V. Update to the Introduction for the Third Edition.

The tables of the second edition contained all factors known to the authors on
June 22, 1987. Since then more than two thousand new factorizations have been
discovered. Appendix C lists the smallest composite cofactors in the tables. In the
first edition this appendix contained numbers with 51 to 64 digits. In the second
edition it contained numbers with 80 to 100 digits. It now contains numbers with
130 to 142 digits. The lists of “wanted” factorizations in the first edition had 25
numbers with 52 to 71 digits. These have all been factored. The lists of “wanted”
factorizations in the second edition had 32 numbers with 86 to 291 digits. These
have all been factored. Other “wanted” lists have since been issued and many of
their entries have been factored. The current “wanted” lists (see B below) now
contain numbers with 141 to 212 digits. All of the numbers considered in the 1925
Cunningham-Woodall book [11] have been completely factored!

The smallest probable prime (PRP) in Appendix A of the second edition had
222 digits. Prime proofs have now been completed for all prime numbers in that
appendix, as well as for primes found since 1988. In this edition we have updated
the tables and appendices to September 18, 2001, and reviewed the developments
in technology, factorization and primality testing which have produced the recent
advances. We also include a few references to recent related work which may interest
the reader.

We extended the tables with base b > 2 in the second edition, and we have
lengthened them again in the third edition. We have attempted to factor the new
numbers added to these tables using about the same effort that was applied to
numbers in the second edition.

The format of the tables and appendices has been changed a little in this
edition. In the first and second editions, all penultimate prime factors fit on a
single line, which allowed us to break lines only at multiplication dots. Because we
can now factor much larger numbers than before, some penultimate prime factors
have more than 75 digits and are given on two lines with a continuation slash (\)
at the end of the first line. For example, in the 2— Table one finds the entry

o971 5711.27409.69693366045316671685098712301007940958018325270028\
49548226132675916172927. P91

The prime factor 6969 ...00284954 . ..2927 was too long to fit on one line and had
to be broken.

A. Developments Contributing to the Third Edition.

1. Developments in Technology.

The use of many personal computers and supercomputers for factoring has
continued, but no new machines especially designed for factoring have been built
recently.

A. K. Lenstra and M. S. Manasse [328] ran their ECM and quadratic sieve
programs on networks of hundreds of small computers. H. J. J. te Riele, W. M.
Lioen and D. T. Winter have factored 7,122+ C87 and 6,131— C92 by the quadratic
sieve algorithm on a NEC SX-2, the world’s fastest single-CPU vector computer
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(at least at that time). Later they factored 2,463+ C101 by the quadratic sieve
algorithm running on one processor of a Cray Y-MP4. See also [305].

W. R. Alford and C. Pomerance [302] have implemented the quadratic sieve
on hundreds of PC-class computers and factored the 95-digit numbers 7,128+ and
2,332+ and the impressive 100-digit number 12,119+. Y. Kida has factored several
numbers of 95 to 101 digits with the quadratic sieve on many small computers.

B. Dixon and A. K. Lenstra [316] have written an ECM program for the
MasPar computer. It found many factors reported in the third edition, including
the 35-digit prime divisor of 2,511+4. Lenstra [324] has factored many numbers in
this edition by the quadratic sieve and the number field sieve on a MasPar computer.

ECMNET is a group of people who factor large numbers with T. Granlund’s
ECM program. They have found many factors reported in the third edition, in-
cluding the 53-digit prime factor of 2,677—.

The group NFSNET [320] has used dozens of computers around the world to
factor numbers by the special number field sieve. Their factorization of 3,349—
yielded the largest penultimate prime factor known (80 digits) of any Cunningham
primitive part at the time. This record has since been eclipsed by the 93-digit
penultimate prime factor of 10,211— C211, found by another group called The
Cabal. Yet another group, NFSNET’ continued this work by factoring 2,629— and
several other numbers reported in this edition.

2. Developments in Factorization.

Most new factors in this third edition were discovered by the quadratic sieve
algorithm, the elliptic curve method or the number field sieve. (See IV A 2(c) and
(@).)

