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Abstract

We use elliptic curves with complex multiplication to develop primality tests for Fermat primes and for

primes of the form 32� − 32�−1 + 1 and 22� − 22�−1 + 1.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Fermat numbers are integers of the form F� = 22� + 1. Prime numbers of this form are called
Fermat primes. Although it is not known if there are infinitely many Fermat primes, primality of
a given Fermat number can be verified by Pepin’s test. It is an efficient and elegant test, based on
the following coincidence: If F� is prime then the multiplicative group of the finite field FF�

is a

cyclic group of order 22�
, a pure power of 2, and this group is always generated by 3.

The first goal of this paper is to develop a test for Fermat primes using the elliptic curve
y2 = x3 − x. The test is based on the following: If F� is a prime then the group E(F�) of
points modulo F� on the elliptic curve has (again) order 22�

. This group is not cyclic. However,
something just as interesting holds in this case. More precisely, if p ≡ 1 (mod 4) is a prime
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(a Fermat prime, for example) then E(p) admits a complex multiplication by Z[i], the ring of
Gaussian integers. We show that

E(F�) ∼= Z[i]/(1 + i)2�

as Z[i]-modules. Let En be the quadratic twist ny2 = x3 − x of our curve E. If n is a square
modulo F� then En(F�) is isomorphic to E(F�). One can now pick n and a rational point P of
infinite order on En generating En(F�), as a Z[i]-module. For example, we can take P = (5,2)

on the curve E30. This data can be then used to formulate and prove a test for Fermat numbers
similar to Pepin’s test.

A version of the test can be perhaps best described in terms of Gaussian integers. Note that
F� factors F� = f� · f̄� where f� = 22�−1 + i. Starting with x1 = 5 (the x-coordinate of the
point P ) define a sequence of Gaussian integers xm modulo f� by a recursion formula (complex
multiplication by 1 + i)

xm+1 = 1

2

(
xm

i
+ i

xm

)
.

Then F� is prime if and only if xm is relatively prime to f� for all m = 1, . . . ,2� − 1 and

x2� ≡ 0 (mod f�).

It is interesting to note that this recursion does not depend on the choice of n. Moreover, there
are other choices for the initial value x1 for which the test works. A similar phenomenon occurs
for the Lucas–Lehmer test for Mersenne numbers.

We then move to two other families of integers. We use elliptic curves of the form y2 = x3 + D
4

to develop two tests, for integers of the form

32� − 32�−1 + 1 and 22� − 22�−1 + 1,

respectively. Again, the main role is played by complex multiplication by Z[ω], the ring of Eisen-
stein integers.

2. Pepin’s test

In this section we quickly review Pepin’s test for Fermat primes. The proof is presented in a
way that generalizes to elliptic curves.

Proposition 1. A Fermat number F� = 22� + 1 is prime if and only if

3
F�−1

2 ≡ −1 (mod F�).

Proof. Assume first that the congruence holds. Let p be a prime dividing F�. Then

3
F�−1

2 ≡ −1 (mod p)
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and, after squaring both sides of the congruence,

3F�−1 ≡ 1 (mod p).

In particular, the order of 3 modulo p divides F� − 1. Since F� − 1 = 22�
, a pure power of 2, any

proper divisor of F� − 1 is a divisor of F�−1
2 . Since 3

F�−1
2 �≡ 1 (mod p), the order of 3 modulo p

is exactly F� − 1. On the other hand, the order of 3 modulo p is less than or equal to p − 1. This
implies

F� − 1 � p − 1

or F� � p. It follows that F� is prime.
The converse is more interesting, for it shows why the test really works. Assume that F� is

prime. Note that F� ≡ 2 (mod 3). By quadratic reciprocity, 3 is not a square modulo F�:

(
3

F�

)
=

(
F�

3

)
=

(
2

3

)
= −1.

Note that the group F
×
F�

has order equal to a pure power of 2 and is cyclic. Since 3 is not a square

mod F�, it must be a generator of F
×
F�

. It follows that

3
F�−1

2

is an element of order 2 in F
×
F�

. But −1 is the only element of order 2, and this completes the
converse. The test is proved. �

Of course, the number 3 can be replaced by any other number, provided it is not a square
modulo F�. For example, if F� > 5 then we can replace 3 by 5. Indeed, if F� > 5 then F� ≡
2 (mod 5) and, by quadratic reciprocity,

(
5

F�

)
= −1.

