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PRIMALITY TESTS FOR FERMAT NUMBERS AND

22k+1 ± 2k+1 + 1.

YU TSUMURA

Abstract. Robert Denomme and Gordan Savin made a primality

test for Fermat numbers 22
k

+ 1 using elliptic curves. We propose
another primality test using elliptic curves for Fermat numbers and
also give primality tests for integers of the form 22k+1 ± 2k+1 + 1.

1. Introduction.

The integers of the form 22
k

+ 1 with k ≥ 0 are called Fermat num-
bers, named after Pierre de Fermat. For k = 0, 1, 2, 3, 4, Fermat
numbers are prime. Fermat conjectured that all numbers of this form
were prime numbers. However, in 1732 Leonhard Euler disproved this
conjecture by factoring the fifth Fermat number 22

5

+1 = 641 ·6700417.
Not only was it disproved, but also no other Fermat primes have been
discovered when k > 4. So checking the primality or finding factors of
Fermat numbers attracts many people.
Let us define the notation used in this paper.

Definition 1.1. Let Fk = 22
k

+ 1, Gk = 22k+1 + 2k+1 + 1, and Hk =
22k+1 − 2k+1 + 1, where k is assumed to be a positive integer. Fk is
called the kth Fermat number.

In 1877, Pepin gave a very efficient primality test for Fermat num-
bers.

Theorem 1.2. (Pepin test). For k ≥ 1, Fk = 22
k

+ 1 is prime if and
only if 3(Fk−1)/2 ≡ −1 (mod Fk).

Proof. See Theorem 4.1.2 in [2]. �

In this paper, we study group structures of elliptic curves defined
over finite fields of order Fk, Gk, and Hk (if they are prime). The
essential role is the action of an endomorphism [1 + i] on the curves.
After that we use the information of the group structure to give two
primality tests for Fermat numbers which can be regarded as an elliptic
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version of the Pepin test. Also, we give similar results for integers of
the form 22k+1 ± 2k+1 + 1.
The original work in this direction was done by Benedict H. Gross in

[4] for Mersenne numbers and by Robert Denomme and Gordan Savin

in [3] for Fermat numbers and integers of the form 32
k − 32

k−1

+ 1 and

22
k − 22

k−1

+ 1, where k is a positive integer. Gross used the formula
of the multiplication by 2 as a recursive formula and Denomme and
Savin used the formula of the action of [1 + i] as a recursive formula
for Fermat numbers. In this paper, we obtain the same primality test
as Denomme and Savin in a slightly different approach and also give
a new primality test which uses the formula of the multiplication by 2
for Fermat numbers. Also, by the same method we give new primality
tests for Gk, Hk. As you notice by the following proofs, Fk, Gk and Hk

are the only numbers to which this method applies.
We saw in Theorem 1.2 that there is a fast primality test for p = Fk.

There are also fast primality tests for p = Gk and p = Hk. For example,
one could use Corollary 1 or Theorem 5 of [1]. These tests apply
because p−1 is divisible by a power of 2 near

√
p. These tests determine

the primality of p of these three special forms in polynomial time. Our
new tests below also run in polynomial time and are the first such tests
using elliptic curves.

2. Group Structure.

The next theorem allows us to determine the order of certain elliptic
curve groups.

Theorem 2.1. Let p ≡ 1 (mod 4) be an odd prime and let m 6≡ 0
(mod p) be a fourth power mod p. Let E be an elliptic curve defined by
y2 = x3 −mx. Let p = a2 + b2, where a, b are integers with b even and
a + b ≡ 1 (mod 4). Let E(p) be the elliptic curve E defined over Fp.
Then we have #E(p) = p+ 1− 2a.

Proof. See Theorem 4.23, page 115 in [6]. �

From now on, we fix an elliptic curve E : y2 = x3 − mx, where
m 6≡ 0 (mod p) is a fourth power mod a prime p. We denote by E(p)
the elliptic curve group E defined over finite field Fp when p is prime.
Also let E(F̄p) be the elliptic curve E defined over the algebraic closure
F̄p of Fp and we denote by E[n] the elements in E(F̄p) whose orders
divide n.

