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A REVERSE SIERPIŃSKI NUMBER PROBLEM

DAN KRYWARUCZENKO

Abstract. A generalized Sierpiński number base b is an integer k > 1
for which gcd(k+1, b−1) = 1, k is not a rational power of b, and k ·bn+1
is composite for all n > 0. Given an integer k > 0, we will seek a base b
for which k is a generalized Sierpiński number base b. We will show that
this is not possible if k is a Mersenne number. We will give an algorithm
which will work for all other k provided that there exists a composite in
the sequence {(k2m

+1)/ gcd(k+1, 2)}∞m=0.

1. introduction

A Sierpiński number k > 0 is an odd number such that k · 2n + 1 is
composite for all integers n > 0. Waclaw Sierpiński, in 1960, proved that
there are infinitely many such numbers [12] but found no exact values. (This
is a dual of a problem of Euler that Erdös solved in 1950 [6].) In 1962 John
Selfridge discovered what may be the smallest Sierpiński number, 78,557.
He showed that each term in the sequence 78557 · 2n + 1 is divisible by
one of the primes in the covering set {3, 5, 7, 13, 19, 37, 73}. After 45 years
of computing there remains only 6 possible numbers less than 78,557 that
must be eliminated to prove this is true [9].

In our previous paper [1], we extended the definition of Sierpiński numbers
to include other bases (as below) and found Sierpiński numbers for each of
the bases 2 ≤ b ≤ 100. We proved that for 33 of the bases, these were the
least possible Sierpiński numbers.

Definition 1.1. A Sierpiński number base b is an integer k > 1 for
which gcd(k+1, b−1) = 1, k is not a rational power of b, and k · bn+1 is
composite for all n > 0.

The gcd condition is to avoid having a single prime which divides every term
of the sequence; these are called trivial covers (or 1-covers). The rational
power condition avoids numbers of the form b2n + 1, the generalized Fermat
numbers. Some researchers do not exclude these and instead exclude those k
which allow polynomial factorization [8]. Others have generalized the notion
of Sierpiński numbers by altering the conditions on k without changing the
base b [11, 2, 3, 4, 5, 7].

Key words and phrases. Sierpiński number, covering set, generalized Fermat number,
Mersenne number.
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Definition 1.2. A cover for the sequence k · bn+1 (n > 0) is a finite set
of primes S = {p1, p2, . . . pm} for which each element of the sequence is
divisible by a prime in S. S is called a N-cover if N is the least positive
integer for which each prime in S divides k · bn+1 if and only if it divides
k · bn+N+1. We will call this integer N the period of the cover S.

In our previous paper we showed that every integer base b > 1 admitted a
Sierpiński number k. In this paper we will reverse the problem and ask for
each integer k > 1 is there a base b for which k is a Sierpiński number.

Using a program to find Sierpiński numbers for small bases [1] we found
that every positive integer less than 3000 is a Sierpiński number (with a
cover with period dividing 5040) for some base less than 10,000,000 except
for k = 2, 3, 5, 7, 15, 31, 63, 65, 127, 255, 511, 1023, and 2047.

A Mersenne is a number of the form 2m − 1 where (e.g., 28 − 1). We
will show that when k is a Mersenne number, k · bn + 1 can not have a
non-trivial cover. Most Sierpiński numbers arise through covers, though it
is also possible for them to arise by algebraic factorization or a combination
of the two [1]. But it is very unlikely that such factorizations arise when k
is a Mersenne [8, 10]. Once we eliminate the Mersenne numbers from the
list above we are left with 2, 5, and 65.

It was conjectured that there is no base which makes 2 a Sierpiński number
[13]. We will find bases for which 2, 5, and 65 are Sierpiński numbers, and
then characterize those k which cannot be Sierpiński numbers.

2. Preliminary Theorems

Theorem 2.1. Suppose k · bn + 1 has a cover S with period N . Then each
prime in S divides (−k)N − 1 and bN − 1.

Proof. Let S be such a cover and let p ∈ S. Then p divides k · bn + 1 for
some n with 1 ≤ n ≤ N . Since N is our period and p ∈ S we know p divides
k ·bn +1, k ·bn+N +1, and their difference k ·bn(bN − 1), but does not divide
k ·bn. So bN ≡ 1 (mod p). Now k ·bn +1 ≡ 0 (mod p) so k ≡ −b−n (mod p)
and (−k)N ≡ (b−n)N ≡ 1 (mod p). �

Notice 2 cannot be a member of a non-trivial cover because if 2 divides
k · bn + 1 and 2 divides bN − 1, then 2 divides gcd(b− 1, k + 1).

Theorem 2.2. If k is a Mersenne number and n ≥ 0, then k · bn + 1 cannot
have a non-trivial cover.

