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Hypergraph regularity and the
multidimensional Szemerédi theorem

By W. T. Gowers

Abstract

We prove analogues for hypergraphs of Szemerédi’s regularity lemma and
the associated counting lemma for graphs. As an application, we give the first
combinatorial proof of the multidimensional Szemerédi theorem of Furstenberg
and Katznelson, and the first proof that provides an explicit bound. Similar re-
sults with the same consequences have been obtained independently by Nagle,
Rödl, Schacht and Skokan.

1. Introduction

Szemerédi’s theorem states that, for every real number δ > 0 and every
positive integer k, there exists a positive integer N such that every subset A

of the set {1, 2, . . . , N} of size at least δN contains an arithmetic progression
of length k. There are now three substantially different proofs of the theorem,
Szemerédi’s original combinatorial argument [Sz1], an ergodic-theory proof due
to Furstenberg (see for example [FKO]) and a proof by the author using Fourier
analysis [G1]. Interestingly, there has for some years been a highly promising
programme for yet another proof of the theorem, pioneered by Vojta Rödl (see
for example [R]), developing an argument of Ruzsa and Szemerédi [RS] that
proves the result for progressions of length three. Let us briefly sketch their
argument.

The first step is the famous regularity lemma of Szemerédi [Sz2]. If G

is a graph and A and B are sets of vertices in V , then let e(A, B) stand for
the number of pairs (x, y) ∈ A × B such that xy is an edge of G. Then the
density d(A, B) of the pair (A, B) is e(A, B)/|A||B|. The pair is ε-regular if
|d(A′, B′)−d(A, B)| � ε for all subsets A′ ⊂ A and B′ ⊂ B such that |A′| � ε|A|
and |B′| � ε|B|. The basic idea is that a pair is regular with density d if it
resembles a random graph with edge-probability d. Very roughly, the regularity
lemma asserts that every graph can be decomposed into a few pieces, almost
all of which are random-like. The precise statement is as follows.

Theorem 1.1. Let ε > 0. Then there exists a positive integer K0 such
that, given any graph G, the vertices can be partitioned into K ≤ K0 sets Vi,
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with sizes differing by at most 1, such that all but at most εK2 of the pairs
(Vi, Vj) are ε-regular.

A partition is called ε-regular if it satisfies the conclusion of Theorem 1.1.
(Note that we allow i to equal j in the definition of a regular pair, though
if K is large then this does not make too much difference.) The regularity
lemma is particularly useful in conjunction with a further result, known as the
counting lemma. To state it, it is very convenient to use the notion of a graph
homomorphism. If G and H are graphs, then a function φ : V (H) → V (G) is
called a homomorphism if φ(x)φ(y) is an edge of G whenever xy is an edge of
H. It is an isomorphic embedding if in addition φ(x)φ(y) is not an edge of G

whenever xy is not an edge of H.

Theorem 1.2. For every α > 0 and every k there exists ε > 0 with
the following property. Let V1, . . . , Vk be sets of vertices in a graph G, and
suppose that for each pair (i, j) the pair (Vi, Vj) is ε-regular with density dij.
Let H be a graph with vertex set (x1, . . . , xk), let vi ∈ Vi be chosen indepen-
dently and uniformly at random, and let φ be the map that takes xi to vi for
each i. Then the probability that φ is an isomorphic embedding differs from∏

xixj∈H dij
∏

xixj /∈H(1 − dij) by at most α.

Roughly, this result tells us that the k-partite graph induced by the sets
V1, . . . , Vk contains the right number of labelled induced copies of the graph
H. Let us briefly see why this result is true when H is a triangle. Suppose
that U, V, W are three sets of vertices and the pairs (U, V ), (V, W ) and (W, U)
are ε-regular with densities ζ, η and θ respectively. Then a typical vertex of U

has about ζ|V | neighbours in V and θ|W | neighbours in W . By the regularity
of the pair (V, W ), these two neighbourhoods span about η(ζ|V |)(θ|W |) edges
in G, creating that many triangles. Summing over all vertices of U we obtain
the result.

The next step in the chain of reasoning is the following innocent-looking
statement about graphs with few triangles. Some of the details of the proof
will be sketched rather than given in full.

Theorem 1.3. For every constant a > 0 there exists a constant c > 0
with the following property. If G is any graph with n vertices that contains at
most cn3 triangles, then it is possible to remove at most an2 edges from G to
make it triangle-free.

Proof. This theorem is a simple consequence of the regularity lemma. In-
deed, let ε = ε(a) > 0 be sufficiently small and let V1, . . . , VK be an
ε-regular partition of the vertices of G. If there are fewer than a|Vi||Vj |/100
edges between Vi and Vj , then remove all those edges, and also remove all edges
from Vi to Vj if (Vi, Vj) is not an ε-regular pair. Since the partition is ε-regular,
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we have removed fewer than an2 edges, and the resulting graph must either
be triangle-free or contain several triangles. To see why this is, suppose that
(x, y, z) is a triangle in G (after the edges have been removed), and suppose
that (x, y, z) ∈ Vi × Vj × Vk. Then by our construction the pair (Vi, Vj) must
be regular and must span many edges (because we did not remove the edge
(x, y)) and similarly for the pairs (Vj , Vk) and (Vi, Vk). But then, by the count-
ing lemma for triangles, the sets Vi, Vj and Vk span at least a3|Vi||Vj ||Vk|/106

triangles. Each Vi has cardinality at least n/2K, where K depends on ε only
(which itself depends on a only). This proves that the result is true provided
that c � a3/23106K3.

Ruzsa and Szemerédi [RS] observed that Theorem 1.3 implies Szemerédi’s
theorem for progressions of length 3. More recently, Solymosi noticed [So1,2]
that it also implied the following two-dimensional generalization. (Actually,
neither of these statements is quite accurate. There are several closely related
graph-theoretic results that have these consequences and can be proved using
the regularity lemma, of which Theorem 1.3 is one. Ruzsa and Szemerédi and
Solymosi did not use Theorem 1.3 itself but their arguments are not impor-
tantly different.)

Corollary 1.4. For every δ > 0 there exists N such that every subset
A ⊂ [N ]2 of size at least δN2 contains a triple of the form (x, y), (x + d, y),
(x, y + d) with d > 0.

Proof. First, note that an easy argument allows us to replace A by a set
B that is symmetric about some point. Briefly, if the point (x, y) is chosen
at random then the intersection of A with (x, y) − A has expected size cδ2N2

for some absolute constant c > 0, lives inside the grid [−N, N ]2, and has the
property that B = (x, y) − B. Thus, B is still reasonably dense, and if it
contains a subset K then it also contains a translate of −K. So we shall not
worry about the condition d > 0. (I am grateful to Ben Green for bringing
this trick to my attention. As it happens, the resulting improvement to the
theorem is something of a side issue, since the positivity of d does not tend
to be used in applications. See for instance Corollary 1.5 below. See also the
remark at the beginning of the proof of Theorem 10.3.)

Without loss of generality, the original set A is symmetric in this sense.
Let X be the set of all vertical lines through [N ]2, that is, subsets of the form
{(x, y) : x = u} for some u ∈ [N ]. Similarly, let Y be the set of all horizontal
lines. Define a third set, Z, of diagonal lines, that is, lines of constant x + y.
These sets form the vertex sets of a tripartite graph, where a line in one set is
joined to a line in another if and only if their intersection belongs to A. For
example, the line x = u is joined to the line y = v if and only if (u, v) ∈ A and
the line x = u is joined to the line x + y = w if and only if (u, w − u) ∈ A.
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Suppose that the resulting graph G contains a triangle of lines x = u,
y = v, x + y = w. Then the points (u, v), (u, w − u) and (w − v, v) all lie in
A. Setting d = w − u − v, we can rewrite them as (u, v), (u, v + d), (u + d, v),
which shows that we are done unless d = 0. When d = 0, we have u + v = w,
which corresponds to the degenerate case when the vertices of the triangle in
G are three lines that intersect in a single point. Clearly, this can happen in
at most |A| = o(N3) ways.

Therefore, if A contains no configuration of the desired kind, then the
hypothesis of Theorem 1.3 holds, and we can remove o(N2) edges from G to
make it triangle-free. But this is a contradiction, because there are at least
δN2 degenerate triangles and they are edge-disjoint.

An easy consequence of Corollary 1.4 is the case k = 3 of Szemerédi’s
theorem, which was first proved by Roth [R] using Fourier analysis.

Corollary 1.5. For every δ > 0 there exists N such that every subset
A of {1, 2, . . . , N} of size at least δN contains an arithmetic progression of
length 3.

Proof. Define B ⊂ [N ]2 to be the set of all (x, y) such that x + 2y ∈ A. It
is straightforward to show that B has density at least η > 0 for some η that
depends on δ only. Applying Corollary 1.2 to B we obtain inside it three points
(x, y), (x+ d, y) and (x, y + d). Then the three numbers x+2y, x+ d+2y and
x + 2(y + d) belong to A and form an arithmetic progression.

And now the programme for proving Szemerédi’s theorem in general starts
to become clear. Suppose, for example, that one would like to prove it for
progressions of length 4. After a little thought, one sees that the direction
in which one should generalize Theorem 1.3 is the one that takes graphs to
3-uniform hypergraphs, or 3-graphs, for short, which are set systems consisting
of subsets of size 3 of a set X (just as a graph consists of pairs). If H is a
3-uniform hypergraph, then a simplex in H is a set of four vertices x, y, z and
w of H (that is, elements of the set X) such that the four triples xyz, xyw,
xzw and yzw all belong to H. The following theorem of Frankl and Rödl is a
direct generalization of Theorem 1.3, but its proof is much harder.

Theorem 1.6. For every constant a > 0 there exists a constant c > 0
with the following property. If H is any 3-uniform hypergraph with n vertices
that contains at most cn4 simplices, then it is possible to remove at most an3

edges from H to make it simplex-free.

As observed by Solymosi, it is straightforward to generalize the proof of
Theorem 1.4 and show that Theorem 1.6 has the following consequence.
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Theorem 1.7. For every δ > 0 there exists N such that every subset
A ⊂ [N ]3 of size at least δN3 contains a quadruple of points of the form

{(x, y, z), (x + d, y, z), (x, y + d, z), (x, y, z + d)}
with d > 0.

Similarly, Szemerédi’s theorem for progressions of length four is an easy
consequence of Theorem 1.7 (and once again one does not need the positivity
of d).

It may look as though this section contains enough hints to enable any
sufficiently diligent mathematician to complete a proof of the entire theorem.
Indeed, here is a sketch for the 3-uniform case. First, one proves the ap-
propriate 3-graph analogue of Szemerédi’s regularity lemma. Then, given a
hypergraph H, one applies this lemma. Next, one removes all sparse triples
and all triples that fail to be regular. If the resulting hypergraph contains a
simplex, then any three of the four sets in which its vertices lie must form
a dense regular triple, and therefore (by regularity) the hypergraph contains
many simplices, contradicting the original assumption.

The trouble with the above paragraph is that it leaves unspecified what
it means for a triple to be regular. It turns out to be surprisingly hard to
come up with an appropriate definition, where “appropriate” means that it
must satisfy two conditions. First, it should be weak enough for a regularity
lemma to hold: that is, one should always be able to divide a hypergraph up
into regular pieces. Second, it should be strong enough to yield the conclusion
that four sets of vertices, any three of which form a dense regular triple, should
span many simplices. The definition that Frankl and Rödl used for this pur-
pose is complicated and it proved very hard to generalize. In [G2] we gave a
different proof which is in some ways more natural. The purpose of this paper
is to generalize the results of [G2] from 3-uniform hypergraphs to k-uniform
hypergraphs for arbitrary k, thereby proving the full multidimensional ver-
sion of Szemerédi’s theorem (Theorem 10.3 below), which was first proved by
Furstenberg and Katznelson [FK]. This is the first proof of the multidimen-
sional Szemerédi theorem that is not based on Furstenberg’s ergodic-theoretic
approach, and also the first proof that gives an explicit bound. The bound,
however, is very weak—it gives an Ackermann-type dependence on the initial
parameters.

Although this paper is self-contained, we recommend reading [G2] first.
The case k = 3 contains nearly all the essential ideas, and they are easier to
understand when definitions and proofs can be given directly. Here, because
we are dealing with a general k, many of the definitions have to be presented
inductively. The resulting proofs can be neater, but they may appear less
motivated if one has not examined smaller special cases. For this reason, we
do indeed discuss a special case in the next section, but not in as complete
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a way as can be found in [G2]. Furthermore, the bulk of [G2] consists of
background material and general discussion (such as, for example, a complete
proof of the regularity lemma for graphs and a detailed explanation of how
the ideas relate to those of the analytic approach to Szemerédi’s theorem in
[G1]). Rather than repeat all the motivating material, we refer the reader to
that paper for it.

The main results of this paper have been obtained independently by Na-
gle, Rödl, Schacht and Skokan [NRS], [RS]. They too prove hypergraph gen-
eralizations of the regularity and counting lemmas that imply Theorem 10.3
and Szemerédi’s theorem. However, they formulate their generalizations dif-
ferently and there are substantial differences between their proof and ours.
Broadly speaking, they take the proof of Frankl and Rödl as their starting
point, whereas we start with the arguments of [G2]. This point is discussed in
more detail in the introduction to Section 6 of this paper, and also at the end
of [G2].

2. A discussion of a small example

The hardest part of this paper will be the proof of a counting lemma,
which asserts that, under certain conditions, a certain type of structure “be-
haves randomly” in the sense that it contains roughly the expected number
(asymptotically speaking) of configurations of any fixed size. In order even to
state the lemma, we shall have to develop quite a lot of terminology, and the
proof will involve a rather convoluted inductive argument with a somewhat
strange inductive hypothesis. The purpose of this section is to give some of
the argument in a special case. The example we have chosen is small enough
that we can discuss it without the help of the terminology we use later: we
hope that as a result the terminology will be much easier to remember and un-
derstand (since it can be related to the concrete example). Similarly, it should
be much clearer why the inductive argument takes the form it does. From a
logical point of view this section is not needed: the reader who likes to think
formally and abstractly can skip it and move to the next section.1

To put all this slightly differently, the argument is of the following kind:
there are some simple techniques that can be used quite straightforwardly
to prove the counting lemma in any particular case. However, as the case
gets larger, the expressions that appear become quite long (as will already
be apparent in the example we are about to discuss), even if the method for
dealing with them is straightforward. In order to discuss the general case, one

1This section was not part of the original submitted draft. One of the referees suggested
treating a small case first, and when I reread the paper after a longish interval I could see
just how much easier it would be to understand if I followed the suggestion.
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is forced to describe in general terms what one is doing, rather than just going
ahead and doing it, and for that it is essential to devise a suitably compact
notation, as well as an inductive hypothesis that is sufficiently general to cover
all intermediate stages in the calculation.

Now we are ready to turn to the example itself. Let X, Y , Z and T be
four finite sets. We shall adopt the convention that variables that use a lower-
case letter of the alphabet range over the set denoted by the corresponding
upper-case letter. So, for example, x′ would range over X. Similarly, if we
refer to “the function v(y, z, t),” it should be understood that v is a function
defined on Y × Z × T .

For this example, we shall look at three functions, f(x, y, z), u(x, y, t)
and v(y, z, t). (The slightly odd choices of letters are deliberate: f plays a
different role from the other functions and t plays a different role from the other
variables.) We shall also assume that they are supported in a quadripartite
graph G, with vertex sets X, Y , Z and T , in the sense that f(x, y, z) is nonzero
only if xy, yz and xz are all edges of G, and similarly for the other three
functions. As usual, we shall feel free to identify G with its own characteristic
function; another way of stating our assumption is to say that f(x, y, z) =
f(x, y, z)G(x, y)G(y, z)G(x, z).

We shall need one useful piece of shorthand as the proof proceeds. Let
us write fx,x′(y, z) for f(x, y, z)f(x′, y, z), and similarly for the other functions
(including G) and variables. We shall even iterate this, so that fx,x′,y,y′(z)
means

f(x, y, z)f(x′, y, z)f(x, y′, z)f(x′, y′, z).

Of particular importance to us will be the quantity

Oct(f) = Ex,x′,y,y′,z,z′fx,x′,y,y′,z,z′ ,

which is a count of octahedra, each one weighted by the product of the values
that f takes on its eight faces.

Now let us try to obtain an upper bound for the quantity

Ex,y,z,tf(x, y, z)u(x, y, t)v(y, z, t).

