PRIMALITY TESTS FOR FERMAT NUMBERS AND $2^{2k+1} \pm 2^{k+1} + 1$.

YU TSUMURA

Abstract. Robert Denomme and Gordan Savin made a primality test for Fermat numbers $2^{2^k} + 1$ using elliptic curves. We propose another primality test using elliptic curves for Fermat numbers and also give primality tests for integers of the form $2^{2k+1} \pm 2^{k+1} + 1$.

1. INTRODUCTION.

The integers of the form $2^{2^k} + 1$ with $k \ge 0$ are called Fermat numbers, named after Pierre de Fermat. For $k = 0, 1, 2, 3, 4$, Fermat numbers are prime. Fermat conjectured that all numbers of this form were prime numbers. However, in 1732 Leonhard Euler disproved this conjecture by factoring the fifth Fermat number $2^{2^5} + 1 = 641.6700417$. Not only was it disproved, but also no other Fermat primes have been discovered when $k > 4$. So checking the primality or finding factors of Fermat numbers attracts many people.

Let us define the notation used in this paper.

Definition 1.1. Let $F_k = 2^{2^k} + 1$, $G_k = 2^{2k+1} + 2^{k+1} + 1$, and $H_k =$ $2^{2k+1} - 2^{k+1} + 1$, where k is assumed to be a positive integer. F_k is called the kth Fermat number.

In 1877, Pepin gave a very efficient primality test for Fermat numbers.

Theorem 1.2. (Pepin test). For $k \geq 1$, $F_k = 2^{2^k} + 1$ is prime if and only if $3^{(F_k-1)/2} \equiv -1 \pmod{F_k}$.

Proof. See Theorem 4.1.2 in [\[2\]](#page-10-0).

In this paper, we study group structures of elliptic curves defined over finite fields of order F_k , G_k , and H_k (if they are prime). The essential role is the action of an endomorphism $[1 + i]$ on the curves. After that we use the information of the group structure to give two primality tests for Fermat numbers which can be regarded as an elliptic

¹⁹⁹¹ Mathematics Subject Classification. Primary 11Y11; Secondary 14H52.

version of the Pepin test. Also, we give similar results for integers of the form $2^{2k+1} \pm 2^{k+1} + 1$.

The original work in this direction was done by Benedict H. Gross in [\[4\]](#page-10-1) for Mersenne numbers and by Robert Denomme and Gordan Savin $\lim_{n \to \infty} [3]$ $\lim_{n \to \infty} [3]$ for Fermat numbers and integers of the form $3^{2^k} - 3^{2^{k-1}} + 1$ and $2^{2^k} - 2^{2^{k-1}} + 1$, where k is a positive integer. Gross used the formula of the multiplication by 2 as a recursive formula and Denomme and Savin used the formula of the action of $[1 + i]$ as a recursive formula for Fermat numbers. In this paper, we obtain the same primality test as Denomme and Savin in a slightly different approach and also give a new primality test which uses the formula of the multiplication by 2 for Fermat numbers. Also, by the same method we give new primality tests for G_k , H_k . As you notice by the following proofs, F_k , G_k and H_k are the only numbers to which this method applies.

We saw in Theorem [1.2](#page-0-0) that there is a fast primality test for $p = F_k$. There are also fast primality tests for $p = G_k$ and $p = H_k$. For example, one could use Corollary 1 or Theorem 5 of [\[1\]](#page-10-3). These tests apply because $p-1$ is divisible by a power of 2 near \sqrt{p} . These tests determine the primality of p of these three special forms in polynomial time. Our new tests below also run in polynomial time and are the first such tests using elliptic curves.

2. GROUP STRUCTURE.

The next theorem allows us to determine the order of certain elliptic curve groups.

Theorem 2.1. Let $p \equiv 1 \pmod{4}$ be an odd prime and let $m \not\equiv 0$ $p(\mod p)$ be a fourth power mod p. Let E be an elliptic curve defined by $y^2 = x^3 - mx$. Let $p = a^2 + b^2$, where a, b are integers with b even and $a + b \equiv 1 \pmod{4}$. Let $E(p)$ be the elliptic curve E defined over \mathbb{F}_p . Then we have $#E(p) = p + 1 - 2a$.

