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ON STEPHAN’S CONJECTURES CONCERNING PASCAL
TRIANGLE MODULO 2 AND THEIR POLYNOMIAL

GENERALIZATION

VLADIMIR SHEVELEV

Abstract. We prove a series of Stephan’s conjectures concerning Pas-
cal triangle modulo 2 and give a polynomial generalization.

1. Introduction

Consider Pascal triangle for binomial coefficient modulo 2. If to read

every row of this triangle as a binary number, then we obtain the following

sequence {c(n)}n≥0 (cf. A001317 in [11]):

(1.1) 1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, ...

It is easy to see that

(1.2) c(2n) ≡ 1 (mod 4), n = 0, 1, ...

Denote

(1.3) l(n) =
c(2n)− 1

4
.

In 2004, for sequence {l(n)}n≥0, R. Stephan formulated a series of the fol-

lowing conjectures (cf. his comments to A089893 in [11]):

Conjecture 1.

(1.4) l(2k) = 22
k+1−2.

Conjecture 2.

(1.5) lim
n→∞

l(2n+ 1)/l(2n)) = 5.

Conjecture 3.

(1.6) lim
n→∞

l(4n + 2)/l(4n+ 1)) = 17/5.

Conjecture 4.

(1.7) lim
n→∞

l(8n+ 4)/l(8n+ 3)) = 257/85.
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etc.

We add that Moscow PhD student S. Shakirov conjectured (private com-

munication) that a generating function for sequence {c(n)} is

(1.8)
∞∏

k=0

(1 + x2k + (2x)2
k

) =
∞∑

n=0

c(n)xn.

In this paper we prove these conjectures and give a polynomial general-

izations.

2. On sequence A001317

Consider an infinite in both sides (0, 1)-sequence with a finite set of 1’s

which we call C-sequence. Removing in it all 0’s before the first 1 and

after the last 1, we obtain some odd number which we call the kernel of C-

sequence. Every C-sequence generates a new C-sequence, if to write sums

of every pair of its adjacent terms modulo 2. If to consider infinite iterations

of such process beginning with C-sequence with kern 1, then we obtain C-

sequences, the kernels {c(i)}i≥0 of which form Pascal’s triangle for binomial

coefficients modulo 2. Note that, c(0) = 1 and c(i) contains i + 1 binary

digits.

Consider now sequence {d(n)} defined by the formula d(0) = 1; for n ≥ 1,

if binary expansion of n is

(2.1) n =

m∑

i=1

2ki,

then

(2.2) d(n) =
m∏

i=1

F (ki),

where

(2.3) F (n) = 22
n

+ 1, n ≥ 0,

is Fermat number. Such decomposition of d(n) we call its Fermat factoriza-

tion.

From (2.1)-(2.2) immediately follows a generating function for {d(i)} :

(2.4)

∞∏

k=0

(1 + F (k)x2k) =

∞∑

n=0

d(n)xn, 0 < x <
1

2
.

Note that sequence {d(i)} possesses the following properties:

1) d(n) is a binary number with n+ 1 (0, 1)-digits;

2) numbers {d(i)} are 1 and all Fermat numbers or products of distinct

Fermat numbers;
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3) number of Fermat factors in the product equals to d(n) is the number

of 1’s in the binary expansion of n.

4) F (i) divides d(n), n > 1, if and only if it is a factor in product (2.2).

Proofs of these properties is very easy: 1) follows from a simple induction;

2) and 3) follow from the definition; 4) follows from the well known fact (cf.,

e.g., [12]) that every two Fermat numbers are relatively prime, in view of

recursion

(2.5) F (n) = 2 +
n−1∏

i=0

F (i).

Theorem 1. For n = 0, 1, ..., we have

(2.6) c(n) = d(n).

Proof. We use induction, the base of which is c(0) = d(0) = 1, c(1) =

d(1) = 3, c(2) = d2 = 5. Suppose that c(i) = d(i), for i ≤ k. Let m

be the most number for which F (m) divides c(k) = d(k). In non-trivial

case, when c(k) 6= F (m), using property 4), for some r < k, we have

c(k) = d(r)F (m) = c(r)F (m). Furthermore, since, by the condition, F (m)

is the most Fermat divisor of c(k) and, in view of (2.5), we have

(2.7) c(r) =
c(k)

F (m)
≤

m−1∏

i=0

F (i) = F (m)− 2.