Our eventual aim will be to show that this is small if Oct(f) is small and the six
parts of G are sufficiently quasirandom. However, an important technical idea
of the proof, which simplifies it considerably, is to avoid using the quasiran-
domness of G for as long as possible. Instead, we make no assumptions about
G (though we imagine it as fairly sparse and very quasirandom), and try to
obtain an upper bound for our expression in terms of fx,x′,y,y′,z,z′ and G. Only
later do we use the fact that we can handle quasirandom graphs. In the more
general situation, something similar occurs: now G becomes a hypergraph,
but in a certain sense it is less complex than the original hypergraph, which
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means that its good behaviour can be assumed as the complicated inductive
hypothesis alluded to earlier.

As with many proofs in arithmetic combinatorics, the upper bound we
are looking for is obtained by repeated use of the Cauchy-Schwarz inequality,
together with even more elementary tricks such as interchanging the order of
expectation, expanding out the square of an expectation, or using the inequal-
ity Exf(x)g(x) ≤ ‖f‖1‖g‖∞. The one thing that makes the argument slightly
(but only slightly) harder than several other arguments of this type is that it
is essential to use the Cauchy-Schwarz inequality efficiently, and easy not to
do so if one is careless. In many arguments it is enough to use the inequality
(Exf(x))2 ≤ Exf(x)2, but for us this will usually be inefficient because it will
usually be possible to identify a small set of x outside which f(x) is zero. Let-
ting A be the characteristic function of that set, we can write f = Af , and we
then have the stronger inequality (Exf(x))2 ≤ ExA(x)Exf(x)2.

Here, then, is the first part of the calculation that gives us the desired
upper bound. We need one further assumption: that the functions f , u and v

take values in the interval [−1, 1].
(
Ex,y,z,tf(x, y, z)u(x, y, t)v(y, z, t)

)8

=
(
Ey,z,tExf(x, y, z)u(x, y, t)v(y, z, t)

)8

=
(
Ey,z,tG(y, z)G(y, t)G(z, t)Exf(x, y, z)u(x, y, t)v(y, z, t)

)8

�
(
Ey,z,tG(y, z)G(y, t)G(z, t)

)4(
Ey,z,t

(
Exf(x, y, z)u(x, y, t)v(y, z, t)

)2)4
.

The inequality here is Cauchy-Schwarz, and we have used the fact that v(y, z, t)
is nonzero only if G(y, z)G(y, t)G(z, t) = 1. For the same reason, the second
bracket is at most(

Ey,z,t

(
Exf(x, y, z)u(x, y, t)G(y, z)G(y, t)G(z, t)

)2)4

=
(
Ey,z,t

(
Exf(x, y, z)u(x, y, t)G(z, t)

)2)4

=
(
Ex,x′Ey,z,tfx,x′(y, z)ux,x′(y, t)G(z, t)

)4

� Ex,x′

(
Ey,z,tfx,x′(y, z)ux,x′(y, t)G(z, t)

)4
.

The first equality here follows from the fact that G(y, z) and G(y, t) are 1
whenever f(x, y, z) and u(x, y, t) are nonzero. The inequality is a simple case
of Cauchy-Schwarz, applied twice.

Simple manipulations and arguments of the above kind are what we shall
use in general, but more important than these is the relationship between the
first and last expressions. We would like it if the last one was similar to the
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first, but in some sense simpler, so that we could generalize both statements
to one that can be proved inductively.

Certain similarities are immediately clear, as is the fact that the last
expression, if we fix x and x′ rather than taking the first expectation, involves
functions of two variables rather than three, and a fourth power instead of an
eighth power. The only small difference is that we now have the function G

appearing rather than some arbitrary function supported in G. This we shall
have to incorporate into our inductive hypothesis somehow.

However, in this small case, we can simply try to repeat the argument, so
let us continue with the calculation:(

Ey,z,tfx,x′(y, z)ux,x′(y, t)G(z, t)
)4

=
(
Ez,tEyfx,x′(y, z)ux,x′(y, t)G(z, t)

)4

=
(
Ez,tEyfx,x′(y, z)ux,x′(y, t)Gx,x′(z)Gx,x′(t)G(z, t)

)4

≤
(
Ez,tGx,x′(z)Gx,x′(t)G(z, t)

)2(
Ez,t

(
Eyfx,x′(y, z)ux,x′(y, t)G(z, t)

)2)2
.

Here, we used the fact that fx,x′(y, z) is nonzero only if G(x, z) and G(x′, z)
are both equal to 1, with a similar statement for ux,x′(y, t). We then applied
the Cauchy-Schwarz inequality together with the fact that G squares to itself.
Given that G could be quite sparse, it was important here that we exploited its
sparseness to the full: with a lazier use of the Cauchy-Schwarz inequality we
would not have obtained the factor in the first bracket, which will in general
be small and not something we can afford to forget about.

Now let us continue to manipulate the second bracket in the standard
way: expanding the inner square, rearranging, and applying Cauchy-Schwarz.
This time, in order not to throw away any sparseness information, we will bear
in mind that the expectation over y and y′ below is zero unless all of G(x, y),
G(x′, y), G(x, y′) and G(x′, y′) are equal to 1.

(
Ez,t

(
Eyfx,x′(y, z)ux,x′(y, t)G(z, t)

)2)2

=
(
Ey,y′Gx,x′,y,y′Ez,tfx,x′,y,y′(z)ux,x′,y,y′(t)G(z, t)

)2

≤
(
Ey,y′Gx,x′,y,y′

)(
Ey,y′

(
Ez,tfx,x′,y,y′(z)ux,x′,y,y′(t)G(z, t)

)2)
.

We have now come down to functions of one variable, apart from the term
G(z, t). Instead of worrying about this, let us continue the process.

(
Ez,tfx,x′,y,y′(z)ux,x′,y,y′(t)G(z, t)

)2

=
(
EtEzfx,x′,y,y′(z)ux,x′,y,y′(t)G(z, t)

)2
.
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Now we shall apply Cauchy-Schwarz once more, and again we must be
careful to use the full strength of the inequality by taking account that for
most values of t the expectation over z is zero. We can do this by noting that

ux,x′,y,y′(t) = ux,x′,y,y′(t)Gx,x′(t)Gy,y′(t)

so that the last expression above is at most(
EtGx,x′(t)Gy,y′(t)

)(
Et

(
Ezfx,x′,y,y′(z)ux,x′,y,y′(t)G(z, t)

)2)
.

The second term in this product is at most

Et

(
Ezfx,x′,y,y′(z)Gx,x′(t)Gy,y′(t)G(z, t)

)2
,

which equals
EtEz,z′fx,x′,y,y′,z,z′Gx,x′(t)Gy,y′(t)Gz,z′(t).

Let us put all this together and see what the upper bound is that we have
obtained. It works out to be
(
Ey,z,tG(y, z)G(y, t)G(z, t)

)4
Ex,x′

(
Ez,tGx,x′(z)Gx,x′(t)G(z, t)

)2(
Ey,y′Gx,x′,y,y′

)

Ey,y′

(
EtGx,x′(t)Gy,y′(t)

)
Ez,z′fx,x′,y,y′,z,z′EtGx,x′(t)Gy,y′(t)Gz,z′(t).

Here we have been somewhat sloppy with our notation: a more correct way of
writing the above expression would be to have different names for the variables
in different expectations. If one does that and then expands out the powers
of the brackets, then one obtains an expression with several further variables
besides x, x′, y, y′, z, z′ and t. One takes the average, over all these variables, of
an expression that includes fx,x′,y,y′,z,z′ and many terms involving the function
G applied to various pairs of the variables. Recall that this is what we were
trying to do.

We can interpret this complicated expression as follows. We allow the
variables to represent the vertices of a quadripartite graph Γ, with two variables
q and r joined by an edge if G(q, r) appears in the product. For example, the
Gz,z′(t) that appears at the end of the expression is short for G(z, t)G(z′, t), so
it would tell us that zt and z′t were edges of the graph (assuming that those
particular variables had not had their names changed).

When we assign values in X, Y , Z and T to the various variables, we are
defining a quadripartite map from the vertex set of Γ to the set X ∪Y ∪Z ∪T .
And the product of all the terms involving G is telling us whether a particular
assignment to the variables of values in X, Y , Z and T results in a graph
homomorphism from Γ to G.

Thus, the expression we obtain is an expectation over all such quadripar-
tite maps φ of fx,x′,y,y′,z,z′ multiplied by the characteristic function of the event
“φ is a homomorphism.”
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Notice that in this expression the function f appears eight times, as it
does in the expression with which we started, since that contains a single f

inside the bracket, which is raised to the eighth power. This is important, as
we need our inequality to scale up in the right way. But equally important is
that this scaling should occur correctly in G as well. We can think of G as
put together out of six functions (one for each pair of vertex sets). Let us now
reflect this in our notation, writing GXY for the part of G that joins X to Y ,
and so on. If we want to make explicit the fact that f , u and w are zero except
at triangles in G, then we can rewrite the first expression as

(
Ex,y,z,tf(x, y, z)u(x, y, t)w(y, z, t)GXY (x, y)GXZ(x, z)GXT (x, t)

GY Z(y, z)GY T (y, t)GZT (z, t)
)8

.

This makes it clear that each part of G (such as GXY ) occurs eight times.
In order to have a useful inequality we need the same to be true for the final
expression that we are using to bound this one. As it is written at the moment,
GXT , GY T and GZT are used eight times each, but GXY , GY Z and GXZ

are used only four times each. However, there are once again some implicit
appearances, hidden in our assumptions about when f can be nonzero. In
particular, we can afford to multiply fx,x′,y,y′,z,z′ by the product over all graph
terms, such as GY Z(y′, z), that must equal 1 if fx,x′,y,y′,z,z′ is nonzero. This
gives us four extra occurrences of each of GXY , GY Z and GXZ .

We eventually want to show that if Oct(f) is small and all the functions
such as GXY are “sufficiently quasirandom”, then the expression with which
we started is small. In order to see what we do next, let us abandon our current
example, since it has become quite complicated, and instead look at a simpler
example that has the same important features. In order to make this simpler
example properly illustrative of the general case, it will help if we no longer
assume that G uses all the vertices in X, Y , Z and T . Rather, we shall let P ,
Q, R and S be subsets of X, Y , Z and T , respectively, and G will be a graph
that does not join any vertices outside these subsets. Then we shall consider
how to approximate the quantity

Ex,y,z,tf(x, y, z)G(x, t)G(y, t)G(z, t)P (x)Q(y)R(z)S(t)

by the quantity

Ex,y,z,tf(x, y, z)δXT G(y, t)G(z, t)P (x)Q(y)R(z)S(t),

where δXT is now the relative density of G inside the set P × S (rather than
its absolute density inside X × T ). The sets P , Q, R and S will themselves
have densities, which we shall call δX , δY , δZ and δT .

To begin with, we define a function g in the variables x and t by taking
g(x, t) to be G(x, t) − δXT when (x, t) ∈ P × S and 0 otherwise. The idea
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behind this definition is that we want to subtract from G(x, t) a function that
is supported in P × S and constant there, in such a way that the average
becomes zero. Once we have done that, our task is then to show that

Ex,y,z,tf(x, y, z)g(x, t)G(y, t)G(z, t)P (x)Q(y)R(z)S(t)

is small, provided that Oct(g) = Ex,x′,t,t′gx,x′,t,t′ is small enough.
The technique of proof is the same as we have already seen: we give the

argument mainly to illustrate what we can afford to ignore and what we must
be careful to take account of. Since g is a function of two variables, we shall
start with the expression(

Ex,y,z,tf(x, y, z)g(x, t)G(y, t)G(z, t)
)4

=
(
Ey,z,tExg(x, t)f(x, y, z)G(y, t)G(z, t)

)4

�
(
Ey,z,tG(y, z)G(y, t)G(z, t)

)2(
Ey,z,t

(
Exg(x, t)f(x, y, z)G(y, t)G(z, t)

)2)2
.

Now, we shall eventually be assuming that Oct(g) is significantly smaller than
the densities of any of the parts of G, but not necessarily smaller than the
densities of the sets P , Q, R and S. The effect on our calculations is that we
can afford to throw away the G-densities (by replacing them by 1) but must be
careful to keep account of the densities of vertex sets. Thus, we may replace
the expectation Ey,z,tG(y, z)G(y, t)G(z, t) in the first bracket by the larger
expectation Ey,z,tQ(y)R(z)S(t). (This is of course easily seen to be δY δZδT ,
but in more general situations it will not necessarily be easy to calculate.)

As for the second part of the product, it equals(
Ey,z,tG(y, t)G(z, t)

(
Exg(x, t)f(x, y, z)

)2)2
,

which we can afford to bound above by(
Ey,z,t Q(y)R(z)S(t)

(
Exg(x, t)f(x, y, z)

)2)2

=
(
Ex,x′Ey,z,tgx,x′(t)fx,x′(y, z)Q(y)R(z)S(t)

)2

=
(
Ex,x′Ey,z,tgx,x′(t)P (x)P (x′)fx,x′(y, z)

)2

�
(
Ex,x′P (x)P (x′)

)(
Ex,x′

(
Ey,z,tgx,x′(t)fx,x′(y, z)

)2)
.

Now we concentrate our efforts on the second bracket.(
Ey,z,tgx,x′(t)fx,x′(y, z)

)2

=
(
Ey,zQ(y)R(z)fx,x′(y, z)Etgx,x′(t)

)2

�
(
Ey,zQ(y)R(z)fx,x′(y, z)2

)(
Ey,zQ(y)R(z)

(
Etgx,x′(t)

)2)
.
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Since f is a function of three variables, we are even more prepared to
bound fx,x′(y, z)2 above by 1 than we were with G. That is, we can bound
the first bracket above by Ey,zP (x)P (x′)Q(y)R(z). The second equals
Ey,z,t,t′Q(y)R(z)gx,x′,t,t′ . Since the second is automatically zero if P (x)P (x′)
is zero, we can even afford to bound the first one by Ey,zQ(y)R(z).

Putting all this together, we find that(
Ex,y,z,tf(x, y, z)g(x, t)G(y, t)G(z, t)

)4

is at most (
Ey,z,tQ(y)R(z)S(t)

)2(
Ex,x′P (x)P (x′)

)
(
Ex,x′

(
Ey,zQ(y)R(z)

)(
Ey,z,t,t′Q(y)R(z)gx,x′,t,t′

))
.

It is not hard to check that this equals δ2
Xδ4

Y δ4
Zδ2

T Oct(g). This quantity will
count as a small error if Oct(g) is small compared with δ2

Xδ2
T , since then our

upper bound is small compared with its trivial maximum of δ4
Xδ4

Y δ4
Zδ4

T (which,
in the general case, is rather less trivial).

An important point to note about the above argument is that even though
the expression we started with included a function of three variables, it did not
cause us any difficulty because we were eventually able to bound it above in
a simple way. This explains why an inductive argument is possible: when we
are dealing with functions of k variables x1, . . . , xk, we do not have any trouble
from functions of more variables, provided that at least one of x1, . . . , xk is not
included in them.

Of course, once we have replaced G(x, t) by δXT P (x)S(t) we can run simi-
lar arguments to replace G(y, t) and G(z, t) by δY T Q(y)S(t) and δZT R(z)S(t),
respectively. Thus, there will be three nested inductions going on at once:
the number of variables k in the function under consideration, the number of
functions of k variables still left to consider, and the number of steps taken in
the process of replacing a function f by a function of the form fx1,x′

1,...,xk,x′
k
.

Section 4 is concerned with the last of these, and the first two are dealt with
in Section 5.

3. Some basic definitions

The need for more compact notation should by now be clear. In this
section, we shall provide such notation and also explain the terminology that
will be needed to state our main results.

3.1. Hypergraphs and chains. An r-partite hypergraph is a sequence
X1, . . . , Xr of disjoint sets, together with a collection H of subsets A of X1 ∪
· · ·∪Xr with the property that |A∩Xi| � 1 for every i. The sets Xi are called
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vertex sets and their elements are vertices. The elements of H are called edges,
or sometimes hyperedges if there is a danger of confusing them with edges in the
graph-theoretic sense. A hypergraph is k-uniform if all its edges have size k.
(Thus, a 2-uniform hypergraph is a graph.)

An r-partite hypergraph H is called an r-partite chain if it has the addi-
tional property that B is an edge of H whenever A is an edge of H and B ⊂ A.
Thus, an r-partite chain is a particular kind of combinatorial simplicial com-
plex, or down-set. Our use of the word “chain” is nonstandard (in particular,
it has nothing to do with the notion of a chain complex in algebraic topology).
We use it because it is quicker to write than “simplicial complex”.

If the largest size of any edge of H is k, then we shall sometimes say that
H is a k-chain.

