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Abstract

Let A ¼ ðAði; jÞÞN;N
i¼0; j¼�N

be a double sequence over a finite field F ¼ GFðqÞ satisfying a
linear recurrence with constant coefficients, with at most finitely many nonzero elements on each

row. Given a nonzero element g of F; we show how to obtain an explicit formula for the number
of g’s in the first qn rows of A: We also characterize the cases when the density of 0’s is 1.
r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The distribution of the elements in Pascal’s triangle modulo a prime p has been
extensively studied (cf. [1,9,11]). In particular, many papers deal with the asymptotic
distribution of the set of elements satisfying a certain congruence (cf. [3–5,7,14]) or
system of congruences (cf. [12]). Using Lucas’s Theorem [15] it easily follows that the

number of nonzero elements in the first pl rows of Pascal’s triangle modulo p is

ð1þ?þ pÞl ¼ ðpðpþ1Þ
2

Þl : In particular, since the number of elements in these rows is
plðplþ1Þ
2

; the percentage of the nonzero elements in the first n rows approaches 0 as

n-N [8]. In other words, the density of 0’s in the triangle is 1.
Klostermeyer et al. [13] defined Pascal’s rhombus as the double sequence

ðai; jÞN;N
i¼0; j¼�N

over Z; defined by the recurrence

ai; j ¼ ai�1; j þ ai�1; j�1 þ ai�1; j�2 þ ai�2; j�2; iX2; jAZ;
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and the initial conditions
a0;0 ¼ a1;0 ¼ a1;1 ¼ a1;2 ¼ 1;
a0; j ¼ 0; ja0;
a1; j ¼ 0; ja0; 1; 2:
They conjectured that the density of 0’s in the infinite triangle

fai; jðmod 2Þ : iAN; 0pjp2ig is 1. This conjecture was settled affirmatively by
Goldwasser et al. [10].
Pascal’s triangle and Pascal’s rhombus, when viewed modulo a prime, are

particular instances of the following general family of (double) sequences. A double

array ðAði; jÞÞN;N
i¼0; j¼�N

over a finite field F is a double linear recurrence sequence of

order d with bounded initial conditions (henceforth DLR) if:
(1) ðAði; jÞÞi; j satisfies a recurrence of the form

Aði; jÞ ¼
Xr

k¼1
ckAði � ik; j � jkÞ; iXd; jAZ: ð1:1Þ

Here ckAF\f0g; jkAZ and 1pikAN are constants, and d ¼ max1pkpr ik:
(2) for every iod there are only finitely many elements jAZ such that Aði; jÞa0:
An alternative way to view a DLR is as a sequence ðPiðXÞÞNi¼0 (where PiðX Þ ¼P
N

j¼�N
Aði; jÞX jÞ over the ring F½X ;X�1	 of Laurent polynomials, which satisfies a

recurrence with constant coefficients

PiðXÞ ¼
Xd

k¼1
CkðX ÞPi�kðX Þ; iXd:

For example, in Pascal’s triangle, PiðX Þ ¼ ð1þ XÞi; and the recurrence is PiðX Þ ¼
ð1þ XÞPi�1ðX Þ: Similarly, the recurrence corresponding to Pascal’s rhombus is
PiðXÞ ¼ ð1þ X þ X 2ÞPi�1ðXÞ þ X 2Pi�2ðXÞ:
We remark that first-order DLR’s appear in the literature as double sequences

generated by linear cellular automata (cf. [2,6]).
In view of the above-mentioned results concerning the density of 0’s in Pascal’s

triangle and rhombus, it is natural to pose the following

Question. Is the density of 0’s in every DLR equal to 1?

