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1. Introduction

The Hardy-Littlewood conjecture (also called the Bateman—Horn con-
jecture) predicts how often polynomials take prime values. To be precise,
choose f1(T),..., fr(T) in Z[T] and set

T, (@) =#{n <z : fi(n),..., fr(n) are all prime}. (1)
Assume the following three conditions on the f;’s.
(a) The f;’s are irreducible and pairwise coprime in Q[T].

(b) For no prime p is the product f(n) = fi(n)--- fr(n) divisible by
p for all integers n. That is, the function f:Z — Z/(p) is not
identically zero for any prime p.

(c) Each f; has a positive leading coefficient.

For example, there are only finitely many prime pairs n, n? + 2, and
this pair fails condition (b) at p = 3. We include (c) only for expository
simplicity. There is no need for it if negative primes are allowed.

Conjecture 1 (Hardy-Littlewood) When (a), (b), and (c) hold,

C(fla---afr) Z
10 2) g 1) (deg fr) (log )" @




where

(1—=1/p)
and wy(p) is the number of roots of f(T') := fi(T)--- f(T) in Z/(p).

The product C(f1, ..., fr), which is called the Hardy-Littlewood con-
stant associated to fi,..., fr, converges by (a) and (b), although con-
vergence is usually just conditional.

G(fl,...,fr)zﬂl_“’f( 2l (3)

Example 2 For twin primes, f(T) =T(T'+2), ws(2) =1, and ws(p) =
2 when p > 2. Conjecture 1 in this case predicts

()~ 2]] ( ) (g 27

p>2

~ 1.3203236

(log l‘)Z '

Example 3 We consider primes of the form f(n) = n? + 1. Here
wg(p) = 1+ xa(p), with x4 the nontrivial Dirichlet character mod 4.
Conjecture 1 predicts

Trapq(z) ~ H(l_f_(pl)) ;lozm

P
~ .6864067

log z

These two examples, and other special cases of Conjecture 1, were
first discussed by Hardy and Littlewood [7]. A general statement like
Conjecture 1 appeared in a paper of Bateman and Horn [2].

While numerical data and sieve methods both point in the direc-
tion of the Hardy-Littlewood conjecture, the only proved case corre-
sponds to one linear polynomial, which is Dirichlet’s theorem on primes
in arithmetic progression. (The prime number theorem is the special
case f(T) =T.) In no other case is it even known that 7y, . (z) = o0
with z.

As Bateman and Horn explained in [2], the right side of (2) can be
motivated by probabilistic heuristics related to the distribution of the
primes. There is no reason to expect such heuristics can lead to a proof
of the conjecture. For instance, the proof of Dirichlet’s theorem is based
not on probability, but on the behavior of Dirichlet series on the line
Re(s) =

Our original motivation was to address the correctness of the Hardy—
Littlewood constant: if (2) is true with an unknown constant in front of
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z/(log z)", must it be the one appearing in (2)? (This question is asked
at the end of [1].) Such a result would generalize part of Chebyshev’s
evidence for the prime number theorem: if 7(z) ~ Cz/logz for some
C, then C = 1.

Although the question in the previous paragraph remains open, con-
sideration of it led us to an analytic, rather than probabilistic, heuristic
whose validity would imply an analytic form of the Hardy—Littlewood
conjecture. In particular, we have a new heuristic explanation for the
Hardy-Littlewood constant (see Theorem 27). Our basic idea is an ex-
tension of a technique used on twin primes in Golomb’s thesis [5], [6].

The paper is organized as follows. In Section 2, we state a slightly
broader version of Conjecture 1. In Section 3, we introduce a Dirich-
let series F'(s) related to the conjecture. Section 4 adapts ideas from
Golomb’s thesis to our setting. In Section 5 our basic heuristic is de-
scribed (Assumption 24), and implications suggested by it are proved in
Sections 6 and 7. We make some concluding remarks in Section 8. It is
worth stressing that all lemmas and theorems in this paper are proved
unconditionally.

Our notation is largely standard.

2. Z-Valued Polynomials

We will consider the Hardy-Littlewood conjecture not only for poly-
nomials in Z[T], but also for polynomials in Q[T"] which send Z to Z.
Such polynomials are the Z-linear combinations of binomial coefficient
polynomials (Z), such as (g) + 5(5) + 10. We recall in this section how
the Hardy-Littlewood conjecture is stated in this case.

Let fi(T),..., fr(T) be polynomials in Q[T'], with product f(T). As-
sume f;(Z) C Z for all j, so 7y, . f.(z), as defined in (1), continues to
make sense. Conditions (a), (b), and (c) also continue to be meaningful,
but ws(p) may not, since f:Z — Z may not give a well-defined func-
tion from Z/(p) to Z/(p) when f does not have integer coefficients. For
example, (:g) + 5(:5) + 10 is not a well-defined function from Z/(2) to
Z/(2): at T =0 it is 10 and at T' = 2 it is 15.

The generalization of ws(p) /p (which is more basic than the numerator
wy(p)) from f € Z[T] to the case when f € Q[T] with f(Z) C Zis a
p-adic density d7(p), which is defined in any of the following equivalent
ways.

1. Viewing f as a function Z — Z/(p), there is a modulus p* such
that f is a well-defined function Z/(p*) — Z/(p). For such k, set

a k : a) = mo
)~ O EZ0) < fl0) = Omod 5}




This is independent of the choice of k. (Note that we count solu-
tions to f(a) = 0 mod p, not f(a) = 0 mod p*.)

