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CHEBYSHEV POLYNOMIALS AND HIGHER ORDER LUCAS

LEHMER ALGORITHM

KOK SENG CHUA

Abstract. We extend the necessity part of Lucas Lehmer iteration for test-
ing Mersenne prime to all base and uniformly for both generalized Mersenne
and Wagstaff numbers(the later correspond to negative base). The role of
the quadratic iteration x → x2 − 2 is extended by Chebyshev polynomial
Tn(x) with an implied iteration algorithm because of the compositional iden-
tity Tn(Tm(x)) = Tnm(x). This results from a Chebyshev polynomial primal-

ity test based essentially on the Lucas pair (ωa, ωa), ωa = a+
√
a2 − 1, where

a 6= 0±1. It gives a uniform way to detect primality of all integers of the form

Φp(q, r) := qp−rp

q−r
for q 6= 0,±1 and gcd(q, r) = 1 which implies for example

Tqp−rp(a) = Tq−r(a) mod Φp(q, r) for any a 6= 0,±1. The Chebyshev test
using Tn(x) is a natural extension of the usual Fermat test using tn(x) := xn

which satisifies the simplest instance of the composition law tn(tm) = tnm.
To test primality of Q, the method essentially do a Fermat little test in

the ring Z/(QZ)[
√
a2 − 1] with unit base ωa. The advantage is that when we

change the base unit ωa, it also changes the ring which gives more possibility.
The integers in a quadratic ring has two components and it is more conve-
nient to work with rational integers by taking trace, which is the Chebyshev
polynomial.

We further observed that there is a natural generalization of Mersenne
prime search to multi-prime parameters search given by general homogenized
cyclotomic with odd square free index Φn(r, s). This has explicit product form.
As an example, the cyclotomic number

Φ2021(4, 13) =
(4− 13)(42021 − 132021)

(443 − 1343)(447 − 1347)
,

is a 2152 digit prime.
We also note that Chebyshev polynomials Tn, Un have a twisted bosonic

version SN , Vn and they can all be derived as odd and even part of a bionomial
(1+x)n following a n MO solution on real-rootedness of s Eulerian polynomial.

1. Main results and proof

The Chebyshev polynomial of the first kind, can be explicitly defined [9] for
|x| ≥ 1, by

Tn(x) =
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

2
=

ωn
x + ωn

x

2
,

where ωx := x +
√
x2 − 1, has a natural extension to negative value of n, with

T−n(x) = Tn(x) since ωω = 1. In fact we can extend Tn(x) = cosh(n log(ωx))
to all real or even complex value of n and also x (with the recursion Tn+1(x) =
2xTn(x) − Tn−1(x) still holds). This also says that for integral a 6= 0,±1, Tn(a) is

(half) the trace of the nth power of the unit ωa in Q(
√
a2 − 1), and indeed for all
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such a, (ωa, ωa) is a Lucas pair in the sense of [1]. This seems to suggest that apart
from its role in numerical analysis, the Chebyshev polynomial Tn(x) may also have
some interesting arithmetical properties.

If n is a positive integer, we have clearly ωn
a = Pn(a) + Qn(a)

√
a2 − 1 for some

Pn(x), Qn(x) ∈ Z[x], but they are just Chebyshev polynomials

ωn
a := (a+

√

a2 − 1)n = Tn(a) + Un−1(a)
√

a2 − 1

which follows from ωn+1
a = ωn

aωa and induction, and this is another way to think
of Tn(x), Un(x) which also derives the recursion which one can never remember. It
also suggest a twisted version of Chebyshev if we replace ωa with the negative unit
a +

√
a2 + 1. Since ωa is a unit, so is ωn

a and hence we have the Pell’s equation
Tn(a)

2 − Un−1(a)
2(a2 − 1) = 1. It follows that we have (also deducible from the

elementary identity x = T1(x) = cosh(log(ωx))),

ωn
a = Tn(a) +

√

Tn(a)2 − 1 = ωTn(a),

and this implies the compositional multiplicativity Tm(Tn(a)) = Tmn(a).
This seems to be a remarkable property which is special only to Chebyshev and

not the other orthogonal polynomials. It implies that one can compute Tqn(a)
efficiently as T n

q (a), where the power on the right means compositional iteration
of the smaller polynomial Tq(a). In particular if we let sn = 2T2n(2), then using
T2(x) = 2x− 1, we get

(1.1) s0 = 4, sn+1 = s2n − 2,

which is exactly Lucas-Lehmer iteration for testing Mersenne prime. So we have
for odd prime p, Mp = 2p− 1 is prime if and only if Mp divides 2T2p−2(2) (= sp−2).