A. K. Lenstra and M. S. Manasse [329] gave a modification to the quadratic
sieve in which up to two primes larger than the factor base limit may be saved
and used. This modification also speeds the number field sieve. A different modi-
fication accelerates the quadratic sieve by amortizing the polynomial initialization
time. The computer science term “amortizing” here means that the cost of setting
up several polynomials together is averaged over them. The modification sets up
2% polynomials for the effort of k setups, which has the effect of accelerating the
setup by a factor of k27%. R. Peralta [338] calls this version the hypercube qua-
dratic sieve, while W. R. Alford and C. Pomerance [302] call it the self-initializing
quadratic sieve. Many factors reported in this edition were computed using these
modifications. Just before the third edition went to press, P. Leyland and J. Franke
experimented with a variation of the quadratic sieve which allows up to three large
primes to be used. They found that this change speeds the algorithm beyond the
use of two large primes. SSW aided Leyland’s effort by combining the hypercube
and three large primes variations, producing an even faster version of the quadratic
sieve. This work resulted in the factorization of the 135-digit divisor of 2,1606L.

Several factors were found by an FFT extension to the p — 1 method (see ITI
B 2(e)) which was implemented by R. D. Silverman [333]. P. Montgomery [330]
has invented an FFT extension to ECM, and it has found some new factors of
Cunningham numbers. A. O. L. Atkin and F. Morain [303] describe an improved
method of choosing ECM curves which speeds the algorithm. Silverman and SSW
[342] tell how to choose the parameters in ECM.

A new factoring algorithm, the number field sieve [326], has been used by A. K.
Lenstra and M. Manasse, by Silverman, by CWI and by NFSNET [320] to achieve
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some factorizations reported here. Two impressive ones were the factorizations of
2,512+ C148 (see [327]) and of 2,523— C158. The original algorithm works best
for numbers of the form b™ + ¢, where ¢ is small. It does not take advantage of
any small factors which may already be known of a number of this form. Thus,
for example, Lenstra and Manasse had to factor the entire 155-digit number Fy =
2°12 4 1, not just the 148-digit cofactor.

L. M. Adleman [301] has described some improvements to the number field
sieve. The general number field sieve is a variation which factors numbers without
special form. Though less efficient than the special number field sieve, it beats
the quadratic sieve for large enough numbers. So far, it has factored only a few
Cunningham numbers. The first general number field sieve factorization was that
of 3,367— C105 by FactOregon and CWI. Several papers about the number field
sieve were published in the book [325]. See also C. Pomerance’s paper [339].

See [320] for some clever ways to choose polynomials for the number field
sieve. See [319] for some implementation details for the number field sieve. In a
paper in [325], J. M. Pollard proposed the lattice sieve, a variation of the relation
collection step of the number field sieve. In [321], R. A. Golliver, A. K. Lenstra and
K. S. McCurley implemented this algorithm and achieved a substantial speed-up
compared to other relation collection versions reported in the literature. Near the
end of the number field sieve algorithm, one has to compute the square root of a
product of thousands of algebraic numbers. J. M. Couveignes’ article in [325] deals
with this problem, as does P. Montgomery’s paper [331].

In the final step of the quadratic sieve and the number field sieve one must
find the null space of a huge matrix over GF(2). Several papers [313,314,323] tell
how to perform this elimination step efficiently. The ideas in these papers speeded
this part of the algorithm for some factorizations reported in this edition.

M. Morimoto and Y. Kida have published a table [336] of the factorizations
of the numbers @, (z) for 1 < 2 < 1000 and those n for which ¢(n) = 16 or 18.
Their book also lists the n and « for which ¢(n) < 100, 1 < z < 1000 and ®,,(x) is
prime or probably prime. A second volume [337] of their book factors the numbers
D, (x) for 1 <z < 1000 and those n for which ¢(n) = 20 or 22. It also lists the n
and x for which 102 < ¢(n) < 156, 1 < z < 1000 and ®,,(x) is prime or probably
prime.

Paper [343] by N. M. Stephens on ECM should have been cited in IV A
2(d). See P. Stevenhagen [344] for more about the Aurifeuillian factorizations in
III C 2. R. P. Brent [308] tells how to compute the coefficients of Aurifeuillian
factorizations, as does SSW [346]. D. M. Bressoud and H. Wada have published
books [311] and [345] on factorization and primality testing. A second edition of
H. Riesel’s book ([243] of our first edition) has appeared as [340]. P. Montgomery
has written an excellent survey article [332] on factoring.