In this paper we show that the answer to this question is positive for first-order
DLRs but negative in general. In fact, we show (Theorem 6) how to obtain an
explicit formula for the number of entries in the first qn rows equal to any field
element, where q ¼ jFj: This formula enables us to decide in each case whether the
density of occurrences of any element is 0 or not.
In Section 2 we present the main results. Section 3 is devoted to the proof that in

every nontrivial first-order DLR the density of 0’s (in the ‘‘appropriate’’ triangle) is 1.
In Section 4 we describe an algorithm which determines, for a given DLR; whether
the density of 0’s is 1.
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2. Notations and main results

Let Aði; jÞ be a DLR as in Section 1. Due to the nature of our questions we may
assume, by shifting the rows appropriately, that jkX0 for each k and that Aði; jÞ ¼ 0
for jo0: Thus, we may consider A as a double array of the form ðAði; jÞÞN;N

i¼0; j¼0:

Denote M ¼ maxkpt jk: In the case M ¼ 0; the recurrence relation is trivial.
It is convenient to view the initial conditions as determined by a function B :

f0; 1;y; d � 1g �N-F; with Bði; jÞa0 for at most finitely many pairs ði; jÞ; by the
requirement Aði; jÞ ¼ Bði; jÞ; iod; jX0: (Another possibility is to view B as an
infinite matrix with d rows.) The length of the initial conditions is defined by lðBÞ ¼
maxf j: (iod; Bði; jÞa0g; where we agree to put lðBÞ ¼ �1 if B ¼ 0:
The double array defined by the same recurrence relation as A and any initial

conditions B0 will be denoted by AB0 : (Thus A itself will be denoted by AB when we
need to emphasize the initial conditions.) The sub-array ðABði; jÞÞiAN;0pjplðBÞþiM is

the triangle corresponding to AB (although it is usually a trapezium). This triangle
contains every nonzero element of AB:
As mentioned, our main interest in this paper is to characterize the situation

where every nonzero element of F occurs with density 0 in this triangle (so that 0AF

occurs with density 1). Here gAF occurs with density a if the frequency of
occurrences of g in the first m rows of the triangle approaches a as the number of
rows increases:

jfði; jÞ: 0pipm � 1; 0pjplðBÞ þ iM; ABði; jÞ ¼ ggj
jfði; jÞ: 0pipm � 1; 0pjplðBÞ þ iMgj m-N

���! a: ð2:1Þ

Remark. (1) In many cases, the density a does not exist (cf. Example 8).
(2) To verify that a ¼ 0; it suffices to take the frequencies on the left hand side of

(2.1) as m increases along powers of q:
The following theorem generalizes Fine’s result [8] about the density of 0’s in

Pascal’s triangle modulo a prime.

Theorem 1. Let AB be a nontrivial first-order DLR over a finite field. Then the density

of 0’s in the corresponding triangle is 1.

Considering a DLR as a sequence over F½X ;X�1	; we obtain

Corollary 2. Let G ¼ GðXÞ be a polynomial of degree k40 over a finite field. Let

ðai; jÞiAN; 0pjpik be the double array whose ith row consists of the coefficients of Gi (i.e.,

GiðX Þ ¼
Pik

j¼0 ai; jX
j). Then the density of 0’s in the double array ðai; jÞ is 1.

Remark. In contrast to Corollary 2, it is not true that the density of 0’s in the

polynomial GðX Þn approaches 1 as n-N: For example, if F ¼ Z=2Z and GðX Þ ¼
1þ X ; then for every kAN and n ¼ 2k � 1; all the coefficients of GðXÞn are 1.
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Let g be an arbitrary fixed nonzero element in F: Our goal is to compute the
number #ðAB; nÞ ð¼ #gðAB; nÞÞ of occurrences of g in the first qn rows of AB:

We will decompose AB into q2 double arrays ðAs;t
B Þq�1;q�1

s¼0;t¼0 according to the values

of the two indices modulo q: for each ðs; tÞ with 0ps; toq; let As;t
B : N�N-F be

defined by

A
s;t
B ði; jÞ ¼ ABðiq þ s; jq þ tÞ; iX0; jX0:

Denote by Bs;t the restriction of As;t
B to f0;y; d � 1g �N (that is, Bs;t consists of the

first d rows of A
s;t
B ).

Proposition 3. If AB is a DLR of order d over F; then so is A
s;t
B : Moreover, As;t

B satisfies

the same recurrence as AB: In other words, As;t
B ¼ ABs;t :

We define X as the closure of fBg under the operations C/Cs;t: Namely, for iX0
let Xi be the set of initial conditions which is given by

X0 ¼ fBg; Xiþ1 ¼ fCs;t: CAXi; 0ps; toqg; iX0:

Take X ¼
S

iAN Xi: The following proposition shows that X is finite.

