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A REVERSE SIERPINSKI NUMBER PROBLEM

DAN KRYWARUCZENKO

ABSTRACT. A generalized Sierpinski number base b is an integer k > 1
for which ged(k+1,b—1) = 1, k is not a rational power of b, and k-b" +1
is composite for all n > 0. Given an integer k > 0, we will seek a base b
for which k is a generalized Sierpinski number base b. We will show that
this is not possible if k is a Mersenne number. We will give an algorithm
which will work for all other k provided that there exists a composite in
the sequence {(k*" 41)/ ged(k+1,2)}5_,.

1. INTRODUCTION

A Sierpinski number £ > 0 is an odd number such that k- 2™ 4+ 1 is
composite for all integers n > 0. Waclaw Sierpinski, in 1960, proved that
there are infinitely many such numbers [12] but found no exact values. (This
is a dual of a problem of Euler that Erdds solved in 1950 [6].) In 1962 John
Selfridge discovered what may be the smallest Sierpiriski number, 78,557.
He showed that each term in the sequence 78557 - 2" 4 1 is divisible by
one of the primes in the covering set {3,5,7,13,19,37,73}. After 45 years
of computing there remains only 6 possible numbers less than 78,557 that
must be eliminated to prove this is true [9].

In our previous paper [1], we extended the definition of Sierpiniski numbers
to include other bases (as below) and found Sierpiriski numbers for each of
the bases 2 < b < 100. We proved that for 33 of the bases, these were the
least possible Sierpinski numbers.

Definition 1.1. A Sierpiniski number base b is an integer £ > 1 for
which ged(k+1,b—1) = 1, k is not a rational power of b, and k - b"+1 is
composite for all n > 0.

The gcd condition is to avoid having a single prime which divides every term
of the sequence; these are called trivial covers (or 1-covers). The rational
power condition avoids numbers of the form b2" + 1, the generalized Fermat
numbers. Some researchers do not exclude these and instead exclude those k
which allow polynomial factorization [8]. Others have generalized the notion
of Sierpiniski numbers by altering the conditions on k& without changing the
base b [11, 2, 3, 4, 5, 7].

Key words and phrases. Sierpiriski number, covering set, generalized Fermat number,
Mersenne number.
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Definition 1.2. A cover for the sequence k - b"+1 (n > 0) is a finite set
of primes S = {p1,p2,...pm} for which each element of the sequence is
divisible by a prime in S. S is called a N-cover if IV is the least positive
integer for which each prime in S divides k - 5”41 if and only if it divides
k- b"tN41. We will call this integer N the period of the cover S.

In our previous paper we showed that every integer base b > 1 admitted a
Sierpinski number k. In this paper we will reverse the problem and ask for
each integer k > 1 is there a base b for which k is a Sierpinski number.

Using a program to find Sierpiniski numbers for small bases [1] we found
that every positive integer less than 3000 is a Sierpiniski number (with a
cover with period dividing 5040) for some base less than 10,000,000 except
for k=2,3,5,7,15,31,63,65,127,255,511, 1023, and 2047.

A Mersenne is a number of the form 2™ — 1 where (e.g., 28 — 1). We
will show that when k is a Mersenne number, k£ - b + 1 can not have a
non-trivial cover. Most Sierpiniski numbers arise through covers, though it
is also possible for them to arise by algebraic factorization or a combination
of the two [1]. But it is very unlikely that such factorizations arise when k
is a Mersenne [8, 10]. Once we eliminate the Mersenne numbers from the
list above we are left with 2, 5, and 65.

It was conjectured that there is no base which makes 2 a Sierpinski number
[13]. We will find bases for which 2, 5, and 65 are Sierpiriski numbers, and
then characterize those k which cannot be Sierpinski numbers.

2. PRELIMINARY THEOREMS

Theorem 2.1. Suppose k-b™" 4+ 1 has a cover S with period N. Then each
prime in S divides (—k)N — 1 and bN — 1.

Proof. Let S be such a cover and let p € S. Then p divides k- 0™ + 1 for
some n with 1 <n < N. Since N is our period and p € S we know p divides
E-b"+1, k-b"N 41, and their difference k- 5™ (b" — 1), but does not divide
k-5 So b =1 (mod p). Now k-b"+1=0 (mod p) so k = —b"" (mod p)
and (—k)N = (b)Y =1 (mod p). O

Notice 2 cannot be a member of a non-trivial cover because if 2 divides
k-b" + 1 and 2 divides b — 1, then 2 divides ged(b — 1, k + 1).

Theorem 2.2. If k is a Mersenne number and n > 0, then k-b"+1 cannot
have a non-trivial cover.