2. Since f(Z) C Z, we have f(Z,) C Z,, where Z, is the ring of
p-adic integers. Define §¢(p) to be the Haar measure of

{z € Z,: f(z) =0 mod p},
where the measure is normalized to give Z, measure 1.

3. As s — 11,

v ol S(p)
n>1 nf o s—1
f(n)=0mod p
Our first definition of §7(p) is the one given by Bateman and Horn [2].

The equivalence of the first two definitions follows immediately from the
definition of Haar measure on the p-adic integers. The equivalence of
the first and the third definitions will be the special case of Theorem 23
below, with d prime and m = 1.

Example 4 Let g(T) = (%) + 5(3) + 10 and p = 2. While we have
already seen g is not a well-defined function from Z/(2) to Z/(2), g does
give a well-defined function Z/(4) — Z/(2), and vanishes at three out
of the four classes, so §,4(2) = 3/4.

Note condition (b) in Conjecture 1 means d¢(p) < 1 for every p, which
implies 0y, (p) < 1 for every p.

The following more general form of Conjecture 1, which also appeared
in the paper of Bateman and Horn, is adapted to the case of f; in Q[T].

Conjecture 5 Let fi,..., fr € Q[T] satisfy f;(Z) C Z, with product f,
and assume the f;’s satisfy (a), (b), and (c) in Conjecture 1. Then (2)
holds with

1 -7 (p)

C(fl,"',fr)zﬂm' (4)

3. The Hardy-Littlewood Dirichlet Series

We fix for the rest of this paper a set of polynomials fi,..., f, in Q[T],
with product f, satisfying the hypotheses of Conjecture 5.

Definition 6 For Re(s) > 1, set
e 3 MO AGE)

nS

n>1
all fj(n)>2
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We remind the reader that the von Mangoldt function A(n) is defined
by A(p*) = logp for a prime power p* > 1 and A(n) = 0 otherwise.

In the context of Conjecture 5, F(s) is a natural Dirichlet series to
associate to fi,..., fr, as was done by Baier [1] when all f; are in Z[T].
Convergence of F(s) is explained in Theorem 9 below.

Definition 7 Set
Pr(x) = > A(fr(n))--- A(fr(n)).

nlx
all f;(n)22
By partial summation, convergence of F(s) for Re(s) > 1 follows
Y¢(x) = O(z), an estimate we will prove by an argument of Baier [1]
that relies on Siegel’s finiteness theorem on integral points.

Lemma 8 Let g € Q[T] be irreducible with a positive leading coefficient
and let b > 2 be an integer. Let Ny(g,z) be the number of positive
integers n < x such that g(n) is a perfect b-th power in Z:

Ny(g,z) = #{n < z : g(n) = y° for some y € Z}.

Then for each € > 0, Ny(g,z) = O(z®) as x — oo, where the O-constant
depends on g and €, but not on b.

This lemma quantifies the idea that an irreducible rational polynomial
rarely has pure power values.

Proof: Let d = degg > 1, and fix a choice of ¢ > 0.
If b > d/e, then the eventual monotonicity of g(n) implies

Ny(g,z) = O(g(z)'?)
= Oz
= 0(z°),

where the O-constant may depend on g, but not on € or the choice of
b>dfe.

Now we suppose 2 < b < d/e. Then either d > 3 and 2 < b < d/e,
d=2and 3<b<d/e,ord=2andb=2. In the first two cases, either
d or b is at least 3. For each such b, Ny(g,z) is bounded as z — oo,
by Siegel’s theorem on integral points [8, Exer. D.6]. Since the range
of b is restricted by d and ¢, we can say Ny(g,z) = Oy(1), where the
O-constant does not depend on b.

In the third case, when d = 2 and b = 2, write g(x) = ag + a1z + asx
and let ¢ be a common multiple of the denominators of the a;’s. Setting

2
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h(z) = t?g(z) € Z[z], No(g,z) < Nao(h,z), so it suffices to assume g has
integer coefficients. Then the estimate Na(g,z) = O(logz) follows by
facts about units in quadratic number fields, as in [1]. |

Theorem 9 We have vf(xz) = O(z). In particular, F(s) converges for
Re(s) > 1.

Proof: We first consider the sum

Op(z):= Y logfi(n)---log fr(n).

n<z
all f] (n) prime

A crude upper bound is 0f(z) = O((logz)"wy,, . s (x)). Sieve methods

imply 7.7, (@) = O(a/(log2)"), 0 6;(x) = O(s).
The estimate 07(z) = O(x) passes to 1 ;(x) since for any € > 0,

pr(z) = 0p(z) = O (logz)" > > Ny(fj,2)

j=12<b<log, f;(z)
= O(z*(logz)™™)

by Lemma 8. |

In the proof of Theorem 9, we only needed Lemma 8 for one choice
of ¢ < 1. We will find it convenient to have Lemma 8 with any € > 0 in
Lemma 18.

The significance of ¢;(x) and F(s) for Conjecture 5 is contained in
the following two standard results.

Theorem 10 If F(s) extends analytically from the half-plane Re(s) > 1
to the line Re(s) = 1 except for a simple pole at s = 1 with residue C,
then yg(xz) ~ Cz.

