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Abstract

Motivated by studying Carleman’s inequality over the prime numbers and over the
reciprocal of the prime numbers, we consider the sequences {Cn}∞n=1 with general
term Cn =

∑n
k=1(p1 · · · pk)1/k/

∑n
k=1 pk and {C ′n}∞n=1 defined similarly by replacing

the numbers pk by 1/pk in Cn. Based on the recently obtained results concerning
the arithmetic and geometric means of the prime numbers, we obtain asymptotic
expansions and also explicit bounds for the sequences Cn and C ′n.

1. Introduction

For positive real numbers a1, . . . , an, Carleman’s inequality [6, 11] asserts that

n∑
k=1

(a1 · · · ak)
1
k ≤ e

n∑
k=1

ak. (1.1)

The constant e in the inequality is the best possible, that is, the inequality does

not always hold if e is replaced by a smaller number. However, this constant can

be improved for some particular sequences {an}∞n=1. In this paper we study this

possibility for sequences of prime numbers and their reciprocals. As usual, let pk
denotes the kth prime number. We define the sequences {Cn}∞n=1 and {C ′n}∞n=1

respectively by

Cn =

∑n
k=1 (p1 · · · pk)

1
k∑n

k=1 pk
, and C ′n =

∑n
k=1

(
1
p1
· · · 1

pk

) 1
k∑n

k=1
1
pk

.
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We denote by An and Gn the arithmetic and geometric means of the prime numbers

p1, . . . , pn, respectively. It is known [13] that

An =
pn
2

+O(n), and Gn =
pn
e

+O(n).

Also, we write Bn =
∑n

k=1 p
−1
k , for which we have Bn = log log n + O(1). These

approximations and the prime number theorem in the form pn ∼ n log n as n→∞
imply that

Cn =

∑n
k=1Gk

nAn
=

∑n
k=1(pk +O(k))

enAn
=
nAn +O(n2)

enAn
=

1

e
+O

(
1

log n

)
. (1.2)

Hence, the constant e of Carleman’s inequality over prime numbers is not the best

possible. In our first result, we obtain a more precise asymptotic formula of Cn

compared with Equation (1.2).

Theorem 1. As n→∞, we have

Cn =
1

e
− 1

e log n
+

log log n− 3

e log2 n
+O

(
(log log n)2

log3 n

)
.

Based on some explicit bounds concerning An and Gn in [13], and the nth prime

number pn in [14], recently the second author [12] showed that the inequalities

1

e
− 4

log n
< Cn <

1

e
+

4

log n
(1.3)

hold for every integer n ≥ 2. Our first goal is to improve the inequalities given

in Equation (1.3) in the direction of Theorem 1. In order to do this we use some

results of [4] to get the following lower and upper bound for Cn.

Theorem 2. We have

1

e
− 1

e log n
+

log log n− 5.485

e log2 n
< Cn <

1

e
− 1

e log n
+

log log n− 0.345

e log2 n
,

where the left-hand side inequality holds for every integer n ≥ 2 and the right-hand

side inequality is valid for every integer n ≥ 55.

To study Carleman’s inequality over the reciprocal of the prime numbers, first

we observe that Equation (1.1) asserts that

C ′n ≤ e

for every positive integer n. Considering the approximations Gn = pn/e+O(n) and

pn ∼ n log n, we get G−1n = e/pn +O(1/n log2 n). Hence,

C ′n =

∑n
k=1G

−1
k

Bn
=
eBn +O(1)

Bn
= e+O

(
1

log log n

)
.

Thus, the constant e in Equation (1.1) is the best possible for the sequence {C ′n}∞n=1.

We give the following explicit estimates for this sequence.
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Theorem 3. We have

e− 1.14951

log log n
< C ′n < e− 0.71884

log logn
, (1.4)

where the left-hand side inequality holds for every integer n ≥ 4 and the right-hand

side inequality is valid for every integer n ≥ 6.

Finally, we mention that computations running over the values of Cn and C ′n
lead us to formulate the following conjecture.