It seems that there is no reason for the base 2 to be special for Chebyshev and
it is natural to wonder if there is a natural test for primality of qp − 1 or rather
Φp(q) := (qp − 1)/(q − 1) (dividing out the obvious factor) for q > 2 using perhaps
Tqn−2(q) mod Φp(q), using the implied fast computation.

A little experimentation testing initial primes p upto 300, led us to visually
discover that there is always a dip (similar to the dip in light intensity in a well
known method for detecting exo-planets) in the number of digits of the residues
Tqn(a) mod Φp(q) for a 6= 0,±1, exactly for primes p where Φp(q) is prime, but there
appears to be two distinct residues. Checking some examples show a dependence

on the quadratic character
(

a2−1
Φp(q)

)

(which always equals −1 in the Lucas-Lehmer

case where q = a = 2 since 3 is a qudratic non residue mod any Mersenne prime).
This then allows us to guess the correct statement (1.2) numerically in the theorem
below. An unexpected addition, which we discovered accidentally is that the result
still holds when q 6= 0,±1 is negative, in which case it corresponds to primality of
generalized Wagstaff primes Φp(−q) = (qp +1)/(q+1) with the same algorithm as
long as T−n(x) is implemented as Tn(x).

It is now easy to deduce the proof of (1.2) from the standard proof of the necessity

part of Lucas - Lehmer replacing ω2 = 2+
√
3 with ωa = a+

√
a2 − 1 once we know

we need to keep track of the quadratic character (Lemma 1.6). In this instance,
knowing the exact statement of the result (which we found numerically) lead us
to the generalized proof. Theorem (1.2) is however weaker than the necessity part
of Lucas -Lehmer in the case q = a = 2, which however can be deduced from
Lemma1.6. We keep the statement of (1.2) for its simplicity.
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Theorem 1.1. Let q, a be integers both not 0,±1 and p be an odd prime and let

ǫ =
(

a2−1
Φp(q)

)

, if Φp(q) is a prime not dividing a2 − 1, then

(1.2) Tqp(a) = Tq+ǫ−1(a), Uqp−ǫ(q−1)−2(a) = 0 mod Φp(q).

More generally, if Φp(q, r) :=
qp−rp

q−r is the homogenized form with gcd(q, r) = 1, is

prime and ǫ =
(

a2−1
Φp(q,r)

)

, then

(1.3) Tqp−rp(a) = Tq−r(a), Uqp−rp−ǫ(q−r)−1(a) = 0 mod Φp(q, r).

Remark 1.2. This works also for −q, for example for q = −2, a = 2, ǫ =
(

p
3

)

, it says
Np = (2p + 1)/3 prime implies T2p(2) = T3−(p

3 )
(2) mod Np, which in term of (1.1)

is equivalent to Np divides sp − 104− 90
(

p
3

)

. This is a weakened form and we can

derive a stronger version later, namely Np divides sp−1 − 5 − 9
(

p
3

)

. Note also we
only need to code one program which will work for both ±q provided T−n(x) and
U−n(x) are implemented as Tn(x),−Un−2(x) as was the case with PARI-GP which
we used.

Remark 1.3. One can compute Tqp(a) efficiently as T p
q (a) but Un(x) does not sat-

isfies the compositional identity and in general they don’t commute, Un(Um(x)) 6=
Um(Un(x)). For large n of no special form, Un and also Tn can be computed in
O(log n) steps by the usual method of writing a linear recurrence as a matrix power
and applied the binary exponentiation as was observed in [3]. We give the formula
to compute Tn+1(a), Un(a) mod Q together via a coupled recurrence, which follows
from ωn+1 = ωnω and (2.2) below,

(1.4)

(

Tn+1(a)
Un(a)

)

=

(

a a2 − 1
1 a

)n (
a
1

)

mod Q.

If n = qp ± δ for small δ, one should use q-nary expansion of n.