Corollary 2.2. (1) If Fk is prime, then #E(Fk) = 22
k

.
(2) If Gk is prime, then #E(Gk) = 22k+1.
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(3) If Fk is prime, then #E(Hk) = 22k+1.

Proof. Let us first consider Fk. The decomposition into two squares is
Fk = 22

k

+ 1 = 12 + (22
k−1

)2 and 1 + (22
k−1

) ≡ 1 (mod 4). Hence by

Theorem 2.1, #E(Fk) = Fk + 1− 2 = 22
k

.
Next, let a = 2k + 1 and b = 2k. Then we have Gk = a2 + b2 and

a+b ≡ 1 (mod 4). Hence we have #E(Gk) = Gk+1−2(2k+1) = 22k+1

by Theorem 2.1.
Similarly, let a = −(2k − 1) and b = 2k. Then we have Hk = a2 + b2

and a+ b ≡ 1 (mod 4). Hence #E(Hk) = Hk + 1 + 2(2k − 1) = 22k+1.
�

The next lemma gives information on the group structures of E(p)
and E[n].

Lemma 2.3. Let E be an elliptic curve over a finite field Fp. Then we
have

E(p) ∼= Zn1
⊕ Zn2

for some positive integers n1 and n2 with n1|n2. Also, if n is a positive
integer which is not divisible by p, then we have

E[n] ∼= Zn ⊕ Zn.

Proof. See Theorem 3.1 and Theorem 4.1 in [6]. �

Let p denote one of Fk, Gk andHk. Suppose p is prime. By Corollary
2.2 and Lemma 2.3, the group structure is E(p) ∼= Z2α⊕Z2β with α ≤ β
and α+β = 2k if p = Fk and α+β = 2k+1 if p = Gk or p = Hk. Sincem
is a 4th power, all the roots of x3−mx are in Fp and also in the subgroup
E[2] ∼= Z2 ⊕ Z2 by Lemma 2.3. Then Z2 ⊕ Z2

∼= E[2] ⊂ E(p), hence
E(p) is not cyclic. However, we can determine the group structure of
E(p) precisely. First we need two lemmas.

Lemma 2.4. Let n be a positive integer which is not divisible by a
prime p. Let φ be the Frobenius endomorphism on E(F̄p) given by
φ(x, y) = (xp, yp). Then E[n] ⊂ E(p) if and only if φ − 1 is divisible
by n in End(E).

Proof. See Lemma 1 in [5]. �

Lemma 2.5. If #E(p) = p+1−A, then the Frobenius endomorphism
φ satisfies φ2 −Aφ+ p = 0 as an endomorphism of E.

Proof. See Theorem 4.10, page 101 in [6]. �

Theorem 2.6. Suppose Fk is prime. Then we have

E(Fk) ∼= Z
22k−1 ⊕ Z

22k−1 .
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Proof. Since #E(Fk) = Fk + 1 − 2, the Frobenius endomorphism φ
satisfies φ2−2φ+Fk = 0 in End(E) by Lemma 2.5, and hence (φ−1)2 =

−22
k

. Since End(E) ∼= Z[i] (see chapter 10 in [6] ), it is a unique

factorization domain. Therefore φ − 1 = ±i22
k−1

, and hence 22
k−1

divides φ− 1. Then E[22
k−1

] ⊂ E(Fk) by Lemma 2.4. Since E[22
k−1

] ∼=
Z
22k−1 ⊕ Z

22k−1 by Lemma 2.3, we have #E[22
k−1

] = (22
k−1

)2 = 22
k

=

#E(Fk). Therefore we have E(Fk) = E[22
k−1

] ∼= Z
22k−1 ⊕ Z

22k−1 . �

Theorem 2.7. Suppose Gk is prime. Then we have

E(Gk) ∼= Z2k ⊕ Z2k+1 .