Conjecture 1. The sequence {Cn}∞n=1 is strictly increasing for n ≥ 298. Also, the

sequence {C ′n}∞n=1 is strictly increasing for n ≥ 1.

2. Proof of Theorem 1

In the following proof of Theorem 1, we use some recent asymptotic results, due to

the first author, concerning the sum of the first n prime numbers and the sums

n∑
k=1

pk

logj pk
,

where j ∈ {1, 2, 3}.

Proof of Theorem 1. By [5, Theorem 1.4], we have

n∑
k=1

pk =
n2

2

(
log n+ log2 n−

3

2
+

log2 n− 5
2

log n
−

(log2 n)2 − 7 log2 n+ 29
2

2 log2 n
+ s(n)

)
,

where log2 x = log log x and

s(n) = O

(
(log2 n)3

log3 n

)
.

Further, we use the power series for exp(x) to obtain

exp

(
1

log pk
+

3

log2 pk
+

13

log3 pk

)
= 1 +

1

log pk
+

7

2 log2 pk
+

97

6 log3 pk
+O

(
1

log4 pk

)
.

If we combine this with [4, Proposition 2.5], we get

eGk = pk

(
1− 1

log pk
− 5

2 log2 pk
− 61

6 log3 pk

)
+O

(
pk

log4 pk

)
.
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Hence

(eCn − 1)

n∑
k=1

pk

= −
n∑

k=1

pk
log pk

− 5

2

n∑
k=1

pk

log2 pk
− 61

6

n∑
k=1

pk

log3 pk
+O

(
n∑

k=1

pk

log4 pk

)
.

Now we use the asymptotic expansions obtained in [3, p. 9] to see that

(eCn − 1)

n∑
k=1

pk =
n2

2

(
−1− 3

2 log n
+

18 log2 n− 89

12 log2 n
+ r(n)

)
,

where

r(n) = O

(
(log2 n)2

log3 n

)
.

It follows that

eCn − 1 =
−1− 3

2 logn + 18 log2 n−89
12 log2 n

+ r(n)

log n+ log2 n− 3
2 +

log2 n− 5
2

logn − (log2 n)2−7 log2 n+ 29
2

2 log2 n
+ s(n)

.

A straightforward but exhausting calculation shows that

eCn − 1 = − 1

log n
+

log log n− 3

log2 n
+O

(
(log log n)2

log3 n

)
.

This completes the proof.

3. Proof of Theorem 2

In order to prove Theorem 2, we first note the following estimates for the sum of

the first n prime numbers. The first one is due to Dusart [8, Lemme 1.7] and the

second one due to the first author [5, Corollary 9.1].

Lemma 1 ([8, 5]). For every integer n ≥ 305 494, we have

n∑
k=1

pk >
n2

2

(
log n+ log log n− 3

2

)
, (3.1)

and for every integer n ≥ 115 149, we have

n∑
k=1

pk <
n2

2

(
log n+ log log n− 3

2
+

log log n− 5/2

log n

)
.
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In order to find the explicit estimates for Cn stated in Theorem 2, we also note

the following identities concerning the sums∑
p≤x

1

p log p
, and

∑
p≤x

1

p log2 p
.

Lemma 2. For every x ≥ 2, we have∑
p≤x

1

p log p
=

π(x)

x log x
+

∫ x

2

π(t)

(
1

t2 log t
+

1

t2 log2 t

)
dt, (3.2)

and ∑
p≤x

1

p log2 p
=

π(x)

x log2 x
+

∫ x

2

π(t)

(
1

t2 log2 t
+

2

t2 log3 t

)
dt. (3.3)

Proof. We set y = 3/2, g(t) = 1/(t log t), and a(n) = 1P(n) in [1, Theorem 4.2]

to obtain the first identity. In order to prove Equation (3.3), we set y = 3/2,

g(t) = 1/(t log2 t), and a(n) = 1P(n) in [1, Theorem 4.2].

