REevisTA Do DETUA, VoL. 4, N° 6, MARcH 2006

759

Computing 7 (x): the combinatorial method

Tomas Oliveira e Silva

Abstract — This article presents a self-contained description
of the method proposed by Detglise and Rivat — which has
roots on earlier work by Meissel, by Lehmer, and by Lagarias,
Miller and Odlyzko — to compute 7 (x), which is the number
of primes not larger than x.

To make life easier to programmers, the major parts of the
computation of 7 (x) are also presented in algorithmic form.
The more interesting low-level computational details are pe-
sented in the form of C code fragments.

Resumo — Este artigo descreve detalhadamente o@&todo pro-
posto por Dekglise e Rivat — queé baseado em trabalhos
anteriores de Meissel, de Lehmer, e de Lagarias, Miller e
Odlyzko — para calcular 7 (x), que & o nUmero de nimeros
primos até x.

|. INTRODUCTION

The problem of the computation of(z), which is the
number of primes not larger thanhas been drawing the at-

(a small improvement over Legendre’s formula), and an
amount of space which grows like'/3 log—! z (a signif-
icant improvement over Legendre’s formula). 1863,
Mapes [2] found a way to compute(z) that requires
amounts of time and space which grow lik&'° (this exor-
bitant space requirement precludes the utilization of Mape
method for large values af).

In 1985, Lagarias, Miller, and Odlyzko, based on the work
of Meissel and Lehmer, found a much better way to com-
puter(z). Their method requires an amount of time which
grows likez?/3 1og~! z, and uses an amount of space which
grows likez'/3 log? z [4], [5]. In 1996, Deléglise and Ri-
vat [6] found a way to save a factor bfg x in the amount
of time required to compute(z) using the Lagarias-Miller-
Odlyzko method, at the expense of an increase by a simi-
lar factor in the amount of space used in the computation.
In 2001, Gourdon [7] found a way to save constant fac-
tors both in the time and in the space complexity of the
Deléglise-Rivat method.

tention of countless mathematicians for a long time. Gauss, Over the years the record of computatiormgf) has been
based on empirical evidence garnered from tables of primessteadily growing. The present record appears to be the com:-

compiled by hand, conjectured that

o m(x) (x)
2 logu log

putation ofr(4 - 10%2), performed irc001 by Gourdon, and
double checked by the author of this pape2@6.

All previously mentioned methods use combinatorial ideas
to computer(z). In 1987, Lagarias and Odlyzko [8], [5]
found an analytical way to computéx) which has a better

This fundamental result, known as the prime number the- asymptotic computational complexity than the Deléglise-

orem, was first proved in896 almost simultaneously by
Hadamard and de la Vallee-Poussin [1].
The computation ofr(x) for a given value oft was done

Rivat method. Nonetheless, so far no one was able to use it
in record-breaking computations ofx).
The rest of this paper is organized as follows. Section Il

at first using tables of prime numbers made using the sievedescribes the improvements made by Deléglise and Rivat,
of Eratosthenes or one of its variants. Legendre was thepy Lagarias, Miller, and Odlyzko, and by Lehmer on the

first to show that the computation efz) does not require
the explicit determination of all primes up ta His for-

Meissel method of computation afx); the description of
the data structure [9] used to sieve efficiently an intersal i

mula, which is based on the inclusion-exclusion principle relegated to appendix A. Section Il presents tables with

and only requires the knowledge of the primes up/to[2],

values ofr(z) for some powers of two and some powers

has a number of non-zero terms which grows asymptoti- of ten (these last are in perfect agreement with Gourdon’s
cally like z. This represents a modest improvement on the computations). Table | presents some of the notation used

direct enumeration of all primes up to done using the

in the paper.

sieve of Eratosthenes or one of its variants, which requires This paper does not describe the improvements on the

an amount of timeéwhich grows likex log log x.

combinatorial method made by Gourdon, not does it de-

In the last quarter of the XIX century, Meissel [2] found a scribe how to parallelize the computationofr). These

more efficient way to compute(z). In 1959, Lehmer [3],

[2] systematized and simplified Meissel's method, and
made what was probably the first computer program able

are left to another publication.

Il. COMPUTATION OF 7r(x)

to computer(x) without using a sieve. Lehmer's method For an integer > 0 and a real number > 1, leto(z, a)

requires an amount of time which grows likelog=*

10ne unit of time — one step — corresponds to one single wordesle
tary arithmetic operation (addition, subtraction, muicgtion, or divi-
sion), or to one decision (branch), or to one single word dadaement
(load or store). One unit of storage space corresponds tovong It is
assumed that-z and—z can be stored without error in a single word.

Post-publication annotations (such as this one) appealum kither in
figures or at the bottom of the page.

be the number of positive integers, not larger thrawhich
are co-prime to each of the firgtprimes, i.e.,

[z]
¢('r7 CL) = Z [pmin(n) > pa]-

n=1

760

TABLE |
NOTATION USED

[notation [short description |

€] equal tol if condition C'is true and equal t6 otherwise
[z,y[| interval of the real line, closed atand open ay
|z] greatest integeg x
[z smallest integel> x
) equal toa(a — 1)/2
ged(a, b) | greatest common divisor of the two integerandb
p(n) (Euler’s totient function) number of integers betweeh
andn that are co-prime ta
Pk the k-th prime number, i.ep; = 2, p2 = 3, p3 = 5, and
S0 on; by conventiopy = 1
Pmin(n) | smallest prime factor af; by conventiornpyi, (1) = +oo
pmax(n) | largest prime factor of,; by conventionpmax (1) =1
w(n) number of distinct prime factors of; by convention,
w(l)=0
Q(n) number of prime factors (counting repetitions) nf by
convention2(1) =0
p(n) | (Mdbius function) equal to(—1)~(™ [w(n) = Q(n)]
O(f) | g(z) = O(f(=)) if there exists a positive consta@tand
azo such thalg(z)| < Cf () forall z > z¢
li(z) (logarithmic integral) principal value of/;’ lcﬁg“u

Also, let ¢ (z,a) be the number of positive integers, not
larger thanz, which have exactly: prime factors (counting
repetitions), each one of which larger thani.e.,

[z]
Ok(z,a) = Z [pmin (TL) > pa] [Q(n)

n=1

K].

Sincegy (z,a) = 0whenz < p%_,,i.e.,whem > 7 (),
the fundamental theorem of arithmetic implies that

L log « J
logpg41

$x,a) = Y oi(x,a). 1)
k=0
Forz > 1 itis obvious that
oo(z,a) = 1.