Proof. We will prove the contrapositive. Let S be a non-trivial cover of
k-b" + 1 with period N. Then there is some odd prime p € S which divides
k-bN + 1. By the previous theorem, b = 1 (mod p), so p divides k + 1.
This means k + 1 has an odd prime divisor. Therefore, k + 1 is not a power
of 2. O

These theorem suggests the following approach to finding a base b which
makes k a Sierpinski number. First, select a period N for the cover. Then
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factor (—k)" — 1. Using each of its prime divisors p, we would find a specific
b value such that p divides b — 1, but not b — 1, and p divides k - b + 1
for some n < N. If this is possible, then a list could be formed showing
the specific b values and n values satisfying the requirements for each prime.
After repeating this for each prime, determine whether there is a set of bases
and primes such that the entire set of NV terms would be covered. If so, we
then solve the problem by using the Chinese Remainder Theorem.

We used this method to solve for b when k = 12. We have (—12)% — 1 =
7-11-13-19-157. Using the primes 7, 13, and 19 coupled respectively with
base residues 4, 3, and 7 for b, the Chinese Remainder Theorem gave the
result b = 900. The primes in the cover {7,13,19} divide the sequence of
terms 12 - 900™ + 1 with period 3 in the following pattern.

7,19, 13, 7, 19, 13, ...

However, with & = 2 we ran into difficulties. The approach appeared to
fail for all periods N < 60. For example, when we set our period at 60 (a
smooth number which is likely to yield results), we cover either 2-b'® 41 or
2 - b% + 1 but not both. When we set the period at 48, this process would
fail at one of these specific n values: {3,9,17,15,21,27,33,39,41,45}. The
key problem is that k- 5" + 1 = 0 (mod p) may be impossible to solve for
a certain k, n, and p; so we will give an alternative approach in the next
section.

3. PERIOD LENGTH A POWER OF TWO
We need a few more results before we present our alternate method.
Theorem 3.1. If n. > m >0, then ged(k*" + 1,k%" + 1) = ged(k + 1,2).
Proof. Note k2" + 1 is one of the terms on the left of
hk=DE+D)E+1) .+ )=k —1=(F"+1) -2,

so ged(k?™ 4+ 1,k%" + 1) divides 2. If k is even then the greatest common
divisor is one; otherwise it is 2. [l

Theorem 3.2. If n > 0 and k > 1, then k*" + 1 has an odd prime factor.

Proof. If k is even, then k2" + 1 is an odd number greater than 1, so we are
done. If instead k is odd, then ged(k?" 4+ 1,4) = 2 and (k?" +1)/2 is an odd
number greater than or equal to 5, so again it has an odd prime factor. [

Theorem 3.3. Let p be an odd prime which divides k" + 1 for some fized
integer m > 0. For all odd integers n it is possible to solve k-b" +1 =0
(mod p) for a solution b = (—k)I. This solution satisfies k- bM +1 = 0
(mod p) if and only if ord,(b) divides M — n.

Proof. Let m > 0. From what we are given (—k)2" = —1 (mod p), hence
(=k)2""" = 1 (mod p). So we know —k has order 2™+ modulo p. To
solve k- b" +1 =0 (mod p) for b, let b = (—k)’ for some 5 > 0 and solve
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(—k)?"1 =1 (mod p). It is sufficient to solve j-n+1 =0 (mod ord,(—k))
which is possible because n and the order of —k (mod p) are relatively prime.
Note that j must be odd, so the solution b has order 2™*! also. O

We are now able to present our new approach as Algorithm 1.

Algorithm 1: Find b so that k is a Sierpinski number base b

1 input k >1

2 if k is a Mersenne number then

3 | return “[probably] not possible”

4 else

5 m «— —1

6 repeat

7 m«—m+1

8 Pm — the least odd prime which divides k2" +1

9 n«—2"4+1

10 solve k- b, +1 =0 (mod py,) for by,

11 until m > 0 and there is another odd prime which divides
k2" 41

12 call this second prime p,,+1

13 define by,+1 by k- bppt1 +1 =0 (mod ppyy1)

14 find b so that b = b; (mod p;) for 0 <i¢ <m+ 1, and
ged(k+1,0—1) =1

15 return base b, cover S = {po,p1,...Pms1}, period 2mF!

16 endif

Theorem 3.4. Suppose k > 1 is not a Mersenne number. If there is a term
i the sequence

(3.1) {(k*"+1)/ ged(k+1,2)} (m > 0)

divisible by at least two distinct primes, then Algorithm 1 will find a base b
for which k is a Sierpiriski number.