3. The curve y2 = x3 − x

We denote the group of the elliptic curve y2 = x3 − x over the finite field Fp by E(p). The
discriminant of E is 26. In particular E has a good reduction modulo any odd prime p.

Proposition 2. Let p be an odd prime. If p ≡ 1 (mod 4) then |E(p)| = p + 1 − 2a where
p = a2 + b2 and a + bi ≡ 1 (mod 2 + 2i).

Proof. See [I&R, p. 307]. �
Corollary 3. For � > 1 if F� = 22� + 1 is prime, then the group E(F�) satisfies |E(F�)| = 22�

.



R. Denomme, G. Savin / Journal of Number Theory 128 (2008) 2398–2412 2401
Proof. Notice that F� = 12 + (22�−1
)2 and that � > 1 ⇒ 4 | 22�−1

, which yields the congruence

1 + 22�−1
i ≡ 1 (mod 2 + 2i).

Thus by Proposition 2, |E(F�)| = F� + 1 − 2 · 1 = 22�
. �

In order to better understand the structure of the group E(F�), we now introduce a complex
multiplication on our curve. If p ≡ 1 (mod 4) let ±i denote the primitive fourth roots of unity in
the finite field Fp . The action

i : (x, y) → (−x, iy)

is an endomorphism and thus turns E(p) into a Z[i]-module. Critical to us is the action of 1 + i

on our curve. This is a degree 2 endomorphism of the elliptic curve. The only non-trivial point
annihilated by 1 + i is

Q = (0,0).

Proposition 4. Assume that � > 1 and F� is prime. Then

E(F�) ∼= Z[i]/(1 + i)2�

as Z[i]-modules.

Proof. First E(F�) is a finitely generated Z[i]-module and so is isomorphic to the additive group:

Z[i]/(α1) ⊕ Z[i]/(α2) ⊕ · · · ⊕ Z[i]/(αk)

for some k ∈ N and {αj } ⊆ Z[i]. Now each Z[i]/(αj ) is a subgroup of E(F�) hence

|Z[i]/(αj )| = N(αj ) divides the order of E(F�). By Corollary 3, |E(F�)| = 22�
so that

N(αj ) = αjαj must be a power of 2 = −i(1 + i)2. By uniqueness of factorization, for every
j there exists in integer mj such that

(αj ) = (
(1 + i)mj

)
.

Finally, since multiplication by 1 + i is a degree 2 map, the annihilator of 1 + i in E(F�) has two
elements. This implies that k = 1. The proposition is proved. �

We now know that the E(F�) is a cyclic Z[i]-module. In order to build the test we need a
point P that generates this module. This is accomplished as follows. Let En be the quadratic
twist ny2 = x3 − x of our elliptic curve E. Here n can be picked to be an integer or a rational
number. If n is a non-zero square modulo F� then

(x, y) �→ (
x,n

1
2 · y)

is an isomorphism of Z[i]-modules En(F�) and E(F�). Rational points on the curve En (for
some n) are easy to construct. One picks a value for x and factors a square out of x3 − x. For
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example, if x = 5, then 53 − 5 = 120 = 30 · 22. This shows that P = (5,2) is a rational point on
the curve E30. Moreover,

(
30

F�

)
=

(
2

F�

)
·
(

3

F�

)
·
(

5

F�

)
= 1 · (−1) · (−1) = 1

and 30 is a square modulo F�.
We need explicit formulae for the multiplication by 1 + i on the curve ny2 = x3 − x. The

slope of the line through (x, y) and (−x, iy) is

A = (1 − i)y

2x
.

One now easily checks that (1 + i) · (x, y) = (x′, y′) where

⎧⎨
⎩

x′ = nA2 = 1

2

(
x

i
+ i

x

)
,

y′ = −y − A(x′ − x).

(1)

Proposition 5. Let � > 1 be such that F� is prime. Then the rational point P = (5,2) is a gener-
ator of the Z[i]-module

E30(F�) ∼= Z[i]/(1 + i)2�

.

Proof. We must show that there is no point R in E30(F�) such that

(5,2) ≡ (1 + i) · R (mod F�).