Remark 1.4. One can express (1.2) in a simple Lucas-Lehmer form similar to (1.1),
let

s0 = a, sn+1 = Tq(sn),

if Φp(q) is prime, it divides sp − 2T
q+

(

a2
−1

Φp(q)

)

−1
(a). This is weaker than what is

provable but have a simple uniform form. Sufficiency actually failed in this weak
form for some small p for some choices of a. eg.

q = 11, p = 3, a = 2,M11 = (113 − 1)/10 = 133 = 7.19

q = −5, p = 3, a = 3, N = (53 + 1)/6 = 21 = 3.7

but this can be ruled out if we choose other starting point eg. use a = q. They also
failed the stronger Chebyshev test.

Remark 1.5. Theorem (1.1) can be ”seen” visually if we compute a list of values of
Tqp(a) mod Φp(q) for primes p up to say 200. There is clearly a dip in the number
of digits of the residues when Φp(q) is prime, and this is how we first saw them.

Theorem 1 follows immediately from the following lemma.

Lemma 1.6. Let Q be an odd prime and a 6= 0,±1, ω = a +
√
a2 − 1, as before,

and let ǫ =
(

a2−1
Q

)

, δ =
(

2(a+1)
Q

)

, then

(1.5) ω
Q−ǫ

2 = δ mod Q,
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or equivalently,

(1.6) TQ−ǫ
2

(a) = δ, UQ−ǫ
2 −1(a) = 0 mod Q,

and this implies

TQ−ǫ
2

(a) = δ mod Q2.

Proof. We have computing mod Q,

(a− 1 +
√

a2 − 1)Q = a− 1 + ǫ
√

a2 − 1.

Multiplying by (a− 1− ǫ
√
a2 − 1) gives

(2− 2a)(1−ǫ)/2 = (a− 1 +
√

a2 − 1)(Q−ǫ),

and using (a− 1 +
√
a2 − 1)2 = 2(a− 1)ω gives us, (note (−1)

1−ǫ
2 = ǫ)

ω(Q−ǫ
2 ) =

(

2(a+ 1)

Q

)

mod Q.

But we have (without mod Q )

ω
Q−ǫ

2 = TQ−ǫ
2

(a) + UQ−ǫ
2 −1(a)

√

a2 − 1,

by (2.2) below, which give the equivalent (1.5). �

Remark 1.7. Writing n = Q−ǫ
2 , since ω is a unit , so is ωn, we must have the

Pell’s equation ωnωn = Tn(a)
2 − (a2 − 1)Un−1(a)

2 = 1. So we have Q2 divides
Tn(a)

2 − 1 = (Tn(a) − δ)(Tn(a) + δ). Since Q divides Tn(a) − δ, its prime divisor
cannot divide Tn(a) + δ, so we always have Tn(a) = δ mod Q2.

Proof. (Proof of theorem) Specialize to Q = Φp(q) =
qp−1
q−1 (q may be negative) in

(1.4) gives

ω
qp−1−ǫ(q−1)

2(q−1) = δ,

and raising to the 2(q − 1) power (this lose information) gives ωqp−1−ǫ(q−1) = 1,
which is the same as

Tqp(a) = Tǫ(q−1)+1(a) = Tq+ǫ−1(a), Uqp−ǫ(q−1)−2(a) = 0 mod Q.

Proof of (1.3) is similar. Note the T-test is independent of ǫ. �

Remark 1.8. Using (1.4), one can find similar divisibility criteria of the same se-
quence for many class of primes, eg q = ±2, a = 2 and sn the usual Lucas-Lehmer
sequence (1.1), we have

Mp = 2p − 1 prime implies Mp divides sp−2.
Np = (2p + 1)/3 prime implies Np divides sp−1 − 5− 9

(

p
3

)

n > 2,Mn = 3.2n − 1, prime implies Mn divides (s3n−1 − 3sn−1 − 4)
n > 2, Nn = 3.2n + 1, prime implies Nn divides (sn−1 + 1)(sn−1 − 2), etc...
The last two follows from setting a = 2, T3.2n−1(2) = T1(2) and T3.2n−1(2) = 1.

