) be the first-order DLR ovef /27 generated by the recurrence
Ao(i, j)=Ao(i =1, ))+ Ao —1,j—-D+A(—-1j-2, izl jel,
and the initial conditions given by
Bp=1,0,0,... .

Thus, thenth row of A consists of the coefficients i1 + x + x2)" (mod 2.
A routine calculation shows thaf’ = {Ag, A1}, where the initial conditions ofi; are
given by

B1=1100,....

The matricesDg, D1 and the vectors andeg are

12 12\ . (1) . (1
m=(o5) 21 8) =) == ()

Here, /" (A, n) is equal to the number of odd coefficientgin+ x +x2)". Theorem 1 shows
that this numberig” D,,, ... D,, Dy éo. Thus, for example, there aié D1 Do D1 D1é9=15
odd coefficients i1 + x + x2)L.
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The matricesDg, Dy satisfy the condition if20]. Hence we can express the upper
Lyapunov exponent as an infinite sum:

& InG @2 - (-1
=) = 2i 12

i=1

In this case the spectral radius of

2 4
a=(1 )
is R = 1+ +/5. One can check that ~ 1.537< R/2.

Example 8. Let Ap(i, j) be the second-order DLR ovéy27 generated by the recurrence

Ao(i, j) =Aol( — 1 )+ Aol — 1, j —1) + Ao — 2, j)

and the initial conditions which are given by

0.0.0,0, ...
Bo=1 100 .. .
Here, X' = {Ag, A1, Ao} and
10,00, .... ., 1000,...,
Bi=g 100 .. B=1000...

The matricedq, D1 and the vectors andeg are

1 0 O 0 1 1 0 1
Do=<0 0 l), D1=<l 1 O), 5:(1), Eo:(O).
01 0 1 0 1 1 0

Note thatDoD1 = D1 Dg, which enables us (as in Example 5) to obtain the following simple
formula for the number of 1's in theth row:

N (Ao, n) = §(21) — (=11,
Herei=3In2,R=3.
Example 9. Let A;, be the DLR generated by the same recurrence relation as in Example
8, but this time let the initial conditions be given by

Bl — 0,0,00,...,
©71,000,....
Asimple calculation shows that ={Aj, A7, A5} whereA, A satisfy the initial conditions

, 1,000, ...
170,000, ....

, 10,00, ...

B 2=110.0, ...

B
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respectively, and

2 11 1 20 0 1
DO=<0 0 1), D1=<1 0 o), a=<1>, 20=<o>.
010 0 0 2 1 0

Using Theorem 4 we havé = In 2, which is bigger than the Lyapunov exponent of the
previous example. Thus, the asymptotic behaviori6fA, n) may depend on the initial
conditions. (In fact, according to several examples we investigated, this phenomenon seems
to occur frequently.)

Finally, as an application of Theorem 1, we give a new proof for the following result of
Garfield and Wilf.

Theorem 10 (Garfield and Wilf{11]). Let p be a prime athg a primitive root modulo p.
Denote byN (n, g, p) the number of & in the nth row of Pasca triangle modulo pDefine

a polynomial sequenagr,, (x))>2q by R, (x) = "2 N(n, g', p)x'. Letn = Y *3n, p"

be an integer expanded in baselmenRr,, (x) is the remainder of the Euclidean division of
the polynomialP (x) = Ryo(x) Ry (x) ... Ry, (x) byxP~1 — 1.

3. Proofs

Lemma 11. Foralln>0ands € {0, ..., ¢ — 1}:

g—1
N (A qn+s)=Y " N (A n).
=0

Proof. The lemma follows straightforwardly from the definition 4f'. [

Proof of Theorem 1. For everyn >0 define a rowm-vector, v" = (v;’);":_ol, by v} =
N '(Ai, n) (thus we havé® = 37). Let us prove thaf?"ts = 1" D, for everyn >0, s <g.
Using Lemma 11, théth entry of 4"+ is

qg—1 qg—1
" = (A gn ) =) NA ) =) N (AT n).
t=0 t=0

Thus, by the definition of the numbe(rzijj) we obtain
m—1
vlqn+s _ Z drs,i - N (A, n).
r=0

This sum is exactly thih entry in the product” Dy and hence we haw&" ™ = v" D;.
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Using induction on the lengtk of the expansiom = Zf;(l) nr-q", we conclude that

