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Abstract

Let 4 = (A(i,j))fi(’):@j?m be a double sequence over a finite field F = GF(q) satisfying a
linear recurrence with constant coefficients, with at most finitely many nonzero elements on each
row. Given a nonzero element g of [F, we show how to obtain an explicit formula for the number
of ¢’s in the first ¢" rows of A. We also characterize the cases when the density of 0’s is 1.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The distribution of the elements in Pascal’s triangle modulo a prime p has been
extensively studied (cf. [1,9,11]). In particular, many papers deal with the asymptotic
distribution of the set of elements satisfying a certain congruence (cf. [3-5,7,14]) or
system of congruences (cf. [12]). Using Lucas’s Theorem [15] it easily follows that the
number of nonzero elements in the first p/ rows of Pascal’s triangle modulo p is
(14 +p) = (%)]. In particular, since the number of elements in these rows is
’w, the percentage of the nonzero elements in the first » rows approaches 0 as
n— oo [8]. In other words, the density of 0’s in the triangle is 1.

Klostermeyer et al. [13] defined Pascal’s rhombus as the double sequence
(ai )2 over Z, defined by the recurrence

i=0, j=— 0

Qi j=ai1,j+a1j-1+ai_1;2+ai2;2 i=2, jeZ,
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and the initial conditions

app =aip=ap =ap =1,

ap,; =0, j#0,

a,; =0, j#0,1,2.

They conjectured that the density of 0’s in the infinite triangle
{a; j(mod2):ieN, 0<;j<2i} is 1. This conjecture was settled affirmatively by
Goldwasser et al. [10].

Pascal’s triangle and Pascal’s rhombus, when viewed modulo a prime, are
particular instances of the following general family of (double) sequences. A double

00,00

array (A(i, j))i:g)’ o OVer a finite field F is a double linear recurrence sequence of

order d with bounded initial conditions (henceforth DLR) if:
(1) (4(i,j)); ; satisfies a recurrence of the form

r

Ai)) =Y ad(i—ij—ji), i=d, jelZ. (1.1)
k=1

Here ¢, €F\{0}, jx€Z and 1<i; €N are constants, and d = max; i<, k-
(2) for every i<d there are only finitely many elements jeZ such that A(i,j) #0.
An alternative way to view a DLR is as a sequence (P;(X)).2, (where P;(X) =
S . A(i,j)X7) over the ring F[X, X ~!] of Laurent polynomials, which satisfies a

j=— 0

recurrence with constant coefficients

k=1

For example, in Pascal’s triangle, P;(X) = (1 + X)', and the recurrence is P;(X) =
(1+ X)P;—1(X). Similarly, the recurrence corresponding to Pascal’s rhombus is
Pi(X)=(1+X+X>)P_1(X)+ X°P;»(X).

We remark that first-order DLR’s appear in the literature as double sequences
generated by linear cellular automata (cf. [2,6]).

In view of the above-mentioned results concerning the density of 0’s in Pascal’s
triangle and rhombus, it is natural to pose the following

Question. Is the density of 0’s in every DLR equal to 1?7

In this paper we show that the answer to this question is positive for first-order
DLRs but negative in general. In fact, we show (Theorem 6) how to obtain an
explicit formula for the number of entries in the first ¢" rows equal to any field
element, where ¢ = |F|. This formula enables us to decide in each case whether the
density of occurrences of any element is 0 or not.

In Section 2 we present the main results. Section 3 is devoted to the proof that in
every nontrivial first-order DLR the density of 0’s (in the “appropriate” triangle) is 1.
In Section 4 we describe an algorithm which determines, for a given DLR, whether
the density of 0’s is 1.
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2. Notations and main results

Let A(i,j) be a DLR as in Section 1. Due to the nature of our questions we may
assume, by shifting the rows appropriately, that ji >0 for each k and that A(i,j) =0
for j<0. Thus, we may consider 4 as a double array of the form (A(i,j))lfi’oif;:o.
Denote M = max <, ji. In the case M = 0, the recurrence relation is trivial.