Remark 1. The prime number theorem implies that the series∑
p∈P

1

p log p
, and

∑
p∈P

1

p log2 p
,

both converge. More precisely, Cohen [7, p. 6] showed that∑
p∈P

1

p log p
= 1.6366163233512608685696580039218636711 . . . . (3.4)

Further, Cohen used the method investigated in [7] to compute∑
p∈P

1

p log2 p
= 1.5209704399395008634614286286155795220 . . . . (3.5)

In the following proof of Theorem 2, we use Lemma 1 and an upper bound for

the logarithmic integral li(x) which is defined for x > 1 as

li(x) =

∫ x

0

dt

log t
= lim

ε→0+

{∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

}
.

Proof of Theorem 2. First we show that the inequality

Cn >
1

e
− 1

e log n
+

log log n− 5.485

e log2 n
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holds for every integer n ≥ 2. Let n0 = 400 765 and consider first the case where

n ≥ n0. Using [4, Corollary 5.7], we have

n∑
k=1

Gk > G1 +G2 +
1

e

n∑
k=1

pk −
2

e
− 1

e

n∑
k=1

k − 3.74

e

n∑
k=3

k

log pk
.

Since G1 +G2 > 2/e and log pk > log k, we get

n∑
k=1

Gk >
1

e

n∑
k=1

pk −
n2

2e
− n

2e
− 3.74

e

n∑
k=3

k

log k
. (3.6)

Note that the function x/ log x is increasing for every x ≥ e. We combine this with

[8, Lemme 1.6] to get

n∑
k=3

k

log k
≤
∫ n+1

3

x

log x
dx = li((n+ 1)2)− li(9).

By the mean value theorem, there exists a real number ξ ∈ (n2, (n + 1)2) such

that li((n+ 1)2)− li(n2) = (2n+ 1)/ log ξ. Thus, we obtain li((n+ 1)2)− li(n2) <

(n+ 1/2)/ log n for any n > 1, and so

n∑
k=3

k

log k
≤
∫ n+1

3

x

log x
dx < li(n2)− li(9) +

n

log n
+

1

2 log n
.

Since li(9) > 1/(2 log n), we obtain

n∑
k=3

k

log k
< li(n2) +

n

log n
. (3.7)

Applying this inequality to Equation (3.6), we see that

n∑
k=1

Gk >
1

e

n∑
k=1

pk −
n2

2e
− n

2e
− 3.74

e

(
li(n2) +

n

log n

)
.

Now we use the fact that li(x) < x/ log x+ 1.09x/ log2 x for every x ≥ n20 to obtain

the inequality

n∑
k=1

Gk >
1

e

n∑
k=1

pk −
n2

2e
− n

2e
− 3.74n2

2e log n
− 1.01915n2

e log2 n
− 3.74n

e log n
.

Since Cn =
∑n

k=1Gk/
∑n

k=1 pk, we can use Equation (3.1) to get

Cn >
1

e
− 1

e(log n+ log log n− 3/2)
− 1

en log n
− 3.74

e log2 n
− 2.0383

e log3 n
− 7.48

en log2 n
. (3.8)
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Note that

− 1

log n+ log log n− 3
2

≥ − 1

log n
+

log log n− 3
2

log2 n
−

(log log n− 3
2 )2

log3 n
.

Applying this inequality to Equation (3.8), we see that

Cn >
1

e
− 1

e log n
+

log log n− 5.24

e log2 n

− (log log n− 3/2)2 + 2.0383

e log3 n
− 1

en log n
− 7.48

en log2 n
. (3.9)

Finally, we apply the inequality 0.245 ≥ ((log log x−3/2)2+2.0383)/ log x+(log x+

7.48)/x, which holds for every x ≥ n0, to Equation (3.9) and get the required

inequality for every integer n ≥ n0. A computer check for smaller values of n

completes the proof.