Proof. See Theorem 4.23, page 115 in [\[6\]](#page-10-4). \Box

From now on, we fix an elliptic curve $E : y^2 = x^3 - mx$, where $m \neq 0 \pmod{p}$ is a fourth power mod a prime p. We denote by $E(p)$ the elliptic curve group E defined over finite field \mathbb{F}_p when p is prime. Also let $E(\bar{\mathbb{F}}_p)$ be the elliptic curve E defined over the algebraic closure $\overline{\mathbb{F}}_p$ of \mathbb{F}_p and we denote by $E[n]$ the elements in $E(\overline{\mathbb{F}}_p)$ whose orders divide n.

Corollary 2.2. (1) If F_k is prime, then $\#E(F_k) = 2^{2^k}$. (2) If G_k is prime, then $\#E(G_k) = 2^{2k+1}$.

(3) If F_k is prime, then $\#E(H_k) = 2^{2k+1}$.

Proof. Let us first consider F_k . The decomposition into two squares is $F_k = 2^{2^k} + 1 = 1^2 + (2^{2^{k-1}})^2$ and $1 + (2^{2^{k-1}}) \equiv 1 \pmod{4}$. Hence by Theorem [2.1,](#page-1-0) $\#E(F_k) = F_k + 1 - 2 = 2^{2^k}$.

Next, let $a = 2^k + 1$ and $b = 2^k$. Then we have $G_k = a^2 + b^2$ and $a+b \equiv 1 \pmod{4}$. Hence we have $\#E(G_k) = G_k + 1 - 2(2^k + 1) = 2^{2k+1}$ by Theorem [2.1.](#page-1-0)

Similarly, let $a = -(2^k - 1)$ and $b = 2^k$. Then we have $H_k = a^2 + b^2$ and $a + b \equiv 1 \pmod{4}$. Hence $\#E(H_k) = H_k + 1 + 2(2^k - 1) = 2^{2k+1}$. \Box

The next lemma gives information on the group structures of $E(p)$ and $E[n]$.

Lemma 2.3. Let E be an elliptic curve over a finite field \mathbb{F}_p . Then we have

$$
E(p) \cong \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2}
$$

for some positive integers n_1 and n_2 with $n_1|n_2$. Also, if n is a positive integer which is not divisible by p, then we have

 $E[n] \cong \mathbb{Z}_n \oplus \mathbb{Z}_n$.

Proof. See Theorem 3.1 and Theorem 4.1 in [\[6\]](#page-10-4). \Box

Let p denote one of F_k , G_k and H_k . Suppose p is prime. By Corollary 2.2 and Lemma [2.3,](#page-2-0) the group structure is $E(p) \cong \mathbb{Z}_{2^{\alpha}} \oplus \mathbb{Z}_{2^{\beta}}$ with $\alpha \leq \beta$ and $\alpha + \beta = 2^k$ if $p = F_k$ and $\alpha + \beta = 2k+1$ if $p = G_k$ or $p = H_k$. Since m is a 4th power, all the roots of $x^3 - mx$ are in \mathbb{F}_p and also in the subgroup $E[2] \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$ by Lemma [2.3.](#page-2-0) Then $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \cong E[2] \subset E(p)$, hence $E(p)$ is not cyclic. However, we can determine the group structure of $E(p)$ precisely. First we need two lemmas.

Lemma 2.4. Let n be a positive integer which is not divisible by a prime p. Let ϕ be the Frobenius endomorphism on $E(\bar{\mathbb{F}}_p)$ given by $\phi(x,y) = (x^p, y^p)$. Then $E[n] \subset E(p)$ if and only if $\phi - 1$ is divisible by n in $\text{End}(E)$.

Proof. See Lemma 1 in [\[5\]](#page-10-5).

Lemma 2.5. If $#E(p) = p + 1 - A$, then the Frobenius endomorphism ϕ satisfies $\phi^2 - A\phi + p = 0$ as an endomorphism of E.

Proof. See Theorem 4.10, page 101 in [\[6\]](#page-10-4).