H. C. Williams and J. O. Shallit have written an informative history [347] of
factoring integers and primality testing from about 1750 to about 1950. These two
authors and F. Morain [341] have discovered a sieve built 75 years ago by E.-O.
Carissan.

3. Developments in Primality Testing.

W. Bosma and M. P. van der Hulst [307] have described an efficient version of
the Jacobi sum primality test of Cohen and Lenstra (see IV A 3 (a)). Bosma [306]
has proved some new primality tests for h-2* £ 1. Using A. O. L. Atkin’s method
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(see IV A 3(b) and [304]), F. Morain [334], [335] has completed primality proofs
for all probable primes in Appendix A, including the new large primes reported in
this edition.

B. Status of the Project and of Important Factorizations.

The tables in this book presently reside in data sets at Purdue University. The
latest versions of them are available at the web site
http://wuw.cerias.purdue.edu/homes/ssw/cun/index.html.
During the past thirteen years these tables have been improved by the factorization
of about ten of their numbers per month. SSW reported the new factors in annual
Updates to the book and more frequent “Pages” of new factors. If you factor any
numbers in this book or if you would like to receive the Updates and Pages, please

write to:
Professor Samuel S. Wagstaff, Jr.

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907 USA
Email: ssw@cerias.purdue.edu

The pace of about ten new factorizations per month continues in 2001. In
recent months no new prime factor < 35 digits has been reported to us.

The earlier editions of this book mentioned the Computer Museum in Mas-
sachusetts where one could view DHL’s sieve machines discussed in IITI B 1 (b)
and (c) and IIT B 2 (c). While the Computer Museum remains in Boston, the
sieves have been moved to the Computer History Museum located at Moffett Field
in Mountain View, California. H. C. Williams no longer uses the sieve built by
C. D. Patterson [258]. It has been replaced by a new sieve called the MSSU, which
is much faster and easier to use.

For many years we have maintained lists of “most wanted” and “more wanted”
factorizations. At this time these lists read as follows:

Ten “Most Wanted” Factorizations

1 2,673— (151 6. 6,257— C173
2. 2,647+ C169 7. 5,280+ C156
3. 3,397— C178 8.  5,2984 (189
4. 3,397+ (162 9. 12,1784+ C145
5. 10,223— (211 10. 11,1974+ C205

Twenty-Four “More Wanted” Factorizations

2,653+ C154 2,1262M C178 6,244+ C178 10,227—  (C212
2,659+  C188 2,1294L  C187 6,251+ C179 10,2234+ C201
2,661+  C148 2,716+  C163 6,257+ C200 10,2264+ C197
2,1238L (160 3,404+ Cl41 7,233— C155 10,229+ (164
2,1238M (145 5,307—  C187 7,232+ C171 11,199— C173
2,1262L  C177 5,302+  C187 7,233+ C150 12,179— C190

Many of these numbers are, of course, the first “hole” in their respective tables.
All numbers from the 1925 Cunningham-Woodall tables have been finished. All
numbers from the base 3 to base 12 tables in our first and second editions have
been factored.
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It is known that 2P — 1 is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107,
127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701,
23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269,
2976221, 3021377 and 6972593, but for no other p < 3945000. Thus, 23921377 — 1 is
the thirty-seventh Mersenne prime and 2972593 is probably the thirty-eighth one.
See [101] and [222] for the search to 100000. (See Haworth [223] for an extensive
bibliography of papers on Mersenne numbers. See Colquitt and Welsh [312] for the
discovery of the prime 2110593 —1.) See the web site

http://wuw.utm.edu/research/primes/largest.html
for the latest information about Mersenne and other large primes. The last few
Mersenne primes have been found by GIMPS, the Great Internet Mersenne Prime
Search, launched by George Woltman in 1996.

The “repunits” (10 — 1)/9 are prime for p = 2, 19, 23, 317 and 1031 and for
no other p < 20000. (See Williams and Seah [112, 113] and Williams and Dubner
[257] for these results.) Dubner [317] has tested all p between 10000 and 50000
and found that (10%°°%1 —1)/9 is a probable prime and that no other repunit primes
have p in this range. Recently, Lew Baxter found that (103643 —1)/9 is a probable
prime.