Next, we prove that the inequality

Cn <
1

e
− 1

e log n
+

log log n− 0.345

e log2 n

is valid for every integer n ≥ 55. First, we set n1 = 387 572 and consider the case

where n ≥ n1. Using [4, Corollary 5.4] and a computer, we have

Gk <
pk
e
− k

e
+

1.1k

e log pk

for every integer k ≥ 47. A direct computation shows that

46∑
k=1

Gk −
1

e

46∑
k=1

pk +
1

e

46∑
k=1

k − 1.1

e

46∑
k=1

k

log pk
≤ 28.602

and it follows that

n∑
k=1

Gk < 28.602 +
1

e

n∑
k=1

pk −
1

e

n∑
k=1

k +
1.1

e

(
1

log 2
+

2

log 3
+

n∑
k=3

k

log k

)
.

Now we can use Equation (3.7) to get

n∑
k=1

Gk < 28.602− n

2e
+

1.1n

e log n
+

1.1

e log 2
+

2.2

e log 3
+

1

e

n∑
k=1

pk −
n2

2e
+

1.1

e
li(n2).

We have x/(2e) ≥ 28.602 + 1.1x/(e log x) + 1.1/(e log 2) + 2.2/(e log 3) for any x ≥
269. Hence

n∑
k=1

Gk <
1

e

n∑
k=1

pk −
n2

2e
+

1.1

e
li(n2).
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We apply the inequality li(x) < 1.05x/ log x, which holds for every x ≥ n21, to obtain

n∑
k=1

Gk <
1

e

n∑
k=1

pk −
n2

2e
+

1.155n2

2e log n
.

Now we use the definition of Cn and the inequalities stated in Lemma 1 to get

Cn <
1

e
− 1

e(log n+ log log n− 3
2 +

log logn− 5
2

logn )
+

1.155

e log n(log n+ log log n− 3
2 )
.

Since n ≥ n1 > exp(exp(2.5)), we have

− 1

log n+ log log n− 3
2 +

log logn− 5
2

logn

<

− 1

log n
+

log log n− 3
2

log2 n
+

log log n− 5
2

log2 n(log n+ log log n− 3
2 )
.

Furthermore, the identity

1.155

log n(log n+ log log n− 3
2 )

=
1.155

log2 n
−

1.155(log log n− 3
2 )

log2 n(log n+ log log n− 3
2 )

holds. So we get

Cn <
1

e
− 1

e log n
+

log log n− 0.345

e log2 n
+ rn,

where

rn = − 0.155 log log n+ 0.7675

e log2 n(log n+ log log n− 3
2 )

< 0.

This implies the desired result for every integer n ≥ n1. For the remaining cases of

n we use a computer. This completes the proof.

We get the following two corollaries.

Corollary 1. For every integer n ≥ 43, we have

Cn <
1

e
− 1

e log n
+

log log n

e log2 n
.

Proof. If n ≥ 55, this is a consequence of Theorem 2. We conclude by direct

computation.

Corollary 2. For every integer n ≥ 14, we have

Cn <
1

e
.

Proof. From Corollary 1 follows that the required inequality holds for every integer

n ≥ 43. A computer check for smaller values of n completes the proof.
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4. Proof of Theorem 3

We use Lemma 2 and the identities given in Equation (3.4) and Equation (3.5)

combined with an explicit lower bound for the prime counting function π(x) due to

Dusart [10] to give the following proof of Theorem 3.

Proof of Theorem 3. We start with the proof of the left-hand side inequality of

Equation (1.4) and first consider the case where n ≥ r = 8597. Using [4, Proposition

5.1], we get

n∑
k=1

G−1k >

r−1∑
k=1

G−1k + e

n∑
k=r

exp
(

1
log pk

+ 2.7
log2 pk

)
pk

.