Theorem 2.6. Suppose F_k is prime. Then we have

$$
E(\mathbb{F}_k) \cong \mathbb{Z}_{2^{2k-1}} \oplus \mathbb{Z}_{2^{2k-1}}.
$$

Proof. Since $\#E(F_k) = F_k + 1 - 2$, the Frobenius endomorphism ϕ satisfies $\phi^2 - 2\phi + F_k = 0$ in End(E) by Lemma [2.5,](#page-2-1) and hence $(\phi - 1)^2 =$ -2^{2^k} . Since End(E) ≅ Z[i] (see chapter 10 in [\[6\]](#page-10-4)), it is a unique factorization domain. Therefore $\phi - 1 = \pm i2^{2^{k-1}}$, and hence $2^{2^{k-1}}$ divides $\phi - 1$. Then $E[2^{2^{k-1}}] \subset E(F_k)$ by Lemma [2.4.](#page-2-2) Since $E[2^{2^{k-1}}] \cong$ $\mathbb{Z}_{2^{2^{k-1}}} \oplus \mathbb{Z}_{2^{2^{k-1}}}$ by Lemma [2.3,](#page-2-0) we have $\#E[2^{2^{k-1}}] = (2^{2^{k-1}})^2 = 2^{2^k} =$ $\overline{\#E}(F_k)$. Therefore we have $E(F_k) = E[2^{2^{k-1}}] \cong \mathbb{Z}_{2^{2^{k-1}}} \oplus \mathbb{Z}_{2^{2^{k-1}}}$. \Box

Theorem 2.7. Suppose G_k is prime. Then we have

$$
E(G_k) \cong \mathbb{Z}_{2^k} \oplus \mathbb{Z}_{2^{k+1}}.
$$

Proof. From Corollary 2.2, we know that $\#E(G_k) = 2^{2k+1} = G_k + 1 2(2^k+1)$. Hence the Frobenius endomorphism ϕ satisfies $\phi^2 - 2(2^k +$ $1)\phi + G_k = 0$. Then we have $(\phi - 1)^2 - 2^{k+1}(\phi - 1) + 2^{2k+1} = 0$. Therefore, $\phi - 1 = 2^k (1 \pm i)$. Hence 2^k divides $\phi - 1$ and we have $E[2^k] \subset E(G_k)$ by Lemma [2.4.](#page-2-2) Since $#E[2^k] = 2^{2k}$ and $#E(G_k) = 2^{2k+1}$, the group structure of $E(G_k)$ must be $E(G_k) \cong \mathbb{Z}_{2^k} \oplus \mathbb{Z}_{2^{k+1}}$ by Lemma [2.3.](#page-2-0) \Box

Theorem 2.8. Suppose H_k is prime. Then we have

$$
E(H_k) \cong \mathbb{Z}_{2^k} \oplus \mathbb{Z}_{2^{k+1}}.
$$

Proof. Just note that the Frobenius endomorphism satisfies $\phi^2 + 2(2^k 1)\phi + H_k = 0$. Hence $\phi - 1 = (-1\pm i)2^k$. The rest of the proof is identical to that of Theorem [2.7.](#page-3-0)

3. Primality test

Again let p be one of F_k , G_k and H_k . As we noted in the proof of Theorem [2.6,](#page-2-3) E has complex multiplication by $\mathbb{Z}[i]$. For a detailed explanation about complex multiplication, see chapter 10 in [\[6\]](#page-10-4). The action of i on $(x, y) \in E$ is given by $[i] \cdot (x, y) = (-x, iy)$, where the i in $(-x, iy)$ is a 4th root of unity in \mathbb{F}_p . This i exists in \mathbb{F}_p since $p \equiv 1$ $\pmod{4}$. Note that as an endomorphism, *i* has degree 1 and hence it is an isomorphism. Now, let us denote $\eta = 1 + i$ in End(E). This endomorphism is very important in this paper. Let us describe the action of η on (x, y) explicitly. Let $\eta \cdot (x, y) = (x', y')$. We have

$$
\eta \cdot (x, y) = [1 + i] \cdot (x, y) = (x, y) + [i] \cdot (x, y) = (x, y) + (-x, iy)
$$

and by the elliptic curve addition, it is equal to

$$
(3.1)\qquad \qquad \left(\left(\frac{(1-i)y}{2x}\right)^2, y'\right)
$$

(3.2)
$$
= \left(\frac{x^2 - m}{2ix}, y'\right),
$$

where $y' = \left(\frac{(1-i)y}{2x}\right)$ $\frac{(-i)y}{2x}$ $(x - x') - y$. Note that by the equation [\(3.1\)](#page-3-1), the x-coordinate x' of $\eta \cdot (x, y)$ is a square and by the equation [\(3.2\)](#page-4-0), x' can be computed without using y. Also note that η has degree 2, hence $\#\text{Ker}(\eta) = 2$. Clearly, $(0,0)$ is in the kernel and so $\text{Ker}(\eta) =$ $\{\infty, (0, 0)\}\,$, where ∞ is the identity of E.