If there is such a point R, then the formula (1) for the action of 1 + i on the curve 30y2 = x3 − x

implies that

5 ≡ 30 · A2 (mod F�).

Since 30 is a square modulo F� and 5 is not, this is a contradiction. The proposition is proved. �
Of course, there are other choices for n and P . We can pick x = 7. Since 73 − 7 = 21 · 42, we

have a rational point P = (7,4) on the curve E21: 21y2 = x3 −x. Using the quadratic reciprocity
one easily shows that 7 is not a square modulo Fermat primes and 21 = 3 · 7 is a square modulo
Fermat primes. It follows that the previous proposition holds with the rational point P = (7,4)

on the curve E21.

4. Elliptic curve test for Fermat primes

In this section we develop a test for Fermat primes using the curve 30y2 = x3 − x and the
point P = (5,2). It is natural to state the test is in terms of Gaussian integers. Note that we have
a factorization in Z[i].

F� = f� · f̄�
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where f� = 22�−1 + i. Now, F� is a prime integer if and only if f� is a Gaussian prime. Recall
that Q = (0,0) is the unique point on the curve 30y2 = x3 − x of order 1 + i.

Theorem. Let P = (5,2) be a point on the curve E30: 30y2 = x3 −x. Let � > 1. Then the Fermat
number F� = 22� + 1 is prime if and only if

(1 + i)2�−1 · P ≡ Q (mod f�)

where f� = 22�−1 + i.

Proof. Assume that the congruence holds. We need to show that F� is prime. If not, then there
exists a prime factor p of F� such that p <

√
F�. The prime p is clearly not equal to 3 or 5. In

particular the curve has a good reduction modulo p.
Since p divides F�,

(
22�−1)2 ≡ −1 (mod p)

which shows that −1 is a square mod p. In particular, p is not a Gaussian prime and we can write
p = ππ . Without loss of generality, assume that π divides f�. By assumption, we also have the
congruence

(1 + i)2�−1 · P ≡ Q (mod π).

Multiplying both sides of this congruence by 1 + i gives

(1 + i)2� · P ≡ O (mod π)

where O is the identity element in E(π). It follows that P generates a Z[i]-submodule of E30(π)

isomorphic to Z[i]/((1 + i)2�
). The order of this module is N((1 + i)2�

) = 22� = F� − 1 which
implies F� − 1 � |E30(π)|. However, by Hasse’s estimate, the order of E(π) is bounded by

∣∣E30(π)
∣∣ � p + 1 + 2

√
p = (

√
p + 1)2.

Keeping in mind p2 < F� we have created the scenario p2 − 1 < (
√

p + 1)2 which does not hold
for any prime p > 2. F� is odd thus F� must have been prime to begin with.

For the reverse direction, assume F� is a prime. Notice that E30(F�) is isomorphic to E30(f�)

via the natural isomorphism of the finite fields Z/(F�) and Z[i]/(f�). By Proposition 4,

E30(f�) ∼= Z[i]/((1 + i)2�)
,

and by Proposition 5, the point P generates this Z[i]-module. It follows that (1 + i)2�−1 ·P is an
element of order 1 + i. Since Q = (0,0) is the only such element, we are done. �

The test can be further rewritten as follows. Let

(xm, ym) = (1 + i)m−1 · P.
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By our formula for the multiplication by 1+ i, the numbers xm are given by a quadratic recursion

xm+1 = 1

2

(
xm

i
+ i

xm

)

starting with x1 = 5. In this way we arrive to a version of the test alluded to in the introduction:
The Fermat number F� is prime if and only if xm is relatively prime to f� for all m = 1, . . . ,2� −1
and x2� is 0 modulo f�.

As an example we calculate the first few terms in this sequence and use them to test the
primality of some small Fermat numbers. The sequence starts,

{xi} =
{

5,−12i

5
,−169

120
,

14161i

40560
, . . .

}
.

Modulo f2 = 4 + i this sequence becomes {5,4,1,0}, thus F2 = 17 is prime. Modulo f5 =
216 +i we calculate x32 ≡ 3436246100 �≡ 0 (mod f5) thus F5 is not prime as Euler first calculated
in 1732. Of course our test does not necessarily factor the Fermat numbers as Euler did.