Proof. From Corollary 2.2, we know that #E(Gk) = 22k+1 = Gk + 1−
2(2k + 1). Hence the Frobenius endomorphism φ satisfies φ2 − 2(2k +
1)φ+Gk = 0. Then we have (φ−1)2−2k+1(φ−1)+22k+1 = 0. Therefore,
φ− 1 = 2k(1± i). Hence 2k divides φ− 1 and we have E[2k] ⊂ E(Gk)
by Lemma 2.4. Since #E[2k] = 22k and #E(Gk) = 22k+1, the group
structure of E(Gk) must be E(Gk) ∼= Z2k ⊕ Z2k+1 by Lemma 2.3. �

Theorem 2.8. Suppose Hk is prime. Then we have

E(Hk) ∼= Z2k ⊕ Z2k+1 .

Proof. Just note that the Frobenius endomorphism satisfies φ2+2(2k−
1)φ+Hk = 0. Hence φ−1 = (−1±i)2k. The rest of the proof is identical
to that of Theorem 2.7. �

3. Primality test

Again let p be one of Fk, Gk and Hk. As we noted in the proof
of Theorem 2.6, E has complex multiplication by Z[i]. For a detailed
explanation about complex multiplication, see chapter 10 in [6]. The
action of i on (x, y) ∈ E is given by [i] · (x, y) = (−x, iy), where the i
in (−x, iy) is a 4th root of unity in Fp. This i exists in Fp since p ≡ 1
(mod 4). Note that as an endomorphism, i has degree 1 and hence it
is an isomorphism. Now, let us denote η = 1 + i in End(E). This
endomorphism is very important in this paper. Let us describe the
action of η on (x, y) explicitly. Let η · (x, y) = (x′, y′). We have

η · (x, y) = [1 + i] · (x, y) = (x, y) + [i] · (x, y) = (x, y) + (−x, iy)

and by the elliptic curve addition, it is equal to

(3.1)

(

(

(1− i)y

2x

)2

, y′

)
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(3.2) =

(

x2 −m

2ix
, y′
)

,

where y′ =
(

(1−i)y
2x

)

(x − x′) − y. Note that by the equation (3.1),

the x-coordinate x′ of η · (x, y) is a square and by the equation (3.2),
x′ can be computed without using y. Also note that η has degree 2,
hence #Ker(η) = 2. Clearly, (0, 0) is in the kernel and so Ker(η) =
{∞, (0, 0)}, where ∞ is the identity of E.
Note that η2 = 2i and η2l = ǫ2l, where l is a positive integer and

ǫ = ±1, ±i. Since ǫ = ±1, ±i are isomorphism, we do not care about
this factors. We will use ǫ for ±1, ±i in this paper, but ǫ might have
different values at each occurrence.

3.1. Primality test for Fermat numbers. Now we can state a the-
orem which can be converted into a primality test.

Theorem 3.1. Let η = 1 + i in End(E). Let P = (x, y) on E, where
x is a quadratic non-residue mod Fk. Then Fk is prime if and only if
η2

k
−1P = (0, 0).

Proof. Suppose Fk is prime. In the proof of Theorem 2.6, we have seen
that φ − 1 = ǫ22

k−1

= ǫη2
k

. Hence, we have Ker(η2
k

) = Ker(φ − 1) =

E(Fk). Since #Ker(η) = 2 and #E(Fk) = 22
k

, we have Ker(ηs) =

Im(η2
k
−s) for s = 1, 2, . . . , 2k. Assume P = ηQ for some Q ∈ E(Fk).

Then as we noted above, the x-coordinate x of ηQ = P is a square.
However, we assumed that x is a quadratic non-residue mod Fk, hence
P is not in the image of η. Observe that η2

k
−1P 6= ∞ since otherwise

P ∈ Ker(η2
k
−1) = Im(η), but P /∈ Im(η). Since η2

k
−1P 6= ∞ and

η2
k

= ∞, we have η2
k
−1P = (0, 0).