Proof: This follows from the Wiener-Ikehara Tauberian theorem,
or, since we already know 9(z) = O(z), from the simpler Tauberian
theorem of Newman [9]. [

Theorem 11 The following conditions are equivalent, where C' > 0:
(1) Asz — oo, ¢f(z) ~ Cx.
(2) As x — oo,

C z
Tfy o fr (E) ~ (deg f1) - - - (deg f») (logz)""




When these conditions hold,
lim (s — 1)F(s) = C.

s—1+

Proof: Use partial summation. |

Comparing Theorems 10 and 11 to the Hardy—Littlewood conjecture,
it is morally expected that if either Res;—1 F'(s) or lim,_,{+(s—1)F(s) ex-
ists, then the value will be the Hardy-Littlewood constant C(f1,..., f)-

Whether or not F(s) extends meromorphically to the line Re(s) = 1
is unknown. However, it is reasonable to believe that if F(s) is mero-
morphic at s = 1, then it has a simple pole there. Indeed, for Re(s) > 1
we have the integral representation

x
d
F(s) = s/ Yslo) do
1 x xz
From Theorem 9, for s > 1

© dz s

F(3)<<3/ -

;. oz s—1’

so (s — 1)F(s) is bounded as s — 17. Therefore there should be at
worst a simple pole at s = 1. If F(s) were holomorphic at s = 1, then
Landau’s lemma, on Dirichlet series with nonnegative coefficients implies
the Dirichlet series for F'(s) converges slightly to the left of s = 1, so
Ys(z) = O(z'~¢) for some £ > 0. Then my, () = O(z'~¢), which is
definitely not expected.

The end of Theorem 11 suggests an analytic version of the Hardy-
Littlewood conjecture, namely with the same hypotheses as in Conjec-
ture 5,

lim (s —1)F(s) = C(f1,---, fr)s (5)

s—1t

or equivalently

i 2=2tstzz AL AU ()7
s—1t ZRZQ A(n)n—s

These depend only on the behavior of F(s) near s = 1 rather than on
the whole line Re(s) = 1.

= C(fl,. .. ,fr)-

4. A Modified Dirichlet Series

To develop a heuristic method of analyzing F'(s) near s = 1, we will
use an alternate expression for its coefficients, based on the following
result of Golomb, which deserves to be more widely known.
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Lemma 12 (Golomb) Let aq,...,a, > 2 be pairwise coprime. Then

Mo aa) = T S w(@ogay.

dlay---ap
d>0
Proof: When r = 1 this is Ala) = —> 4, p(d)logd, a standard
identity.
Now take r > 2. We compute
Y wd)(logd) = ) p(dy)---p(dr)(logds + - +logd,)’
dlai---ar 1<j<r
dj‘aj
- > (] ) 1S ud)ogd,)
i1t tip=r o j=1d;|a;

and note any term of the outer sum has some i; = 0 or all 4; = 1. If
i; = 0, the inner sum vanishes (since a; > 1). Therefore the only term
occurs when all 4; =1, and is r!(—A(a1)) - - - (—A(ar)). |

Applying Lemma 12 to F(s), with a; = f;(n), requires the f;(n) are
> 2 and pairwise coprime for all n. What if this fails?

Lemma 13 There is an m € ZT such that, for any n € Z, the condition
(f(n),m) =1 implies f1(n),..., fr(n) are pairwise coprime.

Proof: Since the f;’s are pairwise coprime in Q[T'], we can write

Aij(T) £i(T) + By (T) £3(T) = cijy

where A;;(T'), B;j(T) € Z[T] and c¢;; is a nonzero integer. If, for some n,
fi(n) and f;(n) have a common prime factor p, then p|c;;.

Let m be the product of all ¢;j, so for all n in Z, f;(n) and f;(n) are
coprime in Z[1/m] for any i and j. Therefore, if (f(n),m) = 1 in Z,
(fi(n),m) = 1in Z for every %, and thus (f;(n), fj(n)) =1in Z for i # j
by checking in Z[1/m)].

More succinctly, pairwise coprimality of the f;(7')’s implies the natu-
ral map

Q[T/(fr--- fr) = QIT]/(f1) x -+ x Q[T]/(fr)

is an isomorphism, which implies the natural map

Z[1/m][T]/(f1--- fr) = Z[L/m][T]/(fr) % --- x Z[1/m][T]/(f+),

for some m, is an isomorphism. Such m satisfy the theorem. |



Definition 14 For any positive integer m, set

Fae Y A AG)

ns

(f(n)ym)=1
all fj(n)>2
We will use Fy,,(s) in place of F(s), for m as in Lemma 13, to allow use
of Lemma 12. Before we check that F,(s) has the same relevant analytic
features as F(s), we compare F(s) and F,,(s) in some examples.

Example 15 For r =1 and f1(T) =T, F(s) = —('(s)/{(s). Then

Aln log p Con
Fuls)= 3 %: ) pfs __
(nsm)=1 (» Zbk)=1

where (;,(s) is the zeta function with its Euler factors at primes dividing
m removed. Therefore F(s) = Fin(s) + 32, Zkzo(logp)p_ks.

Example 16 For twin primes, n and n + 2 are coprime when both are
odd (prime to m = 2). Then F(s) =, <o A(n)A(n + 2)n~° and

F(s) = Fy(s) + (10552)2.