3.2. Homomorphisms and r-partite functions. Let E1, . . . , Er and
X1, . . . , Xr be two sequences of disjoint finite sets. If φ is a map from E1 ∪
· · · ∪Er to X1 ∪ · · · ∪Xr such that φ(Ei) ⊂ Xi for every i, we shall say that φ

is an r-partite function.
Let J be an r-partite chain with vertex sets E1, . . . , Er and let H be an

r-partite chain with vertex sets X1, . . . , Xr. Let φ be an r-partite function from
the vertices of J to the vertices of H. We shall say that φ is a homomorphism
from J to H if φ(A) ∈ H whenever A ∈ J . We shall write Hom(J ,H) for the
set of all homomorphisms from J to H.

3.3. A-functions and J -functions. Let Φ be the set of all r-partite maps
from E1 ∪ · · · ∪Er to X1 ∪ · · · ∪Xr. We shall also consider some special classes
of functions defined on Φ. If A is a subset of E1∪· · ·∪Er such that |A∩Ei| � 1
for every i, then a function f : Φ → [−1, 1] will be called an A-function if the
value of f(φ) depends only on the image φ(A). If J is an r-partite chain with
vertex sets E1, . . . , Er, then a J -function is a function f : Φ → [−1, 1] that
can be written as a product f =

∏
A∈J fA, where each fA is an A-function.

The definition of A-functions and J -functions is introduced in order to
deal with situations where we have a function of several variables that can be
written as a product of other functions each of which depends on only some of
those variables. We met various functions of this type in the previous section.
Let us clarify the definition with another small example. Suppose that we have
three sets X1, X2 and X3 and a function f : X2

1 × X2 × X3 → [−1, 1] of the
form

f(x1, x
′
1, x2, x3) = f1(x1, x2)f2(x1, x3)f3(x′

1, x2)f4(x′
1, x3) .

Let E1 = {1, 1′}, E2 = {2} and E3 = {3}. There is an obvious one-to-one
correspondence between quadruples (x1, x

′
1, x2, x3) and tripartite maps from

E1 ∪ E2 ∪ E3: given such a sequence one associates with it the map φ that
takes 1 to x1, 1′ to x′

1, 2 to x2 and 3 to x3. Therefore, we can if we wish change
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to a more opaque notation and write

f(φ) = f1(φ)f2(φ)f3(φ)f4(φ) .

Now f2(φ) = f2(φ(1), φ(3)) = f2

(
φ({1, 3})

)
, so that f2 is a {1, 3}-function.

Similar remarks can be made about f1, f3 and f4. It follows that f is a
J -function if we take J to be the chain consisting of the sets {1, 2}, {1, 3},
{1′, 2} and {1′, 3} and all their subsets. The fact that the subsets are not
mentioned in the formula does not matter, since if C is one of these subsets
we can take the function that is identically 1 as our C-function.

An important and more general example is the following. As above, let J
be an r-partite chain with vertex sets E1, . . . , Er and let H be an r-partite chain
with vertex sets X1, . . . , Xr. For each φ in Φ and each A ∈ J let HA(φ) equal
1 if φ(A) ∈ H and 0 otherwise. Let H(φ) =

∏
A∈J HA(φ). Then H(φ) equals 1

if φ ∈ Hom(J ,H) and 0 otherwise. In other words, the characteristic function
of Hom(J ,H) is a J -function. We stress that H(φ) depends on J ; however,
it is convenient to suppress this dependence in the notation. Our counting
lemma will count homomorphisms from small chains J to large quasirandom
chains H, so we can regard our main aim as being to estimate the sum (or
equivalently, expectation) of H(φ) over all φ ∈ Φ. However, in order to do so
we need to consider more general J -functions.

The J -functions we consider will be supported in a chain H in the fol-
lowing sense. Let us say that an A-function fA is supported in H if fA(φ) is
zero whenever φ(A) fails to be an edge of H. Equivalently, fA is supported
in H if fA = fAHA, where HA is as defined above. We shall say that f is a
J -function on H if it can be written as a product

∏
A∈J fA, where each fA

is an A-function supported in H. If f is a J -function on H, then f(φ) = 0
whenever φ does not belong to Hom(J ,H). That is, f(φ) = f(φ)H(φ). Notice
that the product of any J function with the function H will be a J -function
on H.

This is another definition that came up in the previous section. In that
case, the three functions in the product f(x, y, z)u(x, y, t)v(y, z, t) were all
supported in the chain H that consisted of the triangles in the graph G, the
edges of G, and the vertices of G. If we let J be the chain consisting of the
sets {x, y, z}, {x, y, t}, {y, z, t} and all their subsets (where we are regarding
the letters as names of variables rather than as elements of X, Y , Z and T ),
then this product is a J -function on H.

3.4. The index of a set, and relative density in a chain. Let H be an
r-partite chain with vertex sets X1, . . . , Xr. Given a set F ∈ H, define its
index i(F ) to be the set of all i such that F ∩ Xi is nonempty. (Recall that
F ∩Xi is a singleton for each such i.) For any set A in any r-partite chain, let
H(A) be the collection of all sets E ∈ H of index equal to that of A. If A has
cardinality k, then let H∗(A) be the collection of all sets D of index i(A) such
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that C ∈ H whenever C ⊂ D and C has cardinality k− 1. (Since H is a chain,
all proper subsets of D belong to H. Note that we do not require D to belong
to H.) Clearly H(A) ⊂ H∗(A). The relative density of H(A) in H is defined
to be |H(A)|/|H∗(A)|. We will denote it by δA.

Once again, the example in the last section illustrates the importance of
H∗(A). Let us rename the vertex sets X, Y , Z and T as X1, X2, X3 and X4.
If H is a 3-chain that consists of the edges and vertices of the graph G, and
some collection of triangles of G, and if A = {1, 2, 3}, say, then H∗(A) consists
of all triangles in G with one vertex in each of X1, X2 and X3, while H(A)
consists of all 3-edges of H with one vertex in each of X1, X2 and X3. Thus,
δA measures the proportion of the triangles in G that are edges in H.

It is useful to interpret the relative density δA probabilistically: it is the
conditional probability that a randomly chosen set D ⊂ X1 ∪ · · · ∪Xr of index
i(A) belongs to H (and hence to H(A)), given that all its proper subsets belong
to H.

Notational remark. It may help the reader to remember the definitions
in this section if we explicitly point out that most of the time we are adopting
the following conventions. The symbols J and K are used for chains of fixed
size that are embedded into a chain H of size tending to infinity. From these
we sometimes form other chains: for instance, J1 will be a chain of fixed size
derived from a chain J , and H(x) will be a chain of size tending to infinity that
depends on a point x. The letter H will tend to be reserved for set systems
connected with H where the sets all have the same index. The same goes for
functions derived from H. For example, we write H(φ) because we use the full
chain H to define the function, whereas we write HA(φ) because for that we
just use sets of index i(A), which all have size |A|. Similarly, we write H∗(A)
because all sets in H∗(A) have index i(A).

3.5. Oct(fA) for an A-function fA. We are building up to a definition
of quasirandomness for H(A). An important ingredient of the definition is
a weighted count of combinatorial octahedra, which generalizes the definition
introduced in the last section. When f is a function of three variables x, y

and z that range over sets X, Y and Z, respectively, then Oct(f) is defined to
be Ex,x′,y,y′,z,z′fx,x′,y,y′,z,z′ . In full, this is the expectation over all x, x′ ∈ X,
y, y′ ∈ Y and z, z′ ∈ Z of

f(x, y, z)f(x, y, z′)f(x, y′, z)f(x, y′, z′)f(x′, y, z)f(x′, y, z′)f(x′, y′, z)f(x′, y′, z′).

Similarly, if f is a function of k variables x1, . . . , xk, with each xi taken from
a set Xi, then

Oct(f) = Ex0
1,x

1
1∈X1

. . . Ex0
k,x1

k∈Xk

∏
ε∈{0,1}k

f(xε1
1 , . . . , xεk

k ) .
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In the spirit of the previous section, we can (and shall) also write this as Eσfσ,
where σ is shorthand for x1, x

′
1, . . . , xk, x

′
k.

To give a formal definition in more general situations it is convenient to
use the language of A-functions, though in fact we shall try to avoid this by
assuming without loss of generality that the set A we are talking about is the
set {1, 2, . . . , k}. Nevertheless, here is the definition. As before, let J and H
be r-partite chains with vertex sets E1, . . . , Er and X1, . . . , Xr, let Φ be the
set of all r-partite maps from E1 ∪ · · ·∪Er to X1 ∪ · · ·∪Xr and let A ∈ J . We
can think of an A-function as a function defined on the product of those Xi for
which i ∈ i(A). However, we can also think of it as a function fA defined on
Φ such that fA(φ) depends only on φ(A). To define Oct(fA) in these terms,
we construct a set system B as follows. Let k be the cardinality of the set A.
For each i ∈ i(A) let Ui be a set of cardinality 2, let U be the union of the Ui

(which we suppose to be disjoint) and let B consist of the 2k sets B ⊂ U such
that |B ∩ Ui| = 1 for every i. Let Ω be the set of all k-partite maps ω from⋃

i∈i(A) Ui to
⋃

i∈i(A) Xi (meaning that ω(Ui) ⊂ Xi for every i ∈ i(A)).
We now want to use fA, which is defined on Φ, to define a B-function fB

on Ω, for each B ∈ B. There is only one natural way to do this. Given ω ∈ Ω
and B ∈ B, we would like fB(ω) to depend on ω(B); we know that B and ω(B)
have the same index as A; so we choose some φ ∈ Φ such that φ(A) = ω(B)
and define fB(ω) to be fA(φ). This is well-defined, since if φ(A) = φ′(A), then
fA(φ) = fA(φ′), because fA is an A-function.

We now define

Oct(fA) = Eω∈Ω

∏
B∈B

fB(ω) .

Let us see why this agrees with our earlier definition. There, for simplicity, we
took A to be the set {1, 2, . . . , k}. Then for each i � k we let Ui = {x0

i , x
1
i },

and B consist of all sets of the form Bε = {xε1
1 , . . . , xεk

k }, with ε = (ε1, . . . , εk) ∈
{0, 1}k. The set Ω was the set of all ways of choosing x0

i and x1
i in Xi, for

each i � k. (Again there is a deliberate ambiguity in our notation. When we
say that Ui = {x0

i , x
1
i } we are thinking of x0

i and x1
i as symbols for variables,

and when we choose elements of Xi with those names, we are thinking of this
choice as a function from the set {x0

i , x
1
i } of symbols to the set Xi.) Given

ω ∈ Ω and B = Bε ∈ B, we have to define fBε(ω). In principle a function
of ω can depend on all the variables x0

i and x1
i , but fBε is a Bε-function, and

therefore depends just on the variables xεi

i . Now Φ can be thought of as the
set of ways of choosing yi ∈ Xi for each i � k. In other words, we regard A

as the set of variables {y1, . . . , yk} and φ as a way of assigning values to these
variables. Thus, to define fBε(ω) we choose φ such that φ(A) = ω(Bε), which
means that φ(yi) must equal ω(xεi

i ) for each i. (Equivalently, thinking of yi

and xεi

i as the assigned values, it means merely that xεi

i must equal yi.) But
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then f(φ) = f(y1, . . . , yk) = f(xε1
1 , . . . , xεk

k ). And now it is clear that the two
expressions for Oct(f) denote the same quantity.

3.6. Octahedral quasirandomness. We come now to the first of two def-
initions that are of great importance for this paper. Let H be a chain, let
fA be an A-function, for some A that does not necessarily belong to H, and
suppose that fA is supported in H∗(A), in the sense that fA(φ) = 0 when-
ever φ(A) /∈ H∗(A). Equivalently, suppose that whenever fA(φ) 	= 0 we have
φ(C) ∈ H for every proper subset C ⊂ A. Loosely speaking, we shall say that
f is octahedrally quasirandom relative to H if Oct(fA) is significantly smaller
than one might expect.

To turn this idea into a precise definition, we need to decide what we
expect. Let B be the set system defined in the previous subsection. If B ∈ B,
then fB(ω) is defined to be the value of fA(φ) for any φ with φ(A) = ω(B).
If fB(ω) 	= 0, then fA(φ) 	= 0 so that φ(A) ∈ H∗(A), by assumption, and
hence ω(B) ∈ H∗(A). Therefore, a necessary condition for

∏
B∈B fB(ω) to be

nonzero is that ω(D) ∈ H for every D that is a proper subset of some B ∈ B.
Let K′ be the chain consisting of all such sets. Thus, K′ consists of all subsets
of U1∪· · ·∪Uk that intersect each Ui in at most a singleton and do not intersect
every Ui. Then, since |fB(ω)| � 1 for every B and every ω, a trivial upper
bound for Oct(fA) is

Eω∈Ω

∏
D∈K′

HD(ω) ,

which we shall call Oct(H∗(A)), since it counts the number of (labelled, possi-
bly degenerate) combinatorial k-dimensional octahedra in H∗(A).

We could if we wanted declare Oct(fA) to be small if it is small compared
with Oct(H∗(A)). Instead, however, since we shall be working exclusively with
quasirandom chains, it turns out to be more convenient to work out how many
octahedra we expect H(A) to have, given the various relative densities, and
use that quantity for comparison. (It might seem more natural to use H∗(A),
but, for the particular functions fA that we shall need to consider, Oct(fA)
will tend to be controlled by the smaller quantity Oct(H(A)). But in the end
this is not too important because when we are looking at Oct(fA) we think of
the density δA as “large”.)

Let us therefore write K for the set of all subsets of sets in B (so K = B ∪
K′). It is helpful to recall the interpretation of relative densities as conditional
probabilities. Suppose that we choose ω randomly from Ω, and also that H
behaves in a random way. Then the probability that HD(ω) = 1 given that
HC(ω) = 1 for every C � D is the probability that ω(D) ∈ H given that
ω(C) ∈ H for every C � D, which is δD. Because H behaves randomly, we
expect all these conditional probabilities to be independent, so we expect that
Eω∈Ω

∏
D∈K HD(ω) will be approximately

∏
D∈K δD. Accordingly, we shall say
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that fA is η-octahedrally quasirandom if

Oct(fA) � η
∏

D∈K
δD .

Since octahedral quasirandomness is the only form of quasirandomness that
we use in this paper, we shall often omit the word “octahedrally” from this
definition.

It is not necessary to do so, but one can rewrite the right-hand side more
explicitly. For each subset C ⊂ A, there are 2|C| sets D ∈ K with the same
index as C. (We can think of these as |C|-dimensional faces of the octahedron
with index i(C).) Therefore,

η
∏

D∈K
δD = η

∏
C⊂A

δ2|C|

C .

The main use of the definition of quasirandomness for A-functions is to
give us a precise way of saying what it means for a k-partite k-uniform hy-
pergraph to “sit quasirandomly inside a k-partite (k − 1)-chain”. Let A and
H be as above. The k-uniform hypergraph we would like to discuss is H(A).
Associated with this hypergraph is its “characteristic function” HA and its
relative density δA. The (k − 1)-chain is the set of all edges of H with index
some proper subset of A. Define an A-function fA by setting fA(φ) to equal
HA(φ)− δA if φ(A) ∈ H∗(A) and zero otherwise. An important fact about fA

is that its average is zero. To see this, note that fA(φ) = H(φ(A)) − δA when
φ(A) ∈ H∗(A) and fA(φ) = 0 otherwise. Therefore, the average over all φ

such that φ(A) /∈ H∗(A) is trivially zero, while the average over all φ such that
φ(A) ∈ H∗(A) is zero because δA is the relative density of H(A) in H∗(A).

We shall say that H(A) is η-octahedrally quasirandom, or just η-quasi-
random, relative to H, if the function fA is η-quasirandom according to the
definition given earlier. The counting lemma, which we shall prove in Section 5,
will show that if H is an r-partite chain and all its different parts of the form
H(A) are quasirandom in this sense, then H behaves like a random chain with
the same relative densities.

3.7. Quasirandom chains. We are now ready for the main definition in
terms of which our counting and regularity lemmas will be stated. Roughly
speaking, a chain H is quasirandom if H(A) is highly quasirandom relative
to H. However, there is an important subtlety to the definition, which is
that when we apply it we do so in situations where the relative densities δA

tend to be very much smaller when the sets A are smaller, as we saw in the
second example of the previous section. For this reason, we need to make much
stronger quasirandomness assumptions about H(A) when A is small, and it
is also very important which of these assumptions depend on which densities.
The full details of the following definition are not too important – they are
chosen to make the proof work – but the dependences certainly are.