In addition, fora < m(z) it is also obvious that
¢1(x,a) = 7(z) — a.

Consequently, for: > 1 anda < 7 (x), it follows from (1)
that

|_10éOPgaz+1 J
m(x) = ¢(z,a) +a—1— Z
k=2
All methods of the Meissel type (combinatorial methods)
are based on this equation. The computatiop(af) will

or(z,a). (2)

be addressed in detail in subsection 11-B. Depending on the

value ofa, it may also be necessary to computgz, a),
¢3(x,a), and so on. The Lagarias-Miller-Odlyzko and the
Deléglise-Rivat methods use= w(a¥/z),1 < a < =,
with a growing slower that any power af i.e.,a = O(z°).
Thus, they require the computation®f(x, a), a task that
will be addressed in detail in subsection II-A. It is worth-
while to mention here that = (/) is used in Legen-
dre’s formula (in this case alb;(z,a) vanish), and that
a = w(/x) was used by Lehmer in [3] (in this case
¢2(x, a) andeos(z, a) must be computed).

log @
logpg41°

"G)

Note thatgy, (z, a) > 0 only whenpk | <z, i.e., whenk <

>

aYr<pp<VE

6o () = (W(azﬁ)) B (W(\z/f)) n

REevisTA Do DETUA, VoL. 4, N° 6, MARcH 2006

A. Computation obs(z, a)

Leta = m(adx), with1 < a < Jx. Thus,a < 7(/2).
Whena = 7(y/7) it can be verified thaps(x, a) vanishes.
Whenn(¥/z) < a < w(y/z) it can be verified that

w(z) 7(x) m (V) m(z/ps)

$o(wa)= D> D lpe<al= > > 1

b=a+1 c=b b=a+1 c=b

does not vanish. Since the number of terms in the inner
summation ist(z/py) — (b — 1), it follows that

en= () (") DA @

By convention [10, exercis2 1], 3>'_; f(j) = 0; hence,
(3) also gives the correct result for= 7(/x).
Let

(4)

Sincep, < ay/x < pg4q it follows, fora < b < 7(V/x),

that
X xr X

V< =<

~
Py Pa+1

Moreover, since < o®z < p2_ 4, it follows from (2) that

w(p%) = ¢(p£b,a) +a—1.

As will be seen in the next subsection, the computation of
¢(x,a) requires sieving the intervdl, z[, i.e., removing
from it all multiples of the firsta primes. After this is ac-
complished, each of th@(z'/?log ! z) values ofp(:Z, a)

can be computed id(log z) steps using the method de-
scribed in appendix A. Disregarding the cost of this sieve
(accounted for latter on), it turns out that the computadibn
b2 (z, a) requiresO(z'/? log log) steps (because it is nec-
essary to generate all primes uputt? using a segmented
Eratosthenes sieve).

B. Computation of(zx, a)

Becausezcd(n, p1 - - pe) IS, whenc is fixed, a periodic
function with periodp; - - - p., the computation of(z, ¢)
can be done using the formula

x

o) = |

pl...chﬂé(pl---pc,C)

+ (L] mod p1 -+ pe,c), (5)

in which

¢(p1-+pe,c) =@(p1---pe) = (p1 — 1) (pc — 1).

To use (5) in an efficient way it is necessary to precompute a
table of values 0b(n, ¢) for0 < n < p; - - - p.. Obviously,

this way of computingp(z, ¢) can only be used whenis
very small (say, when < 7).

3/
%—§| ~ |p—q| whenp andq are near/z, and|%—§ = ?@@_q\

whenp andq are neaw{/z. Hence, more values af(-) are needed near
v/z than near.

In practice, it turns out to be faster to compyig(x, a) and¢(z, a) sep-
arately.

REevisTA Do DETUA, VoL. 4, N° 6, MARcH 2006

+o(1,a)
/ -
+¢(7,a—1)
=\
+6(f.0-2) —¢(;55.0-2)

Fig. 1 - The first two levels of the

Fora > 0 the computation ofy(x,a) can also be done
recursively, using the formula

L]
¢('r7 CL) = Z([pmin(n) 2 pa] - [pmin(n) = pa])

n=1
[z/pa)
=¢@,a—1)= > [Pmin(n) > pa]
n=1

:¢(x,a—1)—¢(x/pa,a—1). (6)
The recursive application of this formula in the computatio
of ¢(x,a) can be depicted as a binary tree (see figure 1),
with ¢(x,a) at its root. The nodes at levél of this tree
(with level 0 on top) have the valugs(n)¢ (£, a — k), with
Pmax(N) < pa @NApmin(n) > pa—k. Sincep(x,0) = |z,
growing the tree as much as possible yields

1<n<Lz
Pmax (n) <Pa

It is not necessary to apply (6) when< p,.1, in which
casep(xz,a) = 1if x > 1 and¢(z,a) = 0if z < 1.
This last case does not occur if the recursion is terminated
as soon as < p,11. These observations, coupled with (2)
anda = w(\/7), are used in the incomplete C program pre-
sented in table Il; it computes(z) in O(zlog~! x) steps
and use®(/z log~! x) space.

To reduce as much as possible the number of leaves in

the computation ofp(x, a), in [4] Lagarias, Miller, and
Odlyzko seta = 7(a+/z), with a > 1 carefully chosen,
and use the following rule to continue to apply (6): split a
node labeledto(y,b) if b > c andy > z, with z given
by (4). This rule is equivalent to the following termination
rule: do not split a node labeletkp(y, b) = pu(n)¢(£,b) if
either

(i) b=candy > z,i.e.,b =candn < a¥/z, or
(i) y < z,i.e.,n > a/z (if this happens theh > c).

Following [4], leaves of typdi) will be called ordinary
leaves and those of typéi) will be calledspecial leaves
For the sake of clarity, the contribution of these two kinds
of leaves to the value @f(x, a) will be treated separately.

B.1 Computation of the contribution of the ordinary leaves
to the value of(z, a)

In an ordinary leaf the conditions < a¥/z, u(n) # 0,

761

+é(5p0—2)

computational treejdfr, a).