Example 17 The polynomial values fi(n) = 5n+3 and fo(n) = 6n+5
are coprime when they are prime to m = 7. For no n are 5n + 3 and
6n + 5 both powers of 7, so F(s) = Fx(s).

Lemma 18 For any m > 1, the Dirichlet series F(s) — Fp,(s) converges
absolutely for Re(s) > 0.

Proof: For each n contributing a nonzero term to the series

3 A(fi(n)) --- A(fr(n))

ns

F(s) — Fn(s) =

b

(f(n);m)>1
all f] (n)>2

some f;(n) is ¢¥, where ¢ will be a typical prime factor of m.
Each f; takes any value at most deg f; times, so

F(s) — F,,(s) = finite series + Z A(fi(n)) -+~ A(fr(n))

ns ’

neA

where
A={n: all fj(n) >2, some fj(n) =g’ b>2}.
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We now show the partial sums of the coefficients of F(s) — F,,(s) satisfy
Y A(fi(n) - A(fr(n) = O(a* (log 2)™) (6)

neA
n<z

for all € > 0, where the O-constant may depend on our fixed f. This
will prove F(s) — F,(s) converges for Re(s) > 0.

If, for some n < z, fj(n) has the form ¢°, where ¢ is a prime factor
of m and b > 2, then b < K logx, where the constant K depends on f;.
Then }, <, nea A(f1(n)) - -~ A(fr(n)) grows no faster than

(log.’lﬁ)r Z (Nb(flax)+"'+Nb(fT7$))7
2<b<Klogz
where N, comes from Lemma 8. By Lemma 8, (6) falls out. [ |
By Example 15, the half-plane in Lemma 18 is optimal in general.

Theorem 9 and Lemma 18 now give
Theorem 19 For any m, F,(s) converges for Re(s) > 1, and

li —1)F(s) = i - 1)F,

Jim (s~ DF(s) = lim (s~ 1)Fu(s)

if either limit exists.

5. The Analytic Heuristic

When m fits the conditions of Lemma 13, then Lemma 12 lets us
express Fy,(s) as a series of partial zeta functions for Re(s) > 1:

(=1 Z >d/f(ny #(d)(log d)"

nS

Fn(s) =

(f(n)m)=1
all f] (n)>2

(<1 1
= > u@oogay | |, @
d>1 f(n)=0 mod d
(d,m)=1 (f(n),m)=1
where the inner sum over n includes the constraint that all f;(n) > 2. !
Aside from this constraint, the other conditions in the inner sum in (7)
can be expressed as congruences on n, which will let us use

What we are looking at here are certain Dirichlet series h(s) = 3 ann™* with an > 0 which
admit auxiliary expressions h(s) = + > u(d)cgg94(s) where c¢g > 0 and g4(s) = EnGAd n=s
is a partial zeta function running over a subset Ay C Z¥; the subsets Ay for different d are
allowed to overlap. It is not clear whether such auxiliary expressions, at least for certain Ag4,
have interesting general features.
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Lemma 20 Let N be a positive integer and a be any integer. The series

>
n>1 n?
n=a mod N
which converges for Re(s) > 1, extends to an entire function except for
a simple pole at s = 1, with residue 1/N. Therefore, if the sum runs
more generally over positive integers lying in a subset S C Z/(N), the
residue at s =1 is (#S)/N.

Proof: This series is N % times a Hurwitz zeta function. [ |

Theorem 21 For any integers d and m, the series

1
> W
f(n)=0mod d
(f(n),m)=1
either extends to an entire function except for a simple pole at s =1 or
is identically 0.

The series is identically 0 when there are no n satisfying the condition
in the sum, such as f(7) = 7?4+ 1 and d = 3.

Proof: Viewing f as a function Z — Z/(d), choose a multiple D of
d so that f:Z/(D) — Z/(d) is well-defined. Suppose the zeros of this
function in Z/(D) are ay, ..., ak.

Similarly choose a multiple M of m so f:Z/(M) — Z/(m) is well-
defined. Since (f(n), m) only depends on n as an element of Z/(M), we
can select congruence class representatives by, ..., by in Z/(M) such that

(f(n),m)=1<=n=b,...,by mod M.

The series in the theorem takes the form

1 1
> Tl 2w (®)
f(n)=0mod d t=1 j=1 n=a; mod D
(f(n),m)=1 n=b; mod M

Writing each pair of compatible congruence conditions modulo D and
M as a set of congruence conditions modulo the least common multiple
of D and M, Lemma 20 says the right side of (8) is entire except for a
simple pole at s = 1, since the residue at s = 1 of each inner series is
positive. If no pair of congruences modulo D and M is compatible, the
series is identically 0. []



12

To compute the residue in Theorem 21, it will be convenient to extend
the densities d7(p) from prime arguments to any positive integer.

Definition 22 For any n > 1, choose a multiple N such that the func-
tion f:Z/(N) — Z/(n) is well-defined. Set

_ #{amod N : f(a) =0 mod n}
= i .