Note that $\eta^2 = 2i$ and $\eta^{2l} = \epsilon 2^l$, where l is a positive integer and $\epsilon = \pm 1, \pm i$. Since $\epsilon = \pm 1, \pm i$ are isomorphism, we do not care about this factors. We will use ϵ for ± 1 , $\pm i$ in this paper, but ϵ might have different values at each occurrence.

3.1. Primality test for Fermat numbers. Now we can state a theorem which can be converted into a primality test.

Theorem 3.1. Let $\eta = 1 + i$ in End(E). Let $P = (x, y)$ on E, where x is a quadratic non-residue mod F_k . Then F_k is prime if and only if $\eta^{2^k-1}P = (0,0).$

Proof. Suppose F_k is prime. In the proof of Theorem [2.6,](#page-2-3) we have seen that $\phi - 1 = \epsilon 2^{2^{k-1}} = \epsilon \eta^{2^k}$. Hence, we have $\text{Ker}(\eta^{2^k}) = \text{Ker}(\phi - 1) =$ $E(F_k)$. Since $\#\text{Ker}(\eta) = 2$ and $\#E(F_k) = 2^{2^k}$, we have $\text{Ker}(\eta^s) =$ $\text{Im}(\eta^{2^k-s})$ for $s=1, 2, \ldots, 2^k$. Assume $P = \eta Q$ for some $Q \in E(F_k)$. Then as we noted above, the x-coordinate x of $\eta Q = P$ is a square. However, we assumed that x is a quadratic non-residue mod F_k , hence P is not in the image of η . Observe that $\eta^{2^k-1}P \neq \infty$ since otherwise $P \in \text{Ker}(\eta^{2^k-1}) = \text{Im}(\eta)$, but $P \notin \text{Im}(\eta)$. Since $\eta^{2^k-1}P \neq \infty$ and $\eta^{2^k} = \infty$, we have $\eta^{2^k-1} P = (0,0)$.

Conversely, suppose $\eta^{2^k-1}P = (0,0)$. Assume F_k is composite and let q be a prime divisor such that $q \leq \sqrt{F_k}$. It is known that a divisor of a Fermat number is congruent to 1 modulo 4. (See [\[2\]](#page-10-0)). Then $\eta^{2^k-1}P=(0,0)$ holds in the reduction $E(q)$. It follows that $2^{2^{k-1}-1}P=$ $\epsilon \eta^{2^k-2} P \neq \infty$. Also we have $2^{2^{k-1}} P = \epsilon \eta^{2^k} P = \infty$, therefore P has order $2^{2^{k-1}}$. Assume that $\{P, iP\}$ is a basis of $E[2^{2^{k-1}}]$. Note that $iP \in$ $E(q)$ since $i \in \mathbb{F}_q$ when $q \equiv 1 \pmod{4}$. So we have $E[2^{2^{k-1}}] \subset E(q)$, hence $2^{2^k} \leq \#E(q)$. However, $\#E(q) \leq (\sqrt{q}+1)^2$ by Hasse's Theorem. Hence, we have $q^2 - 1 \le F_k^2 - 1 = 2^{2^k} \le \#E(q) \le (\sqrt{q} + 1)^2$. This inequality holds only for $q = 2$. However, clearly q is an odd prime. Hence it is a contradiction. Therefore F_k is prime.

To complete the proof, we need to prove that $\{P, iP\}$ is a basis of $E[2^{2^{k-1}}]$. Suppose $uP + v(iP) = \infty$ for some integers u, v. Let $u = 2^{\alpha}u'$

and let $v = 2^{\beta}v'$ with u', v' odd. Since the order of P is a power of 2, we have $\alpha = \beta$. Now $(u' + v'i)(2^{\alpha}P) = \infty \Rightarrow (u'^2 + v'^2)(2^{\alpha}P) = \infty \Rightarrow$ $u'^2 + v'^2 \equiv 0 \pmod{2^{2^{k-1}-\alpha}}$. Since $u'^2 + v'^2 \equiv 2 \pmod{4}$, the above congruence holds only if $\alpha = 2^{k-1}$ or $\alpha = 2^{k-1} - 1$. If $\alpha = 2^{k-1}$, then $u \equiv v \equiv 0 \pmod{2^{2^{k-1}}}$, and hence they are independent.