TABLE Il
COMPUTATION OF 7(z) USING LEGENDRE S FORMULA

static int sum,np, *P;
static void init_p(int x)
{
/I compute np=pi(sqrt(x)) and initialize
/I the array p[0..np] with 2,3,5,7,...,0

}
static void phi(int x,int a,int sign)

loop:
if(a 0)
sum += sign
else if(x < p[a])
sum += sign;
else
{
..a;
hi(x / p[a],a,-sign);
goto loop;
}
}

int pi(int x)

* X

init_p(x);

sum = np - 1;
phi(x,np,1);
return sum;

the ordinary leaves to the value ¢fz, a) is then given by

T
Sp = Le).
0 Z ,u(n)¢(n,c)
1<n<adr
pmin(n)>pc

It is quite simple to identify the values afthat satisfy the
three conditions stated above. One possible way to do this
requires the computation of the value @fn)pumin(n) for

1 < n < a/z, which can be done using a simple modifi-
cation of the sieve of Eratosthenes (see C code in table IIl),
followed by the determination of the valuesrofor which
|14(n)pmin(n)| > pc. For each such it is possible to com-
puteg(Z, c) quickly using (5).

It is obvious that the number of ordinary leaves cannot
be larger thanv/z. Thus, the work required to compute
Sy takes no more that(az'/3) steps, to which must be
added theO(az'/? loglog x) steps required to compute

:u(n)pmin (TL)

B.2 Computation of the contribution of the special leaves
to the value ofy(z, a)

In a special leaf the conditions > a¢/z, u(n) # 0,

andpmin(n) > p. must be satisfied. The contribution of puyin(n) > p. and pnax(n) < oz must be satisfied.

For the nodes at levél, n has at mosk prime factors.

Do not splitanode ib = candy > z,orif b = candy < z,0rifb > ¢
andy < z. Sincey = z/n, y < z implies thatn > a{/z, andy > 2
implies thatn < a/z.

Itis possible to use a largemwithout using a prohibitive amout of memory
if the required values af(-, ¢) are computed using (6).

In the computation of, for very large values of, use a segmented sieve
to computew(n), pmin(n), andr(a /).

762

TABLE Il
COMPUTATION OF (1) pmin(n) FOR1 <n < N

void init_mu(int *mu,int N)
{
int ij;
for(i = 1;i <= N;i++)
muli] = 1;
for(j = 2;j <= N;j++)
if(mufj] == 1)
for(i = ;i <= N;i +=))
mufi] = (mufi] == 1) ? - : -mu[i];
for(j = 2 * J <= Njj++)
fouy =)
for(i = j * <= Nji 4= *)
mufi] = O;

Moreover, its parent cannot be a special leaf, nor can it
be an ordinary leaf, which implies that the special leaf
was reached via the second term of (6). More precisely,
if the parent node has the valygm)¢(<,b + 1), with
b+1 > candm < a¥/r, then the special leaf has the value
—u(m)¢(mpi+l ,b), with mp, 1 > a/z; by construction,
Pmax(Mppr1) < a/z is automatically ensured. The con-
tribution of the special leaves to the valueddf:, a) is then

given by
b) .

T

b)
mpy+1

s=- > ¥

c<b+1<a m<aYr<mppi1
Pmin (M) >Ppy1

u(m)¢(

(The casé + 1 = a cannot occur.) Sincewpy1 > ad/x,
the computation of does not require values éfy, b) for
Yy =z

For a given value of such that < b < a — 1, the values
of m that enter in the computation 6fsatisfy both

a/x

max(,pb+1) <m<ayz (7)

b+1

and |(m)pmin(m)| > py41. Equipped with this way of
identifying all special leaves, the computationtan be
organized in the following way. First, the contribution of
the special leaves with = ¢ is computed using (5). Next,
the multiples of the primes,, . . ., p. are removed from the
interval[1, z[. Finally, the computation of the contribution
of the rest of the special leaves is done by removing in suc-
cession from the intervdl, z[the multiples of the primes
Pet1, - -+ Da, EXtracting in between the required values of
#(y,b). After this the primes up tp, may be added back to
the intervalll, z[, which simplifies slightly the computation

of ¢2(I7 CL).

Since the number of special leaves is large, the computa-

tion of the values of)(y, b) should be done as quickly as
possible; the data structure used for this purpose, firgt use
in a slightly modified form in arithmetic coders [9], [11], is
described in detail in appendix A (the data structure used
in [4] uses50% more space and its update is slower, on
average, by a factor of almog}. With this data structure
each value ofp(y,b) can be evaluated id(log z) steps,
(not counting the work required to perform the sieve opera-
tions).

For very large values aof, the computation of the contribution of the spe-
cial leaves withb = ¢ should be done whil& is also being computed,

using the values qfi(m) andpyi, (m) being generated by the segmented
sieve (and also using the table of valueg¢k, c) for0 < k < p1 - - - pe).

REevisTA Do DETUA, VoL. 4, N° 6, MARcH 2006

B.3 Improved computation of the contribution of the spe-
cial leaves to the value @f(x, a)

The lower bound of (7) can take two distinct forms, ac-
cording to whethep;, ; < o/ or whethen;, | > a¥/z.
The first occurs whepy 1 < pg+, Wherea* = w(y/ay/z),
with a* < a, and the second occurs when 1 > pg-.

The contribution of the leaves that fall in the first case is

Si= Y Su,
c<b+1<a*
with
X
S1p = — p(m)o(——).
oz Z MPpo+1
PoyT <msaVz

Pnin (M) >Pb41

From these formulas it follows that the computation of
S, takes at most)(a’/221/2) steps (without counting the
sieve work).

The contribution of the leaves that fall in the second case

is
SQ - Z S2b7 (8)
a*<b+1<a
with .)
Sgb = Z 7b 9 (9)
bfi<d<a Pot1Pd

becaus@umin(m) > py+1 coupled withm < ay/z < pi,,
forcesm to be a prime number. The number of termsin

is exactly(“-"). Whena > 1 part of the computation of
So can be performed without resorting to the full machinery
of appendix A [4]. Indeed, when

x
maX(Q—anH) < pa < ay/w (10)
Ppt1
the contribution of the special leaf is given by
x
¢(,b) =1 (11)
Pv+1Pd

(this is a consequence of the fact thdly,b) = 1 when
1 <y < pps1), and when

x . x
maX(g—,pbﬂ) <pa < mln(g—,a%)
Pyt b+1

the contribution of the special leaf is given by

() =l

(this is a consequence of the fact thgy, b) = w(y) —b+1
whenpy1 <y < p§+1). In order to use (12) efficiently it

x

)—b+1 (12)

Po+1Pd ' Po+1Pda

is necessary to precompute a table of values(@f). To
avoid using an excessive amount of space, this table will
only store values ofr(y) for y < a¥/z. (For the present
purpose it is convenient to exclude the case- a¥/x.)
The conditiorny < «/x forcesp, to be larger than /py, ;1.
Sincez/py+1 > x/py,, Whenp?, , > ay/z, it follows
that (12) can be used for the valuesidhat satisfy

) < pg < min(}%,a%). (13)

b+1

z
— Db+1

max(
P41

REevisTA Do DETUA, VoL. 4, N° 6, MARcH 2006

It is convenient to give names to the different kinds of
leaves that contribute t85; those that satisfy (10) will be
calledtrivial leaves, those that satisfy (13) will be called
easy leavesand the rest will be calledard leaves (This
terminology is similar to the one used in [4].)