There are other choices for n and the starting point P of course. One can take P = ( 3
2 , 1

2 ), and
n = 15

2 giving x1 = 3
2 as the starting point. Because the formula is independent of n, one uses

the same recurrence rule as before! It is of no computational benefit however to change the curve
and starting point.

5. The curve y2 = x3 + D
4

Let C be the elliptic curve y2 = x3 + D
4 . The discriminant of C is −33D2. In particular C

has a good reduction modulo any odd prime p not dividing 3D. We let ω = − 1
2 +

√−3
2 represent

the third root of unity in C, as usual we have ω2 = ω. The ring Z[ω] is known as the ring of
Eisenstein integers which consists of {a + bω | a, b ∈ Z}. The norm of this ring is given by
N(a + bω) = (a + bω) · (a + bω) = a2 − ab + b2.

If p ≡ 1 (mod 3) then, abusing notation, let ω denote a primitive third root of unity in the
finite field Fp . The action

ω : (x, y) → (ωx, y)

is a degree three endomorphism of C(p), and thus turns C(p) into a Z[ω]-module.

Proposition 6. Let p be an odd prime not dividing 3D. If p ≡ 1 (mod 3), let p = ππ with
π ∈ Z[ω], and π ≡ π ≡ 2 (mod 3). Then,

∣∣C(p)
∣∣ = p + 1 +

(
D

π

)
6
π +

(
D

π

)
6
π.

Proof. See [I&R, p. 305]. �
We now turn our attention to two more sets of integers. Define

{
K� = 32� − 32�−1 + 1,

2� 2�−1

J� = 2 − 2 + 1.



R. Denomme, G. Savin / Journal of Number Theory 128 (2008) 2398–2412 2405
We have K� ≡ J� ≡ 1 (mod 3). Setting

{
k� = −1 − 32�−1

ω,

j� = ω + 22�−1
ω

we have factorizations J� = j� · j̄� and K� = k� · k̄�. Note that k� ≡ j� ≡ 2 (mod 3).

Corollary 7. Let � > 1.

(i) Let D = 1. If K� is prime then |C(K�)| = 32�
.

(ii) Let D = 4n3. If J� is prime and ( n
J�

)2 = −1 then |C(J�)| = 22�
.

Proof. For (i) if K� is prime then k� is an Eisenstein prime. By Proposition 6 we have, with
π = k�,

∣∣C(K�)
∣∣ = K� + 1 + k� + k̄� = 32�

. (2)

For (ii), if J� is prime then j� is an Eisenstein prime. Recall that 2 is a prime in Z[ω]. By
cubic reciprocity (see [I&R]),

(
2

j�

)
3
=

(
ω + 22�−1

ω

2

)
3
=

(
ω

2

)
3
= ω.

Next, note that the inclusion of Z into Z[ω] gives rise to an isomorphism of finite fields Z/(J�)

and Z[ω]/(j�). In particular, an integer n is a square modulo J� if and only if it is a square
modulo j�. Therefore, since D = 4n3 and n is not a square modulo J�, it follows that

(
D

j�

)
6
=

(
2

j�

)
3

(
n

j�

)
2
= −ω.

Then by Proposition 6 we have,

∣∣C(J�)
∣∣ = J� + 1 + (−ω)j� + (−ω)j̄� = 22�

. (3)

This proves the corollary. �
We now show that n = 7 satisfies the second condition of the corollary. By quadratic reci-

procity we have

(
7

J�

)
=

(
J�

7

)
(−1)

7−1
2

J�−1
2 =

(
J�

7

)
.

Modulo 7, 22�
alternates between the values 2 and 4. Thus either J� ≡ 2 − 4 + 1 ≡ −1 (mod 7),

or J� ≡ 4 − 2 + 1 ≡ 3 (mod 7). In both cases we have (
J�

7 ) = −1 thus ( 7
J�

) = −1. We get, by part

(ii) of Corollary 7, that |C(J�)| = 22�
for D = 73.
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6. The structure of the group C(K�)

Recall that C is the elliptic curve y2 = x3 + D
4 . Assume that K� is a prime number. Since

K� ≡ 1 (mod 3) the group C(K�) is a Z[ω]-module.

Proposition 8. Let C be the elliptic curve y2 = x3 + 1
4 . If K� is prime then

C(K�) ∼= Z[ω]/(ω − ω2)2�−1

as Z[ω]-modules.