Proof. We will prove the contrapositive. Let S be a non-trivial cover of
k · bn + 1 with period N . Then there is some odd prime p ∈ S which divides
k · bN + 1. By the previous theorem, bN ≡ 1 (mod p), so p divides k + 1.
This means k + 1 has an odd prime divisor. Therefore, k + 1 is not a power
of 2. �

These theorem suggests the following approach to finding a base b which
makes k a Sierpiński number. First, select a period N for the cover. Then
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factor (−k)N −1. Using each of its prime divisors p, we would find a specific
b value such that p divides bN − 1, but not b − 1, and p divides k · bn + 1
for some n < N . If this is possible, then a list could be formed showing
the specific b values and n values satisfying the requirements for each prime.
After repeating this for each prime, determine whether there is a set of bases
and primes such that the entire set of N terms would be covered. If so, we
then solve the problem by using the Chinese Remainder Theorem.

We used this method to solve for b when k = 12. We have (−12)6 − 1 =
7 · 11 · 13 · 19 · 157. Using the primes 7, 13, and 19 coupled respectively with
base residues 4, 3, and 7 for b, the Chinese Remainder Theorem gave the
result b = 900. The primes in the cover {7, 13, 19} divide the sequence of
terms 12 · 900n + 1 with period 3 in the following pattern.

7, 19, 13,︸ ︷︷ ︸ 7, 19, 13,︸ ︷︷ ︸ . . .

However, with k = 2 we ran into difficulties. The approach appeared to
fail for all periods N ≤ 60. For example, when we set our period at 60 (a
smooth number which is likely to yield results), we cover either 2 · b15 + 1 or
2 · b45 + 1 but not both. When we set the period at 48, this process would
fail at one of these specific n values: {3, 9, 17, 15, 21, 27, 33, 39, 41, 45}. The
key problem is that k · bn + 1 ≡ 0 (mod p) may be impossible to solve for
a certain k, n, and p; so we will give an alternative approach in the next
section.

3. Period length a power of two

We need a few more results before we present our alternate method.

Theorem 3.1. If n > m ≥ 0, then gcd(k2m + 1, k2n + 1) = gcd(k + 1, 2).

Proof. Note k2m + 1 is one of the terms on the left of

(k − 1)(k + 1)(k2 + 1) · . . . · (k2n−1
+ 1) = k2n − 1 = (k2n + 1)− 2,

so gcd(k2m + 1, k2n + 1) divides 2. If k is even then the greatest common
divisor is one; otherwise it is 2. �

Theorem 3.2. If n > 0 and k > 1, then k2n + 1 has an odd prime factor.

Proof. If k is even, then k2n + 1 is an odd number greater than 1, so we are
done. If instead k is odd, then gcd(k2n + 1, 4) = 2 and (k2n + 1)/2 is an odd
number greater than or equal to 5, so again it has an odd prime factor. �

Theorem 3.3. Let p be an odd prime which divides k2m + 1 for some fixed
integer m > 0. For all odd integers n it is possible to solve k · bn + 1 ≡ 0
(mod p) for a solution b = (−k)j. This solution satisfies k · bM + 1 ≡ 0
(mod p) if and only if ordp(b) divides M − n.

Proof. Let m > 0. From what we are given (−k)2m ≡ −1 (mod p), hence
(−k)2m+1 ≡ 1 (mod p). So we know −k has order 2m+1 modulo p. To
solve k · bn + 1 ≡ 0 (mod p) for b, let b = (−k)j for some j ≥ 0 and solve
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(−k)j·n+1 ≡ 1 (mod p). It is sufficient to solve j ·n+1 ≡ 0 (mod ordp(−k))
which is possible because n and the order of−k (mod p) are relatively prime.
Note that j must be odd, so the solution b has order 2m+1 also. �

We are now able to present our new approach as Algorithm 1.

Algorithm 1: Find b so that k is a Sierpiński number base b

input k > 11

if k is a Mersenne number then2

return “[probably] not possible”3

else4

m← −15

repeat6

m← m + 17

pm ← the least odd prime which divides k2m+18

n← 2m + 19

solve k · bn
m + 1 ≡ 0 (mod pm) for bm10

until m > 0 and there is another odd prime which divides11

k2m+1
call this second prime pm+112

define bm+1 by k · bm+1 + 1 ≡ 0 (mod pm+1)13

find b so that b ≡ bi (mod pi) for 0 ≤ i ≤ m + 1, and14

gcd(k + 1, b− 1) = 1
return base b, cover S = {p0, p1, . . . pm+1}, period 2m+115

endif16

Theorem 3.4. Suppose k > 1 is not a Mersenne number. If there is a term
in the sequence

(3.1) {(k2m+1)/ gcd(k+1, 2)} (m > 0)

divisible by at least two distinct primes, then Algorithm 1 will find a base b
for which k is a Sierpiński number.

