Advertisement
No access
Research Article
DIELECTRICS

High energy density in artificial heterostructures through relaxation time modulation

Sangmoon Han https://orcid.org/0000-0001-7924-2050, Justin S. Kim https://orcid.org/0000-0001-5684-848X, Eugene Park https://orcid.org/0000-0001-6573-9162, Yuan Meng https://orcid.org/0000-0002-5409-5610, Zhihao Xu, Alexandre C. Foucher https://orcid.org/0000-0001-5042-4002, Gwan Yeong Jung, Ilpyo Roh, Sangho Lee https://orcid.org/0000-0003-4164-1827, Sun Ok Kim https://orcid.org/0009-0001-0607-1868, Ji-Yun Moon https://orcid.org/0000-0001-8728-0647, Seung-Il Kim https://orcid.org/0000-0003-4747-9488, Sanggeun Bae https://orcid.org/0009-0005-1726-8868, Xinyuan Zhang https://orcid.org/0000-0002-5135-2204, Bo-In Park https://orcid.org/0000-0002-9084-3516, Seunghwan Seo, Yimeng Li, Heechang Shin https://orcid.org/0009-0007-3490-244X, Kate Reidy https://orcid.org/0000-0003-1178-0009, Anh Tuan Hoang https://orcid.org/0000-0003-0911-1391, Suresh Sundaram https://orcid.org/0000-0003-3194-2730, Phuong Vuong https://orcid.org/0000-0003-2775-7081, Chansoo Kim https://orcid.org/0000-0002-7231-7782, Junyi Zhao https://orcid.org/0000-0001-6941-0559, Jinyeon Hwang, Chuan Wang, Hyungil Choi, Dong-Hwan Kim https://orcid.org/0000-0002-2753-0955, Jimin Kwon https://orcid.org/0000-0002-5213-1323, Jin-Hong Park https://orcid.org/0000-0002-0219-7455, Abdallah Ougazzaden https://orcid.org/0000-0002-9959-5280, Jae-Hyun Lee https://orcid.org/0000-0001-5117-8923, Jong-Hyun Ahn https://orcid.org/0000-0002-8135-7719, Jeehwan Kim https://orcid.org/0000-0002-1547-0967, Rohan Mishra https://orcid.org/0000-0003-1261-0087, Hyung-Seok Kim https://orcid.org/0000-0003-3292-303X, Frances M. Ross https://orcid.org/0000-0003-0838-9770 fmross@mit.edu, and Sang-Hoon Bae https://orcid.org/0000-0002-1518-7635 fmross@mit.eduAuthors Info & Affiliations
Science
18 Apr 2024
Vol 384, Issue 6693
pp. 312-317

Editor’s summary

Avoiding waste heat during capacitor operation is important for improving energy efficiency. Han et al. designed a dielectric heterostructure with barium titanate sandwiched between a two-dimensional material. Charge accumulation at the material interfaces under an alternating electric field changes the relaxation time of the heterostructure. This, in turn, can substantially reduce the energy loss when the right materials are chosen. The authors produced one such structure with high energy density and low loss using two-layer molybdenum disulfide and barium titanate. The general strategy should be useful for refining other dielectric materials. —Brent Grocholski

Abstract

Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Materials

This PDF file includes:

Materials and Methods
Supplementary Text
Figs. S1 to S21
References (5076)