Here is a list of the known prime and probable prime “repunits” (b? —1)/(b—1)
to base b for b = 3, 5, 6, 7, 11 and 12. Williams and Seah [113] tested all p < 1000
for these bases. Dubner [317] has tested all p less than at least 10000 for these
bases. (The probable primes are marked with stars.)

Base b p < 10000 for which (b¥ —1)/(b— 1) is prime or probable primesx.
3 3,7,13,71,103, 541, 1091, 1367+, 1627+, 4177+, 9011, 9551%
5 3,7,11,13,47,127,149, 181, 619, 929, 3407+, 10949+

6 2,3,7,29,71,127, 271,509, 1049%, 6389%, 10613%
7 5,13,131,149, 1699

11 17,19,73,139,907, 1907%, 2029+, 4801, 5153+, 10867
12 2,3,5,19,97,109,317, 353, 701x, 9739

The Fermat number Fyy was shown composite in 1993 by Crandall, J. Doenias,
C. Norrie, and J. Young [315]. Likewise, F54 was shown composite in 1999 by
Mayer, Papadopoulos and Crandall. The remaining cofactors of Fis, Fi3, Fi5, Fis,
Fy7, Fig, Fig and Fy; have been shown to be composite. McLaughlin found the
factor of Fy5. T. Taura found the factor of Fyg. Thus, F33 is the smallest Fermat
number whose character is unknown.

We now know that the Fermat numbers F,, are composite for 5 < m < 32.
No factor is known for Fiy4, Fbg, Foo or Fpy. These numbers were proved composite
[96, 263] by Pépin’s [78] test. The cofactors of Fia, Fi3, F15 through Fig, and Fy;
are known to be composite. A résumé of the known prime factors £.2™ + 1 of F,,
is given in the tables on the next pages. Some of the new factors may be found in
(221, 224, 250, 252, 309, 310, 318, 322, 348]. See the URL

http://www.prothsearch.net/fermat.html

for Wilfrid Keller’s list of all known Fermat factors and their discoverers.
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Prime factors k- 2™ + 1 of Fermat numbers F, = 22" +1,5<m < 11
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Prime factors k - 2™ + 1 of Fermat numbers Fy, = 22" +1, 19 < m < 4600

m k n—m m k n—m m k n—m
19 33629 2 99 16233 5 375 733251 2
308385 2 107 1289179925 4 376 810373 2
21 534689 2 116 3433149787 4 380 321116871 5
23 5 2 117 7 3 398 120845 3
25 48413 4 122 5234775 2 416 8619 2
1522849979 2 125 5 2 38039 3
16168301139 2 133 88075576149 2 417 118086729 4
26 143165 3 142 8152599 3 431 5769285 3
27 141015 3 144 17 3 452 27 3
430816215 2 146 37092477 2 468 27114089 3
28 25709319373 8 147 3125 2 544 225 3
29 1120049 2 124567335 2 547 37T 3
30 149041 2 150 5439 4 556 127 2
127589 3 1575 7 579 63856313 2
31 5463561471303 2 164 1835601567 3 620 10084141 4
32 1479 2 172 20569603303 2 635 4258979 10
36 5 3 178 313047661 2 637 11969 6
3759613 2 184 117012935 3 642 52943971 2
37 1275438465 2 201 4845 3 667 491628159 2
38 3 3 205 232905 2 692 7173
2653 2 207 3 2 723 554815 7
39 21 2 215 32111 2 744 17 3
42 43485 3 226 15 3 851 497531 8
43 212675402445 2 228 29 3 885 16578999 2
48 2139543641769 2 230 372236097 2 906 57063 2
52 4119 2 232 70899775 4 931 1985 2
21626655 2 250 403 2 1069 137883 4
55 29 2 251 85801657 3 1082 82165 2
58 9% 3 255 629 2 1114 11618577 2
61 54985063 5 256 36986355 2 1123 25835 2
62 697 2 259 36654265 3 1225 79707 6
63 9 4 267 177 4 1229 29139 4
64 17853639 3 268 21 8 1451 13143 3
66 7551 3 275 22347 4 1551 291 2
71 683 2 284 7 6 1598 10923781 2
72 76432329 2 1061341513 2 1849 98855 2
73 5 2 287 5915 2 1945 5 2
75 3447431 2 298 247 4 1990 150863 3
77 425 2 301 7183437 3 2023 29 4
5940341195 2 316 7 4 2059 591909 4
81 271 3 329 1211 4 2089 431 10
88 119942751127 2 334 27609 7 2456 8 2
90 198922467387 2 338 27654487 4 3310 5 3
91 1421 2 343 4844391185 2 3506 501 2
93 92341 3 353 18908555 2 4250 173373 2
94 482524552001 3 370 573230511 3 4258 1435 4
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Prime factors k- 2" + 1 of Fermat numbers F,, = 22" + 1, 4600 < m