Remark 1.9. For a cubic example, let q = ±3, a = 2, and s0 = 2, sn+1 = sn(4s
2
n−3),

then Mp = (3p − 1)/2 prime implies it divides sp − 26 and Np = (3p + 1)/4 prime

implies it divides sp − 194 + (−1)(p−1)/2168.
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2. Chebyshev primality test

If Q is a prime and a an integer with gcd(a2 − 1, Q) = 1, by (1.5), we have

(2.1) TQ−ǫ
2

(a) =

(

2(a+ 1)

Q

)

, UQ−ǫ
2 −1(a) = 0 mod Q.

Clearly all odd primes Q pass this test to every base a. We shall called an odd
non-prime integer Q, with gcd(Q, a2 − 1) = 1, which pass this test a Chebyshev
pseudoprime to the base a. It depends only on a mod Q but there is no subgroup
structure. Chebyshev pseudoprimes are always squarefree except for some prime
squared.They are rare and seems rarer than Fermat pseudoprimes. There are only
seven of them to the base 2 upto 20000,

23.43, 37.73, 1032, 61.181, 5.7.443, 97.193, 31.607.

Is there a Chebyshev pseudoprime to every base mod Q ? A Sierpiński number [12]
is a positive odd integer k such that Nn = k2n + 1 is composite for every n ≥ 1.
k0 = 78557 is the smallest known Sierpiński number, because every Nn = k02

n + 1
is divisible by one of {3, 5, 7, 13, 19, 37, 73}. It may be possible that Nn fail a
Chebyshev test for every n for some a. Since Nn = 1 mod 8 for n ≥ 3. We get
ǫ = δ = 1 if we pick a = 3. So if s0 = 3, sk+1 = 2s2k − 1, and N2

n = (k2n + 1)2 does
not divide Tk(sn−1)−1 for every n ≥ 3, then k is Sierpiński. Note Nn+1 = 2Nn−1.
It is open if any of the following five numbers 21181, 22699, 24737, 55459, 67607 is
Sierpiński.

A Chebyshev pseudoprime for the base a is also a weak Chebyshev pseudoprime
as defined in [7] ie. TQ(a) = a mod Q since the condition on U means ωQ−ǫ = 1 or
ωQ = ωǫ and taking trace gives TQ(a) = T1(a) = a mod Q. There are composites
which pass the weak test for all base a OEIS A175530, but all of them fail the
strong Chebyshev test for all base from 2 to 10.

A square-free Q which pass the T test will also pass the U test.[Proof: We have

TQ−ǫ(a) = 1 so that (ω(Q−ǫ)/2 − ω(Q−ǫ)/2)2 = 0 and squarefreeness of Q implies
U(Q−ǫ)/2−1(a) = 0.] There are many non square-free integers which pass the T test
but the only non squarefree integer which can pass both tests are square of prime
(Proof ?). So the second part only serve to rule out non squarefree integer and
this is relevant since there is no known efficient algorithm to detect squarefreeness.
However we can always rule out perfect square as input

If (Q−ǫ)/2 = 2tQ1 is even , we can look at the profile [TQ1(a), T2Q1(a), ..., T(Q−ǫ)/2(a)]

as in the strong pseudoprime test. Since T2(x) = 2x2−1,if there is a 1 not preceded
by ±1 or a −1 not preceded by 0, Q cannot be prime. For the seven pseudoprimes
above, the profiles are

[1], [0,−1], [9083, 0,−1, 1], [0,−1, 1, 1, 1], [8416, 4431, 8861, 1],

[14063, 17370, 18527, 387, 1], [18791, 1301, 18720, 0,−1, 1],

so the strong test rule out 5.7.443 and 97.193 as primes. For square free Q, −1 is
always preceded by 0, since (ωm + ωm)/2 = −1 implies (ωm/2 + ωm/2)2 = 0 mod
Q.

We note that for a 6= 0± 1, (ωa, ωa) forms a Lucas pair in the sense of [1], since
ωa

ωa
is not a root of unity. The associated Lucas number un(ωa, ωa) = Un−1(a). It

seems to follow from [1] that for every n > 1, Un(a) has a primitive divisor, ie.
there is a prime p which divides Un(a) but not a(a

2 − 1)U0(a)...Un−1(a).
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2.1. Multiplicative order and sufficiency test. Many of the necessity criteria
seems to be sufficient in the range we can compute. It could be that when Q is
composite, the residue behave randomly and the chance they give divisibility is 1/Q
which is very small so we never see them.