References and Notes

1
J.-K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang, W. Wang, N. Yang, Y. Liu, C.-H. Lin, X. Guan, L. Hu, Z.-L. Yang, B.-C. Huang, Y.-P. Chiu, J. Yang, V. Tung, D. Wang, K. Kalantar-Zadeh, T. Wu, X. Zu, L. Qiao, L.-J. Li, S. Li, High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).
2
A. J. Yang, K. Han, K. Huang, C. Ye, W. Wen, R. Zhu, R. Zhu, J. Xu, T. Yu, P. Gao, Q. Xiong, X. Renshaw Wang, Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5, 233–240 (2022).
3
H. Pan, S. Lan, S. Xu, Q. Zhang, H. Yao, Y. Liu, F. Meng, E.-J. Guo, L. Gu, D. Yi, X. Renshaw Wang, H. Huang, J. L. MacManus-Driscoll, L.-Q. Chen, K.-J. Jin, C.-W. Nan, Y.-H. Lin, Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 374, 100–104 (2021).
4
Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, U. Li, E. Iagodkine, A. Haque, L.-Q. Chen, N. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).
5
H. Luo, F. Wang, R. Guo, D. Zhang, G. He, S. Chen, Q. Wang, Progress on polymer dielectrics for electrostatic capacitors application. Adv. Sci. 9, e2202438 (2022).
6
X.-K. Wei, G. Bihlmayer, X. Zhou, W. Feng, Y. V. Kolen’ko, D. Xiong, L. Liu, S. Blügel, R. E. Dunin-Borkowski, Discovery of real-space topological ferroelectricity in metallic transition metal phosphides. Adv. Mater. 32, e2003479 (2020).
7
J. P. B. Silva, K. C. Sekhar, H. Pan, J. L. MacManus-Driscoll, M. Pereira, Advances in dielectric thin films for energy storage applications, revealing the promise of group IV binary oxides. ACS Energy Lett. 6, 2208–2217 (2021).
8
L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019).
9
T. Li, C. Liu, P. Shi, X. Liu, R. Kang, C. Long, M. Wu, S. Cheng, S. Mi, Y. Xia, L. Li, D. Wang, X. Lou, High‐performance strain of lead‐free relaxor‐ferroelectric piezoceramics by the morphotropic phase boundary modification. Adv. Funct. Mater. 32, 2202307 (2022).
10
B. Yang, Y. Zhang, H. Pan, W. Si, Q. Zhang, Z. Shen, Y. Yu, S. Lan, F. Meng, Y. Liu, H. Huang, J. He, L. Gu, S. Zhang, L.-Q. Chen, J. Zhu, C.-W. Nan, Y.-H. Lin, High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022).
11
J. Kim, S. Saremi, M. Acharya, G. Velarde, E. Parsonnet, P. Donahue, A. Qualls, D. Garcia, L. W. Martin, Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 369, 81–84 (2020).
12
J. Shim, S.-H. Bae, W. Kong, D. Lee, K. Qiao, D. Nezich, Y. J. Park, R. Zhao, S. Sundaram, X. Li, H. Yeon, C. Choi, H. Kum, R. Yue, G. Zhou, Y. Ou, K. Lee, J. Moodera, X. Zhao, J.-H. Ahn, C. Hinkle, A. Ougazzaden, J. Kim, Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).
13
Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu, K. Pei, H. Zhang, Z. Yang, R. Che, Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, e2107538 (2022).
14
M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, e2105553 (2022).
15
S.-H. Bae, X. Zhou, S. Kim, Y. S. Lee, S. S. Cruz, Y. Kim, J. B. Hannon, Y. Yang, D. K. Sadana, F. M. Ross, H. Park, J. Kim, Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene. Proc. Natl. Acad. Sci. U.S.A. 114, 4082–4086 (2017).
16
M. T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015).
17
T. Rahman, M. Vargas, R. Chintalapalle, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014).
18
S. S. Cheema, N. Shanker, L.-C. Wang, C.-H. Hsu, S.-L. Hsu, Y.-H. Liao, M. San Jose, J. Gomez, W. Chakraborty, W. Li, J.-H. Bae, S. K. Volkman, D. Kwon, Y. Rho, G. Pinelli, R. Rastogi, D. Pipitone, C. Stull, M. Cook, B. Tyrrell, V. A. Stoica, Z. Zhang, J. W. Freeland, C. J. Tassone, A. Mehta, G. Saheli, D. Thompson, D. I. Suh, W.-T. Koo, K.-J. Nam, D. J. Jung, W.-B. Song, C.-H. Lin, S. Nam, J. Heo, N. Parihar, C. P. Grigoropoulos, P. Shafer, P. Fay, R. Ramesh, S. Mahapatra, J. Ciston, S. Datta, M. Mohamed, C. Hu, S. Salahuddin, Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).
19
H. W. Park, M. Oh, I. S. Lee, S. Byun, Y. H. Jang, Y. B. Lee, B. Y. Kim, S. H. Lee, S. K. Ryoo, D. Shim, J. H. Lee, H. Kim, K. D. Kim, C. S. Hwang, Double S‐shaped polarization—Voltage curve and negative capacitance from Al2O3 ‐Hf0.5Zr0.5O2‐Al2O3 triple‐layer structure. Adv. Funct. Mater. 33, 2206637 (2023).
20
Y. J. Kim, M. H. Park, Y. H. Lee, H. J. Kim, W. Jeon, T. Moon, K. D. Kim, D. S. Jeong, H. Yamada, C. S. Hwang, Frustration of negative capacitance in Al2O3/BaTiO3 bilayer structure. Sci. Rep. 6, 19039 (2016).
21
A. K. Saha, M. Si, P. D. Ye, S. K. Gupta, Polarization switching in Hf0.5Zr0.5O2-dielectric stack: The role of dielectric layer thickness. Appl. Phys. Lett. 119, 122903 (2021).
22
J. P. B. Silva, J. M. B. Silva, K. C. Sekhar, H. Palneedi, M. C. Istrate, R. F. Negrea, C. Ghica, A. Chahboun, M. Pereira, M. J. M. Gomes, Energy storage performance of ferroelectric ZrO2 film capacitors: effect of HfO2:Al2O3 dielectric insert layer. J. Mater. Chem. A Mater. Energy Sustain. 8, 14171–14177 (2020).
23
Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie, J. Wang, M. Su, L. Li, Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10, 11108–11115 (2018).
24