It is convenient to view the initial conditions as determined by a function B:
{0,1,...,d — 1} x N> F, with B(i,j)#0 for at most finitely many pairs (i, ), by the
requirement A(i,j) = B(i,j), i<d, j=0. (Another possibility is to view B as an
infinite matrix with d rows.) The length of the initial conditions is defined by /(B) =
max{j: di<d; B(i,j)#0}, where we agree to put /(B) = —1 if B=0.

The double array defined by the same recurrence relation as 4 and any initial
conditions B’ will be denoted by Ap. (Thus A itself will be denoted by Az when we
need to emphasize the initial conditions.) The sub-array (Ap(i,/));cno<j<i(pyrin 18
the triangle corresponding to Ap (although it is usually a trapezium). This triangle
contains every nonzero clement of A4p.

As mentioned, our main interest in this paper is to characterize the situation
where every nonzero element of F occurs with density 0 in this triangle (so that 0eF
occurs with density 1). Here geF occurs with density o if the frequency of
occurrences of ¢ in the first m rows of the triangle approaches o as the number of
rows increases:

{(i.j): 0<i<m — 1, 0<j<I(B) +iM, Ag(i,j) = g}|

{(i.)): O<i<m —1,0<j<I(B) + iM}] m= % 1)

Remark. (1) In many cases, the density o does not exist (cf. Example 8).

(2) To verify that o = 0, it suffices to take the frequencies on the left hand side of
(2.1) as m increases along powers of g¢.

The following theorem generalizes Fine’s result [8] about the density of 0’s in
Pascal’s triangle modulo a prime.

Theorem 1. Let Ag be a nontrivial first-order DLR over a finite field. Then the density
of 0’s in the corresponding triangle is 1.

Considering a DLR as a sequence over F[X, X~!], we obtain

Corollary 2. Let G = G(X) be a polynomial of degree k>0 over a finite field. Let
(aij)ien, o<j<ik be the double array whose ith row consists of the coefficients of G (ie.,

G'(X)= Z,lk:o a; ;X 7). Then the density of 0’s in the double array (a; ;) is 1.
Remark. In contrast to Corollary 2, it is not true that the density of 0’s in the
polynomial G(X)" approaches 1 as n— oco. For example, if F = Z/2Z and G(X) =
1 + X, then for every keN and n = 2% — 1, all the coefficients of G(X)" are 1.
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Let g be an arbitrary fixed nonzero element in F. Our goal is to compute the
number #(Ag,n) (= #4(Ap,n)) of occurrences of ¢ in the first ¢" rows of A43.

We will decompose Ap into ¢*> double arrays (A;t)g;é:,"; o according to the values

of the two indices modulo ¢: for each (s,) with 0<s,1<gq, let A%”: N x N->TF be
defined by

A3(.J) = Aplig +s.jg + 1), =0, j>0.

Denote by B! the restriction of A} to {0, ...,d — 1} x N (that is, B* consists of the
first d rows of 4%).

Proposition 3. If Ap is a DLR of order d over F, then so is A}'. Moreover, A% satisfies
the same recurrence as Ag. In other words, A‘B’ = Aps.:.

We define X as the closure of { B} under the operations C+> C*'. Namely, for i>0
let X; be the set of initial conditions which is given by

Xo = {B}, Xi1 ={C"": CeX;, 0<s,t<q}, i=0.

Take X = J;.n Xi- The following proposition shows that X is finite.

Proposition 4. Let L:max(%,l(B)). Then [(C)<L for every CeX. In

-
particular, | X|<q? ).

A function C:{0,1,...,d — 1} x N[ defining initial conditions is g-trivial if the
double array A¢ contains no g’s. Let X’ = {Ce X: C is not g-trivial}.

Remark. (1) The removal of the g-trivial elements from X is essential for the proof
of Lemma 14 (and thus also for Theorem 10). However, it has no effect on our main
result—Theorem 6.

(2) In order to determine whether an element C of X is g-trivial, it is enough to
check whether #(A4¢, | X|) = 0. (Another approach is given in the proof of Theorem
11.) Hence the set X’ can be effectively computed.

(3) We will assume that X’ #0 (otherwise #(Ag,n) = 0 for every n=0).

