Search Factor tables

Use variable Start value End value

A(n): Alternating factorials A005165

B(n): Bell numbers A000110

C(n): Catalan numbers A000108

D(n): Distinct partition numbers A000009

E(n): Euler numbers A000111

F(n): Fermat numbers A000215

G(n): Fubini numbers A000670

H(n, m): n-th m-Fibonacci numbers (m = 1, 2, 3, 4, ...)

I(n, m): n-th m-step Fibonacci numbers (m = 2, 3, 4, 5, ...)

J(n): Coefficients of modular function j as power series in q = e^(2 Pi i t) A000521

K(n): 1! + 2! + 3! + ... + n! A007489

L(n, m): n-th m-Lucas numbers (m = 1, 2, 3, 4, ...)

M(n): Mersenne numbers A000225

N(n, m): m-factorial of n (m = 1, 2, 3, 4, ...)

O(n, m): n-th cyclotomic polynomial evaluated at m (m = 1, 2, 3, 4, ...)

P(n): Partition numbers A000041

Q(n): Perrin numbers A001608

R(n, m): Repunits in base m with length n (m = 2, 3, 4, ..., 10, ...)

S(n, m): Concatenation of first n numbers in base m (m = 2, 3, 4, ..., 10, ...)

T(n): Ramanujan's tau function A000594

U(n, m): n-th m-step Lucas numbers (m = 2, 3, 4, 5, ...)

V(n): Padovan numbers A000931

W(n, m): Numerator of 1/(1^m) + 1/(2^m) + 1/(3^m) + ... + 1/(n^m) (m = 1, 2, 3, 4, ...)

X(n, m): Concatenation of the first n primes in base m (m = 0, 1, 2, ..., 10, ...)

Y(n): Narayana's cows sequence A000930

Z(n): Motzkin numbers A001006