群馬大学大学院

理工学府要覧

令和3年度

(2021年度)

	目次
1.	群馬大学大学院学則
2.	群馬大学学位規則
3.	群馬大学大学院理工学府規程
4.	理工学府課程表・講義要目 (博士前期課程)
5.	理工学府課程表・講義要目 (博士後期課程) 102
6.	理工学府課程表・講義要目 (大学院共通科目)
7.	教員名簿
	建物配置図及び教室位置図

1. 群馬大学大学院学則

	平成 16. 4. 1	制	定
改正	平成 17. 4. 1	平成 17.	5. 19
	平成 17. 6.10	平成 18.	4. 1
	平成 18. 4.20	平成 19.	4. 1
	平成 19.12.26	平成 20.	4. 1
	平成 22. 4. 1	平成 22.	6. 1
	平成 23. 1.26	平成 23.	4. 1
	平成 23. 7. 1	平成 24.	4. 1
	平成 25. 4. 1	平成 26.	4. 1
	平成 29. 4. 1	平成 30.	4. 1
	平成 31. 4. 1	令和 2.	4. 1
	令和 2.12.25		

第1章 総 則

(趣 旨)

第1条 この学則は, 群馬大学学則(平成16年4月1日制定)第5条第2項の規定により, 群馬大学 大学院(以下「本大学院」という。)について, 必要な事項を定める。

(目 的)

- 第2条 本大学院は、学術の理論及び応用を教授研究し、その深奥を究めて、文化の進展に寄与することを目的とする。
- 2 各研究科又は専攻ごとの人材養成に関する目的その他の教育研究上の目的は,別に定める。 (自己評価等)
- 第3条 本大学院は、その教育研究水準の向上を図り、前条の目的及び社会的使命を達成するため、本 大学院における教育研究活動等の状況について自ら点検及び評価を行い、その結果を公表するものと する。
- 2 本大学院は,前項の点検及び評価の結果について,本学の職員以外の者による検証を行うものとする。
- 3 第1項の点検及び評価並びに前項の検証の実施に関し必要な事項は、別に定める。

第2章 組 織

(研究科及び学府)

- 第4条 本大学院に、次の研究科及び学府を置く。
 - 教育学研究科
 - 社会情報学研究科
 - 医学系研究科

保健学研究科

理 工 学 府

- 2 各研究科及び学府(以下「各研究科等」という。)に,別表第1のとおり,講座,領域及び部門を置く。
- 3 各研究科等に科長及び学府長を置く。
- 4 教育学研究科及び社会情報学研究科の科長は、当該研究科の基礎となる学部の長をもって充てる。
- 5 理工学府の学府長は、理工学部長を兼ねる。

(課 程)

- 第5条 社会情報学研究科及び医学系研究科に修士課程を,医学系研究科,保健学研究科及び理工学府 に博士課程を,教育学研究科に専門職学位課程を置く。
- 2 保健学研究科及び理工学府の博士課程は、前期2年の課程(以下「博士前期課程」という。)及び 後期3年の課程(以下「博士後期課程」という。)に区分し、博士前期課程は、これを修士課程とし て取り扱う。
- 3 修士課程及び博士前期課程においては、広い視野に立って精深な学識を授け、専攻分野における研 究能力又は高度の専門性を要する職業等に必要な高度の能力を養うものとする。
- 4 博士課程においては、専攻分野について、研究者として自立して研究活動を行い、又はその他の高度に専門的な業務に従事するに必要な高度の研究能力及びその基礎となる豊かな学識を養うものとする。
- 5 専門職学位課程においては,高度の専門性が求められる職業を担うための深い学識及び卓越した能 力を培うものとする。

(専攻及び収容定員等)

研究科及び学府	課程	専 攻	入学定員 人	収容定員 人
教育学研究科	専門職学位課程	教育実践高度化	20	40
社会情報学研究科	修士課程	社 会 情 報 学	14	28
医学系研究科	修士課程	生命医科学	15	30
区子术训九件	博士課程	医 科 学	57	228
保健学研究科	博士前期課程	保健学	50	100
休健子训九件	博士後期課程	保健学	10	30
理工学府	博士前期課程	理 工 学	300	600
生 工 子 桁	博士後期課程	理 工 学	39	117

第6条 本大学院各研究科及び学府の専攻及び収容定員等は、次のとおりとする。

(修業年限)

第7条 修士課程の標準修業年限は、2年とする。

2 医学系研究科博士課程の標準修業年限は、4年とする。

- 3 保健学研究科博士課程及び理工学府博士課程の標準修業年限は,5年とし,博士前期課程の標準修 業年限は2年,博士後期課程の標準修業年限は3年とする。
- 4 専門職学位課程の標準修業年限は、2年とする。

第3章 学年、学期及び休業日

(学 年)

- 第8条 学年は、4月1日に始まり、翌年3月31日に終わる。
 - (学 期)
- 第9条 学期を分けて、次の2学期とする。
 - 前 学 期 4月1日から9月30日まで
 - 後 学 期 10月1日から翌年3月31日まで
- 2 前項の規定にかかわらず,学長が必要と認めるときは,前学期及び後学期の期間を変更することが ある。
 - (休業日)
- 第10条 休業日は、次の各号のとおりとする。
 - (1) 日曜日
 - (2) 土曜日
 - (3) 国民の祝日に関する法律(昭和23年法律第178号)に規定する休日
 - (4) 春季休業
 - (5) 夏季休業
 - (6) 冬季休業
 - (7) 学年末休業
- 2 前項第4号から第7号までの休業日の期間は、各研究科長及び学府長の申出に基づき学長が定める。
- 3 学長が必要と認めるときは、休業日を変更し、又は臨時に休業することがある。

第4章 教育課程等

(教 育 課 程)

- 第10条の2 本大学院は、その教育上の目的を達成するために必要な授業科目を開設するとともに、 学位論文の作成等に対する指導(以下「研究指導」という。)の計画を策定し、体系的に教育課程を 編成する。ただし、教育学研究科教育実践高度化専攻にあっては、研究指導を除くものとする。
- 2 教育課程の編成に当たっては、本大学院は、専攻分野に関する高度の専門知識及び能力を修得させるとともに、当該専攻分野に関連する分野の基礎的素養を涵養するよう適切に配慮する。
- 3 本大学院における授業科目は、次の各号のとおりとする。
 - (1) 各研究科等において開設する授業科目
 - (2) 全研究科等を対象とした大学院共通の授業科目(以下「大学院共通科目」という。)
 - (教 育 方 法)
- 第11条 本大学院の教育は,授業科目の授業及び研究指導によって行う。ただし,教育学研究科教育 実践高度化専攻にあっては,研究指導を除くものとする。

2 教育学研究科教育実践高度化専攻においては、その目的を達成し得る実践的な教育を行うよう専攻 分野に応じ事例研究,現地調査又は双方向若しくは多方向に行われる討論若しくは質疑応答その他の 適切な方法により授業を行うなど適切に配慮しなければならない。

(授 業 科 目)

- 第12条 各研究科等における授業科目,単位数は,各研究科等が別に定める。
- 2 大学院共通科目は、群馬大学大学院共通科目に関する内規の定めるところによる。
- 3 各研究科等が、一の授業科目について、講義、演習、実験、実習又は実技のうち二以上の方法を併用により行う場合の単位数を計算するに当たっては、その組み合わせに応じ、1年間の授業時間を考慮して当該研究科等が定める時間の授業をもって1単位とする。