916 W. T. GOWERS

Additionally, our definition depends on a chain J . This is useful for an
inductive hypothesis later. Roughly, if H is quasirandom with respect to J
then J embeds into H in the expected way. Thus, the bigger J is, the stronger
the statement.

Now let us turn to the precise definition. Suppose that J and H are
r-partite chains. For each A ∈ J , let the relative density of H(A) in H be
δA and suppose that H(A) is relatively ηA-quasirandom. Define a sequence
εk, εk−1, . . . , ε1 by taking εk = ε and

εk−j = 2−jk−1|J |−1
(
εk−j+1

∏
A∈J

|A|�k−j+1

δA

)2jk

when j � 1. Let ηk−j be defined by the formula

ηk−j = (1/2)
(
εk−j

∏
A∈J

|A|�k−j

δA

)2k(j+1)

for each j. Then H is (ε,J , k)-quasirandom if, for every A ∈ J of size j � k,
we have the inequality ηA � ηj , or in other words H(A) is ηj-quasirandom
relative to H∗(A).

The parameter k is also there just for convenience in our eventual inductive
argument. The counting lemma will imply that if φ is a random r-partite map
from J to an (ε,J , k)-quasirandom chain H, and if all sets in J have size at
most k, then the probability that φ is a homomorphism differs from

∏
A∈J δA

by at most ε|J |∏A∈J δA.

4. The main lemma from which all else follows

Before we tackle our main lemma it will help to prepare for it in advance
with a small further discussion of terminology. Let H be an r-partite chain
with vertex sets X1, . . . , Xr. Let t � r and let x1, . . . , xt be variables such that
xi ranges over Xi when i � r and over some other Xj if i > r. For each j � r

let Ej be the set of i such that xi ranges over Xj (so, in particular, i ∈ Ei

when i � r).
Now let J be an r-partite chain with vertex sets E1, . . . , Er. Suppose that

the set {1, 2, . . . , k} does not belong to J but that all its proper subsets do.
We shall write τ for the sequence (x1, . . . , xt). Note that there is a one-

to-one correspondence between such sequences and r-partite maps from E1 ∪
· · · ∪ Er to X1 ∪ · · · ∪ Xr, so we can also think of τ as such a map.

Our aim will be to find an upper bound for the modulus of a quantity of
the form

Eτf(τ)
∏
A∈J

gA(τ),
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where f is any function from X1 ×· · ·×Xr to R, and each gA is an A-function
supported in H and taking values in [−1, 1]. By f(τ) we mean f(x1, . . . , xr),
but for convenience we add in the other variables on which f does not depend.

In order to shorten the statement of the next lemma, let us describe in
advance a chain K that appears in its conclusion. For each i � t we shall have
a set Wi of the form {i} × Ui, where Ui is a finite subset of N. The chain K
will be an r-partite chain with vertex sets F1, . . . , Fr, where Fj =

⋃
i∈Ej

Wi.
We shall use the vertices of K to index variables as follows: the element (i, h)
of Wi indexes a variable that we shall call xh

i . When i � k the sets Ui will be
chosen in such a way that (i, 0) and (i, 1) both belong to Ui: it will sometimes
be convenient to use the alternative names xi and x′

i for x0
i and x1

i .
We shall use the letter ω to stand for the sequence of all variables xj

i ,
enumerated somehow. Equivalently, we can think of ω as an r-partite map
from F1 ∪ · · · ∪ Fr to X1 ∪ · · · ∪ Xr.

Let σ be shorthand for the sequence x1, x
′
1, x2, x

′
2, . . . , xk, x

′
k. Generalizing

the notation from Section 2, if f : X1 × · · · ×Xr → R, we shall write fσ(ω) for
the expression

∏
ε∈{0,1}k f(xε1

1 , . . . , xεk

k , xk+1, . . . , xr). Once again, ω contains
many more variables than the ones that appear in this expression, but since
f does not depend on them, the notation is unambiguous. (In fact, when we
come to apply the lemma, f will not even depend on xk+1, . . . , xr.)

Lemma 4.1. Let the chains H and J be as just described. Then there
is a chain K of the kind that has also just been described, with the following
properties.

(i) Every set in K has cardinality less than k.

(ii) Let γ : F1 ∪ · · · ∪ Fr → E1 ∪ · · · ∪ Er be the r-partite map (i, j) 
→ i.
(That is, for each i � t, γ takes the elements of Wi to i.) Then γ is a
homomorphism from K to J , and for each A ∈ J of cardinality less than
k there are precisely 2k sets B ∈ K such that γ(B) = A.

(iii) If f is any function from X1×· · ·×Xr to R and each gA is an A-function
supported in H and taking values in [−1, 1], then we have the inequality

(
Eτf(τ)

∏
A∈J

gA(τ)
)2k

≤ Eωfσ(ω)
∏
B∈K

HB(ω) .

Proof. We shall prove this result by induction. To do this we shall show
that for each j ≤ k the left-hand side can be bounded above by a quantity of
the following form, which we shall write first and then interpret:

Eωj

( ∏
A∈Kj

HA(ωj)
)(

Eτj
fσj

(τj)
∏

[j]⊂A

(gA)σj
(τj)

∏
[j]�⊂A

|A|<k

(HA)σj
(τj)

)2k−j

.



918 W. T. GOWERS

The set system Kj here is a chain. Each vertex of Kj belongs to a set V j
i of

the form {i} × U j
i for some i � t and some finite subset U j

i of N. The vertices
are partitioned into r sets Ej

1, . . . , E
j
r , where Ej

i =
⋃

h∈Ei
V j

h . As before, xq
h

stands for a variable indexed by the pair (h, q) ∈ V j
h . In the back of our

minds, we identify (i, 0) with i when i � r: in particular, we shall sometimes
write xi instead of x0

i , and if j � k we shall sometimes write [j] for the set
{(1, 0), (2, 0), . . . , (j, 0)} rather than the more usual {1, 2, . . . , j}. We shall also
sometimes write x′

i for x1
i .

For the products in the second bracket we have not mentioned the con-
dition A ∈ J , which always applies. In other words, the products are over
all sets A ∈ J that satisfy the conditions specified underneath the product
signs. We write σj as shorthand for (x1, x

′
1, . . . , xj , x

′
j). We also write τj for

the sequence (xj+1, . . . , xt). We define the sets V j
i in such a way that V 0

i is
the singleton {(i, 0)} and is a subset of each V j

i : it is only the first bracket
that depends on the new variables. Finally, ωj is an enumeration of all the
variables that are not included in τj .

We shall not specify what the edges of the chain Kj are (though in principle
it would be possible to specify them exactly), since all that concerns us is that
the map γ that takes (i, 0) to i is a homomorphism from Kj to J such that,
for each A ∈ J of cardinality less than k, the number of sets B ∈ Kj with
γ(B) = A is 2k − 2k−j+|A∩[j]| if A 	⊂ [j] and 2k − 2|A| if A ⊂ [j].

Let us explain these last numbers. They are what we need for the inequal-
ity to be properly homogeneous in the way that we discussed in Section 2. To
see why they are the correct numbers, let us think about a function of the
form (HA)σj

= (HA)x1,x′
1,...,xj ,x′

j
. For each i � j such that i /∈ A, there is no

dependence of (HA)σj
(τj) on xi or x′

i, so in order for (HA)σj
(τj) not to be zero,

the number of distinct sets that are required to belong to H is 2|A∩[j]|. When
we raise to the power 2k−j , this must happen 2k−j times, all independently,
except that if A ⊂ [j] then HA does not depend on any of the variables in
τj so it needs to happen just once. Thus, the number of sets required to be
in H is 2k−j2|A∩[j]| = 2k−j+|A∩[j]| when A 	⊂ [j], and it is 2|A∩[j]| = 2|A| when
A ⊂ [j]. This falls short of 2k and the difference must be made up for in the
first bracket.

Now that we have discussed the inductive hypothesis in detail, let us prove
it by repeating once again the basic technique: isolate one variable and sum
over it last, apply Cauchy-Schwarz carefully, expand out a square, rearrange,
and apply Cauchy-Schwarz carefully again.

As we did repeatedly in Section 2, we shall leave the first bracket and
concentrate on the second. That is, we shall find an upper bound for

(
Eτj

fσj
(τj)

∏
[j]⊂A

(gA)σj
(τj)

∏
[j]�⊂A

|A|<k

(HA)σj
(τj)

)2k−j

.
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Let us write τj as (xj+1, τj+1). The quantity above equals
((

Eτj+1Exj+1fσj
(xj+1, τj+1)

·
∏

[j]⊂A

(gA)σj
(xj+1, τj+1)

∏
[j]�⊂A

|A|<k

(HA)σj
(xj+1, τj+1)

)2)2k−j−1

.

Applying Cauchy-Schwarz, we find that this is at most the product of
(
Eτj+1

∏
[j]⊂A

j+1/∈A

(gA)σj
(xj+1, τj+1)2

∏
[j]�⊂A

j+1/∈A
|A|<k

(HA)σj
(xj+1, τj+1)

)2k−j−1

and(
Eτj+1

(
Exj+1fσj

(xj+1, τj+1)

·
∏

[j+1]⊂A

(gA)σj
(xj+1, τj+1)

∏
[j+1]�⊂A

|A|<k

(HA)σj
(xj+1, τj+1)

)2)2k−j−1

.

Before we continue, let us briefly see what principle was used when we
decided how to apply Cauchy-Schwarz. The idea was to take all terms that
did not depend on xj+1 out to the left of xj+1, except that each time we
took out a (gA)σj

or an (HA)σj
, we left an (HA)σj

behind, exploiting the fact
that (gA)σj

(HA)σj
= (gA)σj

and (HA)σj
(HA)σj

= (HA)σj
. In this way, we

extracted maximum information from the Cauchy-Schwarz inequality.
Since each gA is an A-function supported in H, and it maps to [−1, 1],

and since each HA takes values 0 or 1, we will not decrease the first term in
the product if we replace it by

(
Eτj+1

∏
[j]⊂A

j+1/∈A
|A|<k

(HA)σj
(xj+1, τj+1)

∏
[j]�⊂A

j+1/∈A
|A|<k

(HA)σj
(xj+1, τj+1)

)2k−j−1

,

which we can write more succinctly as
(
Eτj+1

∏
j+1/∈A

|A|<k

(HA)σj
(τj)

)2k−j−1

.

To deal with the second term, we first have to expand out the square, which
in our notation is rather simple: we obtain
(
Exj+1,x′

j+1
Eτj+1fσj+1(τj+1)

∏
[j+1]⊂A

(gA)σj+1(τj+1)
∏

[j+1]�⊂A

|A|<k

(HA)σj+1(τj+1)
)2k−j−1

.

We now apply Hölder’s inequality. This time we take to the left of the
expectation over τj+1 all terms that have no dependence on τj+1, again leaving
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behind the corresponding (HA)σj+1 terms as we do so. The one exception is
that, for convenience only, we do not take the term (gA)σj+1 to the left when
A = [j + 1], but instead take out (HA)σj+1 in this case. The result is that the
last quantity is bounded above by the product of(

Exj+1,x′
j+1

∏
A⊂[j+1]
|A|<k

HA
σj+1

)2k−j−1−1

and

Exj+1,x′
j+1

(
Eτj+1fσj+1(τj+1)

∏
[j+1]⊂A

(gA)σj+1(τj+1)
∏

[j+1]�⊂A

|A|<k

(HA)σj+1(τj+1)
)2k−j−1

.

These calculations have given us the expression we started with, inside
an expectation, with j replaced by j + 1. We must therefore check that we
also have a chain Kj+1 with the right properties. Looking back at the various
brackets we have discarded, this tells us that we want to rewrite the expression

Eωj

( ∏
A∈Kj

HA(ωj)
)

·
(
Eτj+1

∏
j+1/∈A

|A|<k

(HA)σj
(τj)

)2k−j−1(
Exj+1,x′

j+1

∏
A⊂[j+1]
|A|<k

HA
σj+1

)2k−j−1−1

as
Eωj+1

( ∏
A∈Kj+1

HA(ωj+1)
)

for a chain Kj+1 with properties analogous to those of Kj .
There is a slight abuse of notation above, because after our applications

of the Cauchy-Schwarz and Hölder inequalities we have ended up overusing
τj+1, xj+1 and x′

j+1. But we can cure this by renaming the variables in the
expression we wish to rewrite. Indeed, since we are raising the expectation
over τj+1 = (xj+2, . . . , xt) to the power 2k−j−1, let us introduce 2k−j−1 new
variables for each variable included in τj+1. More precisely, let us choose a
set U of cardinality 2k−j−1 that is disjoint from U j

i for every i between j + 1
and t and replace V j

i = {i} × U j
i by {i} × (U j

i ∪ U). We can then expand out
the second bracket as an expectation over the variables x1, x

′
1, . . . , xj , x

′
j and

xu
i with i � j + 2 and u ∈ U of the product of all expressions of the form

(HA)σj
(τu

j ), where τu
j = (xu

j+1, . . . , x
u
t ). (In fact, there is no dependence on

xu
j+1, but we add the variables anyway so that it looks slightly nicer.)

In a similar way, we can expand out the third bracket and introduce a
further 2(2k−j−1 − 1) new variables into V j

j+1. When we do these expansions,
we end up writing the expression in the desired form for some set-system Kj+1.
It is not hard to see that Kj+1 is a chain, so it remains to prove that it contains
the right number of sets of each index.
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Let γ be the usual projection (i, h) 
→ i. We need to prove that each set
A ∈ J of cardinality less than k has exactly 2k preimages under γ in Kj+1.
We consider various cases.

First, if A is a subset of [j], then Kj (which we can think of as a chain
defined on the vertex sets of Kj+1) already contains 2k − 2|A| preimages of A.
Since the additional vertices (i, u) do not project into [j], we do not create any
new preimages in Kj+1.

Now suppose that A is a subset of [j + 1] that contains j + 1. Then
A 	⊂ [j] so the number of preimages of A in Kj is 2k − 2k−j+|A∩[j]|. No new
preimages come from the second bracket, since that involves only sets that do
not include j+1, while from the third bracket we obtain (2|A∩[j+1]|)(2k−j−1−1)
preimages. But 2k−j−1+|A∩[j+1]| = 2k−j+|A∩[j]| in this case, so the total number
of preimages is 2k − 2|A∩[j+1]| = 2k − 2|A|.

Next, suppose that A 	⊂ [j + 1] and j + 1 ∈ A. Then Kj contains 2k −
2k−j+|A∩[j]| preimages of A and the second and third brackets do not contribute
any. Since k − j + |A ∩ [j]| = k − j − 1 + |A ∩ [j + 1]|, the total number of
preimages is 2k − 2k−j−1+|A∩[j+1]|, as we want.

Finally, suppose that A 	⊂ [j + 1] and j + 1 /∈ A. In that case, Kj contains
2k −2k−j+|A∩[j]| preimages, the third bracket contributes none, and the second
bracket contributes 2|A∩[j]|2k−j−1 = 2k−j−1+|A∩[j]| preimages. Thus, the total
number of preimages is 2k − 2k−j−1+|A∩[j]|, which equals 2k − 2k−j−1+|A∩[j+1]|.

This completes the proof of the inductive step. All that remains is the
simple task of checking that the case j = k of the induction is the statement
that we wish to prove. But when j = k, we have the upper bound

Eωk

( ∏
A∈Kk

HA(ωk)
)(

Eτk
fσk

(τk)
∏

[k]⊂A

(gA)σk
(τk)

∏
[k]�⊂A

|A|<k

(HA)σk
(τk)

)2k−k

.

The most obvious simplification is 1 for 2k−k. Since J does not contain the
set [k], the first product in the second bracket disappears. This gives us the
upper bound

Eωk,τk
fσk

(τk)
∏

A∈Kk

HA(ωk)
∏

|A|<k

(HA)σk
(τk).

Writing ω for (ωk, τk) and letting K be the union of the sets in Kk and the sets
implied by the second product (we will say what these are in a moment), we
can write this as

Eωfσ(ω)
∏
A∈K

HA(ω)

as required.
We still need to check that K contains precisely 2k preimages of each set

A ∈ J of cardinality less than k. Let us therefore be slightly more explicit
about the “sets implied by the second product”. A function (HA)σk

(τk) is a
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product of functions of the form HA(xε1
1 , . . . , xεk

k , τk). But HA depends only
on the variables in A, so that the number of distinct functions in the product
is 2|A∩[k]|; and thus the number of preimages of A in K that come from the
second product is 2|A∩[k]|. But when j = k, the number of preimages in Kk

is 2k − 2|A∩[k]|, whether or not A is a subset of [k]. Therefore, for each set
C ⊂ {1, 2, . . . , r} of cardinality less than k, the chain K contains precisely 2k

sets of index C for each set A ∈ J of index C, as claimed.