Besides, since c(r) < c(k), then, by the inductive supposition,

c(r + 1) = d(r + 1).

Adding the case when c(k) = F (m), let us prove a recursion: c(0) =

1, c(1) = 3, c(2) = 5; for k ≥ 2,

(2.8) c(k + 1) =







3F (m), if c(k) = F (m),

F (m+ 1), if 1 < c(r) = F (m)− 2,

F (m)c(r + 1), if 1 < c(r) < F (m)− 2.

Let c(k) = F (m), m ≥ 1. C-sequence with kernel c(k) is

...01 0...0
︸︷︷︸

2m−1

10...

Thus the following C-sequence with kernel c(k + 1) is

...011 0...0
︸︷︷︸

2m−2

110...

Comparing kernels c(k) and c(k + 1), we conclude that c(k + 1) = 3c(k) =

3F (m).



ON STEPHAN’S CONJECTURES CONCERNING PASCAL TRIANGLE 4

Furthermore, if c(r) = F (m)− 2, then, by (2.7), we have

c(k) = F (m)c(r) = F (m)(F (m)− 2) = F (m+ 1)− 2 = 11...1
︸ ︷︷ ︸

2m+1

.

Thus the C-sequence with kernel c(k) is

...0 11...1
︸ ︷︷ ︸

2m+1

0...

Therefore, by the definition, the C-sequence with kernel c(k + 1) is

...01 0...0
︸︷︷︸

2m+1−1

10...

and we see that c(k + 1) = F (m+ 1).

Let now c(r) < F (m)− 2. Since, by the supposition of induction, c(r) =

d(r). Therefore, c(r) is a product of Fermat numbers and

c(r) ≤

∏m−1
i=0 F (i)

F (0)
=

F (m)− 2

F (0)
.

Hence, c(r) is not more than (2m − 1)-digits odd binary number. Since

c(k) = F (m)c(r) = 22
m

c(r) + c(r),

then c(k) has the binary expansion of the form

(2.9) c(k) = c(r) 0...0
︸︷︷︸

l

c(r),

where l ≥ 1.

Passing on to the following kernel, we have:

c(k + 1) = c(r + 1) 0...0
︸︷︷︸

l−1

c(r + 1),

where l − 1 ≥ 0. Thus

c(k + 1) = c(r + 1)22
m

+ c(r + 1) = c(r + 1)F (m).

This completes formula (2.8). From this formula we conclude that c(k + 1)

is a term of sequence {d(i)}. Moreover, since c(k+1) contains k+2 binary

digits, then, in view of property 1) of numbers {d(i)}, both of c(k + 1) and

d(k + 1) contain (k + 2) binary digits. Therefore, c(k + 1) = d(k + 1).�

Remark 1. In proof of Theorem 1 we essentially followed to our arguments

from preprint [9], 1991.

Remark 2. Hewgill [4], for the first time, found a relationship between

Pascal’s triangle modulo 2 and Fermat numbers. In fact, using a simple

induction, he proved the following explicit formula for the binary represen-

tation of cn:
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cn = (

⌊log2 n⌋∏

i=0

F
(⌊ n

2i
⌋ (mod 2))

i )2.

Remark 3. Karttunen [6] gave a representation of cn in the Fibonacci num-

ber system.

Corollary 1. Conjectural generating formula (1.8) is true.

Proof. According to (2.4) and Theorem 1, we have

(2.10)
∞∏

k=0

(1 + F (k)x2k) =
∞∑

n=0

c(n)xn, 0 < x <
1

2
.

It is left to note that

1 + F (k)x2k = 1 + x2k + (2x)2
k

.�

Denote s(n) the number of 1’s in the binary expansion of n.

Corollary 2. a) Number of factors in Fermat factorization of c(n) is s(n).

b) Moreover, the following formula holds

(2.11) s(c(n)) = 2s(n).