Next let us consider the case $\alpha = 2^{k-1} - 1$. Let $P' = (2^{2^{k-1}-1})P$. Then P' has order 2. Hence P' is either $(0,0)$ or $(\pm \sqrt{m},0)$. However, $\eta P' = \eta \cdot (\epsilon \eta^{2^k-2}) P = \epsilon \eta^{2^k-1} P \neq \infty$, hence we have $P' \neq (0,0)$. Therefore, P' is either $(\sqrt{m}, 0)$ or $(-\sqrt{m}, 0)$. If $P' = (\sqrt{m}, 0)$, then $\infty = (u' + v'i)(\sqrt{m}, 0) = u'(\sqrt{m}, 0) + v'(-\sqrt{m}, 0)$ with odd u', v'. Since ${(\sqrt{m},0),(-\sqrt{m},0)}$ is a basis for E[2], they cannot be dependent with odd coefficients. The same thing happens when $P' = (-\sqrt{m}, 0)$. Therefore, P and iP are independent, and this completes the proof. \Box

Hence, to check the primality of Fermat numbers, we need to calculate $\eta^{2^k-1}P$ for a point P with a quadratic non-residue x-coordinate mod F_k . However, we need not to calculate a y-coordinate since when an x-coordinate is 0 , so is the y-coordinate. Also as noted above, to calculate the x-coordinate of ηP , the y-coordinate of P is not used.

For example, take $m = 1$ and $P = (5, 2\sqrt{30})$ on $E : y^2 = x^3 - x$. It is straightforward to check 5 is a quadratic non-residue and 30 is a quadratic residue mod F_k . Hence P satisfies the conditions of Theorem [3.1.](#page-4-1)

Here is the algorithm to check the primality for F_k . Let $x_0 = 5$ and let

$$
x_j = \frac{x_{j-1}^2 - 1}{2ix_{j-1}}
$$

if $gcd(x_{j-1}, F_k) = 1$ for $j \ge 1$. Note that x_j is the x-coordinate of $\eta^j P$. Here *i* is a primitive 4th root of unity in F_k and it is explicitly $i = 2^{2^{k-1}}$. If $gcd(x_j, F_k) > 1$ for some $j < 2^k - 1$, then F_k is composite and we terminate the algorithm. If we calculate x_{2^k-1} and it is 0, then F_k is prime. If $x_{2^k-1} \neq 0$, then F_k is composite.

Remark 3.2. We do not need to find $\sqrt{30}$ mod F_k explicitly. We just needed to know that the point $P = (5, 2\sqrt{30})$ is on $E : y^2 = x^3 - x$. What we need is only the x-coordinate in the algorithm.

An alternative primality test can be deduced by noting equivalent conditions as in the next lemma.

Lemma 3.3. Let P be a point on E with a quadratic non-residue xcoordinate mod F_k . Then $\eta^{2^k-1}P = (0,0)$ if and only if $2^{2^{k-1}}P =$ $(\sqrt{m},0)$ or $(-\sqrt{m},0)$.

Proof. Suppose $\eta^{2^k-1}P = (0,0)$. Then we have $\eta(2^{2^{k-1}-1}P) = \epsilon \eta$. $\eta^{2^k-2}P = (0,0)$. Therefore we have $2^{2^{k-1}-1}P \neq \infty$, $(0,0)$, otherwise the image by η is ∞ . Also, we have $2(2^{2^{k-2}}P) = 2^{2^{k-1}}P = \epsilon \eta^{2^k}P =$ $\epsilon \eta(0,0) = \infty$. Therefore $2^{2^{k-1}}P \in E[2] \setminus {\infty}$, $(0,0)$. That is, $2^{2^{k-1}}P =$ $(\sqrt{m}, 0)$ or $(-\sqrt{m}, 0)$.

Conversely, suppose $2^{2^{k-1}}P = (\pm \sqrt{m}, 0)$. We have

$$
(0,0) = \eta(\pm\sqrt{m},0) = \eta(2^{2^{k-1}})P = \epsilon\eta^{2^k-1}P.
$$

Hence, we have $\eta^{2^k-1}P = (0,0)$.

So now we have shifted from the multiplication by η to the multiplication by 2. Multiplication by 2 of a point $P = (x, y)$ on the elliptic curve $E: y^2 = x^3 - mx$ is described as follow.

$$
2(x, y) = \left(\frac{x^4 + 2mx^2 + m^2}{4(x^3 - mx)}, yR(x)\right)
$$

for some rational function $R(x)$. (See Example 2.5, page 52 in [\[6\]](#page-10-4).) Let $P = (x_0, y_0)$ be a point on E with a quadratic non-residue x-coordinate mod p. Let

$$
x_j = \frac{x_{j-1}^4 + 2mx_{j-1}^2 + m^2}{4(x_{j-1}^3 - mx_{j-1})}
$$

modulo F_k if $gcd((x_{j-1}^3 - mx_{j-1}), F_k) = 1$ for $j \ge 1$ inductively. Hence x_j is the x-coordinate of $2^j P$. If we can proceed to calculate $x_{2^{k-1}-1}$ and this is $\pm \sqrt{m}$, then F_k is prime. Otherwise F_k is composite.