m k n—m m k n—m m k n—m
4724 29 3 13250 351 2 41894 4935 3
5320 21341 3 13623 48265 3 43665 2495 2
5957 421435 3 14252 1173 2 49093 165 2
6208 763 2 14276 157 4 63679 169 7
6355 115185 3 14528 17217 2 83861 99 2
6390 303 3 15161 55 3 90057 189 4
6537 17 2 17906 135 3 91213 585 2
6835 19 3 18749 11 10 94798 21 3
6909 6021 3 18757 33 9 95328 7 2
7181 168329 6 19211 13323 9 113547 39 2
7309 145 3 22296 4777 2 114293 13 3
8239 7473 3 23069 681 2 125410 5 3
8555 645 2 23288 19 2 142460 159 2
9322 8247 2 23471 5 2 146221 57 2
9428 9 3 24651 99 2 157167 3 2
9448 19 2 25006 57 4 213319 3 2
9549 1211 2 28281 81 4 303088 3 5

12185 81 4 35563 357 4 382447 3 2

C. Acknowledgements for the Third Edition.
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Edition:
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D. Bernstein, M. Bodschwinna, H. Boender, A. Bot, R. Brent, A. Brown, J. Buhler,
S. Cavallar, S. Contini, J. Cosgrave, R. Crandall, C. Curry, N. Daminelli, F. Damm,
V. Danilov, J. Davis, P. Demichel, K. Dilcher, B. Dodson, D. Doligez, H. Dubner,
L. Durman, S. Edick, R. Edwards, M. Elkenbracht-Huizing, A. Erdmann, W. Flo-
rek, T. Forbes, J. Fougeron, J. Franke, Y. Gallot, P. Gaudry, J. Gilchrist, G. Gostin,
W. Grabysz, M. Graff, T. Granlund, P. Grobstich, G. Gusev, R. Harley, F. Heider,
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jung, J. Klos, K. Koyama, A. Kruppa, H. Kuwakado, D. Leclair, J. Leherbauer,
A. Lenstra, R. Lercier, R. Lewis, P. Leyland, W. Lioen, S. Lodin, J. Loho, A. Lynch,
M. Mambo, M. Manasse, J. Marchand, E. Mayer, R. McIntosh, P. McLaughlin, Jr.,
J.-C. Meyrignac, N. Melo, D. Miller, P. Montgomery, F. Morain, D. Morenus,
A. Muffett, B. Murphy, P. Nicholson, T. Nohara, T. Nokelby, E. Okamoto, R. Per-
alta, C. Pomerance, R. Prethaler, C. Putnam, M. Quercia, J. Rathert, J. Renze,
R. Robson, R. Ruby, D. Rusin, P. Samidoost, G. Sassoon, A. Schmidt, R. Silver-
man, N. Smart, V. Stevens, H. Suyama, T. Szep, D. Takahashi, C. Tardif, T. Taura,
H. te Riele, Y. Torii, V. Trevisan, C. van Halewyn, R. Wackerbarth, G. Wambach,
S. Whitaker, M. Wiener, D. Winter, D. Wolf, G. Woltman, J. Young, J. Zayer,
P. Zimmermann, SSW, many volunteers who keep factoring programs running on
their workstations, and an anonymous factorer who calls himself “M. Mersenne”.

The new results of the third edition required millions of hours of computer time
We are grateful to the directors and staffs of the following computer centers which
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of the Stockholm University, Swox, Circus Ulfberg, the Astonomy Department of
Uppsala University, and Purdue University.

M. Senn and R. M. Jegadeesan wrote programs which formatted the tables in
this book.

SSW gratefully acknowledges the support of the Lilly Foundation and the
Center for Education and Research in Information Assurance and Security in the
preparation of this edition and of the annual updates.
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