Proof. a) follows from Theorem 1 and property 3) of numbers {d(n)}.

b) Let, firstly, c(k) be not a Fermat number and, as in proof of The-

orem 1, m be the most number for which F (m) divides c(k), such that

c(k) = F (m)c(r). Since the difference between numbers of factors in Fer-

mat factorization of c(k) and c(r) is 1, then, according to a), we have

s(k) = s(r) + 1.

Now we use induction. If the statement is true for i ≤ k − 1, then, in

particular, s(c(r)) = 2s(r). Therefore, by (2.9), we have

s(c(k)) = 2s(c(r)) = 2 · 2s(r) = 2s(r)+1 = 2s(k).

It is left to consider case c(k) = F (l). Here, by a), s(k) = 1 and (2.9) satis-

fies trivially. �

Note that point b) of Corollary 2 means that the number of odd bino-

mial coefficient in n-th row of Pascal triangle is 2s(n). It is known result

of J.Glaisher [2]. His proof was based on well known Lucas (1878) com-

parison modulo 2: if the binary representations of numbers m ≥ t are

m = m1...mk, t = t1...tk (with, probably, some first ti = 0), then

(
n

t

)

≡
m∏

i=0

(
ni

ti

)

(mod 2).
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In [3] A.Granville gives a new interesting proof of Glaisher’s result. Our

proof is the third one. Generalizations in other directs see in [1], [3], [5], [8],

[10].

Corollary 3. If F (m) is the most Fermat divisor of numbers c(k − 1) and

c(l − 1) from interval (1, F (m)− 2), then

(2.12) c(k − 1)c(l) = c(l − 1)c(k).

Proof. Using (2.8), we have

c(k) = c(k − 1)F (m), c(l) = c(l − 1)F (m)

and (2.12) follows. �

Corollary 4. If k = 2ml + 2m−1, m ≥ 1, then

(2.13) c(k) = c(2ml)F (m− 1).

Proof. From (2.1)-(2.2), we immediately have d(k) = d(2ml)F (m − 1),

and (2.13) follows from Theorem 1. �

3. Proof of Conjecture 1

Now proof of Conjecture 1 is especially simple. Indeed, in view of (1.3)

and (2.3), formula (1.4) of Conjecture 1 can be rewritten as

(3.1) c(2n) = F (n),

where n = k + 1 ≥ 1.

According to Corollary 1a), number c(2n) has only one Fermat factor,

i.e., for some t, we have c(2n) = Ft. Besides, by the definition, c(2n) has

2n + 1 binary digits. It is left to notice that, the unique Fermat number

having 2n + 1 binary digits is F (n), i.e., t = n and c(2n) = F (n).�

In addition, prove that

(3.2) c(2n − 1) = F (n)− 2.

Indeed, by the definition of sequence {d(n)} and (2.3), we conclude that

F (n) − 2, as a product of distinct Fermat numbers, is a term of sequence

{d(i)} and thus, by Theorem 1, is a term of sequence {c(i)}. Now it is left

to notice that numbers c(2n − 1) and F (n)− 2 have the same number (2n)

of binary digits. �

4. Proof of Conjectures 2, 3, 4, etc.

Lemma 1. For every n ≥ 0, t ≥ 1 we have identity

(4.1) (F (t− 1)− 2)c(2tn) = c(2tn+ 2t−1 − 1).
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Proof. As in proof of (3.2), we conclude that (F (t−1)−2)c(2tn) is a term