As we shall see in the next section, the fact that the sets in K have
cardinality at most k − 1 allows us to use Lemma 4.1 inside another induction
(in fact, a double induction). This corresponds to the second part of Section 2,
where we replaced functions such as G(x, t) by constant functions δXT . This
time the functions we shall replace are functions of the form HA with A ∈ K.

5. A counting lemma for quasirandom chains

Just before we prove our main result, we isolate a simple statement that
is needed in the proof and that helps to explain some of our choices in the
definition of (ε,J , k)-quasirandom chains. For convenience, we briefly recall
the definition here. We constructed a sequence εk, εk−1, . . . , ε1 by letting εk = ε

and

εk−j = 2−jk−1|J |−1
(
εk−j+1

∏
A∈J

|A|�k−j+1

δA

)2jk

when j � 1. We also defined ηk−j by the formula

ηk−j = (1/2)
(
εk−j

∏
A∈J

|A|�k−j

δA

)2k(j+1)

for each j. Finally, we declared H to be (ε,J , k)-quasirandom if, for every
A ∈ J of size j � k, the hypergraph H(A) was ηj-quasirandom relative to
H∗(A).

These parameters are chosen in order to satisfy some assumptions required
in the inductive step of Theorem 5.2 below. The next lemma establishes that
they do indeed satisfy them.

Lemma 5.1. Let J and H be chains and suppose that H is (ε,J , k)-
quasirandom. Let K be a chain with the same vertex set as that of J , and
suppose that there is a homomorphism from K to J such that each set in J
has at most 2k preimages. Let εk, εk−1, . . . , ε1 be the sequence defined above.
Then H is (εk−1,K, k − 1)-quasirandom.
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Proof. Let θ = εk−1 and define a sequence θk−1, θk−2, . . . by taking θk−1

= θ and

θk−1−j = 2−j(k−1)−1|K|−1
(
θk−j

∏
A∈K

|A|�k−j

δA

)2j(k−1)

.

Suppose that θk−j � εk−j . We also know that |K|−1 � 2−k|J |−1 and that

∏
A∈K

|A|�k−j

δA �
( ∏

A∈J
|A|�k−j

δA

)2k

.

It follows that

θk−1−j � 2−jk−1|J |−1
(
εk−j

∏
A∈J

|A|�k−j

δA

)2jk

= εk−j .

Therefore by induction θj � εj for every j.
Now let j be an integer between 0 and k − 1. Then

ηk−1−j = ηk−(j+1) = (1/2)
(
εk−(j+1)

∏
A∈J

|A|�k−(j+1)

δA

)2k(j+2)

� (1/2)
(
θk−(j+1)

( ∏
A∈J

|A|�k−(j+1)

δA

)2k)2k(j+1)

� (1/2)
(
θk−(j+1)

∏
A∈K

|A|�k−(j+1)

δA

)2k(j+1)

� (1/2)
(
θk−1−j

∏
A∈K

|A|�k−1−j

δA

)2(k−1)(j+1)

.

This is the formula for ηk−j except that k has been replaced by k − 1, J by
K, and εk−j by θk−1−j . It follows that H is (εk−1,K, k − 1)-quasirandom, as
claimed.

In the next theorem and its proof, we shall discuss two chains J and
H, and borrow notation from the previous section without redefining it. For
example, τ is once again a sequence (x1, . . . , xt) that enumerates variables that
are indexed by the vertices of J . Eventually, we will be interested in the case
where every function gA is just HA, but this more general statement is needed
for an inductive argument to work, and is also of some interest in its own right.

Theorem 5.2. Let J and H be r-partite chains as described at the
beginning of the previous section. Let J1 be a subchain of J and for each
A ∈ J1 let gA be an A-function supported in H. Suppose that the maximum
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cardinality of any set in J \J1 is k and that H is (ε,J , k)-quasirandom. Then∣∣∣Eτ

∏
A∈J1

gA(τ)
∏

A∈J\J1

HA(τ) − Eτ

∏
A∈J1

gA(τ)
∏

A∈J\J1

δA

∣∣∣ � ε|J \ J1|
∏
A∈J

δA .

Proof. This result tells us that we can replace the functions HA in the
quantity Eτ

∏
A∈J1

gA(τ)
∏

A∈J\J1
HA(τ) by their relative densities δA without

changing the quantity by too much. This is proved by two levels of induction,
for the following reason. First of all, we do our replacements one by one, and
this leads to an induction on the cardinality of J \ J1. However, in order to
establish an upper bound for the error introduced when we make a replacement,
we use our main lemma, Lemma 4.1, which results in an expression similar to
the one we were initially trying to bound, but with new chains K and K1.
These chains are considerably bigger than J and J1, but the largest set in
K \ K1 is smaller than the largest set in J \ J1, so we can use induction on k

to replace the error term itself by a quantity that will turn out to be small as
a direct consequence of the quasirandomness of the chain H.

Let us therefore choose a maximal set A0 in J \ J1 and try to replace
HA0(τ) by δA0 in the expression Eτ

∏
A∈J1

gA(τ)
∏

A∈J\J1
HA(τ) while intro-

ducing only a small error. When J0 = J \ {A0}, the difference between the
original expression and the new expression is

Eτf(τ)
∏

A∈J1

gA(τ)
∏

A∈J0\J1

HA(τ),

where f is the A0-function defined by f(τ) = (HA0(τ) − δA0)
∏

A�A0
HA(τ).

(This function was first defined near the end of subsection 3.6: in the notation
of this section it equals 1−δA0 if τ(A0) ∈ H(A0), −δA0 if τ(A0) ∈ H∗(A0)\HA0 ,
and zero otherwise.)

Without loss of generality, we may assume that A0 is the set {1, 2, . . . , k}.
Let us therefore apply Lemma 4.1 to this function f and to the chain J0. It
yields for us an r-partite (k − 1)-chain K′ and a homomorphism γ from K′ to
J0 such that every set in J0 of cardinality less than k has 2k preimages, and
such that we have the inequality

(
Eτf(τ)

∏
A∈J1

gA(τ)
∏

A∈J0\J1

HA(τ)
)2k

� Eωfσ(ω)
∏

B∈K′

HB(ω).

Recall that f(σ) is the product of f(ω(A)) over all sets A of the form
{(1, ε1), . . . , (k, εk)}. Let K1 be the chain of all subsets of such sets and let
K = K1 ∪K′. Then the largest set in K \K1 has size at most k − 1. Moreover,
by Lemma 5.1, H is (εk−1,K, k − 1)-quasirandom. Therefore, by induction
on k, we know that the right-hand side of the above inequality differs from
Eσfσ

∏
A∈K\K1

δA by at most εk−1|K \ K1|
∏

A∈K δA.
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This is at most εk−1|K \ K1|
∏

A∈K′ δA, which is equal to

εk−1|K \ K1|
( ∏

A∈J0
|A|<k

δA

)2k

.

But |K \ K1| � |K| � 2k|J | and 2k+1εk−1|J | �
(
εk

∏
A∈J
|A|�k

δA

)2k

, so this is at

most (1/2)
(
εk

∏
A∈J δA

)2k

.
As for Eσfσ

∏
A∈K\K1

δA, it is equal (by definition) to Oct(f)
∏

A∈K\K1
δA.

By hypothesis, f is ηk-quasirandom, which means that Oct(f) � ηk
∏

A∈K1
δA.

Since ηk � (1/2)
(
εk

∏
A∈J
|A|�k

δA

)2k

, it follows that

Eσfσ

∏
A∈K\K1

δA � ηk

∏
A∈K

δA � ηk

∏
A∈K′

δA � (1/2)
(
εk

∏
A∈J

δA

)2k

.

Putting these two estimates together, we find that
∣∣∣Eτf(τ)

∏
A∈J1

gA(τ)
∏

A∈J0\J1

HA(τ)
∣∣∣ � εk

∏
A∈J

δA.

Thus, returning to the beginning of the proof, we have shown that re-
placing HA by δA for any maximal element of J \ J1 results in an error of at
most εk

∏
A∈J δA. Therefore the result follows by induction on |J \ J1| and

the triangle inequality (and the fact that εk = ε).

If we now consider the case when J1 is empty, then we obtain the following
corollary, which is the counting lemma we have been aiming for.

Corollary 5.3. Let J and H be r-partite chains with vertex sets
E1 ∪ · · · ∪ Er and X1 ∪ · · · ∪ Xr, respectively. Let k be the size of the largest
set in J and suppose that H is (ε/|J |,J , k)-quasirandom. Let τ be a random
r-partite map from E1 ∪ · · · ∪ Er to X1 ∪ · · · ∪ Xr. Then

∣∣∣P[τ ∈ Hom(J ,H)] −
∏
A∈J

δA

∣∣∣ � ε
∏
A∈J

δA . �

In less precise terms, this says that if J is a small r-partite chain and
H is a sufficiently quasirandom r-partite chain, then a random r-partite map
from the vertices of J to the vertices of H will be a homomorphism with
approximately the probability expected if H was a random chain with the
given relative densities.
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6. Local increases in mean-square density

All known proofs of Szemerédi’s theorem use (explicitly or implicitly) an
approach of the following kind. Given a dense set that fails to be quasirandom
in some appropriate sense, one can identify imbalances in the set that allow
one to divide it into pieces that “improve” in some way, on average at least,
the set itself. One then iterates this argument until one reaches sets that are
quasirandom. At that point one uses some kind of counting lemma to prove
that they contain an arithmetic progression of length k.

This proof is no exception. We have defined a notion of quasirandomness
and proved a counting lemma for it. Now we must see what happens when
some parts of a chain are not relatively quasirandom. We shall end up proving
a regularity lemma, which says, roughly speaking, that any dense chain can be
divided up into a bounded number of pieces, almost all of which are quasiran-
dom. This generalizes Szemerédi’s regularity lemma for graphs (which formed
part of his proof of his theorem on arithmetic progressions).

Given a dense graph G and a positive real number ε, Szemerédi’s regularity
lemma asserts that the vertices of G can be partitioned into K classes of roughly
equal size, with K bounded above by a function of ε only, in such a way that,
proportionately speaking, at least 1−ε of the bipartite graphs spanned by two
of these classes are ε-regular. (One can insist that K is much bigger than ε−1,
so it is not necessary to worry about the case where the two classes are equal.
Or it can be neater to say that two equal classes form a “regular pair” if they
span a quasirandom graph.)

Very roughly, the proof is as follows. Suppose you have a graph G and a
partition of its vertex set. Then either this partition will do or there are many
pairs of cells from the partition that give rise to induced bipartite subgraphs
of G that are not ε-quasirandom. If X and Y are two disjoint sets of vertices,
write G(X, Y ) for the corresponding induced bipartite subgraph of G. Sup-
pose that X and Y are two cells of the partition, for which G(X, Y ) is not
ε-regular. Then there are large subsets X(0) ⊂ X and Y (0) ⊂ Y for which
the density of G(X(0), Y (0)) is substantially different from that of G(X, Y ).
Letting X(1) = X \ X(0) and Y (1) = Y \ Y (0), we have obtained partitions
of X and Y into two sets each, in such a way that the densities of the graphs
G(X(i), Y (j)) are not almost all approximately the same as that of G(X, Y ).
One can then define an appropriately weighted average of the squares of these
four densities and show that this average is greater than the square of the
density of G(X, Y ). Let us call this stage one of the argument, the stage where
we identify a “local” increase in mean-square density.

It remains to turn these local increases into a global increase. This, which
we shall call stage two, is quite simple. Denote the cells of the original partition
by X1, . . . , Xk. For each pair (Xi, Xj) that fails to be ε-regular, use the above
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argument to partition Xi into two sets Xij(0) and Xij(1), and to partition Xj

into two sets Xji(0) and Xji(1). Then for each i find a partition of Xi that re-
fines all the partitions {Xij(0), Xij(1)}. The result is a partition into m � k.2k

sets Y1, . . . , Ym that refines the partition {X1, . . . , Xk}. It can be shown that
the average of the squares of the densities G(Yi, Yj), again with appropriate
weights, is significantly greater than it was for the partition {X1, . . . , Xk}.
Therefore, if one iterates the procedure, the iteration must terminate after a
number of steps that can be bounded in terms of ε. It can terminate only if
almost all the graphs G(Xi, Xj) are quasirandom, and so the result is proved.

We have given this sketch since our generalized regularity lemma will be
proved in a similar way. There are two main differences. First, it is an unfor-
tunate fact of life that, when one is dealing with k-chains rather than graphs,
simple arguments have to be expressed in terminology that can obscure their
simplicity. For example, even defining the appropriate notion of a “partition”
of a chain is somewhat complicated. Thus, stage two of our argument, al-
though it is an “obvious” generalization of stage two of the proof of the usual
regularity lemma, is noticeably more complicated to write down.

A more fundamental difference, however, is that our stage one is not com-
pletely straightforward, and here the difference is mathematical rather than
merely notational. The reason is that we do not generalize Szemerédi’s regu-
larity lemma as it is stated above, but rather a simple variant of it where rather
than obtaining ε-regular pairs we obtain ε-quasirandom pairs. For dense bi-
partite graphs, these two notions are equivalent (give or take changes in ε),
but when one generalizes them to hypergraphs that live in sparse chains they
diverge in a significant way. Some hint of this can already be seen above. It is
true by definition that if a pair G(X, Y ) is not ε-regular, then there are large
subsets X(0) ⊂ X and Y (0) ⊂ Y for which the density of G(X(0), Y (0)) is
substantially different from that of G(X, Y ). However, if we assume instead
that G(X, Y ) is not ε-quasirandom, then there is something to prove. The
proof is very simple in the dense case, and even in the sparse case, but in the
latter it yields sets X(0) and Y (0) that are very small. As a result, we have
to work significantly harder in order to obtain a partition with a good enough
local increase in mean-square density. Roughly speaking, our approach will be
to find many pairs of such sets, and build a partition out of those. For this
to work it is important that the pairs are sufficiently spread out: the detailed
argument will occupy the rest of the section.

Incidentally, the last paragraph describes the main difference between our
approach and that of Nagle, Rödl, Schacht and Skokan. Their definitions
generalize that of ε-regularity of bipartite graphs, so that stage one of the
proof of the regularity lemma is easier for them. However, they have to pay for
this when they prove their counting lemma: ε-regularity is a weaker property
than ε-quasirandomness, so if you use it as your basic definition then it is easier
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to deduce facts about objects that are not ε-regular but harder to deduce facts
about objects that are ε-regular.

We shall now work towards our stage one, which will be Lemma 6.3 below.
To begin with, let us say what we mean by the mean-square density of a
function with respect to a partition. Let U be a set of size n, let f : U → R

and let B1, . . . , Br be sets that form a partition of U . Then the mean-square
density of f with respect to the partition {B1, . . . , Br} is

r∑
i=1

|Bi|
n

(
Ex∈Bi

f(x)
)2

.

If we write βi for |Bi|/n (which it is helpful to think of as the probability
that a random x ∈ U is an element of Bi) and δi for Ex∈Bi

f(x) (that is, the
expectation, or “density”, of f in Bi) then this sum is

∑r
i=1 βiδ

2
i , the weighted

average of the squared densities δ2
i , with respect to the obvious system of

weights βi.
The following two simple lemmas are very slight modifications of lemmas

in [G2]. The first is our main tool, while the second is more of a technical trick
that will be used in Lemma 6.3.

Lemma 6.1. Let U be a finite set and let f and g be functions from U

to the interval [−1, 1]. Let B1, . . . , Br be a partition of U and suppose that g

is constant on each Bi. Then the mean-square density of f with respect to the
partition B1, . . . , Br is at least 〈f, g〉2/‖g‖2

2.

Proof. For each j let aj be the value taken by g on the set Bj . Then, by
the Cauchy-Schwarz inequality,

〈f, g〉2 =
(∑

j

ajβjEx∈Bj
f(x)

)2

�
(∑

j

βja
2
j

)(∑
j

βj

(
Ex∈Bj

f(x)
)2)

.

The first part of the product is ‖g‖2
2 and the second is the mean-square density

of f , from which the lemma follows.

In the next lemma, Eivi and Eiwi mean the obvious thing: they are
n−1

∑n
i=1 vi and n−1

∑n
i=1 wi, respectively.