Now we apply the inequality ex ≥ 1 + x, which holds for every x ∈ R, to obtain

n∑
k=1

G−1k > δ0 + e

n∑
k=1

1

pk
+ e

n∑
k=r

1

pk log pk
+ 2.7e

n∑
k=r

1

pk log2 pk
, (4.1)

where the constant δ0 is given by δ0 =
∑r−1

k=1G
−1
k − e

∑r−1
k=1 p

−1
k . Let x0 = pr =

88789. By [10, Corollary 5.2], for x ≥ x0 we have

π(x) ≥ x

log x
+

x

log2 x
+

2x

log3 x
. (4.2)

Applying Equation (4.2) to Equation (3.2), we obtain

n∑
k=r

1

pk log pk
=

n∑
k=1

1

pk log pk
−

r−1∑
k=1

1

pk log pk
≥ α0 −

1

log pn
+

3

2 log4 pn

for n ≥ r, where

α0 = −
r−1∑
k=1

1

pk log pk
+

∫ x0

2

π(t)

(
1

t2 log t
+

1

t2 log2 t

)
dt

+
1

log x0
+

1

log2 x0
+

1

log3 x0
+

1

2 log4 x0
.

A direct computation shows that α0 ≥ 0.087676913224. Hence

n∑
k=r

1

pk log pk
≥ 0.087676913224− 1

log pn
. (4.3)

Similarly, we combine Equation (4.2) and Equation (3.3) to get

n∑
k=r

1

pk log2 pk
≥ 0.00384517884595949− 1

2 log2 pn
. (4.4)
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Now we apply Equation (4.3) and Equation (4.4) to Equation (4.1). Thus,

n∑
k=1

G−1k > e

n∑
k=1

1

pk
+ δ0 + 0.0980588961e− e

log pn
− 2.7e

2 log2 pn
.

Since δ0 > −1.1492179413 and e/ log x0 + 2.7e/(2 log2 x0) < 0.26683761711, we

obtain
n∑

k=1

G−1k > e

n∑
k=1

1

pk
− 1.14951.

Using [2, Proposition 7] and the definition of C ′n, we get the left-hand side inequality

of Equation (1.4) for every n ≥ r. A computer check shows that this inequality also

holds for every integer n with 3 ≤ n ≤ r − 1.

Next, we prove that the right-hand side inequality of Equation (1.4) holds for

every integer n ≥ 6. First let n ≥ s = 406 161. We use [4, Proposition 5.6] to see

that
n∑

k=1

G−1k < α1 + e

n∑
k=1

1

pk
+ e

n∑
k=s

1

pk log pk
+ 6.83e

n∑
k=s

1

pk log2 pk
,

where α1 =
∑s−1

k=1G
−1
k − e

∑s−1
k=1 p

−1
k . By Equation (3.4), we have

n∑
k=s

1

pk log pk
≤
∑
p∈P

1

p log p
−

s−1∑
k=1

1

pk log pk
≤ 0.064143634391656,

and from Equation (3.5) it follows that

n∑
k=s

1

pk log2 pk
≤
∑
p∈P

1

p log2 p
−

s−1∑
k=1

1

pk log2 pk
≤ 0.002057210885594.

If we combine this with the fact that α1 < −1.059057099768616, we get

C ′n < e− 0.8465∑n
k=1 p

−1
k

.

By Dusart [9, Théorème 2], we have

n∑
k=1

1

pk
< log log pn +B +

1

10 log2 pn
+

4

15 log3 pn
. (4.5)

Here B denotes the Mertens’ constant and is defined by

B = γ +
∑
p∈P

(
log

(
1− 1

p

)
+

1

p

)
= 0.2614972128476427837554268386 . . . ,
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where γ = 0.57721 . . . denotes the Euler–Mascheroni constant. Rosser and Schoen-

feld showed [14, p. 69] that pn < n(log n + log log n). Applying this inequality to

Equation (4.5), we see that

n∑
k=1

1

pk
< log log n+ log

(
1 +

log(log n+ log log n)

log n

)
+B +

1

10 log2 pn
+

4

15 log3 pn
. (4.6)

A simple calculation shows that the right-hand side of Equation (4.6) is less than

log log n+ 0.454329 which gives

C ′n < e− 0.8465

log log n+ 0.454329
.

Now it suffices to apply the inequality

− 0.8465

log log n+ 0.454329
< − 0.71884

log log n

to complete the proof of the right-hand side inequality of Equation (1.4) for every

integer n ≥ s. For smaller values of n, we check the required inequality by direct

computation.
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