Proposition 4. Let L ¼ maxðMðqd�1Þ
q�1 ; lðBÞÞ: Then lðCÞpL for every CAX : In

particular, jX jpqdðLþ1Þ:

A function C : f0; 1;y; d � 1g �N-F defining initial conditions is g-trivial if the
double array AC contains no g’s. Let X 0 ¼ fCAX : C is not g-trivialg:

Remark. (1) The removal of the g-trivial elements from X is essential for the proof
of Lemma 14 (and thus also for Theorem 10). However, it has no effect on our main
result—Theorem 6.
(2) In order to determine whether an element C of X is g-trivial, it is enough to

check whether #ðAC ; jX jÞ ¼ 0: (Another approach is given in the proof of Theorem
11.) Hence the set X 0 can be effectively computed.
(3) We will assume that X 0a| (otherwise #ðAB; nÞ ¼ 0 for every nX0).

Example 5. Consider Pascal’s triangle modulo 3, which forms a first-order DLR over
Z=3Z: Take g ¼ 2:
Here, the initial conditions are given by Bð0; 0Þ ¼ 1; and Bð0; jÞ ¼ 0 for every ja0:

It turns out that each of the double arrays As;t
B is a scalar multiplication of AB: (This

is also the case in Pascal’s triangle modulo other primes.) Thus, X ¼ faB: aAZ=3Zg
and X 0 ¼ fB1;B2g where B1 ¼ B and B2 ¼ 2B (Fig. 1).
Let us enumerate the elements of X 0; say X 0 ¼ fB1;y;Bmg; where B1 ¼ B: For

ði; jÞ such that 1pi; jpm; let Di; j be the number of pairs ðs; tÞ (with 0ps; toq) such

that Bs;t
j ¼ Bi: The m � m matrix D ¼ ðDi; jÞm

i; j¼1 will play an important role in the

ARTICLE IN PRESS
Y. Moshe / Journal of Number Theory 103 (2003) 109–121112



sequel. Let f~eei: 1pipmg be the standard basis of Zm; the vectors being considered

as column vectors. Let ~vv ¼ ðviÞm
i¼1 be the row vector defined by vi ¼ #ðABi

; 0Þ:

Theorem 6. For every nX0 and ipm we have #ðABi
; nÞ ¼~vvDn~eei:

Example 5 (Continued). For Pascal’s triangle modulo 3, the matrix D and the vectors
~vv and ~ee1 are

D ¼
5 1

1 5

� �
; ~vv ¼ ð0; 1Þ; ~ee1 ¼

1

0

� �
:

For example, note that

A
0;0
B1

¼ A
1;0
B1

¼ A
1;1
B1

¼ A
2;0
B1

¼ A
2;2
B1

¼ AB1 ; A
2;1
B1

¼ AB2 ; A
s;t
B1

¼ 0; sot;

and thus the first row of D is ð5; 1ÞT : Using Theorem 6 we show routinely that the

number of 2’s in the first 3n rows of the triangle is (as is well known) ~vvDn~ee1 ¼
1
2
ð6n � 4nÞ: A similar calculation shows that the number of 1’s in the same rows is
1
2
ð6n þ 4nÞ:

Example 7. Consider the double array AB1 over Z=2Z; generated by the recurrence

Aði; jÞ ¼ Aði � 1; jÞ þ Aði � 1; j � 1Þ þ Aði � 2; j � 1Þ; iX2; jX0;

and the initial conditions

B1 ¼
0; 0; 0; 0;y

1; 0; 0; 0;y
:

It can be observed directly that the nth row of AB1 consists of n consecutive 1’s and

thus #ðAB1 ; nÞ ¼ 0þ 1þ?þ 2n � 1 ¼ 2n�1ð2n � 1Þ: In this example X 0 ¼ fB1;B2g;
where

B2 ¼
1; 0; 0; 0;y

1; 1; 0; 0;y
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and

D ¼
3 1

1 3

� �
; ~vv ¼ ð0; 1Þ; ~ee1 ¼

1

0

� �
:

An easy calculation shows that ~vvDn~ee1 ¼ 2n�1ð2n � 1Þ: Thus, Theorem 6 gives again
#ðAB; nÞ ¼ 2n�1ð2n � 1Þ: Obviously, the density of 0’s in the corresponding triangle
is 0.