Let ω = a +
√
a2 − 1 be the canonical unit. For an integer power n, we must

have ωn = P (a)+Q(a)
√
a2 − 1 for some P (x), Q(x) ∈ Z[x] but for ω, they are just

Chebyshev polynomials [9],or just by induction,

(2.2) ωn = Tn(a) + Un−1(a)
√

a2 − 1,

and n may be negative. Writing ωn+1 = ωnω gives the recurrence formula in (1.3).
For an odd integer Q, let OQ(ω) be the multiplicative order of ωa mod Q, ie. the

smallest integer m such that ωm = 1 mod Q. This is thus the same as the smallest
integer m such that Tm(a) = 1 and Um−1(a) = 0 mod Q. Note that for a prime
Q or a Chebyshev pseudoprime Q, we have ωQ−ǫ

a = δ2 = 1 so that OQ(ωa) divides
one of Q± 1, in particular it divides Q2 − 1 and OQ(ω) ≤ Q+ 1.

There seems to be only one argument to prove primality of Q. One shows that
ω has multiplicative order Q± 1 and hence Q cannot have any non trivial divisor,
since it will have the same order in Fp[

√
a2 − 1] for the smallest prime p dividing Q

of size t2 < Q±1. We can determine the order if we know the complete factorization
of Q± 1.

Lemma 2.1. Let Q be an odd integer and a 6= 0,±1, and assume
(

2(a+1)
Q

)

= −1.

Let ǫ =
(

a2−1
Q

)

. If Q is prime, then T(Q−ǫ)/2(a) = −1 and U(Q−ǫ)/2−1(a) = 0.

Conversely if we know the complete factorization Q − ǫ =
∏k

j=0 q
nj

j , j = 0, .., k

where q0 = 2, and we have T(Q−ǫ)/2(a) = −1 and U(Q−ǫ)/2−1(a) = 0, and also

T(Q−ǫ)/qj(a) 6= 1 or U(Q−ǫ)/2−1(a) 6= 0, for j = 1, ..., k, then Q is prime.

For Q = 2p − 1, and a = 2, we get ω2p−1

= −1 so that OQ(ω2) = 2p = Q+1. So
2p − 1 is prime if and only if O2(ω2) = Q + 1 if an only if T2p−1(2) = −1 and this
is equivalent to T2p−2(2) = 0 mod Q. Instead of starting with a = 2, we can choose
any a of the form a = 1 + x2 so that a + 1 = 3y2 or a + 1 = 6y2 , we then have
ǫ = −1 = δ we still have 2p − 1 is prime if and only if T2p−2(a) = 0 mod Q. This
condition turns out to be necessary and sufficient and is given in OEIS A18844.

Lemma 2.1 is just the analogue of the usual computational definition of the
existence of a primitive root in the case of Z/Q∗ but there is one basic difference

here, since changing base a means changing the group Z[
√
a2 − 1]∗ also. We can

change a until we get the correct order.

Example 2.2. Let a = 2 and r = r1, ...rk be an odd square free integer not
divisible by 3 and let δ = 2− r ∈ {0, 1} mod 3, N = 2n+ δ and Q = r2N − 1. Let
s0 = 2, sn+1 = s2n − 2. Then Q is prime implies Q divides Tr(sN−2/2). Conversely
if Q is odd integer of the form r2N − 1, and divides Tr(sN−2/2)) and in addition,
T(r/rj)(sN/2) 6= 1 mod Q, for j = 1, ...k, then Q is prime.

Proof. The value of δ were chosen such that Q = 1 mod 3, so for a = 2, ǫ = −1 and
(

2(a+1)
Q

)

= −1 and we have ω(Q−ǫ)/2 = ωr2N−1

= −1, so that Tr2N−2(2) = 0. It

also implies the order OQ(ω) = t1...tk2
N where tj divides rj . If T(r/rj)(sN/2) 6= 1,

ω(r/rj)2
N 6= 1, we must have tj = rj and OM (ω) = M + 1. �
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If we let r = 5,then for n up to 3000, there are 29 primes and 5 of them at
n = 2, 18, 32, 1638, 2622, fail the sufficiency tests.