J. Shin, H. Kim, S. Sundaram, J. Jeong, B.-I. Park, C. S. Chang, J. Choi, T. Kim, M. Saravanapavanantham, K. Lu, S. Kim, J. M. Suh, K. S. Kim, M.-K. Song, Y. Liu, K. Qiao, J. H. Kim, Y. Kim, J.-H. Kang, J. Kim, D. Lee, J. Lee, J. S. Kim, H. E. Lee, H. Yeon, H. S. Kum, S.-H. Bae, V. Bulovic, K. J. Yu, K. Lee, K. Chung, Y. J. Hong, A. Ougazzaden, J. Kim, Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614, 81–87 (2023).
25
H. Kim, Y. Liu, K. Lu, C. S. Chang, D. Sung, M. Akl, K. Qiao, K. S. Kim, B.-I. Park, M. Zhu, J. M. Suh, J. Kim, J. Jeong, Y. Baek, Y. J. Ji, S. Kang, S. Lee, N. M. Han, C. Kim, C. Choi, X. Zhang, H.-K. Choi, Y. Zhang, H. Wang, L. Kong, N. N. Afeefah, M. N. M. Ansari, J. Park, K. Lee, G. Y. Yeom, S. Kim, J. Hwang, J. Kong, S.-H. Bae, Y. Shi, S. Hong, W. Kong, J. Kim, High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).
26
S.-H. Bae, H. Kum, W. Kong, Y. Kim, C. Choi, B. Lee, P. Lin, Y. Park, J. Kim, Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).
27
A. Laturia, W. G. Vandenberghe, in 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (IEEE, 2017), pp. 337–340.
28
H. Zhou, Y. Cai, G. Zhang, Y.-W. Zhang, Unusual phonon behavior and ultra-low thermal conductance of monolayer InSe. Nanoscale 10, 480–487 (2017).
29
J.-H. Ahn, M.-J. Lee, H. Heo, J. H. Sung, K. Kim, H. Hwang, M.-H. Jo, Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 15, 3703–3708 (2015).
30
S.-I. Kim, J.-S. Kim, J.-Y. Moon, S.-K. Hyeong, S. Ghods, J.-H. Choi, D. Kim, D. S. Park, K. Heo, J.-H. Lee, Electromagnetic interference shielding of graphene/PMMA composites depending on growth temperature of CVD-graphene. Synth. Met. 299, 117464 (2023).
31
A. Perepeliuc, R. Gujrati, A. Srivastava, P. Vuong, V. Ottapilakkal, P. L. Voss, S. Sundaram, J. P. Salvestrini, A. Ougazzaden, Photoinduced doping in hexagonal boron nitride. Appl. Phys. Lett. 122, 263503 (2023).
32
S. Hwangbo, L. Hu, A. T. Hoang, J. Y. Choi, J.-H. Ahn, Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022).
33
Y. Ahn, M. Shin, First-principles-based quantum transport simulations of monolayer indium selenide FETs in the ballistic limit. IEEE Trans. Electron Dev. 64, 2129–2134 (2017).
34
T. A. Hanafy, K. Elbanna, S. El‐Sayed, A. Hassen, Dielectric relaxation analysis of biopolymer poly(3‐hydroxybutyrate). J. Appl. Polym. Sci. 121, 3306–3313 (2011).
35
H. Wang, L. Yang, X. Zhang, M. H. Ang Jr., Permittivity, loss factor and Cole-Cole model of acrylic materials for dielectric elastomers. Results Phys. 29, 104781 (2021).
36
B.-H. Fan, J.-W. Zha, D.-R. Wang, J. Zhao, Z.-F. Zhang, Z.-M. Dang, Preparation and dielectric behaviors of thermoplastic and thermosetting polymer nanocomposite films containing BaTiO3 nanoparticles with different diameters. Compos. Sci. Technol. 80, 66–72 (2013).
37
K. Venkateshan, G. P. Johari, Dielectric relaxation and elasticity during polymerization. J. Chem. Phys. 125, 014907 (2006).
38
M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, C. S. Hwang, The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl. Phys. Lett. 104, 072901 (2014).
39
M. Liu, C. Ma, G. Collins, J. Liu, C. Chen, C. Dai, Y. Lin, L. Shui, F. Xiang, H. Wang, J. He, J. Jiang, E. I. Meletis, M. W. Cole, Interface engineered BaTiO3/SrTiO3 heterostructures with optimized high-frequency dielectric properties. ACS Appl. Mater. Interfaces 4, 5761–5765 (2012).
40
M. Samet, V. Levchenko, G. Boiteux, G. Seytre, A. Kallel, A. Serghei, Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. J. Chem. Phys. 142, 194703 (2015).
41
H. Hammami, M. Arous, M. Lagache, A. Kallel, Study of the interfacial MWS relaxation by dielectric spectroscopy in unidirectional PZT fibres/epoxy resin composites. J. Alloys Compd. 430, 1–8 (2007).
42
Y. G. Lee, C. G. Kang, U. J. Jung, J. J. Kim, H. J. Hwang, H.-J. Chung, S. Seo, R. Choi, B. H. Lee, Fast transient charging at the graphene/SiO2 interface causing hysteretic device characteristics. Appl. Phys. Lett. 98, 183508 (2011).
43
T. Akamatsu, T. Ideue, L. Zhou, Y. Dong, S. Kitamura, M. Yoshii, D. Yang, M. Onga, Y. Nakagawa, K. Watanabe, T. Taniguchi, J. Laurienzo, J. Huang, Z. Ye, T. Morimoto, H. Yuan, Y. Iwasa, A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021).
44
Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
45
S. H. Kim, W. Lee, C. H. An, Y. Kim, D. S. Kwon, D.-G. Kim, S. H. Cha, S. T. Cho, J. Lim, C. S. Hwang, Leakage current control of SrTiO3 thin films through Al doping at the interface between dielectric and electrode layers via atomic layer deposition. Phys. Status Solidi Rapid Res. Lett. 13, 1900373 (2019).
46
M. Pawlak, J. Swerts, M. Popovici, B. Kaczer, M.-S. Kim, W.-C. Wang, K. Tomida, B. Govoreanu, J. Delmotte, V. V. Afanas’ev, M. Schaekers, W. Vandervorst, J. A. Kittl, Direct physical evidence of mechanisms of leakage and equivalent oxide thickness reduction in metal-insulator-metal capacitors based on RuOx/TiOx/SrxTiyOz/TiN stacks. Appl. Phys. Lett. 101, 042901 (2012).
47
J. Yang, Y. Yang, S. W. Waltermire, X. Wu, H. Zhang, T. Gutu, Y. Jiang, Y. Chen, A. A. Zinn, R. Prasher, T. T. Xu, D. Li, Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nat. Nanotechnol. 7, 91–95 (2012).
48
H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu, Y. Zhang, S. Zhang, Ultrahigh energy‐storage density in NaNbO3‐based lead‐free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater. 29, 1903877 (2019).