Before we present the proof, we will illustrate the use of this algorithm
with k = 2. After the first time through the loop (steps 6 through 11),
m = 0, p0 = 3, n = 2, and b0 ≡ 2 (mod 3). So after we solve for b ≡ b0,
3 will divide the second term of the sequence k · bv + 1 for v = {1, 2, . . . , }
and every other term because b has period 2 modulo 3. This prime begins
our cover and at this stage the pattern with which the primes in the cover
divides the terms k · bv + 1 for v = {1, 2, . . . , } and looks like the following:

, 3,︸ ︷︷ ︸ , 3,︸ ︷︷ ︸ . . .

That is, 3 divides 2 · bv + 1 for v = 2, 4, 6, . . . .



A REVERSE SIERPIŃSKI NUMBER PROBLEM 5

After the second time through the loop, m = 1, p1 = 5, n = 3, and b1 ≡ 3
(mod 5). So 5 divides the third term and then every fourth because 21+1 = 4
is the period of b1(modp1) by Theorem 3.3. So our divisibility pattern now
looks like:

, 3, 5, 3,︸ ︷︷ ︸ , 3, 5, 3,︸ ︷︷ ︸ . . .

After the third time through p2 = 17 and b2 has order 8, so we now have a
pattern with period 23

, 3, 5, 3, 17, 3, 5, 3,︸ ︷︷ ︸ , 3, 5, 3, 17, 3, 5, 3,︸ ︷︷ ︸ . . .

The primes for iterations four and five are 257 and 65537 see (Table 1),
leaving a pattern with period 25.

Notice that each time through the loop the period doubles; however, since
we have added just one prime to each stop we are still left with one hole.
If we were to ever get a case in which there were two odd primes dividing
k2m+1 then we can fill in that hole! In our example, it is the sixth iteration
in which this first occurs (when 225

+ 1 = 641 · 6700417), so we double the
period again but we can also now fill in the last hole. Finally, we solve
for b using the Chinese Remainder Theorem. Thus, when k = 2, we find
b = 16979062410086072498 and the cover {3, 5, 17, 257, 641, 65537, 6700417}
that repeats with period 64.

Similarly, with k = 5, we find b = 140324348 and the cover {3, 13, 17, 313,
11489} with a period of 16. Finally, for k = 65, b = 19030688904264 with
cover {3, 17, 113, 2113, 8925313} with a period of 16.

Proof of Theorem 3.4. The algorithm starts with an input k > 1. If k is
a Mersenne number, the algorithm throws it out because of Theorem 2.2.
Next, we start the loop with m = 0, and find the least odd prime p0 that
divides k + 1 (we know this exists because k is not a Mersenne). When
m = 0, it is also possible to solve k · b2

0 + 1 ≡ 0 (mod p), because k ≡ −1
(mod p). So if we let b0 ≡ −1 (mod p), then k · b2

0 + 1 ≡ 0 (mod p). Note
that if b ≡ b0 (mod p0) then p0 divides every other term in the sequence
k · bn + 1 because b0 has order 2 mod p0.

During the next loop m = 1 and we know that k21
+ 1 has an odd prime

factor (for all m > 0) from Theorem 3.2. Thus, we solve k · bn
1 + 1 ≡ 0

(mod p1) for base b1, which is possible (for all m > 0) by Theorem 3.3. By
Theorem 3.2, we know our solution has order 2m+1 = 4 so we have a pattern

, p0, p1, p0 ,︸ ︷︷ ︸ , p0, p1, p0,︸ ︷︷ ︸ . . .

We repeat this process (steps 6 − 11) until there are two odd primes
which divide k2m +1. For the first prime pm, the algorithm solves (as usual)
k ·bn

m +1 ≡ 0 (mod pm). With the second prime, pm+1, the algorithm solves
k · bm+1 + 1 ≡ 0 (mod pm+1) for base bm+1 to fill in the last hole in our
pattern. So we have a cover {p1, . . . , pm+1} which divide the terms k · bn + 1
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with a pattern determined by Theorem 3.3 to be

pm+1, p0, p1, p0, p2, p0, . . . pm, . . . p0, p1, p0︸ ︷︷ ︸ .

We then use the Chinese Remainder Theorem (step 13) to solve for b.
However, we must make sure the cover is not trivial so if gcd(k+1, b−1) 6= 1,
we can add p1p2 · · · · · pm+1 to b to get b′. Now gcd(k + 1, b′ − 1) = 1 by
Theorem 3.1. We are then left with a base b that makes k a Sierpiński
Number with a cover S and a period equal to 2m+1. �

Table 1. The Algorithm Table

m k2m + 1 pm n bm (mod p)
0 3 3 2 2
1 5 5 3 3
2 17 17 5 9
3 257 257 9 129
4 65537 65537 17 32769
5 641 · 6700417 641 33 321

6700417 1 3350208

4. Conclusion

It is highly unlikely that there exists an integer k for which the sequence
of generalized Fermat numbers of equation 3.1 are all prime. So given a k,
we have shown how to find bases b for which k · bn + 1 has non-trivial cover,
for all k for which these exist! However, this does not mean our choice of
b is the least. Computations have shown that our solution for k = 5 is the
smallest with period dividing 5040, but we do not know if the others are the
smallest.
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