Proof. This is proved in the same way as Proposition 4. We observe that |C(J�)| = 32�
and that

(ω − ω2) is the unique prime ideal in Z[ω] with norm equal to a power of 3 and multiplication
by ω − ω2 is a degree 3 endomorphism. �

Next, we want to find a generator of the Z[ω]-module C(K�). To this end, let Cn be the cubic
twist y2 = nx3 + 1

4 . Clearly, if n is a cube, then

(x, y) �→ (
n

1
3 · x, y

)

gives an isomorphism between Z[ω]-modules Cn(K�) and C(K�). We can construct rational
points on Cn by picking y and then factoring a cube out of y2 − 1

4 . Trying y = 2 we get x = 1
2

and n = 30. We have constructed the point P = ( 1
2 ,2) on the curve

y2 = 30x3 + 1

4
.

Of course, we must show that 30 is a cube modulo K� or, equivalently, modulo k�. Recall that 2
is a prime in Z[ω]. By cubic reciprocity,

(
2

k�

)
3
=

(−1 − 32�−1
ω

2

)
3
=

(−1 − ω

2

)
3
= ω2.

Next, 5 is also a prime in Z[ω], and 5 ≡ 2 (mod 3). Then by cubic reciprocity

(
5

k�

)
3
=

(−1 − 32�−1
ω

5

)
3
=

(−1 − ω

5

)
3
= (

ω2) 52−1
3 = ω.

Note that, since K� ≡ 1 (mod 9) for � > 1, ω is a cube modulo K�. Since 1 −ω is a cube modulo
k� by p. 114 in [I&R], we conclude that −3 = (ω − ω2)2 and 3 are cubes modulo k�:

(
3

k�

)
3
= 1.

Putting these calculations together yields,

(
30

)
=

(
2

)
·
(

5
)

·
(

3
)

= 1. (4)

k� 3 k� 3 k� 3 k� 3
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This shows that 30 is a cube modulo any prime K�.
Using the addition formula for our curve, y2 = nx3 + 1

4 we see (ω − ω2) · (x, y) = (x′, y′)
where

⎧⎪⎪⎨
⎪⎪⎩

x′ = 1

n
A2 + x = −nx3 + 1

3nx2
,

y′ = −y − A(x′ − ωx) = y
(
ω − ω2

) + 8

3(ω − ω2)
· y3

y2 − 1
4

(5)

and A is the slope of the line through the points (ωx, y) and (ω2x,−y), given by

A = 2y

(ω − ω2)x
.

Proposition 9. Let � > 1 be such that K� is prime. Then the rational point P = ( 1
2 ,2) is a

generator of the Z[ω]-module

C30(K�) ∼= Z[ω]/(ω − ω2)2�

.

Proof. We must show that there is no point R in C30(K�) such that

(
1

2
,2

)
≡ (

ω − ω2) · R (mod K�).

Assume there was such a point, R = (x, y). By the formula (5) for multiplication by ω − ω2,
solving for R = (x, y) amounts to solving a cubic equation

30x3 + 45x2 + 1 = 0.

We substitute z = 1
x

to get the equation,

z3 + 45z + 30 = 0. (6)

Assume that R in C30(K�) is one solution. If S ∈ C30(K�) satisfies (ω − ω2) · S ≡ O (mod K�),
then R + S is another solution. There are three such S, thus we get three distinct solutions to
(ω − ω2) · R ≡ P (mod K�). It follows that the polynomial (6) splits in FK�

.
On the other hand, one can solve (6) as in [D&F]. We see p = 45 and q = 30 so that the

discriminant D = −4p3 − 27q2 = −3(23 · 32 · 5)2. Now this equation has a solution if and only
if the value,

−27

2
q + 3

2

√−3D = 35 · 5

is a cube in FK�
. Using our previous computations we find,

(
35 · 5

)
=

(
5

)
= ω.
k� 3 k� 3
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This shows that (6) does not have a root in FK�
. It follows that the polynomial in (6) does not

actually split over FK�
, and so there is no solution to (ω − ω2) · R ≡ P (mod K�). This finishes

the proof that P generates C30(K�). �
7. Elliptic curve test for the primes K�

We now develop a test for the numbers K� using the curve y2 = 30x3 + 1
4 and the point

P = ( 1
2 ,2). It is more natural to state the test is in terms of Eisenstein integers. Recall that we

have a factorization in Z[ω].