For example, let us consider the same example as above. Let $m = 1$ and $P = (5, 2\sqrt{30})$ on E. Then the algorithm to check the primality for F_k is as follows. Let $x_0 = 5$ and we define inductively

$$
x_j = \frac{x_{j-1}^4 + 2x_{j-1}^2 + 1}{4(x_{j-1}^3 - x_{j-1})}
$$

if $gcd((x_{j-1}^3 - x_{j-1}), F_k) = 1$ for $j \ge 1$. If $gcd((x_{j-1}^3 - x_{j-1}), F_k) = 1$ for some $j \leq 2^{k-1} - 1$, then F_k is composite and we terminate the algorithm. If we calculate $x_{2^{k-1}-1}$ and this is ± 1 , then F_k is prime. Otherwise F_k is composite.

Remark 3.4. Although the recursion formula for x_j looks more complicated than before, the number of recursions is reduced to $2^{k-1}-1$ from 2^k-1 .

3.2. Primality test for $2^{2k+1} + 2^{k+1} + 1$.

Theorem 3.5. Let $P = (x, y)$ be a point on E, with x is a quadratic non-residue mod G_k . Then G_k with $k \geq 2$ is prime if and only if $\eta^{2k-1}P \in E[2] \setminus {\tilde{\infty}}.$

Proof. Suppose G_k is prime. We have $\#(\eta^{2k}E(G_k)) = \#(\epsilon^{2k}E(G_k)) =$ 2. We have seen that $\phi - 1 = \epsilon \eta^{2k} = \epsilon \eta^{2k+1}$ when G_k is prime in the proof of Theorem [2.7.](#page-3-0) Since $\text{Ker}(\phi - 1) = E(G_k)$, we have $\eta(\eta^{2k}E(G_k)) = \infty$, and therefore $\eta^{2k-1}E(G_k) = E[2]$.

Now that we know that $E(G_k) = \text{Ker}(\eta^{2k+1})$ and $\#\text{Ker}(\eta) = 2$ in addition to $\#E(G_k) = 2^{2k+1}$, it is easy to see that $\text{Ker}(\eta^s) = \text{Im}(\eta^{2k+1-s}),$ for $s = 0, 1, \ldots, 2k + 1$. Since x is not a square mod p, P is not in the image of η . Hence, we have $\eta^{2k-1}P \in E[2] \setminus {\infty}$. Let us show this. If $\eta^{2k-1}P = \infty$, then $P \in \text{Ker}(\eta^{2k-1}) = \text{Im}(\eta^2)$. Since P is not in the image of η , this is a contradiction. Hence $\eta^{2k-1}P \neq \infty$.

Conversely, suppose $\eta^{2k-1}P \in E[2] \setminus \{\infty\}$. Assume G_k is composite and let q be a prime divisor of G_k such that $q \le \sqrt{G_k}$. Then $\eta^{2k-1}P \in$ $E[2] \setminus \{\infty\}$ holds in the reduction $E(q)$. Then $\eta^{2k-1}P$ is one of $(0,0)$ or $(\pm \sqrt{m}, 0)$. If $\eta^{2k-1}P = (0, 0)$, then we have $2^{k-1}P = \epsilon \eta^{2k-2}P \neq \infty$ and $2^k P = \epsilon \eta^{2k} P = \infty$. Therefore P has order 2^k . If $\eta^{2k-1} P = (\sqrt{m}, 0),$ then let $P' = \eta P$. Then we have $\eta^{2k-1}P' = \eta(\sqrt{m}, 0) = (0, 0)$. This is the same situation as the case $\eta^{2k-1}P = (0,0)$, hence P' has order 2^k. The case $\eta^{2k-1}P = (-\sqrt{m}, 0)$ is similar and ηP has order 2^k . We have seen in any case, there exists a point $(P \text{ or } \eta P)$ of order 2^k . Let R denote this point. Let us assume that $\{R, iR\}$ is a basis for $E[2^k]$. It is easy to check that every divisor of G_k is congruent to 1 modulo 4. So $iR \in E(q)$ and hence $E[2^k] \subset E(q)$. Therefore we have

$$
2^{2k} = \#E[2^k] \le \#E(q) \le (\sqrt{q} + 1)^2 \le (G_k^{1/4} + 1)^2.
$$

However, this inequality does not hold for $k \geq 2$, and therefore G_k is prime.