According to (11), the contribution of the trivial leaves is
their number. From (10), it follows that the number of triv-
ial leaves, for each value éf is given bya + 1 — ¢;, where

b+ 2, if = — < poy1,
- Phy1
ty = w(5)—i—l, if ppi1 < 54— < ad/x,
Phi1 P
a+1, if 0/Z < -2
Ppt1

Note that there are no trivial leaves when; < +/z, and
that all leaves are trivial whem, 1 > &/z. With the help of
the table of values of (y) mentioned previously, the con-
tribution of the trivial leaves corresponding to a givenuel

of b can be computed in constant time. The contribution of
all trivial leaves can then be computedfaz'/? log—!)
steps.

The contribution of the easy leaves can be split in two
parts [6], according to whethey > /z/py+1 or whether
pa < Vx/pps1. In the first case the value of (12) has a
tendency to be the same for consecutive values afhile

763
w4y - T T
\ {
:\ :\\ .
Easy\! . o
v \\‘\C ee:)\ b \QQ:O
A\ \ AL \\4’0@0\
AN N\ 6«&(&\
BURNR RS
A) \
: N -
A AN AN A -
ws i AN\ By N B wo = vayz
\ (srs w = Y7/a?
‘ N\ § wo = ¥z/\/a
I W o A— wy = Y7
wq = aT
S |
oS '
& ——— v=2z/u
A O : /
@\ R v=+/z/u
RS |
N ‘ N I v=xz/u?
wQ ¥ R A
wo w1 w2 w3 —u w4

Fig. 2 - Classification of the special leaves for= 102 anda = 2. The
u coordinate represents valuesgf, |, and thev coordinate represents
values ofp;. Whenw; < wo, i.e., whena > 1¥/z, the shape of the easy
and hard regions is slightly different; since, by assunmptio = O(z¢),
there is no need to discuss this caSer practical values of, o > /z.
Curves of constantv are presented in blue.

of « until the execution time reaches a minimum for a given

this does not happen in the second case. For this reason, th@st value ofz. (In the author’s program, changes-625%

leaves that fall in the first case will be calleldistered easy
leaves and those that fall in the second case will be called
sparse easy leavednstead of computing the contribution
of each clustered easy leaf individually, it is faster to de-
termine the number of leaves for which (12) takes a given
value, sayl, and then compute their joint contribution in a
single step. Note thdt < a — b + 1; this result follows
easily from the fact that (13) can only be satisfied when
Yx/a? < ppe1 < Iz, coupled withpg > /2 /ppy1. The

values ofd for which (12) is equal té satisfy

Doti—1 S < Pb+is

Pv+1Pd
which is equivalent to

x
a4 <

- < —
Pb+1Pv+1 Po+1Po+1-1

(Note thatp,,; may be needed to compute the lower
bound.) Keeping in mind that (13) ang, > +/z/pp+1
must also be satisfied, it follows that the number of valid
values ofd can be computed in constant time, again with
the help of the table of values af(y) mentioned previ-
ously. (In practice the distinction between clustered and

sparse easy leaves does not need to be as rigid as presented®

here, which simplifies somewhat the algorithm implemen-
tation; see subsection II-D for details.)

C. Choice of the value af

In order to compute (x) using the method outlined above,
the first thing that must be decided is the valuexptvhich
must satisfyl < a < Yz. To deal with the non-linear

around the optimal value af did not increase the execu-
tion time by more thar3%.) The value ofa found in this
way will be close to optimal for values afclose to the test
value. After doing this for several test values it will be pos
sible to use some kind of curve fit to obtain a good value of
« for a generake. The following asymptotic study shows
that the best should grow likelog? x.

To obtain accurate estimates of the number of easy and
hard leavesr(x) will be approximated byi(z). This will

be achieved by replacing summations in whigh, or py
belongs to a given interval by integrals, over the same-inter
val, with p, 1 or p, replaced respectively hyor v, and us-
ing lj;u or ljgvv as the measure of integration. The follow-
ing definitions will be usefulwy = \/a ¥z, w, = ¥z/a?,
wy = /2, w3 = ¥z, andwy = a/x. Moreover, it will be
implicitly assumed thatv = O(z°).

The shapes of the trivial, easy, and hard regions ofithe
plane can be determined from the following facts:

o wy < u < wy, see (8);

o u < v < wy,See (9);

e the transition between trivial and easy leaves occurs
whenz/(py+1pd) ~ Ppi1, i.€., Whem = x/u?;

the transition between the two kinds of easy leaves oc-
curswhempg =~ /x/pp41, i.€., whenv = /z/v;

the transition between easy and hard leaves occurs
whenz/(pp+1pd) = ad/z, i.e., whem = z/u.

The shape of these regions is illustrated in figure 2 for the
caser = 10'? anda = 2. As mentioned above, the inte-
gral of 1/(logulogv) over one of these regions is a good
estimate of the number of leaves it contains.

effects of the processor’s data caches, this is best done byLet W be the amount of work required to compute the
experimenting with an actual program, adjusting the value contribution of all sparse easy leave§; the number of

764 REevisTA Do DETUA, VoL. 4, N° 6, MARcH 2006

sparse easy leaves, aAdthe area of the sparse easy leaves satisfy the conditiond = zp < 21 < -+ < zg = [z],

region. According to subsection 1I-B.3 the contribution of giving rise to the interval®;, = [zk—1,2x[, k = 1,..., K.
each sparse easy leaf can be computed in a constant numbefis obvious thafl, 2| andUszl B, contain the same inte-
of steps. Thu$V is proportional toV,. But gers.
o ST The intervalsB;, must be processed sequentially, starting
N~ 2 du / vl dy +/w3 du / vl dy with B;. To computep(y, b) for y € By, and forc < b < a
® w, logu [-1 logv J,, logu /, logv’ it is necessary to remove the multiples of each prime up to

pp from this interval. In order to be able to count quickly

Sincew; < u < ws andw; < v < wy, itfollows that the number of surviving integers;, — z,_; should be a

Ag As power of2. The value of¢(y, b) will then be the value of
logwslogwy = ° S logwy logws the sum of the appropriate counters (see appendix A) plus
the value ofp(zx—1 — 1, b).
Becaused, = O(z%/3) anda = O(x°), it follows that When the length of each interval i©(a/z) or less,

the method to compute(z) described in this paper will
use O(x'/3log®) words of storage. This goal can be
achieved using(z'/3 log =% 2) or more intervals of equal
length. (In an actual program the interval length should
be adapted dynamically, in order to make the program as
fast as possible.) Since the amount of work spent in over-
heads while processing an interval is proportional to the
number of primes used in the sieve (see below), to keep
the total amount of work a® (z2/? log=2 2) no more than
w2 g T T O(z'/3log!/? z) intervals can be used.