49
D. Li, D. Zhou, D. Wang, W. Zhao, Y. Guo, Z. Shi, T. Zhou, S.-K. Sun, C. Singh, S. Trukhanov, A. S. B. Sombra, Lead-free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design. Small 19, e2206958 (2023).
50
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
51
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
52
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
53
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
54
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
55
Z.-W. Zhang, Z.-S. Liu, J.-J. Zhang, B.-N. Sun, D.-F. Zou, G.-Z. Nie, M. Chen, Y.-Q. Zhao, S. Jiang, Interfacial contact barrier and charge carrier transport of MoS2/metal(001) heterostructures. Phys. Chem. Chem. Phys. 25, 9548–9558 (2023).
56
A. K. Saha, S. Datta, S. K. Gupta, “Negative capacitance” in resistor-ferroelectric and ferroelectric-dielectric networks: Apparent or intrinsic?J. Appl. Phys. 123, 105102 (2018).
57
P. Debye, Polar Molecules (Chemical Catalog, 1929).
58
M. Falmbigl, I. S. Golovina, A. V. Plokhikh, D. Imbrenda, A. Podpirka, C. J. Hawley, G. Xiao, A. Gutierrez-Perez, I. A. Karateev, A. L. Vasiliev, T. C. Parker, J. E. Spanier, BaTiO3 thin films from atomic layer deposition: A superlattice approach. J. Phys. Chem. C Nanomater. Interfaces 121, 16911–16920 (2017).
59
H. Wong, H. Iwai, K. Kakushima, B. L. Yang, P. K. Chu, XPS study of the bonding properties of lanthanum oxide/silicon interface with a trace amount of nitrogen incorporation. J. Electrochem. Soc. 157, G49–G52 (2010).
60
G. Evans, G. V. Duong, M. J. Ingleson, Z. Xu, J. T. A. Jones, Y. Z. Khimyak, J. B. Claridge, M. J. Rosseinsky, Chemical bonding assembly of multifunctional oxide nanocomposites. Adv. Funct. Mater. 20, 231–238 (2010).
61
Y. Liu, Y. Wang, X. Hao, J. Xu, Preparation and energy-storage performance of PLZT antiferroelectric thick films via sol–gel method. Ceram. Int. 39, S513–S516 (2013).
62
J. Xie, Z. Yao, H. Hao, Y. Xie, Z. Li, H. Liu, M. Cao, A novel lead‐free bismuth magnesium titanate thin films for energy storage applications. J. Am. Ceram. Soc. 102, 3819–3822 (2019).
63
S. S. Won, M. Kawahara, L. Kuhn, V. Venugopal, J. Kwak, I. W. Kim, A. I. Kingon, S.-H. Kim, BiFeO3-doped (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications. Appl. Phys. Lett. 110, 152901 (2017).
64
B. Sun, M. Guo, M. Wu, Z. Ma, W. Gao, H. Sun, X. Lou, Large enhancement of energy storage density in (Pb0.92La0.08)(Zr0.65Ti0.35)O3/PbZrO3 multilayer thin film. Ceram. Int. 45, 20046–20050 (2019).
65
Y. Wang, X. Hao, J. Xu, Effects of PbO insert layer on the microstructure and energy storage performance of (042)-preferred PLZT antiferroelectric thick films. J. Mater. Res. 27, 1770–1775 (2012).
66
Y. Yao, Y. Li, N. Sun, J. Du, X. Li, L. Zhang, Q. Zhang, X. Hao, High energy-storage performance of BNT-BT-NN ferroelectric thin films prepared by RF magnetron sputtering. J. Alloys Compd. 750, 228–234 (2018).
67
Y. Zhao, X. Hao, Q. Zhang, Energy-storage properties and electrocaloric effect of Pb(1−3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6, 11633–11639 (2014).
68
Z. Tang, J. Ge, H. Ni, B. Lu, X.-G. Tang, S.-G. Lu, M. Tang, J. Gao, High energy-storage density of lead-free BiFeO3 doped Na0.5Bi0.5TiO3-BaTiO3 thin film capacitor with good temperature stability. J. Alloys Compd. 757, 169–176 (2018).
69
P. D. Song, J. Yang, B. B. Yang, Y. Wang, L.-Y. Chen, F. Wang, X. B. Zhu, Energy storage in BaBi4Ti4O15 thin films with high efficiency. J. Appl. Phys. 125, 134101 (2019).
70
B. B. Yang, M. Y. Guo, D. P. Song, X. W. Tang, R. H. Wei, L. Hu, J. Yang, W. H. Song, J. M. Dai, X. J. Lou, X. B. Zhu, Y. P. Sun, Energy storage properties in BaTiO3-Bi3.25La0.75Ti3O12 thin films. Appl. Phys. Lett. 113, 183902 (2018).
71
F. Ali, X. Liu, D. Zhou, X. Yang, J. Xu, T. Schenk, J. Müller, U. Schroeder, F. Cao, X. Dong, Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. J. Appl. Phys. 122, 144105 (2017).
72
C. H. Yang, Q. Yao, J. Qian, Y. J. Han, J. Chen, Growth, microstructure, energy–storage and dielectric performances of chemical–solution NBT–based thin films: Effect of sodium nonstoichimometry. Ceram. Int. 44, 9152–9158 (2018).
73
H. Pan, J. Ma, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y.-J. Zhang, L. Li, Y. Shen, Y.-H. Lin, C.-W. Nan, Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 9, 1813 (2018).
74
C. Yang, P. Lv, J. Qian, Y. Han, J. Ouyang, X. Lin, S. Huang, Z. Cheng, Fatigue‐free and bending‐endurable flexible Mn‐Doped Na0.5Bi0.5TiO3‐BaTiO3‐BiFeO3 film capacitor with an ultrahigh energy storage performance. Adv. Energy Mater. 9, 1803949 (2019).
75
K. Wang, J. Ouyang, M. Wuttig, Y.-Y. Zhao, H. Cheng, Y. Zhang, R. Su, J. Yan, X. Zhong, F. Zeng, Superparaelectric (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 ultracapacitors. Adv. Energy Mater. 10, 2001778 (2020).
76
H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan, Y. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S. Zhang, L.-Q. Chen, Y.-H. Lin, C.-W. Nan, Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 384 | Issue 6693
19 April 2024