Lemma 6.2. Let n be a positive integer, let 0 < δ < 1 and let r be
an integer greater than or equal to δ−1. Let v1, . . . , vn be vectors in a Hilbert
space such that ‖vi‖2 � 1 for each i and such that ‖Eivi‖2 � δ. Let r vectors
w1, . . . , wr be chosen uniformly and independently from the vi. (To be precise,
for each wj an index i is chosen randomly between 1 and n and wj is set equal
to vi.) Then the expectation of ‖Ejwj‖2 is at most 2δ.
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Proof. The expectation of ‖Ejwj‖2 is the expectation of Ei,j〈wi, wj〉. If
i 	= j then the expectation of 〈wi, wj〉 is ‖Eivi‖2 which, by hypothesis, is at
most δ. If i = j, then 〈wi, wj〉 is at most 1, again by hypothesis. Therefore,
the expectation we are trying to bound is at most r−2(δr(r − 1) + r). Since
δr � 1, this is at most 2δ, as claimed.

Before we state the main result of this section, we need two definitions.
The first is of a chain D that we shall call a double octahedron. We use this name
for conciseness even though it is slightly misleading: in fact, D is the (k − 1)-
skeleton of a chain formed from two k-dimensional octahedra by identifying a
face from one with the corresponding face from the other. To put this more
formally, take the vertex set of D to be the set [k]×{0, 1, 2}. For each i between
1 and k let Vi be the set {i} × {0, 1, 2} and for j = 0, 1, 2 let Bj be the set
[k] × {j}. The edges of D are all sets B of cardinality at most k − 1 such
that |B ∩ Vi| � 1 for every i and at least one of B ∩ B1 and B ∩ B2 is empty.
(The two octahedra in question are O1 and O2, where Oj consists of all sets
B ⊂ B0 ∪ Bj such that |B ∩ Vi| � 1 for every i.)

Notice that if A ⊂ [k] is a set of size at most k−1 then the number of edges
in D of index A is 2|A|+1 − 1, since there are 2|A| edges from each octahedron
and one, namely A × {0}, which is common to both.

For the second definition, suppose we have a k-partite (k−1)-chain H with
vertex sets X1, . . . , Xk. Recall from Section 2 that H∗([k]) is the collection of
all sets A such that |A∩Xi| = 1 for every i and such that every proper subset
of A belongs to H. For this second condition to hold it is enough for C to be
an edge of H whenever C ⊂ A and |C| = k−1. Let H be the k-partite (k−1)-
uniform hypergraph consisting of all edges of H of size k − 1. For 1 � i � k

let Hi be the (k − 1)-partite subhypergraph of H consisting of all edges of H

that have empty intersections with Xi. We shall call the hypergraphs Hi the
parts of H. Each set A ∈ H∗([k]) has k subsets of size k − 1. Each part Hi of
H contains exactly one of these subsets, namely A \ Xi.

Suppose that each Hi is partitioned into subhypergraphs Hi1, . . . , Hiri
.

These partitions give rise to an equivalence relation ∼ on H∗([k]): we say that
A ∼ A′ if, for each i � k, the sets A\Xi and A′\Xi belong to the same cell Hij

of the partition of Hi. The corresponding partition will be called the induced
partition of H∗([k]).

Lemma 6.3. Let H be a k-partite (k−1)-chain with vertex sets X1, . . . , Xk,
let D be the double octahedron, let δ =

∏
A∈D δA and let r � δ−1 be a positive

integer. Suppose that ε � |D|−1, that H is (ε,D, k − 1)-quasirandom and that
f : H∗([k]) → [−1, 1] is a function that is not η-quasirandom relative to H. Let
H be the set of all edges of H of size k − 1 and let H1, . . . , Hk be the k parts
of H. Then there are partitions of the Hi into at most 3r sets each, such that
the mean-square density of f with respect to the induced partition of H∗([k]) is
at least η2/32.
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We shall prove Lemma 6.3 in stages, by means of some intermediate lem-
mas (Lemmas 6.4-6.7 below). Since these lemmas form part of a larger proof,
we shall not state each one in full: rather, if we have already introduced no-
tation such as names for various functions we shall feel free to use it again
without redefining it.

But before we get on to the subsidiary lemmas, let us examine our main
hypothesis, that f is not η-quasirandom relative to H. For each i � k let
Ui = {i} × {0, 1} (so that Ui consists of the “first two” of the three elements
of Vi). As in Section 3, let B be the k-partite k-uniform hypergraph consisting
of all sets B ⊂ U1 ∪ · · · ∪ Uk such that |B ∩ Ui| = 1 for every i, let K be the
chain of all sets C that are proper subsets of some B ∈ B and let Ω be the set
of all k-partite maps from U1 ∪ · · · ∪ Uk to X1 ∪ · · · ∪ Xk. Then to say that f

is not η-quasirandom relative to H is to say that

Oct(f) = Eω∈Ω

∏
B∈B

fB(ω) > η
∏
A∈K

δA ,

where by fB(ω) we mean f(ω(B)) if ω(B) ∈ H∗([k]) and 0 otherwise.
Let B0 and B1 be as defined earlier, so that U1 ∪ · · · ∪ Uk = B0 ∪ B1.

Let Φ and Ψ be the set of all k-partite maps from B0 and B1, respectively,
to X1 ∪ · · · ∪ Xk. There is an obvious one-to-one correspondence between Ω
and Φ × Ψ: given any ω ∈ Ω, associate with it the pair (φ, ψ) where φ and
ψ are the restrictions of ω to B0 and B1. This procedure is invertible: given
a pair (φ, ψ), define a k-partite map ω by setting ω(x) = φ(x) if x ∈ B0 and
ω(x) = ψ(x) if x ∈ B1. From now on we shall identify Ω with Φ×Ψ and freely
pass from one to the other.

Let us split the product
∏

B∈B fB(ω) into two parts. We shall write F (ω)
for fB0(ω) and G(ω) for

∏
B∈B,B �=B0

fB(ω). Now if ω = (φ, ψ) then F (ω) does
not depend on ψ (since it depends only on ω(B0) = φ(B0)). To emphasize
this, we shall write G(φ, ψ) for G(ω) and F (φ) for F (ω). Our hypothesis now
becomes

(∗) Eφ∈ΦEψ∈ΨF (φ)G(φ, ψ) > η
∏
A∈K

δA .

Let us see why this is useful. First, note that there is another obvious one-
to-one correspondence, this time between Φ and X1 × · · · × Xk. It associates
with a map φ ∈ Φ the k-tuple (φ(1, 0), . . . , φ(k, 0)), and the inverse associates
with a k-tuple (x1, . . . , xk) ∈ ∏k

i=1 Xi the map φ : B0 → X1 ∪ · · · ∪ Xk that
takes (i, 0) to xi for each i � k. Therefore, the function F is basically another
way of thinking about f . The inequality above can be regarded as saying
that, for an average ψ ∈ Ψ, F has a certain correlation with the function
Gψ : φ 
→ G(φ, ψ). This is significant, because the functions Gψ have a special
form, as the next lemma shows.
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Lemma 6.4. Each function Gψ : Φ → [−1, 1] defined above can be written
as a product of A-functions over sets A ⊂ B0 of size k − 1.

Proof. By definition, Gψ(φ) =
∏

B∈B,B �=B0
fB(φ, ψ). Now fB(φ, ψ) de-

pends on (φ, ψ)(B) = φ(B ∩ B0) ∪ ψ(B ∩ B1) only. Therefore, if ψ is fixed,
fB(φ, ψ) depends on φ(B ∩ B0) only. Thus, the function φ 
→ fB(φ, ψ) is a
(B ∩ B0)-function defined on Φ. Since B 	= B0, |B ∩ B0| � k − 1. This proves
that Gψ is a product of A-functions over sets A of size at most k − 1. How-
ever, if B ⊂ A, then the product of a B-function with an A-function is still an
A-function. From this simple observation it now follows that Gψ is a product
of A-functions over sets A of size equal to k − 1. �

Our next task is to construct some new functions Eψ out of the Gψ that
have very similar properties but take values 0, 1 and −1 only.

Lemma 6.5. If the inequality (∗) holds, then there exist functions Eψ :
Φ → {−1, 0, 1}, one for each ψ ∈ Ψ, with the following properties. First, Eψ(φ)
is nonzero only if (φ, ψ) ∈ Hom(K,H). Second, each Eψ can be written as a
product of {−1, 0, 1}-valued A-functions over subsets A ⊂ B0 of size k − 1.
Third,

Eφ∈ΦEψ∈ΨF (φ)Eψ(φ) > η
∏
A∈K

δA .

Proof. Let us fix ψ ∈ Ψ and consider the function G = Gψ. By Lemma
6.4 we can write it as a product of A-functions, where each A in the product is
a subset of B0 of size k − 1. There are k such sets, namely A1, . . . , Ak, where
for each i we set Ai = B0 \ {(i, 0)}. So we can write G(φ) =

∏k
i=1 gi(φ) with

gi an Ai-function for each i.
Now define an Ai-function ui : Φ → {−1, 0, 1} randomly in the following

natural way. Say that two maps φ and φ′ are equivalent if φ(Ai) = φ′(Ai) and
choose one map from each equivalence class. Let φ be one of these represen-
tatives. If gi(φ) � 0 then let ui(φ) equal 1 with probability gi(φ) and 0 with
probability 1 − gi(φ). If gi(φ) < 0 then let ui(φ) equal −1 with probability
−gi(φ) and 0 with probability 1+gi(φ). Then the expectation of ui(φ) is gi(φ).
If φ′ is equivalent to φ then let ui(φ′) = ui(φ).

Do the same for each equivalence class and make all the random choices
independently. Finally, for each φ ∈ Φ let Eψ(φ) =

∏k
i=1 ui(φ).

Now Eψ(φ) can be nonzero only if ui(φ) 	= 0 for every i, and this is the case
(with probability 1) only if gi(φ) 	= 0 for every i, and hence only if G(φ) 	= 0.
We defined G(φ) to be Gψ(φ) =

∏
B∈B,B �=B0

fB(φ, ψ). But fB(φ, ψ) = 0
unless (φ, ψ)(B) ∈ H∗([k]), and this is true only if (φ, ψ)(C) ∈ H for every
proper subset C of B. Therefore this product is nonzero only if (φ, ψ) is a
homomorphism from K to H.
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Since the choices of the different functions ui were made independently
and the expectation of ui(φ) is gi(φ), the expectation of u1(φ) . . . uk(φ) is
g1(φ) . . . gk(φ) = Gψ(φ). Therefore, by linearity of expectation, the expecta-
tion of EφEψF (φ)Eψ(φ) is EφEψF (φ)Gψ(φ), which we have assumed to be at
least η

∏
A∈K δA. It follows that we can choose functions Eψ with the desired

properties.

Lemma 6.6. For each ψ ∈ Ψ let Eψ be the function constructed in
Lemma 6.5, and let D be the double octahedron chain introduced before the
statement of Lemma 6.3. Then

Eφ∈Φ

(
Eψ∈ΨEψ(φ)

)2
� 2

∏
A∈D

δA .

Proof. The left-hand side of the inequality we wish to prove can be rewrit-
ten

Eφ∈ΦEψ1,ψ2∈ΨEψ1(φ)Eψ2(φ) .

By Lemma 6.5, Eψ1(φ)Eψ2(φ) is nonzero if and only if (φ, ψ1) and (φ, ψ2)
belong to Hom(K,H). Therefore, this sum is at most the probability, for a
random triple (φ, ψ1, ψ2) ∈ Φ × Ψ2, that both (φ, ψ1) and (φ, ψ2) belong to
Hom(K,H).

In order to estimate this probability, we shall apply the counting lemma
to the chain D. Every edge of D is a proper subset of either B0∪B1 or B0∪B2.
Let K1 be the set of all edges of the first kind and let K2 be the set of all edges
of the second kind. Both K1 and K2 are chains and they intersect in a chain
that consists of all proper subsets of B0. Moreover, K1 is essentially the same
chain as K (formally, it has different vertex sets but the edges are the same).
As for K2, it is isomorphic to K in the following sense. Let γ be the bijection
from B0 ∪ B2 to B0 ∪ B1 that takes (i, 0) to (i, 0) and (i, 2) to (i, 1). Then A

is an edge of K2 if and only if γ(A) is an edge of K.
Let Θ be the set of all k-partite functions from V1 ∪ · · · ∪ Vk (the vertex

set of D) to X1 ∪ · · · ∪ Xk. There is a one-to-one correspondence between Θ
and Φ × Ψ × Ψ that takes θ ∈ Θ to (φ, ψ1, ψ2 ◦ γ), where φ, ψ1 and ψ2 are
the restrictions of θ to B0, B1 and B2, respectively. Since D = K1 ∪ K2, a
map θ ∈ Θ belongs to Hom(D,H) if and only if (φ, ψ1) belongs to Hom(K1,H)
and (φ, ψ2) belongs to Hom(K2,H). But this is true if and only if (φ, ψ1) and
(φ, ψ2 ◦ γ) belong to Hom(K,H). (Note that ψ2 ◦ γ here is the ψ2 in the sum
that we are estimating.)

What this shows is that the probability that we wish to estimate is equal
to the probability that a random θ ∈ Θ is a homomorphism from D to H.
Since we are assuming that H is (ε,D, k−1)-quasirandom and that ε � |D|−1,
the counting lemma (Corollary 5.3) implies that this is at most 2

∏
A∈D δA =

2
∏

A∈D δA, which proves the lemma.
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Our next task is to show that we can make a small selection of the functions
Eψ and keep properties similar to those proved in the last two lemmas. The
selection will be done in the obvious way: randomly.

Lemma 6.7. Let δ =
∏

A∈D δA, let β =
∏

A∈K δA and let r � δ−1 be
a positive integer. Then there exist functions E1, . . . , Er from Φ to {−1, 0, 1}
with the following three properties.

(i) Each function Ei is a product of {−1, 0, 1}-valued A-functions over sub-
sets A ⊂ B0 of size k − 1.

(ii) For each i and each φ ∈ Φ, Ei(φ) is nonzero only if φ(B0) ∈ H∗([k]).

(iii) Er
i=1Eφ∈ΦF (φ)Ei(φ) � (η/2)β.

(iv) Eφ∈Φ

(
Er

i=1Ei(φ)
)2

� (8δ/ηβ)Er
i=1Eφ∈ΦF (φ)Ei(φ).

Proof. For each i let Ei be one of the functions Eψ, where ψ is chosen
uniformly at random from Ψ. Let the choices be independent (so, in particular,
the Ei are not necessarily distinct, though they probably will be). Then it
follows from Lemma 6.5 that property (i) holds, and also that the expectation
of Er

i=1Eφ∈ΦF (φ)Ei(φ) is at least ηβ.

We now want to estimate the expectation of Eφ∈Φ

(
Er

i=1Ei(φ)
)2

, and for
this we shall use Lemma 6.2, the technical lemma from the beginning of the
section. Set n = |Ψ| = |Φ| and let the vectors v1, . . . , vn be the functions Eψ,
which we regard as elements of L2(Φ). Lemma 6.6 tells us that

∥∥Er
i=1vi

∥∥2

2
� 2δ.

Therefore, Lemma 6.2 tells us that the expectation of
∥∥Er

i=1Ei

∥∥2

2
, which is the

same as the expectation of Eφ∈Φ

(
Er

i=1Ei(φ)
)2

, is at most 4δ.
It follows that the expectation of

8δEr
i=1Eφ∈ΦF (φ)Ei(φ) − ηβEφ∈Φ

(
Er

i=1Ei(φ)
)2

is at least 8ηβδ − 4ηβδ = 4ηβδ. Therefore there must be some choice of the
functions E1, . . . , Er such that the inequalities (iii) and (iv) are satisfied.

Since each Ei is one of the functions Eψ, Lemma 6.5 implies that Ei(φ) is
nonzero only if (φ, ψ) ∈ Hom(K,H) for some ψ ∈ Ψ. But a necessary condition
for this is that φ(B0) ∈ H∗([k]), and so property (ii) is true as well.

Proof of Lemma 6.3. For each i let us write Ei as a product
∏k

j=1 Eij ,
where Eij is a {−1, 0, 1}-valued Aj-function. (As in the proof of Lemma 6.5,
Aj is the set B0 \ {(j, 0)}.)