/ (() - ()) There are three tasks that must be performed while the in-

“ ws terval By, is being processed, namely, update of the value
/ ° du (W(x) _ (x)) ~ N.. of Sy for ¢ < b+ 1 < a*, update of the contribution of

ws logu\" \uy/x/u u(z/u?) ° the hard leaves to the value 8§, for a* < b+ 1 < a, and
update of the value af;(z, a). To accomplish the first two
it is necessary to determine the valuegdfy, b) for some
y € B andc < b+ 1 < a. To accomplish the third is is
necessary to evaluatéy) for somey € Bj.

For each, the values ofn (or of p;) which need to be con-
sidered when the intervad,, is being processed are those
for which x/(mpp11) € By and‘,u(m)pmin(m)’ > Ppt1-
Since in a special leaf (7) must also be enforced, it follows
that

W = O(z*3log 2).

According to subsection 1I-B.3, the work required to com-
pute the contribution of the clustered easy leaves to the
value of Sy, is proportional to the number of values bf

It follows that the work required to compute the contribu-
tion of all clustered easy leaves, denotedby, can be
approximated, up to a multiplicative constant, by

T -
log U U (E/U UW4

Hence,W. grows at the same rate #s;. (This is not a co-
incidence. Gourdon [7] found a way to merge the compu-
tation of the contributions of the two types of easy leaves.)
Let I}, be the amount of work required to compute the
contribution of all hard leaves)N,, the number of hard
leaves, andi,, the area of the hard leaves region. Accord-
ing to appendix A, the work required to compute the con-
tribution of each hard leaf tak&3(log =) steps. Hencd}y,
will be proportional toVy, log z. SinceA, = O(zloga) it
follows thatVy, = O(zlog~2 x log «), and that max(a%,pbﬂ, x) cm< min(a%, x)
Pb+1 Pv+12k Pb+12k—1
log o z:2/3) 1

a logzx

W, =0 . " . .
" (For this condition to be satisfiable it is necessary that

The only other significant part of the computation is z) IE T

to sieve the intervall, z[using the method described max(pc’g) < Pot1 < mm(o‘ z, Zk_l)'

in appendix A, which require®(zlog z) steps (and not))))

O(zlog zloglog z) steps as reported in [6]). The entire Itis possible to infer from this result that the range of ac-

amount of work required to computez) is then tive values ofp,.1, is larger wher;, is small than when,
is large (see figure 3). Thus, the work required to process
W0 log o /3 N z2/3 N z2/3 log constant-length intervals is highly skewed; intervalsselo
B a logz log2x a &) to z1/3 require much more computational effort than inter-

vals close ta:?/3.

The choicea = [log®x balances the sieve work with There is no need to resort to (14) to identify the special
the work required to evaluate the contribution of the easy |eaves that contribute 6, or So;, when the intervaBy, is
leaves, giving a total work o (2*/*log™*) steps. The peing processed. The computatiorsef, with ¢ < b < a*,
constants depends on the actual implementation of the al- can be done using the following algorithm, which uses the
gorithm; it should be determined empirically. variablem; to keep track of the largest valueof not yet

D. Subdivision of the intervdl, z| taken in consideration.
Dealing with the whole intervdl, z[at once is impractical
for large values of:. It is thus usually necessary to subdi- Step 1.Setm,, = |a¥z], S1, = 0, andk = 1.
vide it. This will be done at the integees, which must Step 2.Remove the multiples afy, . . ., p, from By,.

Algorithm 1. [Computation ofS,; for a givenb]

. o 3/ .
Sincez, < z, itis clear that® V= < —2%— is always true.
Pb+1 Pb4+1%k

REevisTA Do DETUA, VoL. 4, N° 6, MARcH 2006

logs py+1

0

16 18 20 22 24

logy 2,
Fig. 3 - Lower and upper bounds pf 1 while sieving the intervall, z|
(descending lines), and the prime sieve ligxiE;; (ascending line), for the
caser = 2%, o =1,¢c =0, andz;_, = 2z, — 216. (To make the figure
easier to understandy, is treated as a continuous variable.) Due to the
vertical logarithmic scale, the range of valuegf ; is larger wherey, is
small than when it is large.

26 28 30 32

Step 3.If myyprr1 < a/x then terminate the algorithm.

Step 4.Sety = x/(mippp+1)- If y > 2 then incremenk
and go to step 2.

Step 5.1f pmin(mip) > pr41 then subtracti(mqy,)o(y, b)
from Sy;,. Decrementny;, and go to step 3.

(Because the computation 6f requires a comparatively

765

an auxiliary sieve.
Algorithm 3. [Computation ofps(z, a)]

Step 1.Setps = a(a—1)/2,u = |Vz|,v = a,w = u+1,
andk = 1.

Step 2.Remove the multiples afy, . . ., p, from By.

Step 3.1f u < a¢/z then subtract(v — 1)/2 from ¢, and
terminate the algorithm.

Step 4.If u < w then setw = max(2,u — |a¥/z]) and
sieve completely the intervab, u + 1].

Step 5.Using the sieve of step 3, testufis prime. If not
then decrement and go to step 3.

Step 6.Sety = z/u. If y > z;, then increasé and go to
step 2.

Step 7.Add ¢(y, a) — a + 110 ¢2, increment, decrement
u and go to step 3.

The overheads introduced in these algorithms by the sub-
division of the interval[l, z[are exactly the overheads in-
troduced by a segmented sieve of Eratosthenes.

E. Outline of the algorithm used to computér)

The following algorithm presents a high-level overview of
the entire algorithm used to computér).