Conversely, suppose η2
k
−1P = (0, 0). Assume Fk is composite and

let q be a prime divisor such that q ≤
√
Fk. It is known that a divisor

of a Fermat number is congruent to 1 modulo 4. (See [2]). Then

η2
k
−1P = (0, 0) holds in the reduction E(q). It follows that 22

k−1
−1P =

ǫη2
k
−2P 6= ∞. Also we have 22

k−1

P = ǫη2
k

P = ∞, therefore P has
order 22

k−1

. Assume that {P, iP} is a basis of E[22
k−1

]. Note that iP ∈
E(q) since i ∈ Fq when q ≡ 1 (mod 4). So we have E[22

k−1

] ⊂ E(q),

hence 22
k ≤ #E(q). However, #E(q) ≤ (

√
q+1)2 by Hasse’s Theorem.

Hence, we have q2 − 1 ≤ F 2
k − 1 = 22

k ≤ #E(q) ≤ (
√
q + 1)2. This

inequality holds only for q = 2. However, clearly q is an odd prime.
Hence it is a contradiction. Therefore Fk is prime.
To complete the proof, we need to prove that {P, iP} is a basis of

E[22
k−1

]. Suppose uP+v(iP ) = ∞ for some integers u, v. Let u = 2αu′
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and let v = 2βv′ with u′, v′ odd. Since the order of P is a power of 2,
we have α = β. Now (u′ + v′i)(2αP ) = ∞ ⇒ (u′2 + v′2)(2αP ) = ∞ ⇒
u′2 + v′2 ≡ 0 (mod 22

k−1
−α). Since u′2 + v′2 ≡ 2 (mod 4), the above

congruence holds only if α = 2k−1 or α = 2k−1 − 1. If α = 2k−1, then
u ≡ v ≡ 0 (mod 22

k−1

), and hence they are independent.

Next let us consider the case α = 2k−1 − 1. Let P ′ = (22
k−1

−1)P .
Then P ′ has order 2. Hence P ′ is either (0, 0) or (±√

m, 0). However,

ηP ′ = η · (ǫη2k−2)P = ǫη2
k
−1P 6= ∞, hence we have P ′ 6= (0, 0).

Therefore, P ′ is either (
√
m, 0) or (−√

m, 0). If P ′ = (
√
m, 0), then

∞ = (u′+v′i)(
√
m, 0) = u′(

√
m, 0)+v′(−√

m, 0) with odd u′, v′. Since
{(√m, 0), (−√

m, 0)} is a basis for E[2], they cannot be dependent
with odd coefficients. The same thing happens when P ′ = (−√

m, 0).
Therefore, P and iP are independent, and this completes the proof. �

Hence, to check the primality of Fermat numbers, we need to cal-
culate η2

k
−1P for a point P with a quadratic non-residue x-coordinate

mod Fk. However, we need not to calculate a y-coordinate since when
an x-coordinate is 0, so is the y-coordinate. Also as noted above, to
calculate the x-coordinate of ηP , the y-coordinate of P is not used.
For example, take m = 1 and P = (5, 2

√
30) on E : y2 = x3 − x.

It is straightforward to check 5 is a quadratic non-residue and 30 is a
quadratic residue mod Fk. Hence P satisfies the conditions of Theorem
3.1.
Here is the algorithm to check the primality for Fk. Let x0 = 5 and

let

xj =
x2
j−1 − 1

2ixj−1

if gcd(xj−1, Fk) = 1 for j ≥ 1. Note that xj is the x-coordinate of
ηjP . Here i is a primitive 4th root of unity in Fk and it is explicitly
i = 22

k−1

. If gcd(xj , Fk) > 1 for some j < 2k − 1, then Fk is composite
and we terminate the algorithm. If we calculate x2k−1 and it is 0, then
Fk is prime. If x2k−1 6= 0, then Fk is composite.