We also have an order q version

Example 2.3. Let Q = 12qn+1 be prime where q is an odd prime, then T3qn(2) = 0
mod Q. Conversely if an odd integer Q is of the form 12qn+1 satisfies T3qn(2) = 0,
and in addition T4qn(2), T12qn−1(2) are all not 1 mod Q, then Q is prime.

Proof. We have Q = 1 mod 3 and 5 mod 8. So if a = 2, ǫ = 1, δ = −1 so that
we have ω6qn = −1. So T3qn(2) = 0 and OQ(ω) = 4.3t1qt2 , t1 ≤ 1, t2 ≤ n. It is
12qn = Q− 1 iff T12qn−1(2) 6= 1 and T4qn(2) 6= 1. �

For q = 5, Q is prime when

n = 1[1, 1], 5, 7, 18, 19, 23, 46, 51, 55, 69[1, ∗], 126[∗, 1], 469, 1835[∗, 1], 3079, 3249, 4599, 4789
but the primality proof failed for 1, 69, 126, 1835, but we get a proof when we change
base.

Recall that a Proth’s number N = k2n +1, where k is odd and k < 2n, is prime
if and only if there ia an integer a such that a(N−1)/2 = 1 mod N .

We have an exact analogue

Lemma 2.4. Let N = k2n + 1 where k is odd and k < 2n. Let a be such that ǫ =
−δ = 1, then N is prime if and only if it pass the Chebyshev test, ie. ω

(N−1)/2
a = −1

or equivalently Tk2n−1(a) = −1, Uk2n−1−1(a) = 0 mod N .

Proof. The necessity is just Chebyshev test. Conversely ω(N−ǫ)/2 = ωk2n−1

= −1
mod N implies the same mod any prime p dividing N , which implies p + 1 ≥
Op(ω) ≥ 2n, which means every prime divisor of N is greater than

√
N . �

A special case of this is a question in MathOverflow [5], where we set a = 4 (see
also answer by Ian Algol). The requirement ǫ = −δ = 1 translate to

(

5
N

)

= −1

and
(

N
3

)

(−1)(N−1)/2 = −1 since N = 1 mod 8 for n > 2, and note that Pn(x) =
2Tn(x/2).

For any fixed k and n, there is always some choice of a to give a necessary and
sufficient condition. What we want is for a fixed k to find an a which works for all
n but for k = 3, this does not seem to be possible.

Example 2.5. In the same way if n > 1 and Fn = 22
n

+ 1 and set a = 4, we

have ǫ = 1 = −δ, so ω22
n−1

4 = −1 so that OFn
(ω4) = 22

n

= Fn − 1 and also

ω22
n
−2

4 + ω22
n
−2

4 = 0. So Fn is prime if and only if T22n−2(4) = 0 mod Fn. In
Lucas-Lehmer term if s0 = 8, sn+1 = s2n − 2, then Fn is prime if and only if Fn

divides s2n−2.

3. Chebyshev polynomials are just even and odd part of binomials

3.1. Twisting Chebyshev polynomials. The Chebyshev test depends on the
unit a +

√
a2 − 1. It is natural to wonder if we get something new using the

negative units a +
√
a2 + 1 instead. If we let ωx = x +

√
x2 + 1, we will have

ωxω̄x = −1. If we define the polynomial ωn
x = Sn(x) + Vn−1(x)

√
x2 + 1, we have

S1(x) = x, V0(x) = 1 and

Sn+1(x) = xSn(x) + (x2 + 1)Vn−1(x)

Vn(x) = Sn(x) + xVn−1(x),
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or

(3.1)

(

Sn+1(a)
Vn(a)

)

=

(

a a2 + 1
1 a

)n (
a
1

)

.

