
Introduction Multics UNIX Plan9 Conclusion

Multics, UNIX and Plan9

Nils Asmussen

Influencial OS Research, 04/29/2014

1 / 45



Introduction Multics UNIX Plan9 Conclusion

Outline

1 Introduction

2 Multics

3 UNIX

4 Plan9

5 Conclusion

2 / 45



Introduction Multics UNIX Plan9 Conclusion

Why is it part of IOS?

We are still using the concepts of Multics/UNIX today

Many if not most OSs today are UNIX-like (Linux, *BSD,
Solaris, Mac OS, Minix, . . . )

There has been a lot of research based on them

And it’s a big success in industry

3 / 45



Introduction Multics UNIX Plan9 Conclusion

A brief overview

time1960 1970 1980 1990 2000 2010 2020

Multics

UNIX

Plan 9

Multics

Multics = Multiplexed Information and Computing Service

Implemented in PL/I

Last machine running Multics was shutdown in 2000

4 / 45



Introduction Multics UNIX Plan9 Conclusion

A brief overview

time1960 1970 1980 1990 2000 2010 2020

Multics

UNIX

Plan 9

UNIX

UNIX = UNiplexed Information and Computing Service

Initially written in assembly, later rewritten in C

Last UNIX from Bell Labs end of 80’s; lot of derivatives

4 / 45



Introduction Multics UNIX Plan9 Conclusion

A brief overview

time1960 1970 1980 1990 2000 2010 2020

Multics

UNIX

Plan 9

Plan 9 from Bell Labs

Reference to the movie ”Plan 9 from Outer Space”

Implemented in C; temporarily in Alef

First released 1992; commercial version in 1995; Open Source
release in 2002

4 / 45



Introduction Multics UNIX Plan9 Conclusion

Outline

1 Introduction

2 Multics

3 UNIX

4 Plan9

5 Conclusion

5 / 45



Introduction Multics UNIX Plan9 Conclusion

Timeline of Multics

6 / 45



Introduction Multics UNIX Plan9 Conclusion

References for Multics

1 Structure of the Multics Supervisor, 1965
V. A. Vyssotsky; Bell Telephone Laboratories
F. J. Corbató, R. M. Graham; MIT, Cambridge, Massachusetts

2 A General-purpose File System for Secondary Storage, 1965
R. C. Daley; MIT, Cambridge, Massachusetts
P. G. Neumann; Bell Telephone Laboratories

3 The Multics Virtual Memory: Concepts and Design, 1969
A. Bensoussan, C.T. Clingen; Honeywell, Inc.
R.C. Daley; MIT

4 The Multics Input/Output System, 1972
R. J. Feiertag; MIT, Cambridge, Massachusetts
E. I. Organick; University of Utah, Salt Lake City, Utah

5 Official Website of Multics
http://www.multicians.org

7 / 45

http://www.multicians.org


Introduction Multics UNIX Plan9 Conclusion

Goals of Multics

Allow changes and extensions

Remove the boundary between OS and user applications

There has been a (soft) boundary before
But users try really hard to get around it
Why not remove it then?
OS can be changed like user apps (no special tools, . . . )

Most users have no interest in computers and programming

Provide packages and frameworks that make it easy

Security is important

Prevent unauthorized access to data
Hierarchical filesystem with protection mechanisms

8 / 45



Introduction Multics UNIX Plan9 Conclusion

Execution and Processes

Process = a program in execution

Has its own address space, based on segmentation and paging

Processes are spawned from other processes. It can be
specified what segments should be shared and what should be
copied.

OS and user applications use the same calling conventions

OS sements/pages can be swapped out, too

OS segments are shared among all processes

Ring protection to prevent unauthorized access of OS
segments

9 / 45



Introduction Multics UNIX Plan9 Conclusion

Scheduling

Multics was designed for multiple CPUs

Uses time-shared multiprogramming

Has to cope with overload situations

Service denial or service degradation
Better minimize context-switches
Urgent jobs first, i.e. jobs where someone loses time and
money not having the results
Urgency should be determined be humans

It’s name was ”traffic controller”

10 / 45



Introduction Multics UNIX Plan9 Conclusion

Segmentation: Motivation

Think of a segment as a segment in x86: a part of an
executing program, together with meta-data like its length
and access permissions.

The authors desired to share information easily and in a
controlled way

Segmentation prevents that one needs explicit I/O calls to
access the information

One can just access it and the operating system makes sure
that it is loaded from secondary storage or written back, if
necessary.