of sequence {c(i)}. Note that number c(2tn+2t−1−1) has 2tn+2t−1 binary

digits. Besides, number F (t− 1)− 2 = 1...1
︸︷︷︸

2t−1

and c(2tn) has 2tn + 1 binary

digits. Therefore, number (F (t−1)−2)c(2tn) contains not less binary digits

than number 1...1
︸︷︷︸

2t−1

0...0
︸︷︷︸

2tn

, i.e. (F (t−1)−2)c(2tn) has not less than 2t−1+2tn

binary digits. On the other hand, (F (t − 1) − 2)c(2tn) contains not more

binary digits than number

1...1
︸︷︷︸

2t−1

1...1
︸︷︷︸

2tn

= (22
t−1

− 1)(22
tn − 1) ≤ 22

t−1+2tn − 1,

i.e., (F (t− 1)− 2)c(2tn) has not more than 2t−1 + 2tn binary digits. Thus

number (F (t − 1) − 2)c(2tn) has exactly 2t−1 + 2tn binary digits. Conse-

quently, two terms (F (t − 1) − 2)c(2tn) and c(2tn + 2t−1 − 1) of sequence

{c(i)} has the same number of digits. Therefore, equality (4.1) holds. �

Lemma 2. For every n ≥ 0, t ≥ 1, we have identities

(4.2) (F (t− 1)− 2)c(2tn+ 2t−1) = F (t− 1)c(2tn+ 2t−1 − 1),

(4.3) (F (t− 1)− 2)c(2tn+ 2t−1) = 3F (t− 1)c(2tn + 2t−1 − 2).

Proof. Multiplying (4.1) by F (t− 1) and using formula (2.13) of Corol-

lary 4 (for l = n and m = t), we obtain (4.2). Furthermore, if to take in

Corollary 4 m = 1, l = 2t−1n+2t−2−1, then, in view of F (0) = 3, we have

c(2tn+ 2t−1 − 1) = 3c(2tn + 2t−1 − 2), and (4.3) follows. �

Now we are able to get a proof of Conjectures 2, 3, 4, etc. According to

(1.3), we have

(4.4) c(2n) = 4l(n) + 1.

Let in (4.3) t ≥ 2. Then, by (4.4), we have

(F (t− 1)− 2)(4l(2t−1n+ 2t−2) + 1) = 3F (t− 1)(4l(2t−1n+ 2t−2 − 1) + 1),

or
4l(2t−1n+ 2t−2) + 1

4l(2t−1n + 2t−2 − 1) + 1
=

3F (t− 1)

F (t− 1)− 2
.

Hence, we finally find

(4.5) lim
n→∞

l(2t−1n + 2t−2)

l(2t−1n+ 2t−2 − 1)
=

3F (t− 1)

F (t− 1)− 2
.

�
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So, if t = 2, 3, 4, 5, ..., then the right hand side is

3 · 5

5− 2
= 5,

3 · 17

17− 2
=

17

5
,

3 · 257

257− 2
=

257

85
,

3 · 65537

65537− 2
=

65537

21845
, ...

respectively.

5. Second proof of key identity (4.3) based on notion of

orthogonality of nonnegative integers

We can essentially simplify our proof of Stephan’s conjectures by a sim-

plification of key identity (4.3). Put to every nonnegative integer n to one-

to-one correspondence (0, 1)-vector n by the rule: if the binary expansion

of n is n = n1...nm, then

(5.1) n = ...0...0n1...nm

with infinitive 0’s before n1. For two integers u ≤ v with vectors u =

...0...0u1...ul and v = ...0...0v1...vm, l ≤ m introduce ”circ-product” by

formula ( which is, for the corresponding vectors, similar to dot-product)

(5.2) u ◦ v = uv = ulvm + ul−1vm−1 + ...+ u1vm−l+1.

Definition 1. We call two non-negative integers u, v mutually orthogonal

(u⊥v), if u ◦ v = 0.

Note that if (u⊥v), then the sets of positions of 1’s in their binary repre-

sentations do not intersect.

An important source for obtaining various identities for numbers {c(n)}

is the following exponential-like ”addition theorem”.

Lemma 3. If n1⊥n2, then

(5.3) c(n1 + n2) = c(n1)c(n2).

Proof. Let n1 ≥ n2 and the binary expansions of n1 and n2 be n1 =
∑m

i=1 2
ki and n2 =

∑m

j=1 2
lj (with, probably, some first li = 0). Since

n1⊥n2, then ki 6= lj , i, j = 1, ..., m. Thus the binary expansion of n1 + n2

is
∑m

i=1 2
ki +

∑m

j=1 2
lj . Therefore, according to (2.1)-(2.2), we have

c(n1 + n2) = (

m∏

i=1

F (ki))(

m∏

j=1

F (lj)) = c(n1)c(n2).�

Second proof of (4.3).

a)Using the notion of numbers orthogonality, we immediately obtain for-

mula (4.2) by the following way.