For each j � k we can partition the part Hj of H into at most 3r sets,
such that on each of these sets the function Eij is constant for every i � r. Let
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Z1, . . . , ZN be the corresponding induced partition of H∗([k]). (This concept
was defined just before the statement of Lemma 6.3.) Then every function Ei

is constant on every cell Zj , from which it follows that the function g(φ) =
Er

i=1Ei(φ) is constant on every cell Zj . (Here we are implicitly thinking of g

as a function of φ(B0) and therefore defined on H∗([k]).)
With the help of Lemma 6.7, we are now in a position to apply Lemma

6.1. Property (iii) of Lemma 6.7 tells us that 〈F, g〉 � (η/2)β, and property
(iv) tells us that 〈F, g〉/‖g‖2

2 � ηβ/8δ.
Let U be the set of all φ ∈ Φ such that φ(B0) ∈ H∗([k]). Then the map

φ 
→ φ(B0) is a bijection between U and H∗([k]), so we can regard Z1, . . . , ZN

as a partition of U , and we can also regard F and g as functions defined on
U . If we do so, then their L2-norms and inner products change: now we have
〈F, g〉 � (η/2)β/ζ, where ζ is the density of U in Φ, while the ratio 〈F, g〉/‖g‖2

2

remains the same at � ηβ/8δ.
Lemma 6.1 and these estimates tell us that the mean-square density of

F with respect to this partition of U is at least (ηβ/2ζ)(ηβ/8δ) = η2β2/16δζ.
By Lemma 5.2 (the counting lemma), ζ � 2

∏
A�B0

δA. Recall that every set
A � B0 is the index of precisely 2|A|+1−1 sets in D and 2|A| sets in K. It follows
that β2 = δ

∏
A�B0

δA � δζ/2. Therefore, the mean-square density of F with
respect to the partition Z1, . . . , ZN is at least η2/32. Since F (φ) = f(φ(B0)),
this statement is equivalent to the statement of Lemma 6.3.

Corollary 6.8. Let H be a k-partite (k − 1)-chain with vertex sets
X1, . . . , Xk, let D be the double octahedron, let δ =

∏
A∈D δA and let r � δ−1

be a positive integer. Suppose that ε � |D|−1 and that H is (ε,D, k − 1)-
quasirandom. Let Hk be a k-partite k-uniform hypergraph with vertex sets
X1, . . . , Xk, let the density of Hk relative to H (that is, the quantity
|Hk|/|H∗([k])) be δ[k] and suppose that Hk is not η-quasirandom relative to H.
Let H be the set of all edges of H of size k−1 and let H1, . . . , Hk be the k parts
of H. Then there are partitions of the Hi into at most 3r sets each such that
the mean-square density of (the characteristic function of ) Hk with respect to
the induced partition of H∗([k]) is at least δ2

[k] + η2/32.

Proof. Let f : H∗([k]) → [−1, 1] be the function Hk − δ[k]. Then the
statement that Hk is not η-quasirandom relative to H is, by definition, the
statement that f is not η-quasirandom relative to H. Therefore, by Lemma
6.3, we can find partitions of the required kind for which the mean-square
density of f with respect to the induced partition of H∗([k]) is at least η2/32.

Let Z1, . . . , ZN be the induced partition of H∗([k]) and for each (x1, . . . , xk)
∈ Zi let G(x1, . . . , xk) = |Hk ∩ Zi|/|Zi|. Then the mean of G is the same as
the mean of Hk, namely δ[k]. The value that G takes in Zi can also be writ-
ten as δ[k] + Ex∈Zi

f(x), so the expectation of (G − δ[k])2, which is also the
mean-square density of G − δ[k] (since G is constant on the cells Zi), is the



HYPERGRAPH REGULARITY 935

mean-square density of f . But it is also the variance of G, so by the usual
formula varX = EX2 − (EX)2 we find that the mean-square density of G is
δ2
[k] plus the mean-square density of f . (Here we have again used the fact that

G is constant on cells, so that the mean-square density of G is just EG2.) The
result follows.

7. The statement of a regularity lemma for r-partite chains

Corollary 6.8 is stage one of the proof of our regularity lemma. In this
short section we will introduce some definitions and state the regularity lemma
itself. The proof (or rather, stage two of the proof) will be given in Section 9.

Broadly speaking, the result says that we can take a k-uniform hypergraph
H, regard it as a chain (by adding all subsets of edges of H) and decompose
that chain into subchains almost all of which are quasirandom. This is a
useful thing to do, because Corollary 5.3 gives us a good understanding of
quasirandom chains. Thus, the regularity lemma and counting lemma combine
to allow us to decompose any (dense) k-uniform hypergraph into pieces that we
can control. In the final section of the paper we shall exploit this by proving
a generalization of Theorems 1.3 and 1.6 to k-uniform hypergraphs, which
implies the multidimensional Szemerédi theorem.

Our principal aim will be to understand a certain (k+1)-partite k-uniform
hypergraph. However, for the purposes of formulating a suitable inductive hy-
pothesis it is helpful to prove a result that is more general in two ways. First
of all, we shall look at r-partite k-uniform hypergraphs. Secondly, rather
than looking at single hypergraphs we shall look at partitions. To be pre-
cise, let X1, . . . , Xr be a sequence of finite sets. Given any subset A ⊂ [r],
A = {i1, . . . , is}, let K(A) be the complete s-uniform hypergraph on the sets
Xi1 , . . . , Xis

, that is, the hypergraph consisting of all subsets of X1 ∪ · · · ∪ Xr

that intersect Xi in a singleton if i ∈ A and are disjoint from Xi otherwise.
For each s � r, the complete s-uniform hypergraph Ks(X1, . . . , Xr) on the sets
X1, . . . , Xr is the union of the hypergraphs K(A) over all sets A ⊂ [r] of size s.
Finally, the complete k-chain on X1, . . . , Xr, denoted Kk(X1, . . . , Xr), is the
union of all K(A) such that A has cardinality at most k: that is, it consists
of all subsets of X1 ∪ · · · ∪Xr of size at most k that intersect each Xi at most
once.

To form an arbitrary r-partite s-uniform hypergraph H with vertex sets
X1, . . . , Xr, one can choose, for each A ⊂ [r] of size s, a subset H(A) ⊂ K(A)
and let H be the union of these hypergraphs H(A). If we want to, we can regard
each H(A) as a partition of K(A) into the two sets H(A) and K(A) \ H(A).
Our regularity lemma will be concerned with more general partitions, but it
will imply a result for hypergraphs as an easy corollary.
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Suppose now that for every subset A ⊂ [r] of size at most k we have a
partition of the hypergraph K(A). If B and B′ are two edges of this hypergraph
(that is, if they are two sets of index A), let us write B ∼A B′ if B and B′ lie
in the same cell of the partition, and say that B and B′ are A-equivalent.

One can use these equivalence relations to define finer ones as follows.
Given two sets B, B′ of index A and given any subset C ⊂ A, there are unique
subsets D ⊂ B and D′ ⊂ B′ of index C. Let us say that B and B′ are
C-equivalent if D and D′ are. Then let us say that B and B′ are strongly
equivalent if they are C-equivalent for every subset C ⊂ A. In other words, we
ask not only for B to belong to the same cell B′, but also for every subset of B to
belong to the same cell as the corresponding subset of B′ in the corresponding
partition.

Given this system of equivalence relations, we can define a collection of
chains as follows. For every r-tuple x = (x1, . . . , xr) ∈ X1 ×· · ·×Xr and every
set A of size at most k, let x(A) be the set {xi : i ∈ A} and let H(A, x) be the
hypergraph consisting of all sets B that are strongly equivalent to x(A).

Lemma 7.1. The union H = H(x) of the hypergraphs H(A, x) over all
sets A of size at most k is an r-partite k-chain.

Proof. Let B ∈ H(A, x) and let D ⊂ B. Let C be the index of D. Since
B is strongly equivalent to x(A), D is strongly equivalent to x(C). Therefore
D ∈ H(C, x) and the lemma is proved.

Lemma 7.2. Let x = (x1, . . . , xr) and y = (y1, . . . , yr) belong to the
set X1 × · · · × Xr and let H(x) and H(y) be the two chains constructed as in
Lemma 7.1. Then for every set A ⊂ [r] of size at most k, the hypergraphs
H(A, x) and H(A, y) are either equal or disjoint.

Proof. Suppose that B is a set of index A and that B ∈ H(A, x)∩H(A, y).
Then B is strongly equivalent to both x(A) and y(A), so these two sets are
strongly equivalent to each other. It follows that H(A, x) = H(A, y).

Let us call two r-partite k-chains H and H′, with the same vertex sets
X1, . . . , Xr, compatible if, for every subset A ⊂ [r] of size at most k, the hyper-
graphs H(A) and H ′(A) are either equal or disjoint. By a chain decomposition
of the complete r-partite k-chain Kk(X1, . . . , Xr) we mean a set {H1, . . . ,HN}
of r-partite k-chains with the following two properties:

(i) For every i and j the chains Hi and Hj are compatible;

(ii) For every sequence x = (x1, . . . , xr) ∈ X1 × · · · × Xr there is pre-
cisely one chain from the set {H1, . . . ,HN} that contains every subset of
{x1, . . . , xr} of size at most k.



HYPERGRAPH REGULARITY 937

Note that a chain decomposition is not a partition of Kk(X1, . . . , Xr). There is
no interesting way to partition Kk(X1, . . . , Xr) into subchains, as a moment’s
thought will reveal. Lemmas 7.1 and 7.2 show that the chains H(x) form a
chain decomposition of Kk(X1, . . . , Xr). (It may be that H(x) = H(y), but this
does not contradict (ii) because we have carefully defined a chain decomposition
to be a set of chains rather than a sequence of chains.)

We are now ready to state our regularity lemma.

Theorem 7.3. Let J be an r-partite k-chain with vertex sets E1, . . . , Er

and let 0 < ε � |J |−1. Let X1, . . . , Xr be a sequence of finite sets and for each
subset A ⊂ [r] of size at most k let P(A) be a partition of the hypergraph K(A)
into nA sets. Then there are refinements Q(A) of the partitions P(A) leading
to a chain decomposition of Kk(X1, . . . , Xr) with the following property : if x =
(x1, . . . , xr) is a randomly chosen element of X1×· · ·×Xr then the probability
that the chain H(x) is (ε,J , k)-quasirandom is at least 1−ε. Moreover, Q(A) =
P(A) when |A| = k, and for general A the number of sets mA in the partition
Q(A) depends only on ε, J , k and the numbers nC .

Before we start on the proof, let us comment on how we shall actually use
Theorem 7.3. We will be presented with an r-partite k-uniform hypergraph
H with vertex sets X1, . . . , Xr. All the

(
r
k

)
k-partite parts H(A) of H will

have density at least a certain fixed δ > 0. We will then apply Theorem
7.3 to the partitions P(A) defined as follows. If |A| = k then P(A) will be
{H(A), K(A) \H(A)}. If |A| < k then it will be the trivial partition {K(A)}.
In this case, the result will tell us that we can find partitions Q(A) such
that almost all edges of H lie in quasirandom chains from the decomposition
determined by the partitions Q(A).

8. Basic facts about partitions and mean-square density

In order to prove a regularity lemma for systems of partitions, we need to
generalize the notion of mean-square density as follows. Let P = {X1, . . . , Xr}
and Q = {Y1, . . . , Ys} be two partitions of a finite set U . Then the mean-square
density of P with respect to Q is the quantity

r∑
i=1

s∑
j=1

|Yj |
|U |

( |Xi ∩ Yj |
|Yj |

)2

,

that is, the sum of all the mean-square densities of the sets Xi (by which we
mean the mean-square densities of their characteristic functions, as defined in
Section 6) with respect to Q.
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Since the numbers |Xi ∩ Yj |/|Yj | are nonnegative and sum to 1, we have
the simple upper bound

r∑
i=1

s∑
j=1

|Yj |
|U |

( |Xi ∩ Yj |
|Yj |

)2

�
s∑

j=1

|Yj |
|U | = 1

for this quantity. An alternative way of seeing this, which will be helpful later,
is to notice that each u ∈ U is contained in a unique Xi and a unique Yj ,
and the mean-square density of P with respect to Q is the expected value of
|Xi ∩ Yj |/|Yj |.

Lemma 8.1. Let P = {X1, . . . , Xr} and Q = {Y1, . . . , Ys} be two parti-
tions of a finite set U , and let Q′ be a refinement of Q. Then the mean-square
density of P with respect to Q′ is at least as great as the mean-square density
of P with respect to Q.

Proof. Let the sets that make up Q′ be called Yjk, where Yj =
⋃

k Yjk.
For each j and k define γj and γjk by |Yj | = γj |U | and |Yjk| = γjk|U |. For
each i, j and k let dij = |Xi ∩ Yj |/|Yj | and let dijk = |Xi ∩ Yjk|/|Yjk|. Then∑

k

dijk|Yjk| =
∑

k

|Xi ∩ Yjk| = |Xi ∩ Yj | = dij |Yj | ,

from which it follows that
∑

k γjkdijk = γjdij for every i and j.
The mean-square density of P with respect to Q is

∑
i

∑
j γjd

2
ij , which is

therefore equal to
∑

i

∑
j

γ−1
j

(∑
k

γjkdijk

)2
=

∑
i

∑
j

(∑
k

γ
−1/2
j γjkdijk

)2

�
∑

i

∑
j

(∑
k

γ−1
j γjk

)(∑
k

γjkd
2
ijk

)
,

by the Cauchy-Schwarz inequality. Since
∑

k γ−1
j γjk = 1 for every j, this equals∑

i

∑
j

∑
k γjkd

2
ijk, which is the mean-square density of P with respect to Q′.

The next lemma is a simple, but somewhat irritating, technicality.

Lemma 8.2. Let ε > 0, let X1, . . . , Xr be a sequence of finite sets, let
K(X1, . . . , Xr) be the complete r-partite k-chain with vertex sets X1, . . . , Xr

and for each A ⊂ {1, 2, . . . , r} of size at most k let P(A) be a partition of
K(A) into nA sets. For each x = (x1, . . . , xr) ∈ X1 × · · · × Xr and each A of
size at most k let δA,x be the relative density of the hypergraph H(A, x) in the
chain H(x) (defined in the previous section). Then if (x1, . . . , xr) is chosen
randomly from X1 × · · · × Xr and A ⊂ {1, 2, . . . , r} has size at most k, the
probability that δA,x < εn−1

A is at most ε.
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Proof. Let B and B′ be two sets of index A. Let us call them weakly
equivalent, and write B ∼∗ B′, if B is C-equivalent to B′ for every proper
subset C of A. Then B is strongly equivalent to B′ if and only if B ∼∗ B′ and
B ∼A B′.

The relative density δA,x is simply the probability that a set B of index A

is strongly equivalent to x(A) given that it is weakly equivalent to x(A). Since
K(A) is partitioned into nA sets, the number of strong equivalence classes in
each weak equivalence class is at most nA. Therefore, for any weak equivalence
class T , the probability that x(A) lies in a strong equivalence class of size less
than εn−1

A |T | given that it lies in T is at most ε. If x(A) lies in a strong
equivalence class of size at least εn−1

A |T |, then the probability that B is in
the same strong equivalence class given that B is in T is at least εn−1

A , which
implies that δA,x � εn−1

A .
Therefore, for every T the conditional probability that δA,x < εn−1

A given
that x(A) ∈ T is less than ε. The result follows.

We now have all the ingredients needed to prove our regularity lemma.

9. The proof of Theorem 7.3

It will be convenient for the proof if for each set A ⊂ [r] of size at most
k, the chain J contains a copy DA of the double octahedron of dimension |A|.
Since the result for J follows from the result for any larger chain, we are free
to assume that this is the case.

We shall first describe an inductive procedure for producing better and
better systems of partitions when the conclusion of Theorem 7.3 does not hold.
Then we shall prove that the procedure terminates.

We shall need one piece of notation. Let X1, . . . , Xr be a sequence of finite
sets and for each subset C ⊂ [r] of size at most k let P(C) be a partition of
the hypergraph K(C). For each set A ⊂ [r] of size at most k we shall write
σA(P) for the mean-square density of the partition P(A) with respect to the
partition of K(A) into weak equivalence classes with respect to the partition
system P. (These were defined in the proof of Lemma 8.2 above.)

Lemma 9.1. Let J be an r-partite k-chain with vertex sets E1, . . . , Er

and let 0 < ε � |J |−1. Let X1, . . . , Xr be a sequence of finite sets and for each
subset C ⊂ [r] of size at most k let P(C) be a partition of the hypergraph K(C)
into nC sets. For each x = (x1, . . . , xr), let H(x) be the chain arising from x

and the corresponding chain decomposition of Kk(X1, . . . , Xr). Suppose that
when x is chosen randomly from X1 × · · · × Xr the probability that H(x) fails
to be (ε,J , k)-quasirandom is at least ε. Then there are a set A of size s � k

and a system of refinements Q(C) of the partitions P(C) with the following
properties.
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(i) Q(C) = P(C) and σC(Q) � σC(P) except if C ⊂ A and |C| = s − 1.