The fraction d7(n) does not depend on the choice of N. (When f(T')
is in Z[T"], we can take N = n.) Easily d;(ni1n2) = d(n1)df(n2) when ny
and ngy are relatively prime. By condition (b) at the start of the paper,
we do not have f(Z) C pZ for any prime p, so d7(n) < 1 for all n > 1.
The next theorem shows how values of ¢ arise in a residue.

d¢(n) :

Theorem 23 When (d,m) =1 in Theorem 21, the residue of

> -
S
f(n)=0mod d n
(f(n),m)=1
at s =1 1s

§p(d) [T = 67(p)).

plm

Proof: We can choose D and M so that f gives well-defined functions
Z/(D) - Z/(d) and Z/(M) — Z/(m) with D divisible only by prime
factors of d and M divisible only by prime factors of m. Therefore
(D, M) = 1. Each pair of congruence conditions on the right side of (8)
can be uniquely solved in Z/(DM), so the residue at s =1 is

i=1 j=1
Then
ko #{amod D : f(a) =0 mod d} — 54(d)
D D A
Since £ = #{amod M : f(a) # 0 mod p for any p|m}, the ratio £/M
equals [, ,,(1 — d7(p))- u

The condition (d,m) = 1 in Theorem 23 fits the intended application
to (7), since the constraint in (7) that all f;(n) > 2 has no bearing on
the residue.

Now we introduce our basic analytic assumption in the paper.
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Assumption 24 With m satisfying Lemma 13, lim,_,;+(s — 1)F,,,(s)
exists and can be computed termwise using (7).

The reasonableness of this assumption comes from the following two
examples, where heuristic termwise limits can be rigorously computed
in a second way.

Example 25 Recall (,,(s) from Example 15. Since

) S wanoga| Y L. )

Cm(S) d>1 n=0 mod d
(d,m)=1 (n,m)=1
Assumption 24 suggests that
. ¢r(s) 2 w(d)logd 1
lim (s —1)omt®) 2y~ mdoed yry 1 10
Jm (=12 i ) 10

d>1
(d,m)=1 plm

where the question mark indicates an equation whose validity remains
to be established. The series 3, .\ u(d)(log d)/d is, at first formally,
the Dirichlet series at s = 1 for
B ( 1 )I _ Gmls) _ Z p(d)logd
Cm(s) Cm(3)2 d>1 ds .
(d,m)=1

This equality is true: (1/(pn(s))|s=1 = Hp|m(1 —1/p)~L, and it is known
that — 37y )=1 #(d)(logd)/d does converge and equal this product.
This implies the right side of (10) equals —1. Since (,(s) has a sim-
ple pole at s = 1, lim,_,1+(s — 1)¢},(s)/Cm(s) = —1, so (10) is true and
thus Assumption 24 leads to a correct result in this case.

For comparison, writing —(/ (s)/¢m(s) as > (nym)=1 AMn)n~?, which
unlike (9) is a series with nonnegative coefficients, the application of
Assumption 24 breaks down. The series expression in (9) more closely
resembles the intended application (7) than does 37, .._; A(n)n™".

Example 26 A calculation analogous to Example 25 holds for the log-
arithmic derivative of the zeta function of any number field. For an
example with a slightly different flavor, pick a number field K and con-
sider the identity

s =1- o (3 ). m

a=0 mod 0
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valid for Re(s) > 1. Here we order the series over ideals ? according to
increasing values of No. Applying Assumption 24 suggests that

Tim (s = 1)Cx (s) -3 %)Ress:lg((s). (12)
£(1)

Since ), 1(9)/No = 0 (sum over all 9, including @ = (1)), the right side
of (12) equals Res;—1(xk(s), so Assumption 24 leads to a correct result.

Returning to (7), Theorem 23 and Assumption 24 imply

lim (s~ 1) Fn(s) = 7~ [0 = 6:(0) D nuld)d(d)(logd)’. (13)

s—1t 7!

a>1
plm (d,m)=1

This suggests the series

> ul(d)ds(d)(logd)” (14)
(dﬁ)l:l

converges, and the Hardy-Littlewood conjecture then suggests the right
side of (13) should equal the Hardy—Littlewood constant (4). Unlike the
tentative equalities in Examples 25 and 26, (13) can not be made rigor-
ous at present, since we do not have an independent way of computing
lim, 1+ (s — 1) Fyn(s).

In the next two sections we will prove what has been suggested, and
this is our main result:

Theorem 27 For any integer m > 1, the series (14) converges and

—1)r
CV IO - 500 Y udbsd)iogdy = C (... f).
plm a21
(d,m)=1

In particular, Theorem 19, Assumption 24, and Theorem 27 imply
the analytic form of the Hardy—Littlewood conjecture in (5). Of course,
this conclusion is conditional since Assumption 24 remains unproved.

It is worth stressing that the proof of Theorem 27 will not rely on
any unproved hypotheses (and does not need the restriction on m in
Assumption 24). Assumption 24 and the Hardy-Littlewood conjecture
are catalysts for bringing (14) to our attention, and for making this series
interesting at all.

Example 28 In the case of twin primes, f(T') = T(T+2), 6;(2) = 1/2,
and é7(p) = 2/p for p > 2. Taking m = 2, Theorem 27 says

1 1(d) 27 (log d)? 1
12 d :2H<1_(p—1)2>’

d odd p>2
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where v(d) is the number of prime factors of d (that is, ;(d) = 2*(9)/d
for odd squarefree d). This equality, which was proved by Golomb [5]
subject to a weak form of the Riemann hypothesis, is unconditionally
true.

6. Proof of Theorem 27

While Theorem 27 was motivated by an unproved assumption about a
Dirichlet series, we will prove this theorem by a different method, using
an Euler product (Definition 30 below).

Definition 29 For f(T') as in Conjecture 5, define wy(n) by the equa-
tion d¢(n) = wr(n)/n.