Example 8. Consider the DLR of order 2 generated by

Aði; jÞ ¼Aði � 1; jÞ þ Aði � 1; j � 1Þ þ Aði � 2; jÞ þ Aði � 2; j � 1Þ

þ Aði � 2; j � 2Þ; iX2; jX0;

and the initial conditions

B ¼
0; 0; 0; 0;y

1; 0; 0; 0;y
:

In this case X 0 ¼ X ¼ fB1;B2;B3;B4g; where B1; B2; B3 and B4 are given by Fig. 2.
The matrix D and the vectors ~vv and ~ee1 are

D ¼

3 2 1 1

1 0 1 1

0 1 2 0

0 1 0 2

0
BBB@

1
CCCA; ~vv ¼ ð0; 1; 0; 1Þ; ~ee1 ¼

1

0

0

0

0
BBB@

1
CCCA:

By Theorem 6, the number of 1’s in the first 2n rows of AB1 is ~vvDn~ee1: A routine

calculation shows that #ðAB; nÞ ¼ 1
30
ð9 � 4n � 5 � 2n � 4 � ð�1ÞnÞ: Thus, the propor-

tion of 1’s in the first 2n rows of the triangle ABði; jÞ0pjpi goes to

lim
n-N

1
30
ð9 � 4n � 5 � 2n � 4 � ð�1ÞnÞ

2nð2nþ1Þ
2

¼ 3
5
:

It is interesting to note that if we take the proportions along other geometric
sequences we may obtain other limits. Consider for example the number of 1’s in the
first 3 � 2n rows. Using a theorem from [16] (which gives a general formula for the
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number FgðAB; kÞ of g’s in the first k rows of AB), it follows that this number is

ð3; 4; 3; 4ÞDn~ee1:Hence, a simple computation shows that the number of 1’s in the first

3 � 2n rows is 1
30
ð99 � 4n � 5 � 2n � 4 � ð�1ÞnÞ; and we conclude that the proportion of

1’s in those rows approaches 99�4
n

30
2

ð3�2nÞ2
¼ 11
15
: Thus, the density of 0’s in this DLR does

not exist.

Proposition 9. Let r ¼ rðDÞ be the spectral radius of D. Then there exist positive

numbers C; e such that Crnp#ðAB; nÞpnern for all sufficiently large n.

Theorem 10. The following properties are equivalent:

(1) The density of g’s in the triangle corresponding to AB is 0.
(2) rðDÞoq2:
(3) The matrix D has no square submatrix D0 (i.e., D0 ¼ ðDi; jÞi; jAI for some

IDf1;y;mg), such that the sum of the entries in any column in D0 is q2:

We remark that since the sum of the entries in any column of D is at most q2; we

must have rðDÞpq2: Moreover, rðDÞoq2 unless q2 itself is an eigenvalue of D (in

which case rðDÞ ¼ q2).
The equivalence ð2Þ3ð3Þ in Theorem 10 is certainly well known, but for the sake

of completeness the proof is given among the proofs of the other results.

Theorem 11. (1) There exists an algorithm which, given a recurrence relation of the

form (1.1), bounded initial conditions and ga0 in F; decides whether the density of g’s
in the corresponding triangle is 0. In particular, there exists an algorithm which decides

whether the density of 0’s is 1.
(2) There exists an algorithm which, given a recurrence relation of the form (1.1),

checks if there exist bounded initial conditions for which the density of 0’s is not 1.

Examples 5,7,8 (Continued). Let us demonstrate Theorem 10 on the previous

examples. In Examples 7,8, the sum of the entries in each column of D is 4 ¼ 22; so
that D has a submatrix satisfying the third property in Theorem 10 (take I ¼
f1; 2;y;mg and D0 ¼ D). In particular, the density of 1’s is not 0, and thus the
density of 0’s is not 1.
However, in Example 5, the sum of the entries in any column of D is less than 9.