Algorithm 4. [Computation ofr(z)]

Step 1.Choose a value fory using the guide-lines pre-

small amount of work, it is not necessary to use the method Sented at the beginning of section II-C.

described in section 5 of [4] to find the special leaves.)
The computation 0655, with «* < b < a — 1, can be
done using the following algorithm, which uses the variable
dsyp, to keep track of the largest value @fnot yet taken in
consideration. (When = 0 the algorithm is evaluating
clustered easy leaves, when= 1 it is evaluating sparse
easy leaves, and when= 2 it is evaluating hard leaves.)

Algorithm 2. [Computation ofSy;, for a givenb]

Step 1.Setds, =t — 1, Sop = a — dop, k = 1, andt = 0.

Step 2.1f dop, = b+ 1 then terminate the algorithm. Other-
wise, sety = x/(pp+1pd,,) @nd go to step + 2t.

Step 3.If y > a¥/x then set = 2 and go to step 9. Other-
wise, setl = 7(y) — b+ 1 andd’ = 7 (x/(Po41Pp+1))-
Note thatd’ + 1 is the smallest value of for which (12)
is equal tal.

Step 4.1f pyry1 < Jx/pps1 Orif & < bthensett = 1
and go to step 6. Otherwise, atids, — d') to S, Set
(afterwards)s, = d’, and go to step 2.

Step 5.1f y > a¥/x then set = 2 and go to step 9. Other-
wise, sef = 7(y) — b+ 1.

Step 6.Add [to Sy, decrementlz,, and go to step 2.

Step 7.1f y > z;, then incremenk and go to step 9.

Step 8.Add ¢(y, b) to Sy, decremendsy,, and go to step 2.

Step 9.Remove the multiples gfy, ..., p, from B;. Go
tostep 7.

The update of the value @f;(z, a) can be done using the
following algorithm, which uses the variahlgo keep track

of the largest value g, not yet taken in consideration, the
variablev to count the number of primes up {dx, and the
variablew to keep track of the first integer represented in

Step 2.Make a list of the primes up ta</z, and compute
the values ofu(n)pmin(n) and ofr(n) for all oddn up
to that limit. The values 0fi(n)pmin(n) can be com-
puted efficiently using a simple adaptation (to deal only
with odd numbers) of the code presented in table lll.
The primes can then be identified easily using the test
1w(n)pmin(n) = —n. Computer, a*, andp,1.

Step 3.Setc = 7 (or any other reasonably small value).
Compute and store in a table the valuespéh, ¢) for
0<n<p;1--pe.. Next, computesy andS;., using (5)
to evaluatep(-, c). At this point the table of values of
o(n, c) is not needed any more. However, as described
in appendix A, the counter initialization can be improved
when the values of (n, k.) = ¢(n,c) — ¢(n — 1,¢) are
known. To take advantage of this possibility, transform
the table of values of(n, c) into a table of values of
f(n,k.). (In practice, only odd values afare used.)

Step 4.Foreachh = c+1,...,a* — 1, perform step 1 of
algorithm 1. Foreach = a*,...,a — 2, run algorithm 2
until either it terminates or step 9 is reached. Perform
step 1 of algorithm 3. For eadh= ¢+ 1,...,a, set
d(z0 — 1,b) = 0. Setk = 1.

Step 5.Initialize the sieve counters using code similar to
that of table VII, and using th¢(n, k.) values (repeated
periodically) computed previously. Discard the multi-
ples ofpe11, ..., p, from By using the machinery of ap-
pendix A. In between, use the the appropriate parts of
algorithms 1 and 2 to update the valuesSef and Sy,
computing¢(-,b) as described in appendix A, and re-
place the value ob(zx—1 — 1,b) by that of¢(z, — 1,b).
Once all the primes have been processed, use the appro
priate parts of algorithm 3 to update the valu@efzx, a).

766

If one of the algorithms did not terminate, incremént
and repeat this step.

Step 6.Computes(z, a) = So+ >4, " Sip+3 42 Sa.
Computer(z) = ¢(x,a)+a—1—¢o(x, a) and terminate
the algorithm.

In practice, there is no need to stfg the severaby;, and
Sap, andgo(z, a) in separate variables (see the last step of
the previous algorithm).

[1l. SOME VALUES OF ()

The algorithm described in the previous section can be
adapted to compute simultaneouslyz) for several val-
ues ofz. Since the sieve work can be shared among the
different computations, this way of doing things speeds up
the preparation of extensive tables of valuesr0f). The
author of this article implemented the algorithm in this way

The first values ofr(z), and ofli(z) — = (x), for = a power
of 10, or a power of, are presented in tables IV and V, re-
spectively. The logarithmic-integral function was congmlit
using the equalityi(z) = Ei(log x), where

k

codt — 1
Ei(x):/ et?zw—l—logac—i—z%%
oo =k k!

(y = 0.5772156649 ... is Euler's constant). More exten-
sive tables of values af(z) can be found in the web page
http://www.ieeta.pt/ ~tos/primes.html

It is obvious from tables IV and V thdi(z) is a good ap-
proximation ofr(x). The last column of these tables sug-
gest thafi(z) > =(z) for 2 < = < 10?2. Note, however,
that Littlewood proved in the first quarter of the XX cen-
tury thatli(z) — 7(x) changes sign infinitely often. It is
known that the least for which 7(x) > li(x) is smaller
that1.4 - 10316 [12].

TABLE IV
VALUES OF 7r(x) AND OF li(z) — 7(x) FOR POWERS OF TEN

(@) | (@) — 7 (z) |

Lz |

10t 4 2.165. ..
102 25 5.126 ...
103 168 9.609. ..
104 1229 17.137...
10° 9592 37.809. ..
106 78498 129.549 . ..
107 664579 339.405 . ..
108 57 61455 754.375 . ..
109 508 47534 1700.957
1010 4550 52511 3103.586. ..
101! 41180 54813 11587.621 ...
1012 376079 12018 38262.804 . ..
1013 3460655 36839 108971.050. ..
1014 32049417 50802 314889.953 . ..
1015 2984 45704 22669 1052618.581 . ..
1016 27923 83410 33925 3214631.792. ..
1017 262355 71576 54233 7956588.778 . ..
1018 2473995 42877 40860 21949555.022 . ..
1019 234 05766 72763 44607 998 77775.223 . ..
1020 2220 81960 25609 18840 2227 44643.548 . ..
1021 21127 26948 60187 31928 5973 94254.333 . ..
1022 | 201467 28668 93159 06290 | 19323 55208.150 . ..

