Search | Factor tables |
Use variable | Start value | End value |
A(n): Alternating factorials A005165
B(n): Bell numbers A000110
C(n): Catalan numbers A000108
D(n): Distinct partition numbers A000009
E(n): Euler numbers A000111
F(n): Fermat numbers A000215
G(n): Fubini numbers A000670
H(n, m): n-th m-Fibonacci numbers (m = 1, 2, 3, 4, ...)
I(n, m): n-th m-step Fibonacci numbers (m = 2, 3, 4, 5, ...)
J(n): Coefficients of modular function j as power series in q = e^(2 Pi i t) A000521
K(n): 1! + 2! + 3! + ... + n! A007489
L(n, m): n-th m-Lucas numbers (m = 1, 2, 3, 4, ...)
M(n): Mersenne numbers A000225
N(n, m): m-factorial of n (m = 1, 2, 3, 4, ...)
O(n, m): n-th cyclotomic polynomial evaluated at m (m = 1, 2, 3, 4, ...)
P(n): Partition numbers A000041
Q(n): Perrin numbers A001608
R(n, m): Repunits in base m with length n (m = 2, 3, 4, ..., 10, ...)
S(n, m): Concatenation of first n numbers in base m (m = 2, 3, 4, ..., 10, ...)
T(n): Ramanujan's tau function A000594
U(n, m): n-th m-step Lucas numbers (m = 2, 3, 4, 5, ...)
V(n): Padovan numbers A000931
W(n, m): Numerator of 1/(1^m) + 1/(2^m) + 1/(3^m) + ... + 1/(n^m) (m = 1, 2, 3, 4, ...)
X(n, m): Concatenation of the first n primes in base m (m = 0, 1, 2, ..., 10, ...)
Y(n): Narayana's cows sequence A000930
Z(n): Motzkin numbers A001006