(成績評価基準等の明示等)

- 第12条の2 各研究科等は、授業及び研究指導の方法及び内容並びに1年間の授業及び研究指導の計 画をあらかじめ明示するものとする。ただし、教育学研究科教育実践高度化専攻にあっては、研究指 導を除くものとする。
- 2 各研究科等は、学修の成果及び学位論文に係る評価並びに修了の認定に当たっては、客観性及び厳格性を確保するため、学生に対してその基準をあらかじめ明示するとともに、当該基準にしたがって 適切に行うものとする。ただし、教育学研究科教育実践高度化専攻にあっては、学位論文に係る評価 を除くものとする。

(履 修 方 法)

- 第13条 各研究科等における履修方法は、別に定める。
- 2 履修科目の選択に当たっては、あらかじめ研究指導担当の教員(以下「指導教員」という。)の指 導を受けなければならない。指導教員は教授をもって充てるが、各研究科等において教育研究上必要 と認めたときは、准教授をもって代えることができる。
- 第13条の2 各研究科等において,教育上有益と認めるときは,学生に,群馬大学学則(平成16年 4月1日制定。以下「本学学則」という。)第35条に規定する開設授業科目を履修させることができる。
- 2 前項の規定により学生が修得した単位は、課程修了の要件となる単位としない。 (他の大学院等の授業科目の履修)
- 第14条 各研究科等において,教育上有益と認めるときは,学生に他の大学院(外国の大学院を含む。 以下同じ。)の授業科目を履修させることができる。
- 2 各研究科等において、教育上有益と認めるときは、学生が休学期間中に他の大学院において履修した授業科目について修得した単位を、本大学院における授業科目の履修により修得したものとみなすことができる。
- 3 前2項の規定により学生が修得した単位は、合わせて15単位を限度として、課程修了の要件とな る単位として取り扱うことができる。
- 4 教育学研究科教育実践高度化専攻にあっては、学生が他の大学院等において履修した授業科目について修得した単位を、前項の規定にかかわらず、当該専攻が修了要件と定める45単位以上の2分の1を超えない範囲で当該専攻における授業科目の履修により修得したものとみなすことができる。
- 第15条 各研究科等(教育学研究科教育実践高度化専攻は除く。)において,教育研究上有益と認め るときは、学生に他の大学院又は研究所等において研究指導の一部を受けさせることができる。ただ

し,修士課程及び博士前期課程の学生の当該研究指導を受ける期間は,1年を超えないものとする。 (副指導教員)

- 第15条の2 各研究科等(教育学研究科教育実践高度化専攻は除く。)において,教育研究上有益と 認めるときは,当該研究科等の教員及び他の研究科等の教員を副指導教員として,学生に,研究指導 の一部を受けさせることができる。
- 2 前項の規定による副指導教員は教授をもって充てるが,各研究科等において教育研究上必要と認め たときは,准教授をもって代えることができる。

(入学前の既修得単位の取扱い)

- 第16条 各研究科等においては、教育上有益と認めるときは、学生が本大学院に入学する前に大学院 において履修した授業科目について修得した単位(大学院設置基準(昭和49年文部省令第28号)第 15条に定める科目等履修生として修得した単位を含む。)を、本大学院に入学した後の本大学院にお ける授業科目の履修により修得したものとみなすことができる。
- 2 前項の規定により修得したものとみなす単位は、15単位を超えないものとする。
- 3 前2項の規定により修得したものとみなす単位数及び第14条の規定により本大学院において修得 したものとみなす単位数は,合わせて20単位を超えないものとする。
- 4 教育学研究科教育実践高度化専攻にあっては、第1項の規定により修得したものとみなすことので きる単位数(大学院設置基準(昭和49年文部省令第28号)第15条に定める科目等履修生として修 得した単位数を含む。)は、転学等の場合を除き、当該専攻において修得した単位以外のものについ ては、第2項の規定にかかわらず、第14条第4項の規定及び第22条の2第2項の規定により免除す る単位数と合わせて45単位以上の2分の1を超えないものとする。

(長期にわたる教育課程の履修)

- 第16条の2 各研究科等は、当該研究科等の定めるところにより、学生が、職業を有している等の事情により、第7条に定める標準修業年限を超えて一定の期間にわたり計画的に教育課程を履修し修了することを希望する旨を申し出たときは、その計画的な履修を認めることができる。
- 2 前項の計画的な履修の期間は、第42条に定める在学年限を越えることはできない。 (教育方法の特例)
- 第17条 大学院の課程においては、教育上特別の必要があると認められる場合には、夜間その他特定の時間又は時期において授業又は研究指導を行う等の適当な方法により教育を行うことができる。 (履修の認定)
- 第18条 授業科目の履修単位は、試験(口頭又は筆答)又は研究報告により認定するものとする。
- 2 病気その他やむを得ない事情のため正規の試験を受けることができなかった者は、追試験を受ける ことができる。
- 3 各授業科目の試験又は研究報告の成績は、評語によりA、B、C、Dの4種とし、A、B、Cを合格、Dを不合格とする。ただし、不合格の科目については再試験を受けることができる。
- 4 各科目履修の認定は、学期の終わりに行うものとする。(学位論文の審査)
- 第19条 修士課程及び博士前期課程の学位論文の審査は、当該教授会で選定する3人以上の教授が行うものとする。ただし、当該教授会が必要と認めたときは、准教授をもって代えることができる。

- 2 医学系研究科博士課程の学位論文の審査は,教授会が選定する3人以上の教授で構成する審査委員 会が行うものとする。
- 3 博士後期課程の学位論文の審査は、教授会が選定する3人以上の教授で構成する審査委員会が行う ものとする。ただし、教授会が必要と認めたときは、准教授をもって代えることができる。
- 4 前3項の学位論文の審査に当たっては、当該教授会が必要と認めたときは、他の大学院又は研究所 等の教員等の協力を得ることができる。

(最終試験)

第20条 最終試験は,所定の単位を修得した者で,学位論文の審査に合格した者につき,当該教授会 が口頭又は筆答により行うものとする。

第5章 課程修了及び学位授与

(修士課程修了の認定)