Example 5. Consider Pascal’s triangle modulo 3, which forms a first-order DLR over
Z7/37. Take g = 2.

Here, the initial conditions are given by B(0,0) = 1, and B(0,/) = 0 for every j #0.
It turns out that each of the double arrays 4%’ is a scalar multiplication of Ap. (This
is also the case in Pascal’s triangle modulo other primes.) Thus, X = {aB: aeZ/37}
and X’ = {By, B} where B = B and B, = 2B (Fig. 1).

Let us enumerate the elements of X, say X’ = {By, ..., By}, where B = B. For
(7,7) such that 1<i,j<m, let D; ; be the number of pairs (s, 7) (with 0<s, 1<q) such

that B’/‘t = B;. The m x m matrix D = (D; ;);";_, will play an important role in the
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1 2

11 22
121 212
1001 2002
11011 22022
121121

212212

Fig. 1. The first rows of Ap, and A3, .

sequel. Let {€;: 1 <i<m} be the standard basis of Z", the vectors being considered
as column vectors. Let ¥ = (v;)7-, be the row vector defined by v; = #(43,,0).

Theorem 6. For every n=0 and i<m we have #(Ap,,n) = vD"€;.

Example 5 (Continued). For Pascal’s triangle modulo 3, the matrix D and the vectors

U and €, are
51 1
D= . T=(0,1), & = :
(1 5) T=0.1), & (0)

For example, note that
00 _ 410 _ 41 _ 20 _ 22 _ 21 _ st
Ap = Ag, = Ay, = Ay, = Ay, = Ap,, Ay = Ap,, Ap =0, s<i,

and thus the first row of D is (5, l)T. Using Theorem 6 we show routinely that the
number of 2’s in the first 3" rows of the triangle is (as is well known) vD"e| =
1(6" — 4"). A similar calculation shows that the number of 1’s in the same rows is
36" +4m).

Example 7. Consider the double array 4p, over Z/27, generated by the recurrence
A ))=A(i -1, ) +Ai-1,j-1)+AG@-2,j—-1), i=2, j=0,

and the initial conditions

~0,0,0,0, ...

"7 1,0,0,0,..."

It can be observed directly that the nth row of Ap, consists of n consecutive 1’s and
thus #(A4p,,n) =0+ 1+ -+ +2"—1=2""1(2" — 1). In this example X’ = {By, B>},
where

~1,0,0,0, ...

7 1,1,0,0, ...
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oo (1 oemon (1)

An easy calculation shows that #D"&; = 2"~!(2" — 1). Thus, Theorem 6 gives again
#(Ap,n) = 2""1(2" — 1). Obviously, the density of 0’s in the corresponding triangle
is 0.

and

Example 8. Consider the DLR of order 2 generated by
A, ) =A(i—1,j)+ A —1,j— 1)+ A(i—2,j)+ A —2,j— 1)
+ A(i—2,j-2), i=2, j=0,
and the initial conditions

~0,0,0,0, ...
©1,0,0,0, ...

In this case X’ = X = {By, By, B3, B4}, where By, B,, B3 and By are given by Fig. 2.
The matrix D and the vectors ¢ and &, are

2

62(0717071)7 51:

S O o =

11
11
2 0
0 2

S O = W

0
1
1

By Theorem 6, the number of 1’s in the first 2" rows of A, is D"€|. A routine
calculation shows that #(Ap,n) =3;(9-4"—5-2"—4.(—1)"). Thus, the propor-
tion of I’s in the first 2" rows of the triangle Ap(i,/)o<;<; g0eS to

(94" =5-2"—4.(-1)") 3

Jim (1) =3
2

It is interesting to note that if we take the proportions along other geometric
sequences we may obtain other limits. Consider for example the number of 1’s in the
first 3 - 2" rows. Using a theorem from [16] (which gives a general formula for the

Ap, Ap, As, Ap,
00000... 10000... 00000... 10000...
10000... 00000... 01000... 11000...
11000... 11100... 01100... 01000...
01000... 10010... 00100... 11110...