Article versions

Submission history

Received: 10 October 2023
Accepted: 6 March 2024
Published in print: 19 April 2024

Permissions

Request permissions for this article.

Acknowledgments

Funding: S.-H.B. acknowledges support from the Institute of Materials Science and Engineering (IMSE), Washington University in St. Louis. S.-H.B. acknowledges financial support from the National Science Foundation (grant no. 2240995). S.-H.B. also acknowledges that this work was partially supported by Samsung Electronics Co., Ltd. (IO221219-04250-01). D.-H.K. acknowledges support from a Korea Institute for Advancement of Technology (KIAT) grant funded by the Korean government (MOTIE) [P0017305, Human Resource Development Program for Industrial Innovation (Global)]. J.-H.A. was supported by the National Research Foundation of Korea (2015R1A3A2066337). A.O. acknowledges financial support from Georgia Tech Europe in Metz-France. R.M. was supported by the Army Research Office (ARO) Multidisciplinary University Research Initiative (MURI) under award no.W911NF-21-1-0327 and the NSF through DMR-2122070 and DMR-2145797. This work used computational resources through allocation DMR160007 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by the NSF. This work was carried out in part through the use of MIT.nano’s facilities. E.P. acknowledges funding from a MathWorks fellowship.
Author contributions: S.-H.B., S.H., and J.S.K. conceived this study. J.S.K., E.P., Y.M., Z.X., I.R., S.O.K., and Y.L. fabricated the samples and performed the experiment, with the supervision of S.-H.B. and S.H. S.L., X.Z., and B.-I.P. performed the structural performance of samples, under the supervision of J.Ki. J.-Y.M., S.-I.K., H.S., A.T.H., S.Su., P.V., A.O., J.-H.L., and J.-H.A. prepared the 2D materials. G.Y.J. reviewed the theory about dielectric relaxation under the supervision of R.M. E.P., A.C.F., and K.R. performed the STEM and iDPC characterization under the supervision of F.M.R. S.Se. and J.-H.P. analyzed the 2D/3D and 3D/3D interfaces. S.B., C.K., J.Z., C.W., J.Kw., and D.-H.K. performed the electrical measurement. J.H., H.C., and H.-S.K. conducted the breakdown performance. S.-H.B. and S.H. wrote the first draft of the manuscript. All authors discussed the results and revised the manuscript.
Competing interests: S.H. and S.-H.B. are inventors on patent application no. 63/617,314 assigned to Washington University that covers heterostructures that have a van der Waals interface for high–energy density capacitors.
Data and materials availability: All data are available in the main text or the supplementary materials.
License information: Copyright © 2024 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse

Authors

Affiliations

Notes

*
Corresponding author. Email: fmross@mit.edu (F.M.R.); sbae22@wustl.edu (S.-H.B.)
These authors contributed equally to this work.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media