By (3.2), we have
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(5.4) F (t− 1)− 2 = c(2t−1 − 1).

Since, evidently, (2t−1 − 1)⊥(2tn+ 2t−1), then, using (5.3)-(5.4), we find

(F (t− 1)− 2)c(2tn + 2t−1) = c(2tn+ 2t−1 + 2t−1 − 1) = c(2tn + 2t − 1).

On the other hand, since 2t−1⊥(2tn+ 2t−1 − 1), then

F (t− 1)c(2tn+ 2t−1 − 1) = c(2t−1)c(2tn + 2t−1 − 1) = c(2tn + 2t − 1).

Thus we conclude that (4.2) holds.

b) Note now that, 1⊥2tn+2t−2. Thus 3c(2tn+2t−1−2) = c(2tn+2t−1−1)

and (4.3) follows as well.�

Further we consider a polynomial generalization.

6. Polynomials pn(z), qn(z) and their properties

Consider sequence of polynomials (cf.[3])

(6.1) pn(z) =
1

2

n∑

i=0

(1− (−1)(
n

i))zi, n = 0, 1, ..., z ∈ C,

such that

(6.2) pn(0) = 1, pn(1) = 2s(n), pn(2) = c(n).

The second equality we have in view of (2.9).

By the same way, one can prove a generalization of Theorem 1.

Theorem 2. For n ≥ 1, we have the following decomposition of pn(z) :

(6.3) pn(z) =
m∏

i=0

(z2
ki + 1),

if the binary expansion of n is

(6.4) n =

m∑

i=0

2ki.

Thus a generating function for polynomials {pn(z)} is

(6.5)

∞∏

k=0

(1 + (z2
k

+ 1)x2k) =

∞∑

n=0

pn(z)x
n, 0 < x <

1

|z|
.

In particular, we have

(6.6) p2n(z) = z2
n

+ 1.

Note that, if n has binary expansion (6.4), then 2n =
∑m

i=0 2
ki+1. Since

z2
ki+1

= (z2)2
ki , then we have

(6.7) p2n(z) =
m∏

i=0

((z2)2
ki + 1) = pn(z

2).
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Analogously, since 2n+ 1 = 1 +
∑m

i=0 2
ki+1, then

(6.8) p2n+1(z) = (z + 1)
m∏

i=0

((z2)2
ki + 1) = (z + 1)pn(z

2).

Formulas (6.7)-(6.8) give a simple recursion for polynomials {pn(z)}, which

recently were obtained by S. Northshield (cf. [7], Lemma 3.1) in a quite

another way.

Note that every two different polynomials in sequence {p2i(z) = z2
i

+1}i≥0

are respectively prime. It follows from the identity

(6.9) p2n(z) = 2 + (z − 1)
n−1∏

i=0

p2i(z).

Put

(6.10) Fn(z) = p2n(z) = z2
n

+ 1.

The following identity holds (cf. [9])

(6.11)
∞∑

n=0

1

pn(z)s
=

∞∏

k=0

(1 + Fk(z)
−s), |z| > 1, ℜs > 0.

In particular, for z = 2, s = 1, we have

(6.12)
∞∑

n=0

1

c(n)
=

∞∏

k=0

(1 + F−1
k ) = 1.700735495... .

According to Theorem 2 and in view that s(n) ≡ mn (mod 2), where mn =

0, 1, 1, 0, 1, 0, 0, 1, 1... is Thou-Morse sequence, together with (6.11), we have

also

(6.13)

∞∑

n=0

(−1)mn

pn(z)s
=

∞∏

k=0

(1− Fk(z)
−s), |z| > 1, ℜs > 0.

Let us show that, in particular, for s = 1, we have

(6.14)
∞∑

n=0

(−1)mn

pn(z)
= 1−

1

z
, |z| > 1.

Indeed, since

1−
1

Fn(z)
= (1 +

1

z2n
)−1,

then
∞∏

k=0

(1− Fk(z)
−1) =

∞∏

k=0

(1 +
1

z2n
)−1

and it is left to note that

(6.15)

∞∏

n=0

(1 +
1

z2n
) = 1−

1

z
.
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In particular, together with (6.12), for z = 2, we find

(6.16)
∞∑

n=0

(−1)mn

c(n)
=

1

2
.