To complete the proof, we need to show that $\{R, iR\}$ is a basis for $E[2^k]$. Suppose $uR + v(iR) = \infty$ for some integers u, v. Let $u = 2^{\alpha}u'$ and let $v = 2^{\beta}v'$ with u', v' odd. Since the order of R is a power of 2, we have $\alpha = \beta$. Now $(u' + v'i)(2^{\alpha}R) = \infty \Rightarrow (u'^2 + v'^2)(2^{\alpha}R) =$ $\infty \Rightarrow u'^2 + v'^2 \equiv 0 \pmod{2^{k-\alpha}}$. Since $u'^2 + v'^2 \equiv 2 \pmod{4}$, the above congruence holds only if $\alpha = k$ or $\alpha = k - 1$. If $\alpha = k$, then $u \equiv v \equiv 0$ $\pmod{2^k}$, and hence they are independent.

Next, let us consider the case $\alpha = k - 1$. Let $R' = 2^{k-1}R$. Then P' has order 2. Hence R' is either $(0,0)$ or $(\pm \sqrt{m},0)$. However, we have

$$
\eta R' = \eta \cdot (\epsilon \eta^{2k-2})R = \epsilon \eta^{2k-1}R
$$

=
$$
\begin{cases} \epsilon \eta^{2k-1} P \neq \infty & \text{if } R = P \\ \eta \cdot \eta^{2k-1} P = \eta(1 \pm \sqrt{m}, 0) = (0, 0) \neq \infty & \text{if } R = \eta P. \end{cases}
$$

Hence $R' \neq (0,0)$. Therefore P' is either $(\sqrt{m}, 0)$ or $(-\sqrt{m}, 0)$. If $R' = (\sqrt{m}, 0), \text{ then } \infty = (u' + v'i)(\sqrt{m}, 0) = u'(\sqrt{m}, 0) + v'(-\sqrt{m}, 0)$ with odd u', v'. Since $\{(\sqrt{m}, 0), (-\sqrt{m}, 0)\}$ is a basis for E[2], they cannot be dependent with odd coefficients. The same thing happens when $R' = (\sqrt{m}, 0)$. Therefore, R and iR are independent.

To use Theorem [3.5,](#page-7-0) we need to find a point on E whose x-coordinate is a quadratic non-residue mod G_k . It is straightforward to check the following.

- 3 is a quadratic non-residue mod G_k if and only if k is even.
- 5 is a quadratic non-residue mod G_k if and only if $k \equiv 1$ (mod 4). Also If $k \equiv 0, 3 \pmod{4}$, then G_k is divisible by 5.
- 7 is a quadratic non-residue mod G_k for all $k \geq 1$.

Using these facts, we can choose specific initial values depending on k. Since G_k is composite when $k \equiv 0, 3 \pmod{4}$ from the above fact, we only need to consider the cases when $k \equiv 1 \pmod{4}$ and $k \equiv 2$ (mod 4).

When $k \equiv 2 \pmod{4}$, we take $m = 1$ and $P = (7, 4\sqrt{21})$ on E : $y^2 = x^3 - x$. Note that $21 = 3 \cdot 7$ is a quadratic residue mod G_k since both 3 and 7 are quadratic non-residues.

When $k \equiv 1 \pmod{4}$ and $k > 1$, we can take $m = 3^4 \pmod{3}$ does not divide G_k) and $P = (5, 2\sqrt{-70})$ on $E : y^2 = x^3 - 3^4x$. Note that $-70 = -2 \cdot 5 \cdot 7$ is a quadratic residue mod G_k since -2 is a quadratic residue (because $G_k \equiv 1 \pmod{8}$) and 5 and 7 are quadratic non-residues from the above facts.