- 第21条 修士課程及び博士前期課程修了の認定は、2年以上在学し、所定の単位を修得し、かつ、必要な研究指導を受けた上、当該修士課程の目的に応じ、当該研究科の行う修士論文又は特定の課題に ついての研究の成果の審査及び最終試験の合格によって行う。ただし、在学期間に関しては、優れた 業績を上げた者と各研究科等において認めた場合には、1年以上在学すれば足りるものとする。 (博士課程修了の認定)
- 第22条 博士課程修了の認定は、医学系研究科にあっては4年、保健学研究科及び理工学府にあっては5年(修士課程に2年以上在学し、当該課程を修了した者にあっては、当該課程における2年の在学期間を含む。)以上在学し、所定の単位を修得し、かつ、必要な研究指導を受けた上、博士論文の審査及び最終試験の合格によって行う。ただし、在学期間に関しては、優れた研究業績を上げた者と当該研究科等において認めた場合には、3年(修士課程に2年以上在学し、当該課程を修了した者にあっては、当該課程における2年の在学期間を含む。)以上在学すれば足りるものとする。
- 2 大学院設置基準(昭和49年文部省令第28号)第3条第3項の規定により標準修業年限を1年以上 2年未満とした修士課程を修了した者及び前条第1項ただし書の規定による在学期間をもって修士課 程を修了した者の保健学研究科及び理工学府の博士課程修了の認定は,前項中「5年(修士課程に2 年以上在学し,当該課程を修了した者にあっては,当該課程における2年の在学期間を含む。)」とあ るのは「修士課程における在学期間に3年を加えた期間」と,「3年(修士課程に2年以上在学し, 当該課程を修了した者にあっては,当該課程における2年の在学期間を含む。)」とあるのは「3年(修 士課程における在学期間を含む。)」と読み替えて,同項の規定を適用する。
- 3 前2項の規定にかかわらず、学校教育法施行規則(昭和22年文部省令第11号)第156条の規定により、大学院への入学資格に関し修士の学位若しくは専門職学位(学位規則(昭和28年文部省令第9号)第5条の2に規定する専門職学位をいう。以下同じ。)を有する者と同等以上の学力があると認められた者又は専門職学位課程を修了した者が、博士後期課程に入学した場合の博士課程の修了の認定は、3年(専門職大学院設置基準(平成15年文部科学省令第16号)第18条第1項の法科大学院の課程を修了した者にあっては、2年)以上在学し、所定の単位を修得し、かつ、必要な研究指導を受けた上、博士論文の審査及び最終試験の合格によって行う。ただし、在学期間に関しては、優れた研究業績を上げた者と研究科等において認めた場合には、1年(標準修業年限が1年以上2年未満

の専門職学位課程を修了した者にあっては,3年から当該1年以上2年未満の期間を減じた期間)以 上在学すれば足りるものとする。

(専門職学位課程修了の認定)

第22条の2 専門職学位課程修了の認定は、2年以上在学し、所定の単位の修得によって行う。

2 教育学研究科教育実践高度化専攻にあっては、教育上有益と認めるときは、当該専攻に入学する前の幼稚園、小学校、中学校、義務教育学校、高等学校、中等教育学校、特別支援学校及び就学前の子どもに関する教育、保育等の総合的な提供の推進に関する法律(平成18年法律第77号)第2条第7項に規定する幼保連携型認定こども園(以下「小学校等」という。)の教員としての実務の経験を有する者について、10単位を超えない範囲で、高度の専門的な能力及び優れた資質を有する教員に係る実践的な能力を培うことを目的として小学校等その他の関係機関で行う実習により修得する単位の全部又は一部を免除することができる。

(在学期間の短縮)

- 第22条の3 各研究科等において,修士課程,専門職学位課程,博士前期課程及び医学系研究科博士 課程に入学する前に修得した単位(学校教育法第102条第1項の規定により入学資格を有した後,修 得したものに限る。)を各研究科等において修得したものとみなす場合であって,当該単位の修得に より各研究科等の修士課程,専門職学位課程,博士前期課程及び医学系研究科博士課程の教育課程の 一部を履修したと認めるときは,当該単位数,その修得に要した期間その他を勘案して1年を超えな い範囲で各研究科等が認めた期間,在学したものとみなすことができる。ただし,この場合において も,修士課程及び専門職学位課程については,当該課程に少なくとも1年以上在学するものとする。 (学 位 授 与)
- 第23条 第21条から第22条の2までの規定により課程修了の認定を得た者には、次の区分に従い学 位を授与する。
 - 教育学研究科 教職修士 (専門職)
 - 社会情報学研究科 修士(社会情報学)
 - 医学系研究科 修士 (生命医科学),博士 (医学)
 - 保健学研究科 修士 (保健学),修士 (看護学)
 - 博士 (保健学),博士 (看護学)

理 工 学 府 修士 (理工学) 博士 (理工学)

- 2 前項に定めるもののほか、博士の学位は、本大学院の行う博士論文の審査に合格し、かつ、博士課程の修了者と同等以上の学力を有すると確認された者にも授与することができる。
- 3 学位の授与に関し必要な事項は、別に定める。

(教育職員免許状授与の所要資格の取得)

- 第24条 教育職員免許法(昭和24年法律第147号)第4条に規定する学校の種類ごとの教諭一種免 許状を有する者で,当該免許状に係る専修免許状の所要資格を取得しようとする者は,教育職員免許 法及び教育職員免許法施行規則(昭和29年文部省令第26号)に定める所要単位を修得しなければな らない。
- 2 本大学院の研究科及び学府において、当該所要資格を取得できる免許状の種類等は、別表第2に掲 げるとおりとする。

第6章 入学,休学,退学,進学等

(入学の時期)

第25条 入学の時期は、学年の始めとする。ただし、学年の途中においても、学期の区分に従い、入 学させることがある。

(入 学 資 格)

- 第26条 修士課程,博士前期課程及び専門職学位課程に入学することのできる者は,次の各号のいずれ かに該当する者とする。
 - (1) 大学を卒業した者
 - (2) 学校教育法(昭和 22 年法律第 26 号)第104条第7項の規定により学士の学位を授与された者
 - (3) 外国において、学校教育における 16年の課程を修了した者
 - (4) 外国の学校が行う通信教育における授業科目を我が国において履修することにより当該外国の学校教育における16年の課程を修了した者
 - (5) 我が国において,外国の大学の課程(その修了者が当該外国の学校教育における16年の課程を 修了したとされるものに限る。)を有するものとして当該外国の学校教育制度において位置付けら れた教育施設であって,文部科学大臣が別に指定するものの当該課程を修了した者
 - (6)外国の大学その他の外国の学校(その教育研究活動等の総合的な状況について、当該外国の政府 又は関係機関の認証を受けた者による評価を受けたもの又はこれに準ずるものとして文部科学大臣 が別に指定するものに限る。)において、修業年限が3年以上である課程を修了すること(当該外 国の学校が行う通信教育における授業科目を我が国において履修することにより当該課程を修了す ること及び当該外国の学校教育制度において位置付けられた教育施設であって前号の指定を受けた ものにおいて課程を修了することを含む。)により、学士の学位に相当する学位を授与された者
 - (7) 専修学校の専門課程(修業年限が4年以上であることその他の文部科学大臣が定める基準を満た すものに限る。)で文部科学大臣が別に指定するものを文部科学大臣が定める日以後に修了した者
 - (8) 文部科学大臣の指定した者
 - (9) 学校教育法(昭和22年法律第26号)第102条第2項の規定により本大学院以外の大学院に入学した者であって、本大学院において、大学院における教育を受けるにふさわしい学力があると認めたもの
 - (10)本大学院において、個別の入学資格審査により、大学を卒業した者と同等以上の学力があると 認めた者で、22歳に達したもの
 - (11)大学に3年以上在学した者(これに準ずる者として文部科学大臣が定める者を含む。)で、本学の定める単位を優秀な成績で修得したと認めるもの(当該単位の修得の状況及びこれに準ずるものとして文部科学大臣が定めるものに基づき、これと同等以上の能力及び資質を有すると認めるものを含む。)
- 2 医学系研究科博士課程に入学することのできる者は、次の各号のいずれかに該当する者とする。
 - (1) 大学(医学, 歯学又は修業年限6年の薬学若しくは獣医学の課程)を卒業した者
 - (2) 外国において,学校教育における18年の課程(最終の課程は医学,歯学,薬学又は獣医学)を 修了した者
 - (3) 外国の学校が行う通信教育における授業科目を我が国において履修することにより当該外国の学