1" =9°D,,,_, ... Dy, Dy,. In particular,

n -n> =T =
N(Aj,n) =v =v"¢; =V" Dy ... Dy Dyye;. U

Proof of Theorem 2. Letn >0and assume that=Y"*_% n,4” wherek > 0 and 0<n; < g
fori <k — 1 (if n = 0 thenn; = O for eachi). Define

N(l’l) = Dl‘lk_l R Dno,
k—1 k=1

F(n)= Z {Dmkl <. Dig Z meq" < Z nrq,} .
r=0 r=0

It can be easily observed that for amy> 0 andn” € {0, ..., g — 1} we have

F(gn'+n"y=F@n')- Eq—1+ N@n') - Eyr_1. 4)

Repeatedly using (4) (and noting thtn,_1) = E, __1) we have

M1

k—1 k—2
F(n)=F (Z n,q’> =F (Z n,+1q") “Eg-1+ Dy - DnyEng-1
r=0 r=0

= =Ey 1E\ 1+ Dy Ey , 1E\ 5+ -4+ Dyy ... DuyEy 1.

I‘lk71 i‘lk72

The formula for7 (A;, n) is obtained from the last equation, observing thatA;, n) =
=T =
v' F(n)e;. ‘

Taken = ¢/. SinceE_; = 0, there is only one nonzero summand in Eq. (2). Thus,

F(Ai,q’) = 6TEOE;_12,» = 5TDOE;_1EI-.

Theorem 1 implies thab” DoN (n)e; = v N(n')e; for everyn’. Hence,Z (A;, ¢/) =
oTE) 4e. O

Proof of Theorem 4. (5) = (4): the proof is similar to the proof that &)(2) in
[21, Theorem 1Q](Observing that the opposite of property (4) is that the limit converges
to0.)

(4) = (3): exactly as if21, Theorem 4]we obtain that there exists a detc {0, ...,
m — 1} such that the sum of entries in each column of the matib—1); ;); je; is q°.
Since the sum of entries in any column of the matribgs. .., D,_1 is at mosfg, this set
| satisfies the required property.

3)= (2): letw = (wi);’:Ol where,w; = 1if i € I andw; = 0 otherwise. Thew? is a
common eigenvector as required.

(2)= (1): denote the common eigenvectorby. Thenw’ D, , ... Dyy=g*w’ forany
no, ..., ng—1 €10, ...,q—1},andthug| Dy, , ... D, ll > ¢*, which implies that. > In g.

(1) = (5): sinced =1In ¢, we obtain that for every < ¢,

#(i—1,...,n0) €{0,...,q —1* Dy ;... Dyl =)

T 1.

lim
k— 00 q
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Noting that
E';_l = Z{an,l oDy | 0o, ny, ..., 1 < g},

we conclude thanE’q‘_ln = Q(g* - i¥). On the other hand, using the Jordan fornEgf 1,
we have||E’q‘_1|| = O(k™~1. R¥). Thus we must hav® > ¢ - i, and sincet < ¢ has been

chosen arbitrarily, we have > ¢2. Observing that the sum of entries in any columiEgf |
is at mosiy2, we conclude thaR <¢2. Thus,R =4¢2. O

Proof of Theorem 10. Let A denote the DLR corresponding to Pascal’s triangle modulo
p. It can be observed that in this caxé; {aA | O <a < p}. Enumerate the elements of
X' by X' ={Ao, ..., Ap—2} WwhereA; = g' A. One can easily observe th@;}” = A; ifand
only if A‘]‘.’il = A; 41, where the indices are taken modyle- 1, anq thusly , =di q ;14
Moreover, using the definition db,, we conclude thafifo = N(s, g', p)- Those two facts
imply that Dy = Z{:OZN(S, g, p)C!, whereC = (Ci,j){f;zzo is the permutation matrix
given by '

Co = 1 i=j+1(modp -1,

"7 10 otherwise

In other words,D; = R, (C) for eachs < p.
By Theorem 1, we have

N(n.g'. p) =N (Ao, n) =& Ry, (C)... Ry (C)Ruy(C)éo = €] P(C)eo.
Note that the definition oR, (x) implies thaté’l.TRn(C)Eo = N(n, g', p) as well, and thus

we must have? (C) = R, (C). Since the minimal polynomial of the matrixis x?~1 — 1,
we obtain

P(x) = R,(x) (modx?~1—1).

Observing that De@R, (x)) < p — 1, we conclude thak, (x) is the remainder of (x) upon
division byx?~t —1. O
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