Fig. 2. The first rows of Ap , Ap,, Ap,, Ap,.
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number Fy(Ap, k) of ¢g’s in the first k rows of Ap), it follows that this number is
(3,4,3,4)D"¢,. Hence, a simple computation shows that the number of 1’s in the first
32" rows is 35(99 - 4" — 5-2" — 4. (—1)"), and we conclude that the proportion of

I’s in those rows approaches 23 (3‘22”)2 = 11. Thus, the density of 0’s in this DLR does

not exist.

Proposition 9. Let p = p(D) be the spectral radius of D. Then there exist positive
numbers C,e such that Cp" <#(Ap,n)<np" for all sufficiently large n.

Theorem 10. The following properties are equivalent:

(1) The density of g’s in the triangle corresponding to Ap is 0.
2) p(D)<q’.
(3) The matrix D has no square submatrix D' (i.e., D' = (Divj)i,jel for some

I1<{1,...,m}), such that the sum of the entries in any column in D' is ¢*.

We remark that since the sum of the entries in any column of D is at most ¢*, we
must have p(D)<q*. Moreover, p(D)<g* unless ¢ itself is an eigenvalue of D (in
which case p(D) = ¢%).

The equivalence (2) <> (3) in Theorem 10 is certainly well known, but for the sake
of completeness the proof is given among the proofs of the other results.

Theorem 11. (1) There exists an algorithm which, given a recurrence relation of the
Jorm (1.1), bounded initial conditions and g+#0 in F, decides whether the density of g’s
in the corresponding triangle is 0. In particular, there exists an algorithm which decides
whether the density of 0’s is 1.

(2) There exists an algorithm which, given a recurrence relation of the form (1.1),
checks if there exist bounded initial conditions for which the density of 0’s is not 1.

Examples 5,7,8 (Continued). Let us demonstrate Theorem 10 on the previous
examples. In Examples 7,8, the sum of the entries in each column of D is 4 = 22, so
that D has a submatrix satisfying the third property in Theorem 10 (take I =
{1,2,...,m} and D’ = D). In particular, the density of 1’s is not 0, and thus the
density of 0’s is not 1.

However, in Example 5, the sum of the entries in any column of D is less than 9.
Thus D has no submatrix as above, and the density of 2’s is 0. Similarly, the density
of 1’s is 0, which implies that the density of 0’s is 1.

3. First-order DLRs

We begin the section with several claims on general DLRs. Then we restrict
ourselves to first-order DLRs, and prove the results stated in Section 2 on such DLRs.
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Lemma 12. Let Ag be a DLR of order d. Then Ap satisfies also the following
recurrence of order qd:

,
Ap(inj) = cxAp(i— qic.j — qiv), i=qd, j>0.
k=1

satisfies a recurrence

Proof. It is well known that a double sequence (a; ;)" .,

relation of the form (1.1) if and only if its generating function G(X,Y) =
2iC0, j=o @i ;X' Y7 is a rational function of the form £5, where 0 = Q(X,Y) =

i=0, j=—0
Siey ckX* Yk and P = P(X,Y) is a polynomial of degree less than d in X.
Since |F| = g it follows that Q(X, Y)? = Q(X¥, Y), and thus

G PU+0+-40")  PI+0+-+0"")
(-0 +0+ - +0) 1= 0(Xe,ve) 7

which implies that Ap satisfies the required recurrence. [
Proof of Proposition 3. The proposition follows immediately from Lemma 12. [

Lemma 13. For all n>0:

q—1

#(AB,I’[+ 1) = Z #(ABSJ,I’I).

5,1=0

Proof. The sets A%, 0<s,1<gq, form a splitting of 4 into ¢*> parts, in which the
elements of the first ¢"*! rows of 4 are divided between the first ¢" rows of the sets
4%, 0O

Proof of Proposition 4. Given initial conditions C with /(C)<L and s, t<g, we will
prove that /(C*") < L. Then, by induction on i, it will follow that for every C’ € X; we
have /(C")< L.