Check Access

Check Access

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

References

References

1
J.-K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang, W. Wang, N. Yang, Y. Liu, C.-H. Lin, X. Guan, L. Hu, Z.-L. Yang, B.-C. Huang, Y.-P. Chiu, J. Yang, V. Tung, D. Wang, K. Kalantar-Zadeh, T. Wu, X. Zu, L. Qiao, L.-J. Li, S. Li, High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).
2
A. J. Yang, K. Han, K. Huang, C. Ye, W. Wen, R. Zhu, R. Zhu, J. Xu, T. Yu, P. Gao, Q. Xiong, X. Renshaw Wang, Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5, 233–240 (2022).
3
H. Pan, S. Lan, S. Xu, Q. Zhang, H. Yao, Y. Liu, F. Meng, E.-J. Guo, L. Gu, D. Yi, X. Renshaw Wang, H. Huang, J. L. MacManus-Driscoll, L.-Q. Chen, K.-J. Jin, C.-W. Nan, Y.-H. Lin, Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 374, 100–104 (2021).
4
Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, U. Li, E. Iagodkine, A. Haque, L.-Q. Chen, N. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).
5
H. Luo, F. Wang, R. Guo, D. Zhang, G. He, S. Chen, Q. Wang, Progress on polymer dielectrics for electrostatic capacitors application. Adv. Sci. 9, e2202438 (2022).
6
X.-K. Wei, G. Bihlmayer, X. Zhou, W. Feng, Y. V. Kolen’ko, D. Xiong, L. Liu, S. Blügel, R. E. Dunin-Borkowski, Discovery of real-space topological ferroelectricity in metallic transition metal phosphides. Adv. Mater. 32, e2003479 (2020).
7
J. P. B. Silva, K. C. Sekhar, H. Pan, J. L. MacManus-Driscoll, M. Pereira, Advances in dielectric thin films for energy storage applications, revealing the promise of group IV binary oxides. ACS Energy Lett. 6, 2208–2217 (2021).
8
L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019).
9
T. Li, C. Liu, P. Shi, X. Liu, R. Kang, C. Long, M. Wu, S. Cheng, S. Mi, Y. Xia, L. Li, D. Wang, X. Lou, High‐performance strain of lead‐free relaxor‐ferroelectric piezoceramics by the morphotropic phase boundary modification. Adv. Funct. Mater. 32, 2202307 (2022).
10
B. Yang, Y. Zhang, H. Pan, W. Si, Q. Zhang, Z. Shen, Y. Yu, S. Lan, F. Meng, Y. Liu, H. Huang, J. He, L. Gu, S. Zhang, L.-Q. Chen, J. Zhu, C.-W. Nan, Y.-H. Lin, High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022).
11
J. Kim, S. Saremi, M. Acharya, G. Velarde, E. Parsonnet, P. Donahue, A. Qualls, D. Garcia, L. W. Martin, Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 369, 81–84 (2020).
12
J. Shim, S.-H. Bae, W. Kong, D. Lee, K. Qiao, D. Nezich, Y. J. Park, R. Zhao, S. Sundaram, X. Li, H. Yeon, C. Choi, H. Kum, R. Yue, G. Zhou, Y. Ou, K. Lee, J. Moodera, X. Zhao, J.-H. Ahn, C. Hinkle, A. Ougazzaden, J. Kim, Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).
13
Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu, K. Pei, H. Zhang, Z. Yang, R. Che, Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, e2107538 (2022).
14
M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, e2105553 (2022).
15
S.-H. Bae, X. Zhou, S. Kim, Y. S. Lee, S. S. Cruz, Y. Kim, J. B. Hannon, Y. Yang, D. K. Sadana, F. M. Ross, H. Park, J. Kim, Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene. Proc. Natl. Acad. Sci. U.S.A. 114, 4082–4086 (2017).
16
M. T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015).
17
T. Rahman, M. Vargas, R. Chintalapalle, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014).
18
S. S. Cheema, N. Shanker, L.-C. Wang, C.-H. Hsu, S.-L. Hsu, Y.-H. Liao, M. San Jose, J. Gomez, W. Chakraborty, W. Li, J.-H. Bae, S. K. Volkman, D. Kwon, Y. Rho, G. Pinelli, R. Rastogi, D. Pipitone, C. Stull, M. Cook, B. Tyrrell, V. A. Stoica, Z. Zhang, J. W. Freeland, C. J. Tassone, A. Mehta, G. Saheli, D. Thompson, D. I. Suh, W.-T. Koo, K.-J. Nam, D. J. Jung, W.-B. Song, C.-H. Lin, S. Nam, J. Heo, N. Parihar, C. P. Grigoropoulos, P. Shafer, P. Fay, R. Ramesh, S. Mahapatra, J. Ciston, S. Datta, M. Mohamed, C. Hu, S. Salahuddin, Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).
19
H. W. Park, M. Oh, I. S. Lee, S. Byun, Y. H. Jang, Y. B. Lee, B. Y. Kim, S. H. Lee, S. K. Ryoo, D. Shim, J. H. Lee, H. Kim, K. D. Kim, C. S. Hwang, Double S‐shaped polarization—Voltage curve and negative capacitance from Al2O3 ‐Hf0.5Zr0.5O2‐Al2O3 triple‐layer structure. Adv. Funct. Mater. 33, 2206637 (2023).
20
Y. J. Kim, M. H. Park, Y. H. Lee, H. J. Kim, W. Jeon, T. Moon, K. D. Kim, D. S. Jeong, H. Yamada, C. S. Hwang, Frustration of negative capacitance in Al2O3/BaTiO3 bilayer structure. Sci. Rep. 6, 19039 (2016).
21
A. K. Saha, M. Si, P. D. Ye, S. K. Gupta, Polarization switching in Hf0.5Zr0.5O2-dielectric stack: The role of dielectric layer thickness. Appl. Phys. Lett. 119, 122903 (2021).
22
J. P. B. Silva, J. M. B. Silva, K. C. Sekhar, H. Palneedi, M. C. Istrate, R. F. Negrea, C. Ghica, A. Chahboun, M. Pereira, M. J. M. Gomes, Energy storage performance of ferroelectric ZrO2 film capacitors: effect of HfO2:Al2O3 dielectric insert layer. J. Mater. Chem. A Mater. Energy Sustain. 8, 14171–14177 (2020).
23
Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie, J. Wang, M. Su, L. Li, Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10, 11108–11115 (2018).
24