Thus D has no submatrix as above, and the density of 2’s is 0. Similarly, the density
of 1’s is 0, which implies that the density of 0’s is 1.

3. First-order DLRs

We begin the section with several claims on general DLRs. Then we restrict
ourselves to first-order DLRs, and prove the results stated in Section 2 on such DLRs.

ARTICLE IN PRESS
Y. Moshe / Journal of Number Theory 103 (2003) 109–121 115



Lemma 12. Let AB be a DLR of order d. Then AB satisfies also the following

recurrence of order qd:

ABði; jÞ ¼
Xr

k¼1
ckABði � qik; j � qjkÞ; iXqd; jX0:

Proof. It is well known that a double sequence ðai; jÞN;N
i¼0; j¼�N

satisfies a recurrence

relation of the form (1.1) if and only if its generating function GðX ;Y Þ ¼P
N;N
i¼0; j¼�N

ai; jX
iY j is a rational function of the form P

1�Q
; where Q ¼ QðX ;Y Þ ¼Pr

k¼1 ckX ik Y jk ; and P ¼ PðX ;YÞ is a polynomial of degree less than d in X :

Since jFj ¼ q it follows that QðX ;YÞq ¼ QðX q;Y qÞ; and thus

G ¼ Pð1þ Q þ?þ Qq�1Þ
ð1� QÞð1þ Q þ?þ Qq�1Þ ¼

Pð1þ Q þ?þ Qq�1Þ
1� QðX q;Y qÞ ;

which implies that AB satisfies the required recurrence. &

Proof of Proposition 3. The proposition follows immediately from Lemma 12. &

Lemma 13. For all nX0:

#ðAB; n þ 1Þ ¼
Xq�1
s;t¼0

#ðABs;t ; nÞ:

Proof. The sets A
s;t
B ; 0ps; toq; form a splitting of AB into q2 parts, in which the

elements of the first qnþ1 rows of AB are divided between the first qn rows of the sets

A
s;t
B : &

Proof of Proposition 4. Given initial conditions C with lðCÞpL and s; toq; we will
prove that lðCs;tÞpL: Then, by induction on i; it will follow that for every C0AXi we
have lðC0ÞpL:
First note that ACði; jÞ ¼ 0 for every pair ði; jÞ with j4L þ Mi (since these pairs do

not belong to the corresponding triangle). In particular, we get ACði; jÞ ¼ 0 for every
ipqd � 1 and j4L þ Mðqd � 1Þ: Thus, As;t

C ði; jÞ ¼ 0 for all iod and j4LþMðqd�1Þ
q

;

and so lðCs;tÞpLþMðqd�1Þ
q

: Now, since LX
Mðqd�1Þ

q�1 ; we get easily that LþMðqd�1Þ
q

pL;

and thus lðCs;tÞpL: &

Proof of Theorem 1. DenoteMn ¼ maxCAX #ðAC ; nÞ: Let C be an element of X :We

will prove first that there exists a k with #ðAC ; nÞpðq2k � 1ÞMn�k for every nXk:
The main idea is to use repeatedly Lemma 13 in order to split #ðAC ; nÞ into a sum

of q2k elements, each of which is #ðAE ; n � kÞ for some EAX : The key is to prove
that at least one of these E’s is 0, and thus we will get #ðAE ; n � kÞ ¼ 0: For this
purpose we focus on the decomposition of the first row of AC (which is essentially C).
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Define the weight wðCÞ of CAX as the number of nonzero elements of C; namely,
since C consists of a single row, wðCÞ ¼ jf j :Cð0; jÞa0gj: The elements of C are

divided between the q systems of initial conditions ðC0;tÞtoq; and thus, assuming