Since d¢(n) is multiplicative in n, so is wy(n). When f(T) € Z[T],
wg(n) equals the number of zeros of f in Z/(n). This interpretation of
wg(n) is not always valid for f in Q[T] with f(Z) C Z, but it is when
n = p is a prime and f has p-integral coefficients. Since wy(p) < deg f
for these p, the sequence wy(p) (as p runs over all primes) is bounded.

Fix once and for all a positive integer m, without restrictions on it
(just as in Theorem 27).

Definition 30 For Re(s) > 1, set

o) = ] (1_%@) - z):_ slr)ugn)

(p,m)=1

Since wy(p) < deg f for all large p and wy(p) < p for all p, G(s)
is nonvanishing. We suppress the dependence of G(s) on m and f for
simplicity of notation.

Remark 31 When f € Z[T] and m = 1, the function G(s) has been
considered by Kurokawa [10]. He appeals to his elaborate theory of Euler
products, which we do not need.

The Dirichlet series for G(s) is supported on squarefree n. Taking
derivatives,

; n)wr(n)(—logn)’
(n,m)=1
for Re(s) > 1.
A special case of G(s) is 1/¢m(s) = [[(pm)=1(1 —p~%). This is known
to extend analytically to the line Re(s) = 1, where it is nonvanishing
except for a simple zero (not pole!) at s = 1. Moreover, 1/(,(s) and all



16

of its higher derivatives are known to be represented by their Dirichlet
series on the line Re(s) = 1.

Theorem 32 The function G(s) in Definition 30 has an analytic con-
tinuation to the line Re(s) = 1, where it is nonvanishing except for an
r-th order zero at s = 1, where r is the number of irreducible factors of
f. Equation (15) is valid on the line Re(s) = 1. In particular,

G(T)(l) = (=1) Z N(n)wf(:;)(logn)r

(n,m)=1

= (=) ) n(n)ds(n)(logn)".

(n,m)=1

The proof of Theorem 32 is deferred to the next section to keep the
ideas in the proof of our main result, Theorem 27, as clear as possible.
To prove Theorem 27, we consider the product

6y 6 =T ey 11 Lol g

1_ S\T 1_ S\71r
o 7P oy (P70

This is holomorphic and nonvanishing at s = 1, by Theorem 32. The
value of the left side at s = 1 is G(")(1)/r!. Formally substituting s = 1
on the right side will be justified in a moment. Making that substitution,
we obtain (recalling Definition 29)

G(1) 1 1-6¢(p)
r! =11 (1- 1/p) 11 (1-1/p)’

plm (pym)=1

which implies by Theorem 32 that the number

(=" H(l —84(p)) Z p(n)éy(n)(logn)”

7!
plm (n,m)=1
equals
_ GO 140 1-6¢(p)
[a-oen == = a=ir I gty
= (fh "afr)a

and this proves Theorem 27, subject to a proof of Theorem 32 and a
proof of
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Theorem 33 The analytic continuation of the right side of (16) to s = 1
has value given by a formal substitution at s = 1.

Proof: It suffices to focus on the product over p prime to m, and
check its value at s = 1 is obtained by formal substitution. This FKuler
product [, )1 (1 —ws(p)p~*)(1 —p~°) " can be written as

T

1 — wi(p)p™* _ (Ve (o
L a=arm - tmwg GOm0

j=1

where Gj(s) is defined in the same way as G(s), using wy, (p) in place of

wi(p). (Recall f = f1 -+ f, and Gn(s) = [Ty (1 — p~*) 1)
For large p,

wi(p) = wp (p) + -+ +wy, (p) (18)

and wf(p) < deg f. Therefore the p-th Euler factor in the first product
in (17) looks like 1 + O(p~2%) for large p, which means the first product
and its reciprocal are absolutely convergent on Re(s) > 1/2 when a
finite number of initial Euler factors are taken away, in the sense that
their formal logarithm series, indexed by prime powers, are absolutely
convergent when Re(s) > 1/2. Since wy(p) < p and wy,(p) < p for all
p, those initial Euler factors are each holomorphic and nonvanishing on
some half-plane Re(s) > 1 — e. Therefore the first product in (17) is
holomorphic at s = 1 with its value given by formal substitution.

The behavior of G;(s)(mn(s) at s =1 is handled by the next theorem,

using g = f;. |

Theorem 34 Let g be irreducible in Q[T with g(Z) C Z and d4(n) < 1
for all n.
Fizm > 1, and set Gy(s) = [[(pm)=1(1 — wg(p)p™*). Then

—S8

Gy(s)imls) = [ oeldr”

1 _ —S
(pim)=1 P

which converges absolutely for Re(s) > 1, is holomorphic and nonvan-
ishing at s = 1, and its value at s =1 is

H 1 —64(p)
1—1/p
(pm)=1 /p

Proof: Let H(s) = G4(s)(m(s). By Theorem 32 with g in place of f
and r = 1, H(s) is holomorphic and nonvanishing at s = 1.
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To compute H(1), we write
Cm(8)

H(s) = Gg(S)CK(S) . CK—(S)’

where K = Q(vy) for v a root of g and (x(s) is the zeta function of K.
Let Qp(T) be the polynomial defining the p-th Euler factor in (& (s):