Before we present the proof, we will illustrate the use of this algorithm
with & = 2. After the first time through the loop (steps 6 through 11),
m=20,pp =3, n=2,and by = 2 (mod 3). So after we solve for b = by,
3 will divide the second term of the sequence k- b + 1 for v = {1,2,...,}
and every other term because b has period 2 modulo 3. This prime begins
our cover and at this stage the pattern with which the primes in the cover
divides the terms k- b¥ + 1 for v = {1,2,...,} and looks like the following:

3, 3, ...
S—— =~

That is, 3 divides 2 - b¥ 4+ 1 for v = 2,4,6,....
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After the second time through the loop, m =1, p1 =5, n =3, and by = 3
(mod 5). So 5 divides the third term and then every fourth because 2!*1 = 4
is the period of by (modp;) by Theorem 3.3. So our divisibility pattern now
looks like:

3,53, 353, ...

After the third time through py = 17 and by has order 8, so we now have a
pattern with period 23

. 3,5,3,17,3,5,3, _, 3,5 3, 17,3,5, 3, ...

The primes for iterations four and five are 257 and 65537 see (Table 1),
leaving a pattern with period 2°.

Notice that each time through the loop the period doubles; however, since
we have added just one prime to each stop we are still left with one hole.
If we were to ever get a case in which there were two odd primes dividing
k2" 41 then we can fill in that hole! In our example, it is the sixth iteration
in which this first occurs (when 922" 41 =641 - 6700417), so we double the
period again but we can also now fill in the last hole. Finally, we solve
for b using the Chinese Remainder Theorem. Thus, when k& = 2, we find
b = 16979062410086072498 and the cover {3,5,17,257,641,65537,6700417}
that repeats with period 64.

Similarly, with k£ = 5, we find b = 140324348 and the cover {3, 13,17, 313,
11489} with a period of 16. Finally, for k£ = 65, b = 19030688904264 with
cover {3,17,113,2113,8925313} with a period of 16.

Proof of Theorem 3.4. The algorithm starts with an input £ > 1. If k is
a Mersenne number, the algorithm throws it out because of Theorem 2.2.
Next, we start the loop with m = 0, and find the least odd prime pg that
divides k£ + 1 (we know this exists because k is not a Mersenne). When
m = 0, it is also possible to solve k - b2 + 1 = 0 (mod p), because k = —1
(mod p). So if we let bp = —1 (mod p), then k- b3 + 1 =0 (mod p). Note
that if b = by (mod pg) then py divides every other term in the sequence
k- 0™ + 1 because by has order 2 mod pyg.

During the next loop m = 1 and we know that k2' 4+ 1 has an odd prime
factor (for all m > 0) from Theorem 3.2. Thus, we solve k- b7 +1 = 0
(mod p;) for base by, which is possible (for all m > 0) by Theorem 3.3. By
Theorem 3.2, we know our solution has order 2" %! = 4 so we have a pattern

-- Po, P1, Po , - P0, P1, P05 ---

We repeat this process (steps 6 — 11) until there are two odd primes
which divide k2™ 4 1. For the first prime p,,, the algorithm solves (as usual)
k-b +1 =0 (mod p,,). With the second prime, p,,+1, the algorithm solves
k-bmy1 +1 =0 (mod pp1) for base by,41 to fill in the last hole in our
pattern. So we have a cover {p1,...,pm+1} which divide the terms k- 0" + 1
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with a pattern determined by Theorem 3.3 to be
Pm+1, Po, P1, Po, P2, POy --- Pm, --- PO, P1, PO -

We then use the Chinese Remainder Theorem (step 13) to solve for b.
However, we must make sure the cover is not trivial so if ged(k+1,b—1) # 1,

we can add p1ps - -+ - pmt1 to b to get b'. Now ged(k + 1,0 — 1) = 1 by
Theorem 3.1. We are then left with a base b that makes k a Sierpinski
Number with a cover S and a period equal to 2™+, O

TABLE 1. The Algorithm Table

m k2" 41 D n by (mod p)
0 3 3 2 2

1 9 5 3 3

2 17 17 5} 9

3 257 257 9 129

4 65537 65537 17 32769

5 641-6700417 641 33 321

6700417 1 3350208

4. CONCLUSION

It is highly unlikely that there exists an integer k for which the sequence
of generalized Fermat numbers of equation 3.1 are all prime. So given a k,
we have shown how to find bases b for which k- 0™ + 1 has non-trivial cover,
for all k for which these exist! However, this does not mean our choice of
b is the least. Computations have shown that our solution for £ = 5 is the
smallest with period dividing 5040, but we do not know if the others are the
smallest.
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