Ca0; there must exist some t for which wðC0;tÞowðCÞ: Using Lemma 13, we
conclude that #ðAC ; nÞ is a sum of q2 (not necessarily distinct) elements from
f#ðAE ; n � 1Þ: EAXg; and that wðEÞpwðCÞ � 1 for at least one of these.
By induction on k; we get that #ðAC ; nÞ is a sum of ðq2Þk elements from

f#ðAE ; n � kÞ: EAXg; and that for at least one of them we have wðEÞpminðwðCÞ �
k; 0Þ: Taking kXwðCÞ; we get that wðEÞ ¼ 0 for one of these E’s, and hence E ¼ 0;
which implies that #ðAE ; n � kÞ ¼ 0: This enables us to write #ðAC ; nÞ as a sum of
ðq2Þk � 1 elements from the set f#ðAE ; n � kÞ: EAXg; and thus #ðAC ; nÞpððq2Þk �
1ÞMn�k: Now, if kXmaxCAX wðCÞ; then #ðAC ; nÞpððq2Þk � 1ÞMn�k for all CAX ;

and we have Mnpððq2Þk � 1ÞMn�k:

By induction,Mbkpðq2k � 1Þb
M0 for every b: Hence the number #ðAB; bkÞ of g’s

in the first qbk rows is at most ðq2k � 1Þb
M0: Since the total number of entries in these

rows, belonging to the triangle corresponding to AB; is approximately
M
2

q2bk; the

density of g’s in the triangle is 0. &

4. Counting the number of occurrences of an element

In this section we prove the results relating to DLRs of any order.

Proof of Theorem 6. For every nX0 define an row m-vector ~vvn ¼ ðvn
i Þ

m
i¼1 by vn

i ¼
#ðABi

; nÞ (so that ~vv ¼~vv0). Let us prove that ~vvnþ1 ¼~vvnD for every nX0:

By Lemma 13, the ith entry of ~vvnþ1 is

vnþ1
i ¼ #ðABi

; n þ 1Þ ¼
Xq�1
s;t¼0

#ðA
B

s;t
i
; nÞ:

Thus, by the definition of D we have

vnþ1
i ¼

Xm

r¼1
Dr;i#ðABr ; nÞ;

which is the ith entry of ~vvnD: Using induction we conclude that ~vvn ¼~vv0Dn; and in
particular

~vvDn~eei ¼~vv0Dn~eei ¼~vvn~eei ¼ vn
i ¼ #ðABi

; nÞ: &

Lemma 14. (1) For every 1pipm there exists an niX0 such that the ith entry of the

row vector ~vvDni is positive.
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(2) For every 1pjpm there exists an ljX0 such that the jth entry of the column

vector Dlj~ee1 is positive.

Proof. (1): By the definition of X 0; the initial conditions Bi cannot be g-trivial. Thus
there exists niX0 for which #ðABi

; niÞ40; and so ~vvDni~eei40:
(2): It can be easily proven by induction on n that the jth entry of Dn~ee1 is positive if

and only if BjAXn: Thus the claim follows from the observation that

BjA
S

N

k¼0 Xk: &

Proof of Proposition 9. We use the following fact which is obtained easily from
Jordan’s form of a matrix D:

Let D be a real square matrix and r the spectral radius of D. Then there exist

positive numbers C; e such that CrnpjjDnjj
N
pnern for all large enough n (where

jjEjj
N

¼ maxi; jjei; jj for a matrix E ¼ ðei; jÞ).
Since #ðAB; nÞ ¼~vvDn~ee1; we conclude that

#ðAB; nÞpmmaxð~vvÞ � jjDnjj
N
pmmaxð~vvÞnern:

Thus, for e04e we have #ðAB; nÞpne0rn for large enough n:
It remains to prove that there exists a positive constant C such that#ðAB; nÞXCrn

for sufficiently large n:We prove first that there exists NX0 such that for every nX0
we have #ðAB; n þ NÞXjjDnjj

N
: Let ni and lj be as in the previous lemma and take

N ¼ max1pi; jpmðni þ ljÞ: Let nX0; and let Dn
i; j be an entry of Dn such that jjDnjj

N
¼

Dn
i; j: By the previous lemma, the ith and jth entries of ~vvDni and Dlj~ee1; respectively,

are positive, and thus (noting that the entries of D are integers) they are at least 1.
We conclude that