(ii) σA(Q) exceeds σA(P) by a nonzero amount that depends only on J , ε, k

and the numbers of cells in the partitions P(B) with |B| � s.

(iii) When C ⊂ A and |C| = s − 1, the number of cells in the partition C

depends only on ε, k and the numbers of cells in the partitions P(B)
with B ⊂ C.

Proof. For each set C, let tC be the number of cells in the partition P(C)
of K(C). Let γ be defined by the equation 2γ

∑k
i=1

(
r
i

)
= ε. By Lemma 8.2,

the probability that there exists a subset C ⊂ [r] of size at most k such that
δC,x < γt−1

A is at most γ
∑k

i=1

(
r
i

)
= ε/2. Therefore, with probability at least

ε/2, the chain H(x) fails to be (ε,J , k)-quasirandom but for each C the relative
density δC,x is at least γt−1

C .
Let η2, . . . , ηk and ε2, . . . , εk be the sequences that appear in the definition

of quasirandom chains (in subsection 3.7), and note that ηs depends only on ε

and the densities δB,x with |B| � s. Since δC,x � γt−1
C for every C, it follows

that ηs is bounded below by a function of ε and all those tB for which |B| � s.
If H(x) fails to be (ε,J , k)-quasirandom, then there must be a minimal

s such that it fails to be (εs,J , s)-quasirandom, and for that s there must be
a set A of size s such that H(A, x) is not ηs-quasirandom relative to H(x),
while H(x) is (εs−1,J , s − 1)-quasirandom. Since there are at most

∑k
i=1

(
r
i

)
possibilities for this set A we may deduce from the last paragraph but one that
there exists a set A of size s � k such that, with probability at least γ, the
chain H(x) is (εs−1,J , s− 1)-quasirandom but H(A, x) is not ηs-quasirandom
relative to H(x) and δC,x � γt−1

C for every C.
Let us call x irregular if H(x) has these two properties. Given an irregular

x, let H−(A, x) be the s-partite (s − 1)-chain made up of all the hypergraphs
H(C, x) with C � A. We can now apply Corollary 6.8 to the chain H−(A, x)
and to the s-uniform hypergraph H(A, x). (Thus, the k of Corollary 6.8 is equal
to s here.) Since εs−1 � ε � |J |−1 and DA ⊂ J , the conditions hold for the
corollary to be applicable, with k replaced by s. The hypergraphs H1, . . . , Hk

in the statement of Corollary 6.8 are, in this context, the hypergraphs H(A′, x),
where A′ ranges over all subsets of A of size s − 1.

For each C � A we know that δC,x � γt−1
C . Therefore, if r′ is a positive

integer that is at least
∏

C∈DA
γ−1tC , then for each subset A′ ⊂ A of size s− 1

we can find a partition of H(A′, x) into at most 3r′
subsets, in such a way

that the mean-square density of H(A, x) with respect to the induced partition
of H∗(A, x) is at least δ2

A,x + η2
s/32. (Here, H∗(A, x) denotes the hypergraph

consisting of all sets Y of index A such that every proper subset of Y belongs
to H−(A, x).)

Let H(A, x) be the s-partite s-chain H(A, x) ∪ H−(A, x). The number
of distinct possibilities for H(A, x) as x varies is at most

∏
C⊂A tC . For each
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one such that x is irregular (if H(A, x) = H(A, y) and x is irregular then y is
irregular) choose a partition of the hypergraphs H(A′, x) as above. In general,
it will often happen that H(A, x) 	= H(A, y) but H(A′, x) = H(A′, y), so each
hypergraph H(A′, x) may be partitioned many times. However, the number of
distinct chains H(A, x) is at most TA =

∏
C⊂A tC , so we can find a common

refinement of all the partitions of H(A′, x) into at most 3r′TA sets.
For each A′ ⊂ A of size s − 1 let Q(A′) be the union of all these common

refinements, over all the different sets H(A′, x). There are at most TA′ of these
sets, each partitioned into at most 3r′TA sets, so that Q(A′) is a partition of
K(A′) into at most TA′3r′TA sets, and it refines the partition P(A′). For all
other sets A, let Q(A) = P(A).

By Lemma 8.1, given any irregular x, the mean-square density of H(A, x)
with respect to the partition of H∗(A, x) that is induced by the refined parti-
tions of the hypergraphs H(A′, x) is still at least δ2

A,x +η2
s/32. As for a regular

x, Lemma 8.1 tells us that the mean-square density of H(A, x) with respect to
the refined partition of H(x)∗(A) is still at least δ2

A,x.
Let σA(P) be the mean-square density of the partition P(A) with respect

to the partition of K(A) into weak equivalence classes coming from the par-
titions P(C). Let σA(Q) be the mean-square density of P(A) = Q(A) with
respect to the partition of K(A) arising from Q in the same way. By the re-
mark preceding Lemma 8.1, σA(P) is the expectation of δA,y over all sequences
y = (y1, . . . , yr). Let us write this as δA,y(P) since it depends on the system
of partitions P(C). Thus, σA(P) is the expectation of δA,x(P) and similarly
for Q.

What we have just shown is that if x is irregular, then E[δA,y(Q)|y ∈
H(A, x)] is at least δA,y(P)2 + η2

s/32, which equals E[δA,y(P)|y ∈ H(A, x)] +
η2

s/32. If x is regular, then this conditional expectation is at least δA,y(P)2, or
E[δA,y(P)|y ∈ H(A, x)]. Since the probability that x is irregular is at least γ,
this shows that E[δA,y(Q)] � E[δA,y(P)] + γη2

s/32. In other words, σA(Q) �
σA(P) + γη2

s/32.
To summarize: if the conclusion of Theorem 7.3 is not true for the parti-

tions P(C) then there are a set A of size s � k and a system of refinements
Q(C) such that Q(C) = P(C) except when C is a subset of A of size s−1, and
such that σA(Q) � σA(P)+γη2

s/32. For a general C, we have σC(Q) � σC(P)
except if C ⊂ A and |C| = s − 1. This is because if C is any other set, then
Q(C) = P(C) and all other partitions have either been refined or stayed the
same. Thus, the lemma is proved.

To complete the proof of Theorem 7.3, we must argue that this process of
successive refinement cannot be iterated forever.

Imagine, then, that we are trying to find an infinite sequence of refinements
of the kind we are given by Lemma 9.1. The difficulty we face is that the mean-
square densities σC(P) tend to increase, and there is always one set A for which
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σA(P) increases fairly substantially. Our only hope is that for the subsets C

of A obtained by removing one element, the mean-square densities can drop
considerably.

The trouble with that, however, is that the only way of getting the mean-
square density σC(P) to drop is by getting the mean-square density of some
larger set σA(P) to increase.

To see why this observation leads to a proof, suppose that we do indeed
have an infinite sequence of refinements of the kind given to us by Lemma 9.1.
Then there must be a set A of maximal cardinality s that is used infinitely
many times. It follows that there must be some point in the sequence after
which A is used infinitely many times but no set of larger cardinality is ever
used. After that point, the only partitions P(C) that change are for sets B of
cardinality less than s, by (i) of Lemma 9.1. It follows from (ii) that after that
point the quantity σA(Q) increases infinitely often by an amount that does
not change as the iteration proceeds. This is a contradiction, since σA(Q) is
bounded above by 1. The proof of the regularity lemma is complete.

A careful examination of the above argument shows that the bound that
arises from it increases by one level in the Ackermann hierarchy each time k

increases by 1, except at the jump from the trivial case k = 1 to the first
nontrivial case k = 2, when we go from nothing to a bound of tower type. In
particular, since we shall need k-uniform hypergraphs to prove the multidi-
mensional Szemerédi theorem for sets of size k+1, our bound for that theorem
is of Ackermann type. The only cases where better bounds are known are the
one-dimensional case, which is treated in [G1], and the case of sets of size 3,
where a trebly exponential bound was obtained by Shkredov [S].

10. Hypergraphs with few simplices

Now that we have established counting and regularity lemmas we have
the tools necessary to prove the generalization of Theorems 1.3 and 1.6 to
k-uniform hypergraphs.

Theorem 10.1. Let k be a positive integer. Then for every a > 0 there
exists c > 0 with the following property. Let H be a (k + 1)-partite k-uniform
hypergraph with vertex sets X1, . . . , Xk+1, and let Ni be the size of Xi. Suppose
that H contains at most c

∏k+1
i=1 Ni simplices. Then for each i � k + 1 one can

remove at most a
∏

j �=i Nj edges of H from
∏

j �=i Xj in such a way that after
the removals one is left with a hypergraph that is simplex-free

Proof. For each subset A ⊂ [k + 1] of size at most k, define a partition
P(A) of K(A) as follows. If |A| < k then P(A) consists of the single set
K(A). If |A| = k then it consists of the sets H(A) and K(A) \ H(A). Now
apply Theorem 7.3 to this system of partitions, with J = [k + 1](�k) and
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ε = min{|J |−1/2, a/2}, obtaining for each A ∈ J a partition Q(A) of K(A)
into mA sets.

If x = (x1, . . . , xk+1) ∈ X1 × · · · × Xk+1 and H(x) is not (ε,J , k)-
quasirandom, then there must be some A of size s � k such that H(A, x)
is not ηs-quasirandom relative to H(x). There must be some i such that i /∈ A,
and if (y1, . . . , yk+1) is another sequence such that yj = xj when j 	= i, then
H(A, y) will also not be ηs-quasirandom relative to H(y). Therefore, since
H(x) is (ε,J , k)-quasirandom with probability at least 1−ε, there are at most
ε
∏

j �=i Nj elements of
∏

j �=i Xj that can be extended to sequences x such that
H(x) is not (ε,J , k)-quasirandom. Remove from H any such element.

Let γ be defined by γ
∑k

i=1

(
k+1

i

)
= a/2. Lemma 8.2 tells us that if

x = (x1, . . . , xk+1) is chosen randomly, then with probability at least 1 − a/2,
we have δA,x � γm−1

A for every A ∈ [k + 1](�k). Again, the event that this
happens for a particular A does not depend on the xi with i /∈ A. So for each
i there are at most a

∏
j �=i Nj/2 elements of

∏
j �=i Xj that can be extended to

sequences x for which δA,x < γm−1
A for some A ⊂ [k + 1] with i /∈ A. Once

again, remove all such elements from H.
For each i we have removed at most a

∏
j �=i Nj elements from H∩∏

j �=i Xj .
It remains to show that in the process we have either removed all simplices
from H, or else, for some c > 0 that depends on a only, there were at least
c
∏

j Nj simplices to start with.
Suppose, then, that after the removals there is still a simplex x =

(x1, . . . , xk+1), and consider the chain H(x). Then for every A ⊂ [k + 1]
of size k the following statements are true. First, the set x(A) is an element
of H (or else x would not be a simplex). Second, the hypergraph H(A, x)
is a subset of H (since x(A) ∈ H and the partition into strong equivalence
classes resulting from Q refines the partition P). Third, δC,x � γm−1

C for every
C ⊂ A (or else we would have removed x(A) from H). Finally, the chain H(x)
is (ε,J , k)-quasirandom (or else for some A of size k we would have removed
x(A) from H).

We now apply Corollary 5.3, the counting lemma for quasirandom chains.
It implies that the number of simplices in the chain H(x), which is the same as
the number of homomorphisms from J to H(x), is at least

∏
j Nj

∏
A∈J δA,x,

which is at least
∏

j Nj
∏

A∈J γm−1
A . But γ and the mA depend on a and k

only, so the result is proved.

Finally, let us deduce from this a multidimensional Szemerédi theorem.

Theorem 10.2. Let δ > 0 and k ∈ N. Then, if N is sufficiently large,
every subset A of the k-dimensional grid {1, 2, . . . , N}k of size at least δNk

contains a set of points of the form {a}∪{a+dei : 1 � i � k}, where e1, . . . , ek

is the standard basis of Rk and d is a nonzero integer.
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Proof. Suppose that A is a subset of {1, 2, . . . , N}k of size δNk, and
that A contains no configuration of the kind claimed. Define a (k + 1)-partite
k-graph Fk with vertex sets X1, . . . , Xk+1 as follows. If j � k then the elements
of Xj are hyperplanes of the form Pj,m = {(x1, . . . , xk) : xj = m} for some
integer m ∈ {1, 2, . . . , N}. If j = k + 1 then they are hyperplanes of the form
Qm = {(x1, . . . , xk) : x1 + · · · + xk = m} where m is an integer between k

and kN . The edges of Fk are sets of k hyperplanes from different sets Xj that
intersect in a point of A.

If Fk contains a simplex with vertices Pj,mj
and Qm, then the points

(m1, . . . , mk) and (m1, . . . , mk) + (m−∑k
i=1 mi)ej all belong to A. This gives

us a configuration of the desired kind except in the degenerate case where
m =

∑k
i=1 mi, which is the case where all k + 1 hyperplanes have a common

intersection. By our assumption on A, all the simplices in Fk are therefore
degenerate ones of this kind, which implies that there are at most δNk of
them.

Now |Xi| = N if i � k and |Xk+1| = kN . We can therefore apply
(the contrapositive of) Theorem 10.1 with c = N−1k−1. If N is sufficiently
large, then the resulting a is smaller than δ/2k, which implies that we can
remove fewer than δNk edges from the hypergraph Fk and thereby remove all
simplices. However, every edge of a degenerate simplex determines the point
of intersection of the k +1 hyperplanes and hence the simplex itself. It follows
that one must remove at least δNk edges to get rid of all simplices. This
contradiction proves the theorem.

The above result is a special case of the multidimensional Szemerédi the-
orem, but it is in fact equivalent to the whole theorem. This is a well-known
observation. We give a (slightly sketchy) proof below.

Theorem 10.3. For every δ > 0, every positive integer r and every
finite subset X ⊂ Zr there is a positive integer N such that every subset A of
the grid {1, 2, . . . , N}r of size at least δN r has a subset of the form a+ dX for
some positive integer d.

Proof. It is clearly enough to prove the result for sets X such that X =
−X, so all we actually need to ensure is that d 	= 0. A simple averaging
argument shows that we may also assume that X is not contained in any (r−1)-
dimensional subspace of Rr. Let the cardinality of X be k+1. Let φ be an affine
map that defines a bijection from the set {0, e1, . . . , ek} ⊂ Rk to X, regarded
as a subset of Rr. Another simple averaging argument allows us to find a grid
{1, 2, . . . , M}k, where M tends to infinity with N , as well as a point z ∈ Zr and
a constant η > 0 depending on δ and X only, such that z+φ(x) ∈ A for at least
ηMk points in {1, 2, . . . , M}k. Let B be the set of points with this property.
Thus, B has density at least η and Theorem 10.2 shows that B contains a set
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of the form w + c{0, e1, . . . , ek}. But then z + φ(w + c{0, e1, . . . , ek}) is a set
of the form a + dX and is also a subset of A. �

Concluding remarks. This paper has a slightly strange history, which
may be worth briefly outlining here. The main results were first obtained
in 2003, and a preprint circulated. I am very grateful indeed to Yoshiyasu
Ishigami, who read this preprint carefully and found an error which, though it
did not invalidate the approach, occurred early in the argument and therefore
necessitated changes throughout the paper. While thinking about how to go
about this rewriting, I discovered a much simpler proof of the counting lemma,
and in the end it seemed best, even if depressing, to rewrite the whole paper
(including the regularity part) from scratch.

I owe a second debt of gratitude to the two referees, who also read the
paper with great care. Not only did they save me from a large number of minor
errors, but they also made valuable suggestions about the presentation of the
paper. While thinking about how to respond to these suggestions I realized,
with a certain sense of déjà vu, that the sections on the counting lemma could
still be greatly improved. The argument that now appears is essentially the
same, but the notation has been changed and the triple induction slightly
reorganized, with the result that the proof is now shorter, clearer, and easier
to identify with the arguments presented in the special cases in Section 2. That
section, as was mentioned in the footnote at the beginning of it, was not in
the original version of the paper. The excellent idea of presenting some small
examples was suggested by one of the referees.

In 2005, Tao [T] gave another proof of the main result of this paper (The-
orem 10.1), and indeed of a slight generalization. He too proved regularity and
counting lemmas. His methods were more closely related to those of Nagle,
Rödl, Schacht and Skokan, but he introduced some new ideas and a different
language that led to considerably shorter proofs than theirs.

DPMMS, University of Cambridge, Cambridge, United Kingdom

E-mail address: W.T.Gowers@dpmms.cam.ac.uk

References

[FK] H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting
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