7(1023) = 1925320 39160 68039 68923

REevisTA Do DETUA, VoL. 4, N° 6, MARcH 2006

TABLE V

VALUES OF 7r(z) AND OF li(z) — w(z) FOR POWERS OF TWO

[=] m(z) | li(z) — (%) |
21 1 0.045 ...
22 2 0.967...
23 4 1.253...
24 6 2.519. ..
25 11 2.605. ..
26 18 3.934...
27 31 5.042...
28 54 6.513. ..
29 97 6.721. ..
210 172 9.078. ..
211 309 12.114. ..
212 564 12.922. ..
213 1028 19.751...
214 1900 19.888...
215 3512 32.244 . ..
216 6542 41.986. ..
217 12251 45.067 . ..
218 23000 69.193. ..
219 43390 63.811...
220 82025 112.527...
221 155611 128.964. ..
222 295947 166.838. ..
223 564163 248.512. ..
224 1077871 350.700. ..
225 20 63689 295.678...
226 3957809 540.548 . ..
227 76 03553 830.150. ..
228 146 30843 934.673. ..
229 281 92750 1555.428 . ..
230 544 00028 1447.618
231 1050 97565 2665.676 . . .
232 2032 80221 3860.999. ..
233 3936 15806 3586.424 . ..
234 7629 39111 5334.930.. .
235 14802 06279 10663.828 . . .
236 2874398515 13544.223 ...
237 55865 02348 15994.979 . ..
238 108662 66172 22830.503 ...
239 21151907950 25740.119. ..
240 412030 88796 41644.933 . ..
241 803165 71436 69688.200 . . .
242 1566610 34233 59035.208 . ..
243 3057617 13237 114792.833 ...
244 5971163 81732 132860.781 . ..
245 116 67467 86182 262854.070. ..
246 228 09987 53949 166928.337 . ..
247 44616329 79717 219714.955 . ..
248 87311888 63470 663697.853 ...
249 1709 44325 76778 917028.068 ...
250 3348 33796 03407 10 68422.765 . . .
251 6561 28999 15304 1809320.253 ...
252 12862 55036 10475 1456904.811 . ..
253 25225 27041 48404 1867813.455 . ..
254 49489 02049 04784 54 25756.994 . ..
255 97126 99452 45201 58 55761.639 . ..
256 190687 93810 28850 6738674.599 . ..
257 374501 11847 13964 13383939.057 . . .
258 735740 02678 43990 14917783.914 . ..
259 1445879 28953 01660 17204097.042 . . .
260 28 42309 44969 53330 224 77599.971 . ..
261 5589048 40450 84135 45508690.025 .. .
262 109 93280 75854 69973 39412395.209 . ..
263 216 28961 18534 39384 87575308.033 . ..
264 425 65628 40352 17743 805 00871.808 . ..
265 83790314 54666 07212 1567 46489.268 . . .
266 1649 81970 04647 85589 | 203582959.080 .. .
267 3249 25438 70525 57215 1768 00774.267 . ..
268 6400 77159 75449 37806 | 4414 08683.778 ...
269 | 1261186461 87603 52880 | 4663 70512.942 ...
270 | 2485545536 33626 85793 | 9353 50265.789 . . .
271 | 4899557160 01294 58363 861364388.234 ...
272 | 9660107519 50751 86855 | 13159 80554.314 . ..

7(273) = 190499 82340 13279 05601
7(274) = 375744 16493 76996 09596
7(27°) = 741263 52114 07401 13483

REevisTA Do DETUA, VoL. 4, N° 6, MARcH 2006

APPENDIX
|. EFFICIENT SIEVE IMPLEMENTATION

The algorithm described in section Il requires frequent
evaluations of the functiom(x,a). The binary tree data
structure of [4] can be used to do this efficiently. The author
of this paper was able to eliminate the redundancy present
in this data structure, with the result that its space reguir
ments were reduced t88% and its update speed was in-
creased by a factor of almo8t Later, he found out that

a similar data structure, which does not require a power
of two length but treats its first data element in a differ-
ent way, was proposed by Fenwick [9] to perform updates
and queries of the cumulative frequency tables used in-arith
metic coders [11].

Suppose that the interv@B, B + 2%[is to be sieved, and
that it is necessary to evaluatér,) for “random” values

of » € [B, B + 2" and non-decreasing values af Let
f(n,k),forn =0,...,2F —1andk =0, 1,..., represent
the status of the integé? +n afterk elementary sieve oper-
ations. Each elementary sieve operation amounts to mark a
previously unmarked multiple of some primg(n, k) will

be equal to one iB + n remains unmarked aftér such
operations and will be equal to zero otherwise. After the
multiples of the primes up tp, have been marked, a task
requiringk, elementary sieve operations, it will be possible
to compute the value of

lz—B]

¢(z,a) = $(B—1,a)+ Y f(n,ka) (15)
n=0

for anyz € [B, B + 2%[. The direct use of this formula

767

TABLE VI
COUNTER INITIALIZATION

void cnt_init(int
{

int i;

*cnt,int L)

for(i = 0;i < (1 << L)ji++)
centfil] = (i + 1) & 7;

Indices (in decimal and in base 2) and the b2geitial values of
the counters for the cade = 3.

0 1 2 3 4 5 6 7
0002 0012 0102 0112 1002 1012 1102 111s
00012 00102 00012 01002 00012 00102 00012 10002

TABLE VII
COUNTER INITIALIZATION FROM f(n, k)

void cnt_finit(int *f,int *cnt,int L)

int i,j,k;

for(i = 0;i < (1 << L)ji++)

cnt[j = i] = f[i];

fork = (i + 1) & Ttk >>= 1;j &= j - 1)
cnt[i] += cnt]j - 1];

}
}

Indices plus one (in basy of the counters that must be summed
initialize the tree data structure froyf(n, k) for the casel. = 3.
These summations proceed from the left to the right, alwaysgu
the most recent value of each counter.

0 1 2 3 4 5 6 7
00012 00102 0011z 01002 0101z 01102 01112 10002
00012 00112 01012 01119
00102 01102
01002

to

is obviously very inefficient (average and worst amount of counters using the code of table VI and then mark the mul-
work proportional t@"), although the elementary sieve op- tiples of the primes) < p. which belong to the interval

erations will be very efficient (constant amount of work).

[B, B + 2. It is much faster to initialize the counters di-

Itis possible to make both the elementary sieve operationsrectly from the values of (n, k), which is a function with

and the evaluation ob(z, a) very efficient using only2”
counters. Each counter accumulates the value§ofk)
in a certain range, as depicted in figure 4 for= 3. In

periodp; - - - p.. This can be done using on®f — 1 addi-
tions (see C code and example in table VII).