校教育における18年の課程(最終の課程は医学,歯学,薬学又は獣医学)を修了した者

- (4) 我が国において,外国の大学の課程(その修了者が当該外国の学校教育における18年の課程(最終の課程は医学,歯学,薬学又は獣医学)を修了したとされるものに限る。)を有するものとして 当該外国の学校教育制度において位置付けられた教育施設であって,文部科学大臣が別に指定する ものの当該課程を修了した者
- (5)外国の大学その他の外国の学校(その教育研究活動等の総合的な状況について、当該外国の政府 又は関係機関の認証を受けた者による評価を受けたもの又はこれに準ずるものとして文部科学大臣 が別に指定するものに限る。)において、修業年限が5年以上である課程(医学、歯学、薬学又は 獣医学)を修了すること(当該外国の学校が行う通信教育における授業科目を我が国において履修 することにより当該課程を修了すること及び当該外国の学校教育制度において位置付けられた教育 施設であって前号の指定を受けたものにおいて課程を修了することを含む。)により、学士の学位 に相当する学位を授与された者
- (6) 文部科学大臣の指定した者
- (7) 学校教育法(昭和22年法律第26号)第102条第2項の規定により本大学院以外の大学院(医学, 歯学,薬学又は獣医学を履修する課程に限る。)に入学した者であって、本大学院において、大学 院における教育を受けるにふさわしい学力があると認めたもの
- (8)本大学院において、個別の入学資格審査により、大学(医学、歯学又は修業年限6年の薬学若し くは獣医学の課程)を卒業した者と同等以上の学力があると認めた者で、24歳に達したもの
- (9)大学の医学、歯学又は修業年限6年の薬学若しくは獣医学の課程に4年以上在学した者(これに 準ずる者として文部科学大臣が定める者を含む。)で、本学の定める単位を優秀な成績で修得した と認めるもの(当該単位の修得の状況及びこれに準ずるものとして文部科学大臣が定めるものに基 づき、これと同等以上の能力及び資質を有すると認めるものを含む。)

(進学又は編入学資格)

- 第27条 博士後期課程に進学又は編入学することができる者は、次の各号のいずれかに該当する者と する。
 - (1) 修士の学位又は専門職学位を有する者
 - (2) 外国において修士の学位又は専門職学位に相当する学位を授与された者
 - (3) 外国の学校が行う通信教育における授業科目を我が国において履修し,修士の学位又は専門職学 位に相当する学位を授与された者
 - (4) 我が国において、外国の大学院の課程を有するものとして当該外国の学校教育制度において位置 付けられた教育施設であって、文部科学大臣が別に指定するものの当該課程を修了し、修士の学位 又は専門職学位に相当する学位を授与された者
 - (5) 国際連合大学の課程を修了し、修士の学位に相当する学位を授与された者
 - (6) 外国の学校,第4号の指定を受けた教育施設又は国際連合大学の課程を履修し,博士論文研究基礎力審査に相当するものに合格し,修士の学位を有する者と同等以上の学力があると認められた者
 - (7) 文部科学大臣の指定した者
 - (8)本大学院において、個別の入学資格審査により、修士の学位又は専門職学位を有する者と同等以上の学力があると認めた者で、24歳に達したもの

(入学志願手続)

- 第28条 入学志願者は,所定の期日までに入学願書に関係書類を添付し,学長に提出するものとする。 (合格者の決定)
- 第29条 入学志願者に対しては,別に定めるところにより選考を行い,合格者を決定する。 (入学手続)
- 第30条 合格者は, 定められた期日内に所定の手続きを経て, 入学料を納入するものとする。この手 続きを怠る者は入学を許可しないことがある。

(休 学)

- 第31条 疾病その他特別の理由により引き続き2月以上修学できない者は、学長の許可を得て休学す ることができる。
- 2 疾病のため修学することが適当でないと認められる者に対しては、学長は休学を命ずることができる。
- 3 休学期間は、当該年度を超えることができない。ただし、特別の理由があるときは、学長の許可を 得て引き続き休学することができる。
- 4 休学期間は,通算して,修士課程,博士前期課程及び専門職学位課程においては2年,博士後期課 程においては3年,医学系研究科博士課程においては4年を超えることができない。
- 5 休学期間は、在学年限に算入しない。

(復 学)

- 第32条 休学期間の満了により復学するときは、学長に復学の届出をしなければならない。
- 2 休学期間の満了前においてその理由がなくなったときは、学長の許可を得て復学することができる。 (在 学 延 長)
- 第33条 各研究科等において,第7条に規定する標準修業年限以上在学し,課程を修了しないときは 在学延長を願い出ることができる。

(退 学)

- 第34条 病気,その他の理由により退学しようとする者は,退学願を提出して学長の許可を受けなけ ればならない。
- 第35条 学長は、学生が病気その他の理由で成業の見込みがないと認めたときは退学させることがある。

(留 学)

- 第36条 外国の大学院又は研究所等に留学を志望する者は、学長に願い出てその許可を受けなければ ならない。
- 2 前項の規定により留学した期間は、第7条の修業年限に算入することができる。 (博士課程への進学)
- 第37条 本大学院博士前期課程を修了し,引き続き,当該博士後期課程に進学を志望する者については, 別に定めるところにより選考の上,進学を許可する。

(再入学)

第38条 第34条の規定により、本大学院を退学した者が再入学を願い出たときは、許可することが ある。 (転 専 攻)

第39条 同一研究科内において転専攻を志望する者があるときは、学期の始めに限り、許可すること がある。

(転 学)

- 第40条 学生が,他の大学院に転学しようとするときは,転学願を提出して学長の許可を受けなけれ ばならない。
- 2 他の大学院から、本大学院に転学を志願する者があるときは、学期の始めに限り、許可することが ある。

(再入学, 転専攻及び転学の場合の取扱い)

第41条 前3条の規定により入学等を許可された者の在学すべき年数及び既修得単位の取扱いについては,研究科長及び学府長が定める。

(在学年限)

第42条 本大学院における最長在学年限は,修士課程,博士前期課程及び専門職学位課程においては 4年,医学系研究科博士課程においては8年,博士後期課程においては6年とする。

第7章 検定料,入学料及び授業料

(検定料、入学料及び授業料)

- 第43条 検定料,入学料及び授業料の額及び徴収方法は、国立大学法人群馬大学授業料その他の費用 に関する規程(平成16年4月1日制定。以下「費用規程」という。)の定めるところによる。 (停学中の者の授業料)
- 第44条 停学中の者は、停学期間中の授業料を納めなければならない。

(入学料及び授業料の免除及び徴収猶予)

- 第45条 入学料及び授業料については、別に定めるところにより免除及び徴収猶予することがある。 (検定料等の返還)
- 第46条 既納の検定料,入学料及び授業料は,いかなる事情があっても返還しない。
- 2 費用規程第3条第4項の規定に基づいて入学を許可するときに授業料を納入した者が入学年度の前 年度の3月31日までに入学を辞退した場合には、前項の規定にかかわらず、納入した者の申出によ り当該授業料相当額を返還するものとする。
- 3 費用規程第3条第3項及び第4項の規定に基づいて前期分授業料を納入の際,後期分授業料を併せて納入した者が,後期分授業料の徴収時期前に休学又は退学した場合には、第1項の規定にかかわらず,後期分の授業料に相当する額を返還するものとする。