Remark 3.2. We do not need to find
√
30 mod Fk explicitly. We just

needed to know that the point P = (5, 2
√
30) is on E : y2 = x3 − x.

What we need is only the x-coordinate in the algorithm.

An alternative primality test can be deduced by noting equivalent
conditions as in the next lemma.

Lemma 3.3. Let P be a point on E with a quadratic non-residue x-
coordinate mod Fk. Then η2

k
−1P = (0, 0) if and only if 22

k−1

P =
(
√
m, 0) or (−√

m, 0).
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Proof. Suppose η2
k
−1P = (0, 0). Then we have η(22

k−1
−1P ) = ǫη ·

η2
k
−2P = (0, 0). Therefore we have 22

k−1
−1P 6= ∞, (0, 0), otherwise

the image by η is ∞. Also, we have 2(22
k−2

P ) = 22
k−1

P = ǫη2
k

P =

ǫη(0, 0) = ∞. Therefore 22
k−1

P ∈ E[2] \ {∞, (0, 0)}. That is, 22k−1

P =
(
√
m, 0) or (−√

m, 0).

Conversely, suppose 22
k−1

P = (±√
m, 0). We have

(0, 0) = η(±
√
m, 0) = η(22

k−1

)P = ǫη2
k
−1P.

Hence, we have η2
k
−1P = (0, 0). �

So now we have shifted from the multiplication by η to the multipli-
cation by 2. Multiplication by 2 of a point P = (x, y) on the elliptic
curve E : y2 = x3 −mx is described as follow.

2(x, y) =

(

x4 + 2mx2 +m2

4(x3 −mx)
, yR(x)

)

for some rational function R(x). (See Example 2.5, page 52 in [6].) Let
P = (x0, y0) be a point on E with a quadratic non-residue x-coordinate
mod p. Let

xj =
x4
j−1 + 2mx2

j−1 +m2

4(x3
j−1 −mxj−1)

modulo Fk if gcd((x3
j−1 −mxj−1), Fk) = 1 for j ≥ 1 inductively. Hence

xj is the x-coordinate of 2jP . If we can proceed to calculate x2k−1
−1

and this is ±√
m, then Fk is prime. Otherwise Fk is composite.

For example, let us consider the same example as above. Let m = 1
and P = (5, 2

√
30) on E. Then the algorithm to check the primality

for Fk is as follows. Let x0 = 5 and we define inductively

xj =
x4
j−1 + 2x2

j−1 + 1

4(x3
j−1 − xj−1)

if gcd((x3
j−1 − xj−1), Fk) = 1 for j ≥ 1. If gcd((x3

j−1 − xj−1), Fk) = 1

for some j < 2k−1 − 1, then Fk is composite and we terminate the
algorithm. If we calculate x2k−1

−1 and this is ±1, then Fk is prime.
Otherwise Fk is composite.

Remark 3.4. Although the recursion formula for xj looks more compli-
cated than before, the number of recursions is reduced to 2k−1−1 from
2k − 1.
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3.2. Primality test for 22k+1 + 2k+1 + 1.

Theorem 3.5. Let P = (x, y) be a point on E, with x is a quadratic
non-residue mod Gk. Then Gk with k ≥ 2 is prime if and only if
η2k−1P ∈ E[2] \ {∞}.

Proof. Suppose Gk is prime. We have #(η2kE(Gk)) = #(ǫ2kE(Gk)) =
2. We have seen that φ − 1 = ǫη2k = ǫη2k+1 when Gk is prime
in the proof of Theorem 2.7. Since Ker(φ − 1) = E(Gk), we have
η(η2kE(Gk)) = ∞, and therefore η2k−1E(Gk) = E[2].
Now that we know that E(Gk) = Ker(η2k+1) and #Ker(η) = 2 in ad-