1
=115,

For all but finitely many p, wy(p) is the number of degree 1 primes
lying over p in the ring of integers of K. There is no harm in changing
m S0 wg(p) is described as in the previous sentence when (p,m) = 1.
Then Q,(p~*%) = 1 —wy(p)p~* + O(p~2%) as s — 1T for (p,m) = 1, which

makes
- T

(pym)=1

- I (1+0()) HQp

(pym)=1

(19)

This shows we can set s = 1 in (19) to obtain

H . H _ Ress=1(m(s)
(psm)=1 @(1/p) plm Qp(1/p) Ress=1(k(s)
By Mertens’ asymptotic,
1
H 1-1/ ~ (Ress=1(m(s))e” log z,
(p,m)=1 p

p<z

and similarly

H ~ (Ress=1(k(s))e” log x.
p<$

Therefore

1/;0
IIQum H%wmpg: 1Le/n,

and the desired result falls out. [ |

(p,m

Remark 35 It is appealing to regard the last part of Theorem 34 as a
multiplicative version of Abel’s theorem, but there is no Abel’s theorem
for Euler products (counterexamples are known).
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7. Proof of Theorem 32

We split the proof of Theorem 32 into two parts: analytic continuation
to Re(s) = 1 and evaluation of its derivatives on this line.

Let y; be a root of f; and set K; = Q(v;). For all but finitely many p,
wy, (p) is the coefficient of p~* in (k,(s), so the p-th factor in the Euler
product for

G(s) = G(5)Ck, () - i, (5)
is1+ O(p?*) for all but finitely many p. Therefore the Dirichlet series

for G(s) is absolutely convergent and nonvanishing on some half-plane
Re(s) > 1 —e. Writing

G(s) = G(s)Cry ()71 o () (20)

the continuation of G(s) to Re(s) = 1 and location of zeros along this
line now follow from known properties of (g;(s)~".

The rest of this section is concerned with the demonstration that the
derivatives of G(s) can be evaluated by their Dirichlet series along the
line Re(s) = 1. Write (20) as G(s) = G(s)Z(s)" !, so Z(s) ! is the
product of reciprocal Dedekind zeta functions. When Re(s) > 1, the
derivative of G(s) to any order is a linear combination of products of a
derivative of G(s) and a derivative of Z(s)™!. Since the formally com-
puted Dirichlet series product, at any point, of an absolutely convergent
Dirichlet series and a convergent Dirichlet series does converge and equal
the product, and the Dirichlet series for G(s) converges absolutely on
Re(s) > 1 — ¢, it suffices to prove that the Dirichlet series for all higher
derivatives of Z(s)~! converge on Re(s) = 1.

We already know that Z(s)~! is holomorphic on the line Re(s) = 1.
The following theorem of Riesz [12, pp. 183-187] gives a method of
proving convergence of a Dirichlet series on this line, via analytic con-
tinuation: if A(s) := )  a,n™° converges for Re(s) > 1 and the average
(1/z) )", <, an tends to 0, then h(s) equals ) a,n™*% at every point on
the line Re(s) = 1 to which h admits an analytic continuation. (Conver-
gence of a Dirichlet series anywhere on Re(s) = 1 implies the coefficient
average tends to 0, so the hypothesis of Riesz’ theorem is natural.)

Repeated differentiation of a series »_ a,n~* introduces powers of
— log n into the n-th term, so an application of Riesz’ theorem to Z(s)™*
and its higher derivatives needs an estimate on (1/z))", . a, which
tends to 0 and is stable under replacement of a,, with a, logn. Such an

estimate is
T
> o0 = 0 () (21)

n<z



20

for all k > 0 (the O-constant is allowed to depend on k). When (21)
holds for all k, the series ) ay, logn also satisfies such estimates, by
partial summation.

We will prove (21) when 3" a,n~* is the Dirichlet series for Z(s)™1,
the product of reciprocal Dedekind zeta functions. That will conclude
the proof of Theorem 32.

The following theorem of Selberg and Delange has the conclusion we
seek, after we check Z(s)! and Z(s) satisfy the respective conditions
of the Dirichlet series ) a,n™® and ) b,n~° in the theorem. Write
s = o + it, as usual.

n<x

Theorem 36 (Selberg—Delange) Let g(s) = > a,n * converge abso-
lutely for Re(s) > 1. Assume for some positive integer r that g(s)((s)"
admits an analytic continuation to a region of the form

o>

c
1- — t 0
= 1+ loglt|’ [t1>0,

where ¢ is a positive constant, and on this region g(s)((s)" has absolute
value at most a constant times (1 + [t|)1=? for some 6 € (0,1).

If |ay| < by, where (3 b,n *)((s)"" has the above properties on the
same region, then

> o0 = g0 (g

n<zx

for any N > 0. In particular, Y., .. a, = O(z/(logz)*) for all k > 0.

n<zx

Proof: Using the notation of [13], this is a special case of [13, pp. 185-

186] using z = —r, which implies that >, ., an is
N N+1
x /\j(—’l“) —c1logx CQN +1
- _ O C1 0og T e 22
(log z)r+1 jgo (log z)J + (e + log x » (22)

where ¢; and cy are constants. The definition of A;(z) in [13] is a sum
multiplied by 1/I'(z — j). Therefore A\j(—r) = 0 for any j > 0, making
the sum in (22) equal to 0. Since e~¢1V1%6% = Oy (1/(log z)V*1) for any
N, we are done. |

It is known that any Dedekind zeta function (x(s) admits a zero-free
region of the shape

C
o>1 K

_— t 0 23
= 1+ log|t|’ [t >x (23)
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for some constant cx > 0, and on this region (x(s) and (x(s)™! are
bounded above in absolute value by a power of log|t|. The product
Z(s)~1¢(s)", which we already know is holomorphic and nonvanishing on
Re(s) > 1, involves a finite number of Dedekind zeta functions. There-
fore on a region of the shape (23), Z(s)'¢(s)" and its reciprocal are both
nonvanishing and bounded above in absolute value by a power of log |¢|.
Finally, the Dirichlet coefficients for Z(s) ! are termwise bounded in
absolute value by the Dirichlet coefficients of Z(s). The application of
Theorem 36 to our situation is now justified, and the proof of Theorem
32 is concluded.