第8章 教員組織

(教員組織)

第47条 各研究科等における授業及び研究指導は,教授が担当する。ただし,必要があるときは,准教授, 講師又は助教に担当又は分担させることがある。

第9章 教 授 会

(教授会)

- 第48条 各研究科等に,教授会を置く。
- 2 前項の教授会に関する必要な事項は、別に定める。

第10章 特別研究学生,特別聴講学生,科目等履修生,研究生, 聴講生及び外国人留学生

(特別研究学生)

- 第49条 他の大学院の学生で、本大学院において研究指導を受けることを志願する者があるときは、 当該他の大学院との協議に基づき、必要な研究指導を受けることを認めることができる。
- 2 前項の規定により研究指導を受けることを認められた学生を、特別研究学生と称する。 (特別聴講学生)
- 第50条 他の大学院の学生で、本大学院の授業科目の履修を志願する者があるときは、各研究科等に おいて当該他の大学院との協議に基づき、その履修を認めることができる。
- 2 前項の規定により各研究科等の授業科目の履修を認められた学生を、特別聴講学生と称する。
 (科目等履修生,研究生,聴講生及び外国人留学生)
- 第51条 科目等履修生,研究生,聴講生及び外国人留学生については,本学学則の規定を準用する。 (特別聴講学生等の検定料及び入学料)
- 第52条 特別聴講学生及び特別研究学生(以下「特別聴講学生等」という。)の検定料及び入学料は、 徴収しないものとする。

(特別聴講学生等の授業料)

- 第53条 特別聴講学生等の授業料は、公立又は私立の大学院の学生であるときは、特別聴講学生にあっては聴講生と同様とし、特別研究学生にあっては研究生と同様とし、国立大学の大学院の学生である ときは、徴収しないものとする。
- 2 前項の規定にかかわらず、特別聴講学生等の授業料について相互に不徴収とする大学間相互単位互換協定を本学と締結している公立又は私立の大学院の学生であるときは、徴収しないものとする。
- 3 第1項に定める授業料の徴収方法は、本学学則第69条第2項及び第3項の規定を準用する。
- 第54条 第46条の規定は,特別聴講学生等に準用する。この場合において,同条第2項中「費用規 程第3条第4項の規程に基づいて」とあるのは「本学学則第69条第3項の規程に準じて」と読み替 えるものとする。

第11章 特別の課程

- 第55条 本大学院は、本学の学生以外の者を対象とした特別の課程を編成し、これを修了したものに 対し、修了の事実を証する証明書を交付することができる。
- 2 特別の課程に関する必要な事項は、別に定める。

第12章 雜 則

第56条 この学則に定めるもののほか、大学院学生に関して必要な事項は、本学学則を準用する。

- 1 この学則は、平成16年4月1日から施行する。
- 2 この学則施行の日において、旧国立学校設置法(昭和24年法律第150号)により設置された群馬 大学大学院に在学する者は、引き続き本大学院に在学するものとし、その者に係る履修その他教育上 必要な事項は、別に定める。
- 3 医学系研究科及び工学研究科に係る収容定員は、第6条の規定にかかわらず、平成16年度から平 成17年度までは次のとおりとする。

課程·専攻·年度	課程	専 攻	収容	定員 人
研究科	中本 7主	亭 坄	平成 16 年度	平成 17 年度
医学系研究科	博士課程	医 科 学	174	261
区子示切九杆	博士後期課程	保 健 学	30	
	博士前期課程	電気電子工学	69	
	□ 円 円 円 元 任		459	
工学研究科		生 産 工 学	35	
工于彻元杆	博士後期課程	電子情報工学	19	20
		ナノ材料システム工学	26	
		計	101	116

附 則

この学則は、平成17年5月19日から施行し、平成17年4月1日から適用する。

附 則

この学則は、平成17年6月10日から施行し、平成17年4月1日から適用する。

附 則

- 1 この学則は、平成18年4月1日から施行する。
- 2 教育学研究科に係る収容定員は、改正後の第6条の規定にかかわらず、平成18年度は次のとおり とする。

課程·専攻·年度	課	程		車	攻		収容定員 人
研究科	环	11土		导	以		平成 18 年度
			学	校	教	育	11
教玄学研究到	博士	∃田 14日	障	害 児	1 教	育	3
教育学研究科		課 程	教	科	教	育	64
				計	-		78

附 則

この学則は、平成18年4月20日から施行し、平成18年4月1日から適用する。

- 1 この学則は、平成19年4月1日から施行する。
- 2 工学研究科の応用化学専攻、材料工学専攻、生物化学工学専攻、建設工学専攻、ナノ材料システム 工学専攻、物質工学専攻、生産工学専攻及び電子情報工学専攻は、改正後の第6条の規定にかかわら ず、平成19年3月31日に当該専攻に在学する者が当該専攻に在学しなくなるまでの間、存続するも のとする。
- 3 医学系研究科の修士課程及び博士課程並びに工学研究科に係る収容定員は、改正後の第6条の規定 にかかわらず、平成19年度から平成21年度は次のとおりとする。

課程·専攻·年度	課程	専 攻		収容定員	人
研究科	茚木	导 - 以	平成 19 年度	平成 20 年度	平成 21 年度
医学系研究科	博士課程	生命医科学	15		
区子术训九件	博士課程	医 科 学	333	318	303
		応用化学・生物化学	106		/
		機械システム工学	44		
		生産システム工学	30		
工学研究科	博士前期課程	環境プロセス工学	22		
工子彻九科		社会環境デザイン工学	22		
		電気電子工学	44		
		情報工学	32		
	博士後期課程	工 学	39	78	

附 則

この学則は、平成19年12月26日から施行する。

附 則

1 この学則は、平成20年4月1日から施行する。

- 2 教育学研究科の学校教育専攻及び教科教育専攻は、改正後の第6条の規定にかかわらず、平成20 年3月31日に当該専攻に在学する者が当該専攻に在学しなくなるまでの間、存続するものとする。
- 3 教育学研究科の修士課程教科教育実践専攻及び専門職学位課程教職リーダー専攻に係る収容定員 は、改正後の第6条の規定にかかわらず、平成20年度は次のとおりとする。

課程·専攻·年度	課程	専 攻	収容定員 人
研究科	四本 化生	専 攻	平成 20 年度
教育学研究科	博士課程	教科教育実践	20
	専門職学位課程	教職リーダー	16

- 1 この学則は、平成22年4月1日から施行する。
- 2 社会情報学研究科の修士課程及び医学系研究科の博士課程に係る収容定員は、改正後の第6条の規

定にかかわらず、平成22年度から平成24年度は次のとおりとする。

課程·専攻·年度	4	果	程	l		専		攻			収容定員	人
研究科	ц Ц	不	仕	1		- 1		以		平成 22 年度	平成23年度	平成 24 年度
社会情報学研究科	修	士	課	程	社	会	情	報	学	24		
医学系研究科	博	士	課	程	医		科		学	273	258	243

- 1 この学則は、平成22年6月1日から施行し、平成22年4月1日から適用する。
- 2 改正後の第13条の規定は,平成22年度入学者から適用し,平成21年度以前の入学者については, なお従前の例による。