First note that A¢(i,j) = 0 for every pair (i,j) with j> L + Mi (since these pairs do
not belong to the corresponding triangle). In particular, we get A¢(i,j) = 0 for every
i<qd —1 and j>L + M(qd — 1). Thus, A¢/(i,j) = 0 for all i<d and j>LtMld=1)

q
and so /(C*) <EMUED Now, since LU0, we get easily that 22140

and thus /(C*)<L. O

<L

)

Proof of Theorem 1. Denote M, = maxcex #(Ac,n). Let C be an element of X. We
will prove first that there exists a k with #(A4¢,n) <(¢** — 1)M,,_ for every n>k.
The main idea is to use repeatedly Lemma 13 in order to split #(A4¢,n) into a sum
of ¢** elements, each of which is #(Ag,n — k) for some E€ X. The key is to prove
that at least one of these E’s is 0, and thus we will get #(Ag,n — k) = 0. For this
purpose we focus on the decomposition of the first row of 4 (which is essentially C).
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Define the weight w(C) of Ce X as the number of nonzero elements of C, namely,
since C consists of a single row, w(C) = [{j: C(0,/)#0}|. The elements of C are
divided between the ¢ systems of initial conditions (CO”)KC/, and thus, assuming
C#0, there must exist some ¢ for which w(C%)<w(C). Using Lemma 13, we
conclude that #(A4c,n) is a sum of ¢*> (not necessarily distinct) elements from
{#(Ag,n —1): E€X}, and that w(E)<w(C) — 1 for at least one of these.

By induction on k, we get that #(Ac,n) is a sum of (¢%)* elements from
{#(Ag,n — k): E€ X}, and that for at least one of them we have w(E) <min(w(C) —
k,0). Taking k=w(C), we get that w(E) = 0 for one of these E’s, and hence E = 0,
which implies that #(Ag,n — k) = 0. This enables us to write #(A¢,n) as a sum of
(*)F — 1 elements from the set {#(Az,n —k): E€ X}, and thus #(4¢,n) < ((¢*)" —
1)M,_. Now, if k=>maxcey w(C), then #(dc,n)<((¢*)" — 1)M,_; for all CeX,
and we have M, <((¢*)* — 1)M,_.

By induction, My, <(¢** — l)bMo for every b. Hence the number #(A4p, bk) of ¢’s
in the first ¢’* rows is at most (¢ — 1)” My. Since the total number of entries in these
rows, belonging to the triangle corresponding to Ap, is approximately %qzz’k , the
density of ¢’s in the triangle is 0. [

4. Counting the number of occurrences of an element
In this section we prove the results relating to DLRs of any order.

Proof of Theorem 6. For every n>0 define an row m-vector ¢" = (v/)7L, by v} =
#(Ap,,n) (so that 7 = 1°). Let us prove that ""! = "D for every n>0.
By Lemma 13, the ith entry of 7! is

q-1

G = #(Apn+ 1) =) H#(Apn).

$,t=0 !

Thus, by the definition of D we have

m

UliH—l = Z Dr7i#<ABr7n)7
r=1
which is the ith entry of ¢”D. Using induction we conclude that 7 = #°D”", and in
particular

iD'é; = 'D"¢; = 0"¢; = v} = #(Ap,n). O

Lemma 14. (1) For every 1<i<m there exists an n; =0 such that the ith entry of the
row vector vD" is positive.
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(2) For every 1<j<m there exists an ;=0 such that the jth entry of the column
vector DYVE, is positive.

Proof. (1): By the definition of X, the initial conditions B; cannot be g-trivial. Thus
there exists n;>0 for which #(A4p,,n;)>0, and so 7D"e;>0.

(2): It can be easily proven by induction on 7 that the jth entry of D"€ is positive if
and only if BjelX,. Thus the claim follows from the observation that
BjE U;C:O Xk. O

Proof of Proposition 9. We use the following fact which is obtained easily from
Jordan’s form of a matrix D:

Let D be a real square matrix and p the spectral radius of D. Then there exist
positive numbers C,e such that Cp"<||D"||, <n°p" for all large enough n (where
||E||, = max; jle; ;| for a matrix E = (e; ;)).

Since #(Ap,n) = ¥D"€), we conclude that

n

#(Ag,m) <mmax(s) - |D"], <mmax(#)np
Thus, for ¢’ >e we have #(Ap,n)<n®p" for large enough n.