K� = k� · k̄�

where k� = −1 − 32�−1
ω. Now, K� is a prime integer if and only if k� is an Eisenstein prime.

Note that the points of order ω − ω2 on y2 = 30x3 + 1
4 are

(
0,±1

2

)
.

Theorem. Let P = ( 1
2 ,2) be a point on the elliptic curve C30: y2 = 30x3 + 1

4 . Let � > 1. The

number K� = 32� − 32�−1 + 1 is prime if and only if

(
ω − ω2)2�−1 · P ≡

(
0,±1

2

)
(mod k�).

Proof. Assume the congruence holds. Suppose K� is not prime. Then there exists a prime fac-
tor p of K� such that p <

√
K�. The prime cannot be 2, 3 or 5 so the curve has good reduction

modulo p. Since p divides K�,

0 ≡ 32� − 32�−1 + 1 ≡ x2 − x + 1 (mod p)

which shows there is a non-trivial cube root of one mod p. This shows p ≡ 1 (mod 3). Then
p = ππ for some Eisenstein prime π . We can assume that π divides k�. We get the congruence

(
ω − ω2)2�−1 · P ≡

(
0,±1

2

)
(mod π).

Multiplying both sides of the congruence by ω − ω2 yields

(
ω − ω2)2� · P ≡ O (mod π).

Thus P generates a Z[ω]-submodule of C30(π) isomorphic to Z[ω]/((ω − ω2)2�
). The order of

this module is N((ω − ω2)2�
) = 32�

, so we must have

∣∣C30(π)
∣∣ � 32�

.
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By Hasse’s estimate we also have |C30(π)| � (
√

p + 1)2. Combining these with the earlier re-

mark, p �
√

K� < 32�−1
, we get the inequality,

32� �
∣∣C30(p)

∣∣ � (
√

p + 1)2 < 32�−1 + 2 · 32�−2 + 1

which holds for no � > 1. This is a contradiction, so it must be that K� is prime.
For the other direction assume that K� is prime. By Proposition 8,

C30(k�) ∼= C30(K�) ∼= Z[ω]/((ω − ω2)2�)
,

and by Proposition 9 the point P generates this Z[ω]-module. Therefore (ω − ω2)2�−1 · P is an
element of order ω − ω2 and this is (0, 1

2 ) or (0,− 1
2 ). The theorem follows. �

We now formulate the more elegant version of this test. Define y1 = 2, and recursively define

ym+1 = ym

(
ω − ω2) + 8

3(ω − ω2)
· y3

m

y2
m − 1

4

.

Then the number K� = 32� − 32�−1 + 1 is prime if and only if y2
m − 1

4 is relatively prime to K�

for m = 1, . . . ,2� − 1 and y2
2� − 1

4 is zero mod K�.

8. The structure of the group C(J�)

The curve y2 = x3 + n3 (D = 4n3) can be rewritten as ny2 = x3 + 1 using the substitution

(x, y) �→ (
n−1x,n−2y

)
.

Let Cn denote this curve. Assume that J� is a prime number. Since J� ≡ 1 (mod 3), the group
Cn(J�) is a Z[ω]-module.

Proposition 10. If J� is prime and ( n
J�

)2 = −1 then

Cn(J�) ∼= Z[ω]/(22�−1)

as Z[ω]-modules.

Proof. This is proved in the same way as Proposition 4, using that |Cn(J�)| = 22�
and observing

that (2) is the unique prime ideal in Z[ω] with norm equal to a power of 2 and multiplication by
2 is a degree 4 endomorphism. �

For the primes J� we will need to make use of the duplication formula on our curve. The slope
of the tangent line to (x, y) on the curve ny2 = x3 + 1 is defined to be

A = dy = 3x2

.

dx 2ny
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One now checks that the duplication formula takes the shape 2 · (x, y) = (x′, y′) where
⎧⎨
⎩x′ = nA2 − 2x = x4 − 8x

4(x3 + 1)
,

y′ = −y − A(x′ − x).

(7)

We know that n = 7 is not a square modulo all primes J�. In particular, Proposition 10 holds
for C7. This curve has a rational point P = (3,2).