附 則

- 1 この学則は、平成23年2月1日から施行し、平成22年4月1日から適用する。
- 2 改正後の第13条の規定は,平成22年度入学者から適用し,平成21年度以前の入学者については, なお従前の例による。

附 則

- 1 この学則は、平成23年4月1日から施行する。
- 2 保健学研究科に係る収容定員は、改正後の第6条の規定にかかわらず、平成23年度から平成24年 度は次のとおりとする。

課程·専攻·年度	課	程		専 攻		収容	定員 人
研究科	环	个土		専 攻		平成 23 年度	平成 24 年度
保健学研究科	修士前	期課程	保	健	学	106	
休健子切先件	博士後	期課程	保	健	学	40	35

附 則

この学則は、平成23年7月1日から施行する。

附 則

この学則は、平成24年4月1日から施行する。

- 1 この学則は、平成25年4月1日から施行する。
- 2 工学研究科は、改正後の第4条の規定にかかわらず、平成25年3月31日に当該研究科に在学する 者(平成25年4月1日以降に当該研究科に編入学、転入学及び再入学する者を含む。以下この項に おいて単に「在学者」という。)が当該研究科に在学しなくなるまでの間、存続するものとし、在学 者については、なお従前の例による。
- 3 理工学府の収容定員は、改正後の第6条の規定にかかわらず、平成25年度から平成26年度までは

次のとおりとする。

課程·専攻·年度	課程	専 攻 -		収容	定員 人	
研究科			导 坄		平成 25 年度	平成 26 年度
	博士前期課程	理	工	学	300	
理工学府	博士後期課程	理	工	学	39	78

附 則

- 1 この学則は、平成26年4月1日から施行する。
- 2 改正後の第 23 条の規定は, 平成 26 年度の入学者から適用し, 平成 25 年度以前の入学者については, なお従前の例による。
- 3 工学研究科教授会は、平成25年4月1日施行の附則第2項の規定により工学研究科が存続する間、 当該研究科に置くものとする。
- 4 工学研究科長は、平成25年4月1日施行の附則第2項の規定により工学研究科が存続する間、当 該研究科に置くものとし、理工学府長をもって充てる。

附 則

この学則は、平成27年4月1日から施行する。

附 則

この学則は、平成28年6月2日から施行し、平成28年4月1日から適用する。

附 則

この学則は、平成29年4月1日から施行する。

附 則

この学則は、平成30年4月1日から施行する。

附 則

この学則は、平成31年4月1日から施行する。

- 1 この学則は、令和2年4月1日から施行する。
- 2 教育学研究科の修士課程は、改正後の第5条の規定にかかわらず、令和2年3月31日に当該課程 に在学する者が当該課程に在学しなくなるまでの間、存続するものとする。
- 3 教育学研究科の障害児教育専攻,教科教育実践専攻及び教職リーダー専攻は,改正後の第6条の規 定にかかわらず,令和2年3月31日に当該専攻に在学する者が当該専攻に在学しなくなるまでの間, 存続するものとする。
- 4 教育学研究科教育実践高度化専攻の収容定員は、改正後の第6条の規定にかかわらず、令和2年度

は次のとおりとする。

課程·専攻·年度	課程	専 攻	収容定員 人
研究科		専 攻	令和2年度
教育学研究科	專門職学位課程	教育実践高度化	20

附 則

この学則は、令和2年12月25日から施行し、令和2年6月30日から適用する。

別表第1 (第4条関係)

研究科等	講 座 等						
教育学研究科	教職リーダー講座						
社会情報学研究科	社会情報学講座						
	 (基礎・基盤医学領域) 機能形態学講座,生体構造学講座,分子細胞生物学講座,生化学講座,応用生理学講座,脳神経再生医学講座,薬理学講座,遺伝発達行動学講座,細菌学講座, 生体防御学講座,公衆衛生学講座,法医学講座,医学哲学・倫理学講座 						
	生 合 医 科 学 (臨床医学領域) 内科学講座,総合外科学講座,腫瘍放射線学講座,放射線診断核医学講座,神経 精神医学講座,麻酔神経科学講座,救急医学講座,総合医療学講座,リハビリテー ション医学講座,臨床検査医学講座,病態病理学講座,病理診断学講座,小児科 学講座,産科婦人科学講座,泌尿器科学講座,脳神経外科学講座,眼科学講座, 耳鼻咽喉科・頭頸部外科学講座,皮膚科学講座,形成外科学講座,整形外科学講 座,臨床薬理学講座,口腔顎顔面外科学講座,医療の質・安全学講座						
	(協力講座・連携講座) 協力・連携講座						
医学系研究科	(基礎・基盤医学領域) 機能形態学講座,生体構造学講座,分子細胞生物学講座,生化学講座,応用生 理学講座,脳神経再生医学講座,薬理学講座,遺伝発達行動学講座,細菌学講座, 生体防御学講座,公衆衛生学講座,法医学講座,医学哲学・倫理学講座						
	 医 内科学講座,総合外科学講座,腫瘍放射線学講座,放射線診断核医学講座,神経 精神医学講座,麻酔神経科学講座,救急医学講座,総合医療学講座,リハビリテーション医学講座,臨床検査医学講座,病態病理学講座,病理診断学講座,小児科 学講座,産科婦人科学講座,泌尿器科学講座,脳神経外科学講座,眼科学講座, 耳鼻咽喉科・頭頸部外科学講座,皮膚科学講座,形成外科学講座,整形外科学講 座,臨床薬理学講座,口腔顎顔面外科学講座,医療の質・安全学講座 						
	(協力講座・連携講座) 臨床試験学講座, 情報医療学講座, 高次細胞機能解析学講座, 代謝・内分泌学講座, 遺伝情報・発現学講座, 重粒子線医学講座, 病態情報解析学講座, 食健康科学講座, 数理データ科学講座, 生体機能解析学講座						
保健学研究科	看護学講座、生体情報検査科学講座、リハビリテーション学講座						
理工学府	分子科学部門,知能機械創製部門,環境創生部門,電子情報部門,理工学基盤部門, 産学連携推進部門						

別表第2(第24条関係)

研究科	課程	専 攻	免許状の種類	教科又は特別支援教育領域
			幼稚園教諭 専修免許状	
教育			小学校教諭 専修免許状	
□ 学研究科	専門職学位課程	教育実践高度化	中学校教諭 専修免許状	国語, 社会, 数学, 理科, 音楽, 美術, 保健 体育, 技術, 家庭, 英語
			高等学校教諭 専修免許状	国語,地理歴史,公民,数学,理科,音楽, 美術,保健体育,家庭,工業,英語
			特別支援学校教諭 専 修 免 許 状	視覚障害者, 聴覚障害者, 知的障害者, 肢 体不自由者, 病弱者

2. 群馬大学学位規則

平成16.4.1 制 定

改正 平成 19.4.1 平成 20.4.1

平成 23.11.1 平成 24.4.1

- 平成 25.4.1 平成 25.4.24
- 平成 25.9.26 平成 26.4.1
- 平成 31.4.1 令和 2.4.1

第1章 目 的

第1条 この規則は、学位規則(昭和28年文部省令第9号。以下「省令」という。) 第13条の規定に基づき、群馬大学(以下「本学」という。)において授与する学位 に関し、必要な事項を定めることを目的とする。