Again Sn(x) =
ωn

x+ω̄n
x

2 . Sn(x) is the same as Tn(x) with all coefficients positive and
Vn is Un with all sign positive. So they are congruent mod 2. Roots of Sn, Vn are
i times those of Tn, Un, which follows from Sn(x) = inTn(x/i), Vn(x) = inUn(x/i).
We also have the finite golden ratio

x+
1

x+
1

x+ ...
...

x+
1

x

=
Vn(x/2)

Vn−1(x/2)
= gAn,1(x),

which is the hyperbolic version of

x− 1

x− 1

x− ...
...

x− 1

x

=
Un(x/2)

Un−1(x/2)
= fAn,1(x),

which converge to x+
√
x2∓4
2 which are positive branch to the inverse of the simplest

quadratic f(x) = x ∓ 1
x . Here fAn,1(x) = det(xI−An)

det(xI−An−1)
, gAn,1(x) = Per(xI−An)

Per(xI−An−1)
,

are Cauchy interlacing ratio for the path graph on n vertices to that with one end
point deleted.

Also we have the Pell’s equation

S2
n(x) − V 2

n−1(x)(x
2 + 1) = (−1)n,

so that ωn
x = Sn(x) +

√

Sn(x)2 − (−1)n so that ωn
x = ωSn(x), for odd n, and

Sm(Sn(x)) = Smn(x) for n odd. Note S3(S2(x)) = 32x6+48x4+30x2+7 6= S6(x) =
32x6 + 48x4 + 18x2 + 1 = S2(S3(x)). We still have compositional commutativity
Sn(Sm) = Sm(Sn) for m,n both odd. Is there a primality test based on iterating
this ?

3.2. Square root of even and odd part of Chebyshev polynomials: s-

Eulerian and Erhart polynomials. The polynomial

Pn(x) = 1 +

(

n

2

)

x+

(

n

4

)

x2 +

(

n

6

)

x3 +

(

n

8

)

x4 + . . .+

(

n

2⌊n
2 ⌋

)

x⌊n
2 ⌋,

is an s-Eulerian polynomial and is known to be real rooted. Since degree(Pn) =
⌊n/2⌋, we expect Pn to interlace Pn−2 which was supported by computations. A
problem posted in MO (Luis Ferroni) asked to prove that the polynomial Qn(x) :=
Pn(x) − nx which is the Ehrhart h*-polynomial of the hypersimplex ∆2,n is also
real rooted.

This was solved explicitly by Fedor Petrov who observe that

2Pn(−x) = (1 + i
√
x)n + (1− i

√
x)n.



CHEBYSHEV POLYNOMIALS AND HIGHER ORDER LUCAS LEHMER ALGORITHM 9

If we expand 2P1(x) ∗ 2Pn−1(x), we get the recursion Pn(x) = 2Pn−1(x) + (x −
1)Pn−2(x) so that we have a continued fraction

Pn(x)

Pn−1(x)
= 2 +

x− 1
Pn−1(x)
Pn−2(x)

= 2 +
x− 1

2 +
x− 1

...+
...

2 +
x− 1

x+ 1

which gives a fast way to compute Pn(x).
We also have by expanding 2P2(−x).2Pn−2(−x),

Pn(x) = 2(1 + x)Pn−2(x)− (1 − x)2Pn−4(x)

which gives

Pn(x)

Pn−2(x)
= 2(1 + x)− (1− x)2

Pn−2(x)
Pn−4(x)

= 2(1 + x)− (1 − x)2

2(1 + x)− (1 − x)2

...−
...

2(1 + x) −
(1− x)2

x+ 1

which allow us to prove interlacing inductively by looking at the graphs.
It is obvious from the MO solution that Pn is essentially a squareroot of Cheby-

shev. Tn(x) = xnPn((x
2 − 1)/x2) so we know their roots explicitly from those of

Tn, and they are given by

− tan((k + 1/2)π/n)2, k = 0, ...⌊(n/2⌋ − 1.

3.2.1. Deriving Chebyshev polynomilas from the binomial (1 + x)n. We let

(1 + i
√
x)n = Pn(−x) + iQn(−x)

√
x,

so that

Qn(x) =

⌊n/2−1⌋
∑

j=0

(

n

2j + 1

)

xj , Pn(x) =

⌊n/2⌋
∑

j=0

(

n

2j

)

xj ,

2Pn(−x) = (1 + i
√
x)n + (1 − i

√
x)n

2iQn(−x)
√
x = (1 + i

√
x)n − (1− i

√
x)n,

The tangent substitution x = (1 − y2)/y2 gives

Tn(y) = ynPn(
y2 − 1

y2
), Un−1(y) = yn−1Qn(

y2 − 1

y2
),

since (x+
√
x2 − 1)n = Tn(x) + Un−1(x)

√
x2 − 1, and we also have the dual

(x+
√
x2 + 1)n = Sn(x) + Vn−1(x)

√
x2 + 1.