#ðAB; n þ NÞX#ðAB; n þ ni þ ljÞ ¼~vvDni DnDlj~ee1XDn
i; j ¼ jjDnjj

N
:

Let nXN; and denote n0 ¼ n � N: We have #ðAB; n0 þ NÞXjjDn0 jj
N
; and thus

#ðAB; nÞ ¼ #ðAB; n0 þ NÞXCrn0 ¼ C

rN

� �
rn

for all large enough n: &

Proof of Theorem 10. (1) 3 (2): Let Tn be the number of elements in the first qn

rows of the triangle corresponding to AB: Since

Tn ¼ qnð2ðlðBÞ þ 1Þ þ ðqn � 1ÞMÞ
2

;

there exist constants C1;C240 such that C1ðq2ÞnpTnpC2ðq2Þn: Since the number
#ðAB; nÞ of g’s in those rows satisfies Crnp#ðAB; nÞonern for sufficiently large n;

the density of g’s is 0 if and only if roq2:
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(2)3 (3): Let E ¼ DT be the transpose of D:We prove that rðEÞXq2 if and only
if E has a submatrix E0 ¼ ðEi; jÞi; jAI such that the sum of the entries in any row in E0

is q2:

Assume that E has such a submatrix E0; and define a column m-vector ~ww ¼ ðwiÞm
i¼1

by wi ¼ 1 if iAI and wi ¼ 0 otherwise. It turns out that E~ww ¼ q2~ww; and thus

rðEÞXq2:

Conversely, assume that E has an eigenvalue l with jljXq2; and let ~ww ¼ ðwiÞm
i¼1 be

a corresponding eigenvector. We may assume (by multiplying ~ww by a scalar) that

maxijwij ¼ 1: Let I ¼ fi : jwij ¼ 1g: Since E~ww ¼ l~ww; we have
Pm

j¼1 Ei; jwj ¼ lwi;

which implies that
Pm

j¼1 jEi; jjjwjjXq2 for all iAI : Since the entries in the ith row of E

are nonnegative, and their sum is at most q2; we must have
P

jAI Ei; j ¼ q2 for all

iAI : &

Proof of Theorem 11. (1) Note that the density of 0’s is 1 if and only if the density of
every nonzero element is 0. Thus, it suffices to give an algorithm which checks
whether the density of any given nonzero gAF is 0: This can be accomplished by the
following steps.
(a) Construct the set X :

X0 :¼ B; i :¼ 0
do Xiþ1 :¼ Cs;t : CAXi; 0ps; toq

i :¼ i þ 1
until XiD

Si�1
k¼0Xk

X :¼
Si�1

k¼0 Xk

(b) Remove the g-trivial elements from X : in order to identify the g-trivial
elements of X ; define a directed graph G ¼ ðX ;EÞ by letting ðC1;C2ÞAE if and only

if Cs;t
1 ¼ C2 for some ðs; tÞ with 0ps; toq: Let U be the set of elements for which

#ðAC ; 0ÞX1: Using Lemma 13, it follows that the g-trivial elements of X are exactly
the vertices of G from which there is no directed path to U : Thus, the following steps
construct X 0:

X 0 :¼ U

while (there exist vAX \X 0 and uAX 0 with ðv; uÞAE)
X 0 :¼ X 0,v

(c) Construct the matrix D and check if it has a submatrix as in Theorem 10:
This can be done as follows:

D0 :¼ D

while (there exists an column in D0 whose sum of entries is less than q2)
remove this column and the corresponding row from D0

If (D0 is the empty matrix)
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then return ‘‘there is no such submatrix’’
else

return ‘‘D0 is a submatrix as in Theorem 10’’

(2) Let B denote the initial conditions:

Bðd � 1; 0Þ ¼ 1 and Bði; jÞ ¼ 0 for all other iod and jX0:

Observe that any bounded initial conditions are obtained as a linear combination of
translates of B: Thus, if there exists initial conditions C such that the density of 0’s in
AC is less than 1; then the density of 0’s in AB is also less than 1: Consequently, we
only have to apply the algorithm of (1) to AB: &
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