第2章 学 位

- 第2条 本学において授与する学位は、学士、修士、博士及び専門職学位とする。
- 2 学士の学位は、次のとおりとする。
 - 学 士 (教育学)
 - 学 士 (社会情報学)
 - 学 士 (医学)
 - 学 士 (看護学)
 - 学 士 (保健学)
 - 学 士 (理工学)
- 3 修士の学位は、次のとおりとする。
 - 修 士 (社会情報学)
 - 修 士 (生命医科学)
 - 修 士 (保健学)
 - 修 士 (看護学)
 - 修 士 (理工学)
- 4 博士の学位は、次のとおりとする。
 - 博 士 (医学)
 - 博 士 (保健学)
 - 博 士 (看護学)
 - 博 士 (理工学)
- 専門職学位は、次のとおりとする。
 教職修士(専門職)

第3章 学位の授与の要件

- 第3条 学士の学位は、本学学則の定めるところにより、本学を卒業した者に授与する。
- 2 修士の学位は、本学大学院学則の定めるところにより、修士課程又は博士前期課 程を修了した者に授与する。
- 3 博士の学位は、本学大学院学則の定めるところにより、博士課程を修了した者に 授与する。
- 4 前項に定めるもののほか、博士の学位は、本学大学院学則第23条第2項の規定 により本学に学位論文を提出してその審査に合格し、かつ、本学大学院の博士課程 の修了者と同等以上の学力があると確認された者に授与することができる。
- 5 専門職学位は、本学大学院学則の定めるところにより、専門職学位課程を修了した者に授与する。

第4章 課程の修了による学位の授与

第4条 前条第2項,第3項及び第5項の規定により,課程修了の認定を得た者については,本学大学院学則の定めるところにより学位を授与する。

第5章 論文提出による学位の授与

- 第5条 第3条第4項の規定により,学位論文を提出した者については,この規則の 定めるところにより,審査の上,学位を授与することができる。
- 2 前項に規定する者が博士の学位論文を提出するときは、学位申請書に学位論文、 学位論文の要旨、参考論文のあるときは当該参考論文、履歴書及び国立大学法人群 馬大学授業料その他の費用に関する規程(平成16年4月1日制定。以下「費用規程」 という。)に定める学位論文審査手数料を添えて提出するものとする。ただし、本 学大学院の博士課程に本学大学院学則に定める修業年限以上在学し、所定の単位を 修得して退学した者が退学後1年以内に申請する場合は、学位論文審査手数料を免 除することができる。
- 3 学位論文の受理は、当該教授会の議を経て、学長が決定する。
- 4 各教授会は、学位論文のほか外国語及びその専攻学術について、本学大学院の 博士課程の修了者と同等以上の学力を有することを認めるため試問を行うものとす る。
- 5 前項の試問は、口頭又は筆答により行い、外国語については原則として2外国語 を課するものとする。
- 6 第1項の規定により学位論文を提出した者が、本学大学院の博士課程に本学大学 院学則に定める修業年限以上在学し、所定の単位を修得して退学した者であって、 退学後の経過期間が各教授会が定める年限内である場合に限り、第4項の試問を免 除することができる。
- 7 学位論文の審査は、本学大学院学則に定める博士課程における学位論文の場合と 同様に、当該教授会において行う。

- 8 学位論文の審査のため必要があるときは、学位論文の提出者に対して当該論文の 副本, 訳本, 模型又は標本その他の提出を求めることができる。
- 9 学位論文の審査は、当該論文を受理してから、原則として1年以内に終了するものとする。

第6章 課程の修了及び論文の審査の決議

- 第6条 各教授会は,第3条第2項及び第3項の規定によるものについては,本学大 学院学則の定めるところにより課程の修了の可否,第3条第4項の規定によるもの についてはその論文の審査の合否について議決する。
- 2 前項の議決は、出席した構成員の3分の2以上の賛成を必要とする。
- 3 前項の教授会は、構成員の3分の2以上の出席がなければ開くことができない。4 海外旅行中及び休職中の構成員は、前項の数には算入しない。

第7章 学長への報告

第7条 各教授会が第6条の議決をしたときは、当該研究科長及び学府長は、速やか に文書により、学長に報告しなければならない。

第8章 学位記の交付

第8条 学長は、本学学則第51条の規定により卒業を認定した者並びに前条の報告 に基づいて、第3条第2項、第3項及び第5項の規定によるものについては、課程 修了の可否、第3条第4項の規定によるものについては、その論文の合否及び学力 確認の可否について決定し、授与の要件を満たす者には学位記を授与するものとす る。

第9章 論文要旨の公表

第9条 本学は、博士の学位を授与したときは、当該博士の学位を授与した日から3 月以内に、当該博士の学位の授与に係る論文の内容の要旨及び論文審査の結果の要 旨をインターネットの利用により公表するものとする。

第10章 学位論文の公表

- 第10条 博士の学位を授与された者は、当該博士の学位を授与された日から1年以 内に、当該博士の学位の授与に係る論文の全文を公表するものとする。ただし、当 該博士の学位を授与される前に既に公表したときは、この限りではない。
- 2 前項の規定にかかわらず、博士の学位を授与された者は、やむを得ない事由があ る場合には、研究科長又は学府長の承認を受けて、当該博士の学位の授与に係る論 文の全文に代えて、その内容を要約したものを公表することができる。この場合に おいて、研究科又は学府は、その論文の全文を求めに応じて閲覧に供するものとす る。
- 3 前2項の規定による公表は、インターネットの利用により行うものとする。

第11章 学位の名称

- 第11条 本学の学位を授与された者が、学位の名称を用いるときは、本学名を付記 するものとする。
- 2 学位記の様式は、別表第1-1から第5までのとおりとする。

第12章 学位授与の取消

- 第12条 学位を授与された者が、その名誉を汚辱する行為があったとき、又は不正の方法により学位の授与を受けた事実が判明したときは、学長は当該教授会の議を経て、学位の授与を取り消すことができる。
- 2 前項の議決については、第6条の議決の場合と同様に行うものとする。

第13章 学位授与の報告

第13条 本学において博士の学位を授与したときは、学長は省令第12条の定めると ころにより、文部科学大臣に報告するものとする。

附 則

- 1 この規則は、平成16年4月1日から施行する。
- 2 第3条第4項の規定による博士(保健学)の学位の授与は、医学系研究科保健学 専攻の博士課程を最初に修了した者に対し、学位を授与した後に行うものとする。

附 則

この規則は、平成19年4月1日から施行する。

附 則

この規則は、平成20年4月1日から施行する。

附 則

この規則は、平成23年11月1日から施行する。

附 則

この規則は、平成24年4月1日から施行する。

附 則

1 この規則は、平成25年4月1日から施行する。

- 2 平成25年3月31日に工学部及び工学研究科に在学する者(平成25年4月1日 以降に当該学部及び当該研究科に編入学,転入学及び再入学する者を含む。)の学 位については、改正後の第2条の規定にかかわらず、なお従前の例による。
- 3 第3条第4項の規定による博士(理工学)の学位の授与は,理工学府の博士課程 を最初に修了した者に対し,学位を授与した後に行うものとする。

この規則は、平成25年4月24日から施行し、平成25年4月1日から適用する。

附 則

この規則は、平成25年9月26日から施行する。

附 則

- 1 この規則は、平成26年4月1日から施行する。
- 2 改正後の第2条の規定は,平成26年度の入学者から適用し,平成25年度以前の 入学者については,なお従前の例による。