dition to #E(Gk) = 22k+1, it is easy to see that Ker(ηs) = Im(η2k+1−s),
for s = 0, 1, . . . , 2k+1. Since x is not a square mod p, P is not in the
image of η. Hence, we have η2k−1P ∈ E[2] \ {∞}. Let us show this.
If η2k−1P = ∞, then P ∈ Ker(η2k−1) = Im(η2). Since P is not in the
image of η, this is a contradiction. Hence η2k−1P 6= ∞.
Conversely, suppose η2k−1P ∈ E[2] \ {∞}. Assume Gk is composite

and let q be a prime divisor of Gk such that q ≤
√
Gk. Then η2k−1P ∈

E[2]\{∞} holds in the reduction E(q). Then η2k−1P is one of (0, 0) or
(±√

m, 0). If η2k−1P = (0, 0), then we have 2k−1P = ǫη2k−2P 6= ∞ and
2kP = ǫη2kP = ∞. Therefore P has order 2k. If η2k−1P = (

√
m, 0),

then let P ′ = ηP . Then we have η2k−1P ′ = η(
√
m, 0) = (0, 0). This

is the same situation as the case η2k−1P = (0, 0), hence P ′ has order
2k. The case η2k−1P = (−√

m, 0) is similar and ηP has order 2k. We
have seen in any case, there exists a point (P or ηP ) of order 2k. Let
R denote this point. Let us assume that {R, iR} is a basis for E[2k].
It is easy to check that every divisor of Gk is congruent to 1 modulo 4.
So iR ∈ E(q) and hence E[2k] ⊂ E(q). Therefore we have

22k = #E[2k] ≤ #E(q) ≤ (
√
q + 1)2 ≤ (G

1/4
k + 1)2.

However, this inequality does not hold for k ≥ 2, and therefore Gk is
prime.
To complete the proof, we need to show that {R, iR} is a basis for

E[2k]. Suppose uR + v(iR) = ∞ for some integers u, v. Let u = 2αu′

and let v = 2βv′ with u′, v′ odd. Since the order of R is a power of
2, we have α = β. Now (u′ + v′i)(2αR) = ∞ ⇒ (u′2 + v′2)(2αR) =
∞ ⇒ u′2+ v′2 ≡ 0 (mod 2k−α). Since u′2+ v′2 ≡ 2 (mod 4), the above
congruence holds only if α = k or α = k − 1. If α = k, then u ≡ v ≡ 0
(mod 2k), and hence they are independent.
Next, let us consider the case α = k − 1. Let R′ = 2k−1R. Then P ′

has order 2. Hence R′ is either (0, 0) or (±√
m, 0). However, we have
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ηR′ = η · (ǫη2k−2)R = ǫη2k−1R

=

{

ǫη2k−1P 6= ∞ if R = P
η · η2k−1P = η(1±√

m, 0) = (0, 0) 6= ∞ if R = ηP.

Hence R′ 6= (0, 0). Therefore P ′ is either (
√
m, 0) or (−√

m, 0). If
R′ = (

√
m, 0), then ∞ = (u′ + v′i)(

√
m, 0) = u′(

√
m, 0) + v′(−√

m, 0)
with odd u′, v′. Since {(√m, 0), (−√

m, 0)} is a basis for E[2], they
cannot be dependent with odd coefficients. The same thing happens
when R′ = (

√
m, 0). Therefore, R and iR are independent. �

To use Theorem 3.5, we need to find a point on E whose x-coordinate
is a quadratic non-residue mod Gk. It is straightforward to check the
following.

• 3 is a quadratic non-residue mod Gk if and only if k is even.
• 5 is a quadratic non-residue mod Gk if and only if k ≡ 1
(mod 4). Also If k ≡ 0, 3 (mod 4), then Gk is divisible by
5.

• 7 is a quadratic non-residue mod Gk for all k ≥ 1.