Our proof of Theorem 32 shows G(s) has a zero-free region in the
critical strip of the same shape as known zero-free regions for Dedekind
zeta functions. If the (k;(s) in (20) were known to be nonvanishing on
a common half-plane Re(s) > 1 —4§ (§ > 0), then the proof of Theorem
32 could be done more directly, without Theorem 36.

8. Concluding Remarks

Although Fy,(s) depends a priori on m, Theorem 27 shows the right
side of (13) is independent of m. This independence of m is a good sign,
since we already know by Theorem 19 that lim,_,;+(s — 1)Fy,(s), if it
exists, must not depend on m, so any heuristic which lets us tentatively
compute this limit has to give an answer which is independent of m. The
interested reader is invited to prove the right side of (13) is independent
of m directly, without computing a formula for it which is independent
of m as in Theorem 27.

It is reasonable to ask if the existence of lim,_,;+(s—1)F},(s), which is
itself a difficult problem, implies the limit can be correctly computed by
a termwise calculation as in (13). In this spirit, we recall some remarks
of Lang and Trotter from their work on distributions of Frobenius ele-
ments associated to elliptic curves, which is connected to prime values
of quadratic polynomials [11, p. 81]. Lang and Trotter write [11, p. 6]

Again in the case of elliptic curves, can one give a condition on the ana-
lytic behavior of the associated Dirichlet series (zeta function) which im-
plies our conjectured asymptotic property? [...] The Hardy—Littlewood
paper [7] is in two parts. The first shows how various Riemann hypothe-
ses imply distribution results. The second, including the conjecture on
primes in quadratic progressions, limits itself to heuristic arguments.
Therefore, even in that case, it would be interesting to see what analytic
properties of zeta functions imply the conjectured asymptotic behavior.

Since the Hardy-Littlewood conjecture can be extended to multivari-
able polynomials over global fields [3], [4], it is worth asking if the ar-
guments of this paper could be extended to these cases. However, it
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does not seem that the standard Dirichlet series machinery is adequate
for such problems about algebraic integers (rather than ideals) in rings
other than Z, except perhaps in the ring of integers in an imaginary
quadratic field.

Lastly, note that although for f(7") = T the associated Dirichlet series
F(s) = > A(f(n))n =% = —('(s)/¢(s) is used in the proof of the prime
number theorem, for f(T') = mT + a the associated Dirichlet series
> n>1 A(mn+a)n~* is not the Dirichlet series >~ _ "= A(n)n~° used
in the proof of Dirichlet’s theorem. Is there a proof of Dirichlet’s theorem
that uses >, -, A(mn + a)n™* in an essential way?

ACKNOWLEDGMENTS. I thank B. Conrad for suggestions based on a
preliminary version of this paper.

References

[1] S. Baier, “On the Bateman-Horn conjecture,” J. Number Theory, vol. 96,
pp. 432-448, 2002.

[2] P.T. Bateman and R. A. Horn, “A heuristic asymptotic formula concerning the
distribution of prime numbers,” Math. Comp., vol. 16, pp. 363-367, 1962.

[3] B. Conrad, K. Conrad, and R. Gross, “Prime values of one-variable polynomials
over global fields” (in preparation).

[4] B. Conrad, K. Conrad, and R. Gross, “Prime values of multivariable polynomials
over global fields” (in preparation).

[6] S. Golomb, “Problems in the distribution of prime numbers,” Ph.D. thesis (Har-
vard), 1956.

[6] S. Golomb, “The Lambda method in prime number theory,” J. Number Theory,
vol. 2, pp. 193-198, 1970.

[7] G.H. Hardy and J. E. Littlewood, “Some problems of Partitio Numerorum III:
on the expression of a number as a sum of primes,” Acta Math., vol. 44, pp. 1-70,
1923.

[8] M. Hindry and J. H. Silverman, Diophantine Geometry, An Introduction,
Springer-Verlag, New York, 2000.

[9] J. Korevaar, “On Newman’s quick way to the prime number theorem,” Math.
Intelligencer, vol. 4, pp. 108-115, 1982.

[10] N. Kurokawa, “Special values of Euler products and Hardy-Littlewood con-
stants,” Proc. Japan Acad. Ser. A Math. Sci., vol. 62, pp. 25-28, 1986.

[11] S.Langand H. Trotter, Frobenius distributions in GL2-eztensions, Lecture Notes
in Mathematics, vol. 504, Spring—Verlag, Berlin, 1976.

[12] M. Riesz, Collected Papers, Springer—Verlag, New York, 1988.

[13] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cam-
bridge Univ. Press, Cambridge, 1995.