Additionally, sharing can be controlled, because the HW
provides means to notice whenever a segment is used (and not
loaded yet).

11 / 45



Introduction Multics UNIX Plan9 Conclusion

Paging: Motivation

Swapping entire segments in and out is not feasible if
segments are larger

Fragmentation: growing and shrinking requires
data-movement if the segment memory has to be contiguous

Using variable sized pages complicates the management

Thus, they split segments in fixed-sized pages

12 / 45



Introduction Multics UNIX Plan9 Conclusion

Segmentation and Paging

DBR

DS

PT of seg. S

Page ip of seg. S

Core L

Core F

s

L acc
SDW

Core F

ip

Word [s,i]
iw

Translation of address [s,i]:

iw = i % 1024
ip = (i - iw) / 1024

DBR = Descriptor Base Register
DS = Descriptor Segment
SDW = Segment Descriptor Word
L = Length
F = Fault

Figure: Hardware segmentation and paging in the Honeywell 645

13 / 45



Introduction Multics UNIX Plan9 Conclusion

Segmentation and Paging (with Paged DS)

DBR
PT of DS

Page Sp of DS

PT of seg. S

Page ip of seg. S

Core F

Core L
sp

Core F

sw

L acc
SDW

Core F

ip

Word [s,i]
iw

Translation of address [s,i]:

sw = s % 1024
sp = (s - sw) / 1024

iw = i % 1024
ip = (i - iw) / 1024

DBR = Descriptor Base Register
DS = Descriptor Segment
SDW = Segment Descriptor Word
L = Length
F = Fault

Figure: Hardware segmentation and paging in the Honeywell 645

14 / 45



Introduction Multics UNIX Plan9 Conclusion

Segment Management

Multics maintains a per-process table for segments that maps
names to numbers

The SDW is not set immediately, but on demand

Pages in core are multiplexed among pages in virtual memory

Selection algorithm based upon page usage (LRU); HW
provides used-bit

The OS decides which parts of a program lies in core where
and when

Exception: real-time → routines for:

Certain parts have to be in core
Certain parts are required soon
Certain parts won’t be accessed again

15 / 45



Introduction Multics UNIX Plan9 Conclusion

Segment Hierarchy / Filesystem

Multics invented hierarchical filesystems

FS doesn’t know about the format of files; only the user does

Directory = special file with a list of entries maintained by the
FS

A directory entry may point to a file (”branch”) or to another
entry (”link”)

Branch contains physical address of the file, access time,
permissions, . . .

They used a different notation:

”O” = root, not specified in paths
Absolute and relative paths: ”A:B:C”, ”:*:*:B”

I’ve also seen ”ROOT > A > B > C”.

16 / 45



Introduction Multics UNIX Plan9 Conclusion

Dynamic Linking

Works basically like today

Procedure and data segments may contain unresolved
references

Procedure segments can be shared

Procedure segment is not changed
But has a linkage segment with entries consisting of:

Symbolic name of the externally known symbol
Symbolic name of the foreign segment
An indirect word; initially with a tag to cause a trap

If not resolved yet, a trap will occur and the linker resolves it

Allows to call segments of other processes

17 / 45



Introduction Multics UNIX Plan9 Conclusion

Input/Output System

Had two main goals:

Simple things should be simple.
Complex things should be possible.

(from Alan Kay)

It should be device independent, as far as possible

Simplicity for the programmer
Less maintainance costs
Apps can use devices that the programmer didn’t even think of