J. Shin, H. Kim, S. Sundaram, J. Jeong, B.-I. Park, C. S. Chang, J. Choi, T. Kim, M. Saravanapavanantham, K. Lu, S. Kim, J. M. Suh, K. S. Kim, M.-K. Song, Y. Liu, K. Qiao, J. H. Kim, Y. Kim, J.-H. Kang, J. Kim, D. Lee, J. Lee, J. S. Kim, H. E. Lee, H. Yeon, H. S. Kum, S.-H. Bae, V. Bulovic, K. J. Yu, K. Lee, K. Chung, Y. J. Hong, A. Ougazzaden, J. Kim, Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614, 81–87 (2023).
25
H. Kim, Y. Liu, K. Lu, C. S. Chang, D. Sung, M. Akl, K. Qiao, K. S. Kim, B.-I. Park, M. Zhu, J. M. Suh, J. Kim, J. Jeong, Y. Baek, Y. J. Ji, S. Kang, S. Lee, N. M. Han, C. Kim, C. Choi, X. Zhang, H.-K. Choi, Y. Zhang, H. Wang, L. Kong, N. N. Afeefah, M. N. M. Ansari, J. Park, K. Lee, G. Y. Yeom, S. Kim, J. Hwang, J. Kong, S.-H. Bae, Y. Shi, S. Hong, W. Kong, J. Kim, High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).
26
S.-H. Bae, H. Kum, W. Kong, Y. Kim, C. Choi, B. Lee, P. Lin, Y. Park, J. Kim, Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).
27
A. Laturia, W. G. Vandenberghe, in 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (IEEE, 2017), pp. 337–340.
28
H. Zhou, Y. Cai, G. Zhang, Y.-W. Zhang, Unusual phonon behavior and ultra-low thermal conductance of monolayer InSe. Nanoscale 10, 480–487 (2017).
29
J.-H. Ahn, M.-J. Lee, H. Heo, J. H. Sung, K. Kim, H. Hwang, M.-H. Jo, Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 15, 3703–3708 (2015).
30
S.-I. Kim, J.-S. Kim, J.-Y. Moon, S.-K. Hyeong, S. Ghods, J.-H. Choi, D. Kim, D. S. Park, K. Heo, J.-H. Lee, Electromagnetic interference shielding of graphene/PMMA composites depending on growth temperature of CVD-graphene. Synth. Met. 299, 117464 (2023).
31
A. Perepeliuc, R. Gujrati, A. Srivastava, P. Vuong, V. Ottapilakkal, P. L. Voss, S. Sundaram, J. P. Salvestrini, A. Ougazzaden, Photoinduced doping in hexagonal boron nitride. Appl. Phys. Lett. 122, 263503 (2023).
32
S. Hwangbo, L. Hu, A. T. Hoang, J. Y. Choi, J.-H. Ahn, Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022).
33
Y. Ahn, M. Shin, First-principles-based quantum transport simulations of monolayer indium selenide FETs in the ballistic limit. IEEE Trans. Electron Dev. 64, 2129–2134 (2017).
34
T. A. Hanafy, K. Elbanna, S. El‐Sayed, A. Hassen, Dielectric relaxation analysis of biopolymer poly(3‐hydroxybutyrate). J. Appl. Polym. Sci. 121, 3306–3313 (2011).
35
H. Wang, L. Yang, X. Zhang, M. H. Ang Jr., Permittivity, loss factor and Cole-Cole model of acrylic materials for dielectric elastomers. Results Phys. 29, 104781 (2021).
36
B.-H. Fan, J.-W. Zha, D.-R. Wang, J. Zhao, Z.-F. Zhang, Z.-M. Dang, Preparation and dielectric behaviors of thermoplastic and thermosetting polymer nanocomposite films containing BaTiO3 nanoparticles with different diameters. Compos. Sci. Technol. 80, 66–72 (2013).
37
K. Venkateshan, G. P. Johari, Dielectric relaxation and elasticity during polymerization. J. Chem. Phys. 125, 014907 (2006).
38
M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, C. S. Hwang, The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl. Phys. Lett. 104, 072901 (2014).
39
M. Liu, C. Ma, G. Collins, J. Liu, C. Chen, C. Dai, Y. Lin, L. Shui, F. Xiang, H. Wang, J. He, J. Jiang, E. I. Meletis, M. W. Cole, Interface engineered BaTiO3/SrTiO3 heterostructures with optimized high-frequency dielectric properties. ACS Appl. Mater. Interfaces 4, 5761–5765 (2012).
40
M. Samet, V. Levchenko, G. Boiteux, G. Seytre, A. Kallel, A. Serghei, Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. J. Chem. Phys. 142, 194703 (2015).
41
H. Hammami, M. Arous, M. Lagache, A. Kallel, Study of the interfacial MWS relaxation by dielectric spectroscopy in unidirectional PZT fibres/epoxy resin composites. J. Alloys Compd. 430, 1–8 (2007).
42
Y. G. Lee, C. G. Kang, U. J. Jung, J. J. Kim, H. J. Hwang, H.-J. Chung, S. Seo, R. Choi, B. H. Lee, Fast transient charging at the graphene/SiO2 interface causing hysteretic device characteristics. Appl. Phys. Lett. 98, 183508 (2011).
43
T. Akamatsu, T. Ideue, L. Zhou, Y. Dong, S. Kitamura, M. Yoshii, D. Yang, M. Onga, Y. Nakagawa, K. Watanabe, T. Taniguchi, J. Laurienzo, J. Huang, Z. Ye, T. Morimoto, H. Yuan, Y. Iwasa, A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021).
44
Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
45
S. H. Kim, W. Lee, C. H. An, Y. Kim, D. S. Kwon, D.-G. Kim, S. H. Cha, S. T. Cho, J. Lim, C. S. Hwang, Leakage current control of SrTiO3 thin films through Al doping at the interface between dielectric and electrode layers via atomic layer deposition. Phys. Status Solidi Rapid Res. Lett. 13, 1900373 (2019).
46
M. Pawlak, J. Swerts, M. Popovici, B. Kaczer, M.-S. Kim, W.-C. Wang, K. Tomida, B. Govoreanu, J. Delmotte, V. V. Afanas’ev, M. Schaekers, W. Vandervorst, J. A. Kittl, Direct physical evidence of mechanisms of leakage and equivalent oxide thickness reduction in metal-insulator-metal capacitors based on RuOx/TiOx/SrxTiyOz/TiN stacks. Appl. Phys. Lett. 101, 042901 (2012).
47
J. Yang, Y. Yang, S. W. Waltermire, X. Wu, H. Zhang, T. Gutu, Y. Jiang, Y. Chen, A. A. Zinn, R. Prasher, T. T. Xu, D. Li, Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nat. Nanotechnol. 7, 91–95 (2012).
48