Using these facts, we can choose specific initial values depending on
k. Since Gk is composite when k ≡ 0, 3 (mod 4) from the above fact,
we only need to consider the cases when k ≡ 1 (mod 4) and k ≡ 2
(mod 4).
When k ≡ 2 (mod 4), we take m = 1 and P = (7, 4

√
21) on E :

y2 = x3 − x. Note that 21 = 3 · 7 is a quadratic residue mod Gk since
both 3 and 7 are quadratic non-residues.
When k ≡ 1 (mod 4) and k > 1, we can take m = 34 (3 does

not divide Gk) and P = (5, 2
√
−70) on E : y2 = x3 − 34x. Note

that −70 = −2 · 5 · 7 is a quadratic residue mod Gk since −2 is a
quadratic residue (because Gk ≡ 1 (mod 8)) and 5 and 7 are quadratic
non-residues from the above facts.
Then the algorithm to check the primality of Gk is as follows. Let

x0 = 7 when k ≡ 2 (mod 4) and x0 = 5 when k ≡ 1 (mod 4). Then
let xj = (x2

j−1 − 1)/(2ixj−1) if gcd(xj−1, Gk) = 1 for j ≥ 1 inductively.

As before this is the x-coordinate of ηjP . If gcd(xj−1, Gk) > 1 for some
j < 2k − 1, then Gk is composite and we terminate the algorithm. If
we calculate x2k−1 and this is ±1, then Gk is prime. Otherwise, Gk is
composite.

3.3. Primality test for 22k+1 − 2k+1 + 1. Now let us discuss Hk =
22k+1 − 2k+1 + 1. By Theorem 2.8, we know that φ − 1 = ǫη2k+1.
Therefore the proof of the next theorem is identical to that of Theorem
3.5.
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Theorem 3.6. Let P = (x, y) be a point on E, with x is a quadratic
non-residue mod Hk. Then Hk, k ≥ 2 is prime if and only if η2k−1P ∈
E[2] \ {∞}.

Again to use Theorem 3.6, we need to find a point on a curve whose
x-coordinate is a quadratic non-residue mod Hk. The following is easy
to check.

• 3 is a quadratic non-residue mod Hk if and only if k is even.
• 5 is a quadratic non-residue mod Hk if and only if k ≡ 3
(mod 4). Also when k ≡ 1, 2 (mod 4), 5 divides Hk.

• When k ≡ 4 (mod 12), 13 divides Hk.

Hence when k ≡ 3 (mod 4), we can takem = 1 and a point (5, 2
√
30)

on E : y2 = x3 − x. Here 30 = 2 · 3 · 5 is a quadratic residue by the
above facts.
The remaining cases are when k ≡ 0, 8 (mod 12), otherwise 5 or 13

divides Hk. However, it seems difficult to find a suitable small initial
value. So we further divide the cases into k ≡ 0, 8, 12, 20, 24, 32, 36,
44 (mod 48). Then for example, we can take following values for m
and an initial value x0.

k (mod 48) m x0

8 194 8 · 13
12 204 5 · 17
20 24 13
24 214 7 · 257
36 254 9 · 673
44 434 673

These are easy to check using a computer. Note that for these cases,
gcd(m,Gk) = 1 since a prime divisor of m is either 5 or congruent to 3
(mod 4). In the above list, we excluded the cases k ≡ 0, 32 (mod 48).
It seems that there are no small values which satisfy the conditions.
Alternatively, we can further increase the modulus. Now let us consider
it modulo 144. Then the remaining cases k ≡ 0, 32 (mod 48) become
k ≡ 0, 32, 48, 80, 96, 128 (mod 144). Then for example, we can take
the following values.

k (mod 144) m x0

32 64 73
48 184 2 · 3 · 19
80 54 13
96 994 3 · 433
128 654 2 · 13
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Again, we excluded the case when k ≡ 0 (mod 144). Here again, note
that for these cases gcd(m,Gk) = 1 since a prime divisor of m is either
5 or congruent to 3 (mod 4). If we allow a larger modulus, then we
might find a set of initial values for every k. (We want an initial value
when k ≡ 0 (mod 144).)
Once we have set an initial value, then the algorithm to check the

primality of Hk is the same as the algorithm for Gk, simply replace the
initial value and replace Gk by Hk.
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