The hyperbolic tangent substitution x = (1 + y2)/y2, gives

Sn(y) = ynPn(
y2 + 1

y2
), Vn(y) = yn−1Qn(

y2 + 1

y2
).
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Multiplying (1 + i
√
x)n with (1− i

√
x)n gives (1 + x)n = Pn(−x)2 + xQn(−x)2.

This does not look obvious and it implies a series of binomial identities. Obviously
we also have

(1 + x)n =

⌊(n/2)⌋
∑

j=0

(

n

2j

)

x2j + x

⌊((n−1)/2)⌋
∑

j=0

(

n

2j + 1

)

x2j = Pn(x
2) + xQn(x

2).

which give the functional equation

Pn(x
2) + xQn(x

2) = Pn(−x)2 + xQn(−x)2

but note Pn(x
2) 6= Pn(−x)2. Are there other such pairs of polynomials ?

So the Chebyshev polynomials Tn, Un are essentially just the even and odd part
of the binomial polynomial (1 + x)n.

3.3. Aside : Extending Mersenne primes search to cyclotomic primes.

The Mersenne prime Mp = 2p − 1 can be expressed as Mp = Φp(2) where Φm(x)
denotes the mth cyclotomic polynomial. It is natural and seemingly useful to gen-
eralize the Mersenne prime to more general cyclotomic primes. Let Φm(x, y) =
Φm(x/y)yφ(m) be the homogenized cyclotomic polynomial. Since Φm(x) are irre-
ducible with fixed divisor 1, (φm(1) = 1, except φp(1) = φp2(1) = p) , there should
be infinitely many primes of the form Φm(r, s) as r, s varies, by Schinzel’s conjecture.
One expects some form of uniform distribution so that we still get infinitely many
primes if we fixed r, s with |s| < r and gcd(r, s) = 1 and varies m. For example,
one can widen the difficult question for the infinitute of Mersenne primes to those
of the form Φm(2, 1) (note not the same as 2m − 1), and more generally, are there
always infinitely many primes of the form Φm(r, s) for foxed |s| < r, gcd(r, s) = 1?

The Mersenne prime search also generalize naturally to multi prime-tuple search
for primes of the form Φp1..pk

(r, s) over distinct odd primes p1, ..., pk. Non-squarefee
m with Φm(r, s) prime are rare, and only occurs when m = p2 and Φ2m(x) =
Φm(−x) for m odd. We have found a 2152 digit prime Φ2021(4, 13). Mersenne

numbers are interesting partly because they have a simple form Φp(r, s) = rp−sp

r−s

and this generalizes to Φm(r, s) =
∏

d|m(rd−sd)µ(n/d) which follows from xm−1 =
∏

d|mΦd(x) by inclusion/exclusion, so we can express the above prime, in nicer

form

Φ2021(4, 13) =
(4− 13)(42021 − 132021)

(443 − 1343)(447 − 1347)
.

We also found a three-tuple 5599 digit example

Φ13.17.29(11,−4) =
(116409 + 46409)(1113 + 413)(1117 + 417)(1129 + 429)

(11 + 4)(11221 + 4221)(11377 + 4377)(11493 + 4493)
.

For π day we found

Φ79.89(3,−14) =
(3 + 14)(379.89 + 1479.89)

(379 + 1479)(389 + 1489)

which is a 7868 digit prime.
This seems to be very useful for outreach purpose to impress the (even educated)

public, perhaps more impressive than Mersenne primes. It is not at all obvious that
the RHS is even an integer and it may seem mysterious that the it will somehow
cancel out and left with a single term which is a prime. However we do not have a
simple sufficiency test like Lucas-Lehmer for Mersenne prime.
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The product formula for example for k = 2, Φp.q(r, s) =
(rp.q−sp.q)−(r−s)
(rp−sp)(rq−sq) means

we are searching along prime exponents which does not seem to be governed by the
usual conjectures.

It does not seem easy to even prove that there is at least one such prime for fixed
r, s with gcd(r, s) = 1. Maybe the only way is to prove positive density but they
seem very sparse.
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