Then the algorithm to check the primality of G_k is as follows. Let $x_0 = 7$ when $k \equiv 2 \pmod{4}$ and $x_0 = 5$ when $k \equiv 1 \pmod{4}$. Then let $x_j = (x_{j-1}^2 - 1)/(2ix_{j-1})$ if $gcd(x_{j-1}, G_k) = 1$ for $j \ge 1$ inductively. As before this is the x-coordinate of $\eta^{j} P$. If $gcd(x_{j-1}, G_k) > 1$ for some $j < 2k - 1$, then G_k is composite and we terminate the algorithm. If we calculate x_{2k-1} and this is ± 1 , then G_k is prime. Otherwise, G_k is composite.

3.3. Primality test for $2^{2k+1} - 2^{k+1} + 1$. Now let us discuss $H_k =$ $2^{2k+1} - 2^{k+1} + 1$. By Theorem [2.8,](#page-3-2) we know that $\phi - 1 = \epsilon \eta^{2k+1}$. Therefore the proof of the next theorem is identical to that of Theorem [3.5.](#page-7-0)

Theorem 3.6. Let $P = (x, y)$ be a point on E, with x is a quadratic non-residue mod H_k . Then H_k , $k \geq 2$ is prime if and only if $\eta^{2k-1}P \in$ $E[2] \setminus \{\infty\}.$

Again to use Theorem [3.6,](#page-9-0) we need to find a point on a curve whose x-coordinate is a quadratic non-residue mod H_k . The following is easy to check.

- 3 is a quadratic non-residue mod H_k if and only if k is even.
- 5 is a quadratic non-residue mod H_k if and only if $k \equiv 3$ (mod 4). Also when $k \equiv 1, 2 \pmod{4}$, 5 divides H_k .
- When $k \equiv 4 \pmod{12}$, 13 divides H_k .

Hence when $k \equiv 3 \pmod{4}$, we can take $m = 1$ and a point $(5, 2\sqrt{30})$ on $E: y^2 = x^3 - x$. Here $30 = 2 \cdot 3 \cdot 5$ is a quadratic residue by the above facts.

The remaining cases are when $k \equiv 0, 8 \pmod{12}$, otherwise 5 or 13 divides H_k . However, it seems difficult to find a suitable small initial value. So we further divide the cases into $k \equiv 0, 8, 12, 20, 24, 32, 36,$ 44 (mod 48). Then for example, we can take following values for m and an initial value x_0 .

These are easy to check using a computer. Note that for these cases, $gcd(m, G_k) = 1$ since a prime divisor of m is either 5 or congruent to 3 (mod 4). In the above list, we excluded the cases $k \equiv 0, 32 \pmod{48}$. It seems that there are no small values which satisfy the conditions. Alternatively, we can further increase the modulus. Now let us consider it modulo 144. Then the remaining cases $k \equiv 0,32 \pmod{48}$ become $k \equiv 0, 32, 48, 80, 96, 128 \pmod{144}$. Then for example, we can take the following values.

Again, we excluded the case when $k \equiv 0 \pmod{144}$. Here again, note that for these cases $gcd(m, G_k) = 1$ since a prime divisor of m is either 5 or congruent to 3 (mod 4). If we allow a larger modulus, then we might find a set of initial values for every k . (We want an initial value when $k \equiv 0 \pmod{144}$.

Once we have set an initial value, then the algorithm to check the primality of H_k is the same as the algorithm for G_k , simply replace the initial value and replace G_k by H_k .

REFERENCES

- [1] John Brillhart, D. H. Lehmer, and J. L. Selfridge, New primality criteria and factorizations of $2^m \pm 1$, Math. Comp. 29 (1975), 620–647. MR MR0384673 $(52 \# 5546)$
- [2] Richard Crandall and Carl Pomerance, Prime numbers, Springer-Verlag, New York, 2001, A computational perspective. MR MR1821158 (2002a:11007)
- [3] Robert Denomme and Gordan Savin, Elliptic curve primality tests for Fermat and related primes, J. Number Theory 128 (2008), no. 8, 2398-2412. MR MR2394827 (2009c:11208)
- [4] Benedict H. Gross, An elliptic curve test for Mersenne primes, J. Number Theory 110 (2005), no. 1, 114–119. MR MR2114676 (2005m:11007)
- [5] Hans-Georg Rück, A note on elliptic curves over finite fields, Math. Comp. 49 (1987), no. 179, 301–304. MR MR890272 (88d:11058)
- [6] Lawrence C. Washington, Elliptic curves, second ed., Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2008, Number theory and cryptography. MR MR2404461 (2009b:11101)

Department of Mathematics, Purdue University 150 North University Street, West Lafayette, Indiana 47907-2067

 E -mail address: ytsumura@math.purdue.edu