18 / 45



Introduction Multics UNIX Plan9 Conclusion

I/O System: Overview

19 / 45



Introduction Multics UNIX Plan9 Conclusion

I/O System: Operations

Init/deinit: attach, detach

Positioning: seek, tell

Read/write: read, write

Read-ahead/write-behind: readsync, writesync,
resetread, resetwrite

Workspace (a)synchronous mode: worksync, upstate,
iowait, abort

Catch-all: order

20 / 45



Introduction Multics UNIX Plan9 Conclusion

I/O System: Synonym Module

user input

console

user output

tty
DIM

tty
DIM

21 / 45



Introduction Multics UNIX Plan9 Conclusion

I/O System: Synonym Module

user input

consoleuser i/o

user output

syn
DIM

sy
n

DIM

tty DIM

22 / 45



Introduction Multics UNIX Plan9 Conclusion

I/O System: Synonym Module

user input

consoleuser i/o

user output

syn
DIM

tty DIM

file out seg. in FS
FSIMsyn DIM

23 / 45



Introduction Multics UNIX Plan9 Conclusion

I/O System: Synonym Module

user input

consoleuser i/o

user output

syn
DIM

tty DIM

file out seg. in FS
FSIM

syn DIM

23 / 45



Introduction Multics UNIX Plan9 Conclusion

I/O System: Synonym Module

user input

consoleuser i/o

user output

syn
DIM

tty DIM

file out seg. in FS
FSIMsyn DIM

23 / 45



Introduction Multics UNIX Plan9 Conclusion

I/O System: Absentee process

user input

consoleuser i/o

user output file out

file in

seg. in FS

seg. in FS
syn DIM

syn DIM

tty DIM

FSIM

FSIM

24 / 45



Introduction Multics UNIX Plan9 Conclusion

Outline

1 Introduction

2 Multics

3 UNIX

4 Plan9

5 Conclusion

25 / 45



Introduction Multics UNIX Plan9 Conclusion

Timeline

26 / 45



Introduction Multics UNIX Plan9 Conclusion

References for UNIX

1 The UNIX Time-Sharing System, 1973
Dennis M. Ritchie, Ken Thompson; Bell Laboratories

2 The Evolution of the Unix Time-sharing System, 1979
Dennis M. Ritchie; Bell Laboratories

27 / 45



Introduction Multics UNIX Plan9 Conclusion

Motivation / origin story

K. Thompson and D. Ritchie were working on Multics, but
there was no usable system in sight

During 1969, they seeked for an alternative

Thompson and Ritchie started to design the filesystem on
blackboards

Thompson also created a fairly detailed performance
simulation of the filesystem and the paging behaviour

Thompson wrote a game called Space Travel for the GE-645,
but CPU time was expensive

Soon he found an unused PDP-7 and ported the game to it

Building and deploying was quite tedious
He started with an OS for the PDP-7
Started with the blackboard-filesystem and processes
Finally an assembler and utilities to be self-hosted

28 / 45



Introduction Multics UNIX Plan9 Conclusion

Filesystem

Most important aspect of UNIX (”everything is a file”)

In contrast to Multics, limited filename lengths (14 chars)

Different syntax: ”/” as separator, ”/” = root

Different semantics for links: there is no original

A directory has at least the entries ”.” and ”..”

Special files for devices: device type + subdevice number

At first: no path names, just file names; no dir creation at
runtime

New concept: mounting

No links between different filesystems for bookkeeping reasons

ACL-permissions with set-uid but without groups

29 / 45



Introduction Multics UNIX Plan9 Conclusion

I/O

Like in Multics, a general interface for all devices and files

open, read, write, close, . . .

File descriptor

Was word-based at the beginning, null-byte for padding

No user-visible locks
1 Not necessary: they were not faced with large files maintained

by independent processes
2 Not sufficient: can’t prevent confusion (e.g. 2 users edit a

copy of the same file in an editor)

30 / 45



Introduction Multics UNIX Plan9 Conclusion

Processes and Images

”image” = computer execution environment (core image,
registers, open files, cwd, . . . )

A process is the execution of an image

User-part of core image consists of text (shared, read-only),
data and stack

pid = fork(label) (borrowed from the Berkeley
time-sharing system)

execute(file, arg1, ..., argn)

wait and exit

Pipes for IPC

At the beginning: no multi-programming – switch was a
complete swap

31 / 45



Introduction Multics UNIX Plan9 Conclusion

Synchronous IPC

An early version had a similar primitive as sync. IPC

Sender was blocked until receiver was ready

Usages:

Instead of wait – parent did a send which returned an error if
child exited
Init did a receive from every shell it created; on exit shell
sended a message

Was replaced with the less general mechanism wait

32 / 45



Introduction Multics UNIX Plan9 Conclusion

Init and shell

Initialization

Done by init which forks a process for every typewriter

Each waits for the user to login

After login, it changes cwd, sets uid and exec’s the shell

Original init waits until a process died and restarts it

Shell

If a command is not found, /bin/ is prefixed (no $PATH?)