Each elementary sieve operation requires the update of a

practice, since it is also necessary to ascertain if a givenmost7, counters. Working in bas it is very easy to find

integer has already been marked, it is possible to use ongpe indices of the counters that must be decremented: the
of the otherwise unused bits of its corresponding counter to¢; st corresponds to the integer that was marked, and the
store this information; the most significant bit (sign bit fo et can be obtained by replacing each zero bit of the index
signed integer data types) is a particularly good choice. y one, starting from the least significant bit, until Blbits
The initialization of the counters to match the situation in pacome equal to one (see C code and example in table VII1).
which no number has been marked, i.£n,0) = 1,18 Assuming that the integers to be marked follow an uniform
very simple: the number of consecutive least significaist bit distribution, it can be shown that the average number of
equal to one of each counter index determines the Rase g nters that need to be updated is L /2.
logarithm of the initial value of its corresponding counter After an elementary sieve operation it is possible to com-
(see C code and example in table VI). The entire initializa- |z—B| .
tion is done in linear time. pute the value b, f(@, k) by. summing thg V"?"“es

. . of at mostL counters. Working again in baðe indices
Smce the.values Ozf(x.’ C.L) can be computed Wlt.h. (5.) when plus one of the counters that need to be summed can be
a if small (i.e.,a = ¢), it is a waste of time to initialize the found easily: the firstis equal tot |z — B, and the others
are obtained by successively changing each bit that is equa
to one to zero, starting from the least significant bit, until
7 zero is obtained (see C code and example in table 1X). As-
suming that the numbersfollow an uniform distribution,
it can be shown that the computationgfr, a) requires an
average number df /2 + 2~L summations.

Fig. 4 - Fractal-like organization of the counters for theeh = 3. Each
counter keeps track of the sum of valuesf¢f, k) in its area on influence
(rectangles). For example, counfecontains the valug (4, k) + f(5, k).

768

REevisTA Do DETUA, VoL. 4, N° 6, MARcH 2006

TABLE VI
COUNTER UPDATE
void cnt_update(int pos,int *cnt,int L)
{ do
cnt[pos]--;

pos |= pos + 1,

}
while(pos < (1 << L));

Indices (in base&) of the counters that must be decremented then
an integer is marked for the cage= 3.

0 1 2 3 4 5 6 7
0002 0012 0102 011z 1002 101z 1102 1119
0012 0112 011z 1112 1012 1112 1119

0112 1112 1119 1119
1119
TABLE IX
COUNTER QUERY
int cnt_query(int pos,int * cnt)
int sum;

sum = cnt[pos++];
while(pos &= pos - 1)

sum += cnt[pos - 1J;
return sum;

}

Indices plus one (in bas® of the counters that must be summed
to computez,f:()bJ f(n, k) for the casel. = 3.
0 1 2 3 4 5 6 7
00012 00102 00112 01002 01012 01102 01112 10002
00102 01002 01002 01102
01002

When there are many values®(z, a) to be computed for
the same value af it may be advantageous to replace the [9]
binary tree structure of the counters by a linear list stroest
from which the values af(z, a) — ¢(B — 1, a) can be read
directly. This conversion, called flattening the counteas)

be done usin@” — 1 — L summations (see C code and
example in table X). Reversing this operation (deflatteNing 11 A moffat, R. M. Neal, and 1. H. Witten,

is equally simple.

(1]

(2]

(31

(4]

(5]

(6]

REFERENCES

L. E. Dickson, History of the Theory of Numbergol. |: Divisibility

and Primality, AMS Chelsea Publishing, Providence, Rhatfntd,
USA, 1992, Published originally by the Carnegie Institut®\&ash-
ington (publication number 256) in 1919.

H. Riesel,Prime Numbers and Computer Methods for Factorization
vol. 126 of Progress in Mathematics Birkhauser, Boston, second
edition, 1994.

D. H. Lehmer, “On the exact number of primes less than @miv
limit”, Illinois Journal of Mathematicsvol. 3, pp. 381-388, 1959.

J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, “Compugn
m(z): The Meissel-Lehmer methodMathematics of Computation
vol. 44, no. 170, pp. 537-560, Apr. 1985.

R. Crandall and C. Pomeranc®rime Numbers: A Computational
Perspective Springer, Berlin / New York, 2002 (second printing).
M. Deléglise and J. Rivat, “Computing(x): the Meissel, Lehmer,

Lagarias, Miller, Odlyzko method” Mathematics of Computation
vol. 65, no. 213, pp. 235-245, Jan. 1996.

TABLE X
COUNTER FLATTENING AND DEFLATTENING
void cnt_flatten(int *cnt,int L)
(N
int ij;

for(i = 2;i < (1 << L)ji++)
{
j=i& @+ 1)
if()
entfi] += cntfj - 1J;

}

Indices plus one (in basy) of the counters that must be summed|to
flatten the tree data structure for the case- 3. These summations
proceed from the left to the right, always using the mostmede
value of the counters.

0 1 2 3 4 5 6 7
00012 00102 00112 01002 01012 01102 01112 10002
00102 01002 01002 01102
void cnt_deflatten(int *cnt,int L)
(N
int ij;

for(i = (L << L) - ;i > 1;-i)
{
j=i&(i+ 1)
if()
cntfi] -= cntj - 1J;

(7]

(8]

X. Gourdon, “Computation ofr(x): Improvements to the Meissel,
Lehmer, Lagarias, Miller, Odlyzko, Deléglise and Rivatthal”,
Available fromhttp://numbers.computation.free.fr/
Constants/Primes/Pix/piNalgorithm.ps ,2001.

J. C. Lagarias and A. M. Odlyzko, “Computing(z): an analytic
method”, Journal of Algorithmsvol. 8, pp. 173-191, 1987.

P. M. Fenwick, “A new data structure for cumulative fremey ta-
bles”, Software — Practice and Experienosl. 24, no. 3, pp. 327—
336, Mar. 1994, Corrections in Vol. 24, No. 7, p. 677, July499

[10] R. L. Graham, D. E. Knuth, and O. Patashn@oncrete Mathemat-

ics, Addison-Wesley, Reading, Massachusetts, second edlié®4.
“Arithmetic codp revis-
ited”, ACM Transactions on Information Systemsl. 16, no. 3,
pp. 256-294, July 1998.

[12] C. Bays and R. H. Hudson, “A new bound for the smaltestith

m(z) > li(z)", Mathematics of Computatiorvol. 69, no. 231,
pp. 1285-1296, 2000.