It remains to prove that there exists a positive constant C such that #(A4g,n) = Cp"
for sufficiently large n. We prove first that there exists N >0 such that for every n=0
we have #(A4p,n+ N)>=||D"||.,. Let n; and /; be as in the previous lemma and take

N =maxi<; j<m(n + ;). Let n>0, and let D} ; be an entry of D" such that |[D"|[,, =
D7 ;. By the previous lemma, the ith and jth entries of vD" and D'é,, respectively,

are positive, and thus (noting that the entries of D are integers) they are at least 1.
We conclude that

#(Ap,n+ N)>#(Ap,n+n; + 1) =5D"D"DVe > D} ; = [|D"]| ..

Let n>N, and denote ny =n — N. We have #(Ap,ny + N)=||D™||,, and thus
n C n
#(Ap,n) = #(Ap,no + N)=Cp™ = (p—N)P
for all large enough n. O

Proof of Theorem 10. (1) < (2): Let 7, be the number of elements in the first ¢”
rows of the triangle corresponding to Ap. Since

¢"UB) + 1) +(¢" = 1)M)

T, = ’
2

there exist constants Ci, C,>0 such that C;(¢?)"<T,<C>(¢*)". Since the number
#(Ap,n) of g’s in those rows satisfies Cp” <#(Ap,n)<n’p" for sufficiently large n,
the density of ¢’s is 0 if and only if p<g?.
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(2) <= (3): Let E = DT be the transpose of D. We prove that p(E) >¢? if and only
if E has a submatrix £’ = (E; ;); ;,; such that the sum of the entries in any row in £’
is ¢°.

Assume that E has such a submatrix E’, and define a column m-vector w = (w;)
by w; =1 if iel and w; = 0 otherwise. It turns out that Ew = ¢*W, and thus
p(E)=q.

Conversely, assume that E has an eigenvalue 4 with |4|>¢?, and let w = (w;)" | be
a corresponding eigenvector. We may assume (by multiplying w by a scalar) that
max;|w;| = 1. Let [ = {i:|w;] = 1}. Since EW = /w, we have Y " E; jw; = iwi,
which implies that 337", |E; ;[|wy[ > ¢* for all ie I. Since the entries in the ith row of E
are nonnegative, and their sum is at most ¢°, we must have der Eij= q* for all
iel. O

i,je

m
i=1

Proof of Theorem 11. (1) Note that the density of 0’s is 1 if and only if the density of
every nonzero element is 0. Thus, it suffices to give an algorithm which checks
whether the density of any given nonzero g€ is 0. This can be accomplished by the
following steps.

(a) Construct the set X:

Xo=B,i=0

do Xiy = C : CeX;, 0<s,1<q
i=i+1

until X;< i X

X =Uidy X

(b) Remove the g-trivial elements from X: in order to identify the g-trivial
elements of X, define a directed graph G = (X, E) by letting (C;, C;) € E if and only
if Cf” = C, for some (s,7) with 0<s,7<gq. Let U be the set of elements for which
#(Ac,0)>=1. Using Lemma 13, it follows that the g-trivial elements of X are exactly
the vertices of G from which there is no directed path to U. Thus, the following steps
construct X”.

X =U
while (there exist ve X\X’ and ue X’ with (v,u) € E)
X =X vv

(c) Construct the matrix D and check if it has a submatrix as in Theorem 10:
This can be done as follows:

D =D

while (there exists an column in D’ whose sum of entries is less than ¢%)
remove this column and the corresponding row from D’

If (D' is the empty matrix)
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then return ‘“‘there is no such submatrix”
else
return “D’ is a submatrix as in Theorem 10”

(2) Let B denote the initial conditions:
B(d—1,0)=1 and B(i,j) =0 for all other i<d and j>0.

Observe that any bounded initial conditions are obtained as a linear combination of
translates of B. Thus, if there exists initial conditions C such that the density of 0’s in
Ac is less than 1, then the density of 0’s in Ap is also less than 1. Consequently, we
only have to apply the algorithm of (1) to Ag. [
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