Proposition 11. Let � > 1 be such that J� is prime. Then the rational point P = (3,2) is a
generator of the Z[ω]-module

C7(J�) ∼= Z[ω]/(22�−1)
.

Proof. It suffices to show that the equation

P = (3,2) ≡ 2 · R (mod J�)

has no solution in C7(J�). By the duplication formula (7), solving for R = (x, y) amounts to
solving a quartic equation

x4 − 12x3 − 8x − 12 = 0. (8)

Assume that R in C(J�) is one solution. Now if S ∈ C(J�) satisfies 2 · S ≡ O (mod J�), then
we have R + S is another solution. There are four such S, thus we get four distinct solutions to
2 · R ≡ P (mod J�) in C7(J�). It follows that the polynomial in (8) splits in FJ�

.
On the other hand, recall that ( 7

J�
) = −1, thus FJ�

[√7] is a degree 2 extension. In this exten-
sion we have the (tricky) factorization,

x4 − 12x3 − 8x − 12 = (
x2 − 2(3 + √

7)x − 2(2 + √
7)

) · (x2 − 2(3 − √
7)x − 2(2 − √

7)
)
.

If x1, x2 were the two roots of the first term in the right-hand side of this equation then we
would have x1 + x2 = 2(3 + √

7), and as such we see one of x1, x2 is not an element of FJ�
. It

follows that the polynomial in (8) does not actually split over FJ�
, and so there is no solution to

2 · R ≡ P (mod J�). This finishes the proof that P generates C7(J�). �
9. Elliptic curve test for the primes J�

Finally, we develop a test for the numbers J� using the curve 7y2 = x3 + 1 and the point
P = (3,2). Again, it is more natural to state the test is in terms of Eisenstein integers. Recall that
we have a factorization in Z[ω].

J� = j� · j̄�

where j� = ω + 22�−1
ω. Now, J� is a prime integer if and only if j� is an Eisenstein prime. Note

that the points of order 2 on 7y2 = x3 + 1 are of the form

(−ωj ,0
)
.
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Theorem. Let P = (3,2) be a point on the elliptic curve C7: 7y2 = x3 + 1. Let � > 1. The
number J� = 22� − 22�−1 + 1 is prime if and only if

22�−1−1 · P ≡ (−ωj ,0
)

(mod j�).

Proof. Assume the congruence is true. Suppose J� is not prime. Then there exists a prime fac-
tor p of J� such that p <

√
J�. The prime cannot be 3, nor 7 so the curve has good reduction

modulo p. Since p divides J�,

0 ≡ 22� − 22�−1 + 1 ≡ x2 − x + 1 (mod p)

which shows there is a non-trivial cube root of one mod p. This shows p ≡ 1 (mod 3) and we
can write p = ππ for an Eisenstein prime π . Without any loss of generality, we can assume that
π divides j�. By assumption, we also get the congruence

22�−1−1 · P ≡ (−ωj ,0
)

(mod π).

Multiplying both sides of the congruence by 2 yields

22�−1 · P ≡ O (mod p).

Thus P generates a Z[ω]-submodule of C7(π) isomorphic to Z[ω]/(22�−1
). The order of this

module is N(22�−1
) = 22�

, so we must have

∣∣C7(π)
∣∣ � 22�

.

By Hasse’s estimate we also have |C7(π)| � (
√

p+1)2. Combining these with the earlier remark,

p �
√

J� < 22�−1
, we get the awkward inequality,

22� �
∣∣C7(π)

∣∣ � (
√

p + 1)2 < 22�−1 + 2 · 22�−2 + 1

which holds for no � > 1. This is a contradiction, so it must be that J� is prime.
For the other direction assume that J� is prime. By Proposition 10,

C7(j�) ∼= C7(J�) ∼= Z[ω]/(22�−1)
,

and by Proposition 11 the point P generates this Z[ω]-module. It follows that 22�−1−1 · P is an
element of order 2, hence of the form (−ωj ,0). The theorem follows. �

We can reformulate this test in a similar way to the first test without even using the Eisenstein
integers. Define x1 = 3, and then recursively define

xm+1 = x4
m − 8xm

4(x3
m + 1)

.

Then the number J� = 22� − 22�−1 + 1 is prime if and only if x3
m + 1 is relatively prime to J� for

n = 1, . . . ,2�−1 − 1 and x3
�−1 + 1 is zero mod J�.
2
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