Standard streams: no stderr

I/O redirection

Filtering via pipes

Background jobs

33 / 45



Introduction Multics UNIX Plan9 Conclusion

Traps and Signals

The PDP-11 detects several HW faults and raises a trap

Typically, the process is killed

One can also send the interrupt signal to a process via the
”delete” character

The quit signal kills a process and produces a core image

All signals can be ignored or handled

34 / 45



Introduction Multics UNIX Plan9 Conclusion

Outline

1 Introduction

2 Multics

3 UNIX

4 Plan9

5 Conclusion

35 / 45



Introduction Multics UNIX Plan9 Conclusion

References for Plan9

1 Plan 9, A Distributed System, 1991
Dave Presotto, Rob Pike, Ken Thompson, Howard Trickey
AT&T Bell Laboratories

2 Plan 9 from Bell Labs, 1995
Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken
Thompson, Howard Trickey, Phil Winterbottom
Bell Laboratories

3 Man-Pages for Plan 9
http://man.cat-v.org/plan_9

36 / 45

http://man.cat-v.org/plan_9


Introduction Multics UNIX Plan9 Conclusion

Motivation

UNIX, is itself an old timesharing system and has had trouble
adapting to ideas born after it

Small, cheap machines in people’s offices would serve as
terminals providing access to large, central, shared resources
such as computing servers and file servers

”build a UNIX out of a lot of little systems, not a system out
of a lot of little UNIXes”

Rethink UNIX abstractions, make them more general

37 / 45



Introduction Multics UNIX Plan9 Conclusion

Namespaces

Processes have a namespace that is manipulated via bind,
mount and unmount

mount inserts a FS served by a server into the namespace

bind creates an alias to an existing FS

The server responds to requests of clients (navigate, create,
remove, read, write, . . . files)

May be local, may be on a different machine

Every resource is a filesystem (on disk, a device, a process,
env-vars, . . . )

A filesystem consists typically of 2 files: data and ctl

Syscalls on files provided by a server are translated into
messages

9P is the protocol for the message exchange

38 / 45



Introduction Multics UNIX Plan9 Conclusion

The 9P protocol

// walks through the hierarchy to find ’wname’

// and assign it to ’newfid’

size[4] Twalk tag[2] fid[4] newfid[4]

nwname[2] nwname*(wname[s])

size[4] Rwalk tag[2] nwqid[2] nwqid*(wqid[13])

// opens the file denoted by ’fid’

size[4] Topen tag[2] fid[4] mode[1]

size[4] Ropen tag[2] qid[13] iounit[4]

// reads ’count’ bytes at ’offset’ from ’fid’

size[4] Tread tag[2] fid[4] offset[8] count[4]

size[4] Rread tag[2] count[4] data[count]

39 / 45



Introduction Multics UNIX Plan9 Conclusion

Binding

bind(char *name, char *old, int flags)

Creates an alias of old as name
Details depend on flags:

Replacing nodes
For directories: creating a union of directories (ordered)
What if one creates a new file in it?
→ Flag that specifies whether a dir should receive creates
→ The first one receives the file

Example

// replace contents at /bin with /arm/bin

bind("/arm/bin", "/bin", MREPL);

// union-mount /usr/bin *after* /bin

bind("/usr/bin", "/bin", MAFTER);

// union-mount /home/foo/bin *before* /bin

bind("/home/foo/bin", "/bin", MBEFORE);

40 / 45



Introduction Multics UNIX Plan9 Conclusion

Mounting

mount(int fd, char *path, int flags, ...)

Subsequent requests to path and below are translated into
messages to fd

Example

int fd[2];

pipe(fd);

mount(fd[0], "/example", MREPL, ...);

while(1) {

read(fd[0], ...);

// ...

write(fd[1], ...);

}

41 / 45



Introduction Multics UNIX Plan9 Conclusion

Blocking system calls

All system calls in Plan9 are blocking

There is no O NONBLOCK

Instead, one should use fork and execute the syscall in the
clone

Plan9 argues that it’s both easy and efficient

It has a special language, Alef, which makes it easy

42 / 45



Introduction Multics UNIX Plan9 Conclusion

Outline

1 Introduction

2 Multics

3 UNIX

4 Plan9

5 Conclusion

43 / 45



Introduction Multics UNIX Plan9 Conclusion

Differences in research

None of the mentioned papers about Multics/UNIX had an
evaluation

Plan9 has a short performance evaluation and comparison
with variant of UNIX

”We will not attempt any [...] comparison with other systems,
but merely note that we are generally satisfied with the overall
performance of the system.”

44 / 45



Introduction Multics UNIX Plan9 Conclusion

Summary

Multics

Hierarchical filesystem
Generic I/O operations

UNIX

Everything is a file
Simplicity

Plan9

Takes the UNIX ideas even further
Distributed systems

45 / 45


	Introduction
	Multics
	UNIX
	Plan9
	Conclusion