H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu, Y. Zhang, S. Zhang, Ultrahigh energy‐storage density in NaNbO3‐based lead‐free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater. 29, 1903877 (2019).
49
D. Li, D. Zhou, D. Wang, W. Zhao, Y. Guo, Z. Shi, T. Zhou, S.-K. Sun, C. Singh, S. Trukhanov, A. S. B. Sombra, Lead-free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design. Small 19, e2206958 (2023).
50
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
51
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
52
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
53
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
54
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
55
Z.-W. Zhang, Z.-S. Liu, J.-J. Zhang, B.-N. Sun, D.-F. Zou, G.-Z. Nie, M. Chen, Y.-Q. Zhao, S. Jiang, Interfacial contact barrier and charge carrier transport of MoS2/metal(001) heterostructures. Phys. Chem. Chem. Phys. 25, 9548–9558 (2023).
56
A. K. Saha, S. Datta, S. K. Gupta, “Negative capacitance” in resistor-ferroelectric and ferroelectric-dielectric networks: Apparent or intrinsic?J. Appl. Phys. 123, 105102 (2018).
57
P. Debye, Polar Molecules (Chemical Catalog, 1929).
58
M. Falmbigl, I. S. Golovina, A. V. Plokhikh, D. Imbrenda, A. Podpirka, C. J. Hawley, G. Xiao, A. Gutierrez-Perez, I. A. Karateev, A. L. Vasiliev, T. C. Parker, J. E. Spanier, BaTiO3 thin films from atomic layer deposition: A superlattice approach. J. Phys. Chem. C Nanomater. Interfaces 121, 16911–16920 (2017).
59
H. Wong, H. Iwai, K. Kakushima, B. L. Yang, P. K. Chu, XPS study of the bonding properties of lanthanum oxide/silicon interface with a trace amount of nitrogen incorporation. J. Electrochem. Soc. 157, G49–G52 (2010).
60
G. Evans, G. V. Duong, M. J. Ingleson, Z. Xu, J. T. A. Jones, Y. Z. Khimyak, J. B. Claridge, M. J. Rosseinsky, Chemical bonding assembly of multifunctional oxide nanocomposites. Adv. Funct. Mater. 20, 231–238 (2010).
61
Y. Liu, Y. Wang, X. Hao, J. Xu, Preparation and energy-storage performance of PLZT antiferroelectric thick films via sol–gel method. Ceram. Int. 39, S513–S516 (2013).
62
J. Xie, Z. Yao, H. Hao, Y. Xie, Z. Li, H. Liu, M. Cao, A novel lead‐free bismuth magnesium titanate thin films for energy storage applications. J. Am. Ceram. Soc. 102, 3819–3822 (2019).
63
S. S. Won, M. Kawahara, L. Kuhn, V. Venugopal, J. Kwak, I. W. Kim, A. I. Kingon, S.-H. Kim, BiFeO3-doped (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications. Appl. Phys. Lett. 110, 152901 (2017).
64
B. Sun, M. Guo, M. Wu, Z. Ma, W. Gao, H. Sun, X. Lou, Large enhancement of energy storage density in (Pb0.92La0.08)(Zr0.65Ti0.35)O3/PbZrO3 multilayer thin film. Ceram. Int. 45, 20046–20050 (2019).
65
Y. Wang, X. Hao, J. Xu, Effects of PbO insert layer on the microstructure and energy storage performance of (042)-preferred PLZT antiferroelectric thick films. J. Mater. Res. 27, 1770–1775 (2012).
66
Y. Yao, Y. Li, N. Sun, J. Du, X. Li, L. Zhang, Q. Zhang, X. Hao, High energy-storage performance of BNT-BT-NN ferroelectric thin films prepared by RF magnetron sputtering. J. Alloys Compd. 750, 228–234 (2018).
67
Y. Zhao, X. Hao, Q. Zhang, Energy-storage properties and electrocaloric effect of Pb(1−3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6, 11633–11639 (2014).
68
Z. Tang, J. Ge, H. Ni, B. Lu, X.-G. Tang, S.-G. Lu, M. Tang, J. Gao, High energy-storage density of lead-free BiFeO3 doped Na0.5Bi0.5TiO3-BaTiO3 thin film capacitor with good temperature stability. J. Alloys Compd. 757, 169–176 (2018).
69
P. D. Song, J. Yang, B. B. Yang, Y. Wang, L.-Y. Chen, F. Wang, X. B. Zhu, Energy storage in BaBi4Ti4O15 thin films with high efficiency. J. Appl. Phys. 125, 134101 (2019).
70
B. B. Yang, M. Y. Guo, D. P. Song, X. W. Tang, R. H. Wei, L. Hu, J. Yang, W. H. Song, J. M. Dai, X. J. Lou, X. B. Zhu, Y. P. Sun, Energy storage properties in BaTiO3-Bi3.25La0.75Ti3O12 thin films. Appl. Phys. Lett. 113, 183902 (2018).
71
F. Ali, X. Liu, D. Zhou, X. Yang, J. Xu, T. Schenk, J. Müller, U. Schroeder, F. Cao, X. Dong, Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. J. Appl. Phys. 122, 144105 (2017).
72
C. H. Yang, Q. Yao, J. Qian, Y. J. Han, J. Chen, Growth, microstructure, energy–storage and dielectric performances of chemical–solution NBT–based thin films: Effect of sodium nonstoichimometry. Ceram. Int. 44, 9152–9158 (2018).
73
H. Pan, J. Ma, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y.-J. Zhang, L. Li, Y. Shen, Y.-H. Lin, C.-W. Nan, Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 9, 1813 (2018).
74
C. Yang, P. Lv, J. Qian, Y. Han, J. Ouyang, X. Lin, S. Huang, Z. Cheng, Fatigue‐free and bending‐endurable flexible Mn‐Doped Na0.5Bi0.5TiO3‐BaTiO3‐BiFeO3 film capacitor with an ultrahigh energy storage performance. Adv. Energy Mater. 9, 1803949 (2019).
75
K. Wang, J. Ouyang, M. Wuttig, Y.-Y. Zhao, H. Cheng, Y. Zhang, R. Su, J. Yan, X. Zhong, F. Zeng, Superparaelectric (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 ultracapacitors. Adv. Energy Mater. 10, 2001778 (2020).
76
H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan, Y. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S. Zhang, L.-Q. Chen, Y.-H. Lin, C.-W. Nan, Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019).