In addition, note that, if to consider all different finite products of not

necessarily distinct polynomials from sequence {pn(z)}, then we obtain a

sequence of polynomials qn(z) :

q0(z) = 1, q1(z) = z + 1, q2(z) = z2 + 1, q3(z) = (z + 1)2,

(6.17) q4(z) = (z + 1)(z2 + 1), q5(z) = z4 + 1, q6(z) = (z2 + 1)2.

For these polynomials, together with (6.11), we have the following analog

of Euler identity for primes:

(6.18)
∏

F∈F (z)

(1− F−s)−1 =

∞∑

n=0

1

qn(z))s
, |z| > 1, ℜs > 0,

where

F (z) = {Fn(z)}n≥0.

In particular, for s = 1, using (6.15), we have
∞∑

n=0

1

qn(z)
=

∏

F∈F (z)

(1− F−1)−1 =

(6.19)

∞∏

n=0

(1 +
1

z2n
)−1 =

z

z − 1
, |z| > 1.

Furthermore, introducing an analog of Möbius function

(6.20) ν(n) =

{

(−1)mn , if n is squarefree,

0, otherwise,

we get

(6.21)

∞∑

n=0

ν(n)

qn(z)s
=

∏

F∈F (z)

(1− F−s), |z| > 1, ℜs > 0.

In particular, for s = 1, we have

(6.22)

∞∑

n=0

ν(n)

qn(z)
= 1−

1

z
, |z| > 1.
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7. Polynomial generalization of Stephan’s relations

Now we consider a polynomial generalization of formulas of the previous

sections which leads us to the corresponding generalization of Stephan’s

relations. Since proof of the generalized formulas is quite analogous, then

we restrict ourself only by writing of the chain of them. For |z| > 1, we

have

(7.1) p2n−1 =
Fn(z)− 2

z − 1
.

This formula generalizes (3.2). Furthermore, the following generalization of

(2.13) holds:

(7.2) p2ml+2m−1(z) = p2ml(z)Fm−1(z).

In particular, taking in (7.2) m = 1, l = 2t−1n + 2t−2 − 1, in view of

F0(z) = z + 1, we find

(7.3) p2tn+2t−1−1(z) = (z + 1)p2tn+2t−1−2(z).

After that the corresponding generalization of formulas (4.1)-(4.3) is ob-

tained. We have

(7.4) (Ft−1(z)− 2)p2tn(z) = p2tn+2t−1−1(z),

(7.5) (Ft−1(z)− 2)p2tn+2t−1(z) = (z − 1)Ft−1(z)p2tn+2t−1−1(z),

(7.6) (Ft−1(z)− 2)p2tn+2t−1(z) = (z2 − 1)Ft−1(z)p2tn+2t−1−2(z).

Note that

(7.7) p2n(z) ≡ 1 (mod z2).

Put

(7.8) ln(z) =
p2n(z)− 1

z2
.

Let in (7.6) t ≥ 2. Then we have

(7.9)

(Ft−1(z)− 2)(z2l2t−1n+2t−2(z) + 1) = (z2 − 1)Ft−1(z)(z
2l2t−1n+2t−2−1(z) + 1),

or

(7.10)
z2l2t−1n+2t−2(z) + 1

z2l2t−1n+2t−2−1(z) + 1
=

(z2 − 1)Ft−1(z)

Ft−1(z)− 2

and, consequently,

(7.11) lim
n→∞

l2t−1n+2t−2(z)

l2t−1n+2t−2−1(z)
=

(z2 − 1)Ft−1(z)

Ft−1(z)− 2
.

In particular, for t = 2,
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lim
n→∞

l2n+1(z)

l2n(z)
= z2 + 1;

for t = 3,

lim
n→∞

l4n+2(z)

l4n+1(z)
=

z4 + 1

z2 + 1
;

for t = 4,

lim
n→∞

l8n+4(z)

l8n+3(z)
=

z8 + 1

(z4 + 1)(z2 + 1)
, etc.

In case of z = 2, we again obtain formulas (1.5)-(1.7).
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