附 則

- 1 この規則は、平成 31 年 4 月 1 日から施行する。
- 2 平成 31 年 3 月 31 日に医学系研究科(重粒子線医工学グローバルリーダー養成プ ログラム)に在学する者の学位については,改正後の第 11 条第 2 項別表第 3-2 の様 式にかかわらず,なお従前の例による。

- 1 この規則は、令和2年4月1日から施行する。
- 2 改正後の規則は、令和2年度の入学生から適用し、令和元年度以前の入学者については、なお従前の例による。

別表第1-1

第3条第3条第1項の規程により授与する学位記の様式(共同教育学部)

Gunma Uni	versity		学第号				
Cooperative Faculty of Educ	ation has awarded upon	群馬大学 印 学 位	之記				
Date of Birth: _			(氏名)				
The bachelor	of Education		年月日生				
Together with all the rights thereto appe Conferred in the city of M	rtaining,	群馬大学及び宇都宮大学の共同 めたことを認める	司教育学部所定の課程を修				
On the <u>(日)</u> Day o	f <u>(月). (年)</u>	群馬大学共同教育学部長 宇都宮大学共同教育学部長					
(Name)	(Name)	(氏名) 印	<u>(氏名)</u> 印				
Dean, Cooperative Faculty of	Dean, Cooperative Faculty of	群馬大学の卒業を認め学士(教	教育学)の学位を授与する				
Education,	Education,						
Gunma University Utsunomiya University		年月日					
(Name)	(Name)	群 馬 大 学 長 (氏 名) 印	宇都宮大学長 (氏名) 印				
President, Gunma University	President, Utsunomiya	_ <u>(八名)</u> 印	_(<u>八名)</u> 印				
			(規格 A3)				

別表第1-2

第3条第3条第1項の規程により授与する学位記の様式(共同教育学部を除く。)

Gunma University	学第号						
The Faculty of has awarded upon (School)	群馬大学 印 学 位 記						
(Name)							
Date of Birth:							
	(氏名)						
The bachelor of	年_月_日生						
Together with all the rights, privileges and honors thereto appertaining,	本学学部所定の課程を修めたことを認める						
Conferred in the city of Maebashi, Gunma, Japan On the <u>(日)</u> Day of <u>(月)</u> , <u>(年)</u>	群馬大学学部長(氏名)_ 印						
<u>(Name)</u> Dean,	本学の卒業を認め学士()の学位を授与する						
	年月日						
(Name)	张氏上兴后 (近 4) (11						
President, Gunma University	群馬大学長 (氏名) 印						

別表第2-1

第3条第2項の規定により授与する学位記の様式(研究科又は学府の学位論文審査)

Gunma University	修第号						
The Graduate School of has awarded upon	群馬大学 印 学 位 記						
<u>(Name)</u>							
Date of Birth:	_(氏名)						
	年月日生						
The degree of							
Master of	本学大学院(研究科又は学府)専攻の						
Together with all the rights, privileges and honors	課程において所定の単位を修得し学位論文の審査及び最						
thereto appertaining,	終試験に合格したことを認める						
Conferred in the city of Maebashi, Gunma, Japan							
On the <u>(日)</u> Day of <u>(月)</u> , <u>(年)</u>	群馬大学大学院研究科長 (<u>氏名</u>)印 (学府長)						
(Name)	本学の修了を認め修士()の学位を授与する						
Dean, Graduate School of							
(Name)	年 月 日						
President, Gunma University	⁺ ,」 群馬大学長(氏名)印						
L	(規格 A3)						

別表第2-2

第3条第2項の規定により授与する学位記の様式(研究科又は学府の特定の課題についての研 究の成果の審査)

Gunma University The Graduate School of has awarded upon	修第号 群馬大学 印 学 位 記
<u>(Name)</u>	<u>(氏名)</u>
Date of Birth:	<u></u> 年_月_日生
The degree of	本学大学院(研究科又は学府)専攻の課程におい
Master of Philosophy in	て所定の単位を修得し特定の課題についての研究の成果の審査
Together with all the rights, privileges and honors	及び最終試験に合格したことを認める
thereto appertaining, Conferred in the city of Maebashi, Gunma, Japan On the <u>(日)</u> Day of <u>(月)</u> , <u>(年)</u>	群馬大学大学院研究科長(<u>氏</u> 名)印 (学府長)
(Name)	本学の修了を認め修士 () の学位を授与する
Dean, Graduate School of	年月日
<u>(Name)</u> President, Gunma University	群馬大学長 (氏名) 印

(規格 A3)

別表第3-1

第3条第3項の規定により授与する学位記の様式(研究科又は学府)

	博甲第号							
Gunma University								
	群馬大学 印 学 位 記							
The Graduate School of has awarded upon								
	_(氏名)							
(Name)	年月日生							
Date of Birth:								
	本学大学院(研究科又は学府)専攻の博士課程にお							
The degree of	いて所定の単位を修得し学位論文の審査及び最終試験に合格し							
Doctor of Philosophy in	たことを認める							
Together with all the rights, privileges and honors								
thereto appertaining,	群馬大学大学院研究科長(氏_名)印							
Conferred in the city of Maebashi, Gunma, Japan	(学府長)							
On the <u>(日)</u> Day of <u>(月)</u> , <u>(年)</u>								
	本学の修了を認め博士()の学位を授与する							
(Name)								
Dean, Graduate School of	年月日							
(Name)	群馬大学長 <u>(氏名)</u> 印							
President, Gunma University								
L	(規格 A3)							

別表第3-2

第3条第3項の規定により授与する学位記の様式(重粒子線医工学グローバルリーダー養成プログ ラム)

Gunma University	医博甲第号						
The Graduate School of Medicine has awarded upon	群馬大学 印 学 位 記						
(Name) Date of Birth:	<u>(氏名)</u> 年_月_日生						
The degree of Doctor of Philosophy in (Program for Cultivating Global Leaders in Heavy Ion Radiotherapy, Science and Technology) Together with all the rights, privileges and honors thereto	本学大学院(研究科又は学府)専攻博士課程の重粒 子線医理工学グローバルリーダー養成プログラムにおいて所定 の単位を修得し学位論文の審査及び最終試験に合格したことを 認める						
appertaining, Conferred in the city of Maebashi, Gunma, Japan On the <u>(日)</u> Day of <u>(月),(年)</u> <u>(Name)</u>	群馬大学大学院研究科長 <u>(氏名)</u> 印 (学府長) 本学の修了を認め博士()の学位を授与する						
Dean, Graduate School of (<u>Name)</u> President, Gunma University	年月日 群馬大学長 <u>(氏名)</u> 印 (規格A3)						

別表第4

第3条第4項の規定により授与する学位記の様式

Gunma University	博乙第号						
The Graduate School of has awarded upon	群馬大学 印 学 位 記						
(Name)							
Date of Birth:	_(氏名)						
	年月日生						
The degree of							
Doctor of Philosophy in	本大学に学位論文を提出し所定の審査及び試験に						
Together with all the rights, privileges and honors	合格したことを認める						
thereto appertaining,							
Conferred in the city of Maebashi, Gunma, Japan	群馬大学大学院 研究科長 (氏名) 印						
On the <u>(日)</u> Day of <u>(月), (年)</u>	(学府長)						
(Name)	上記を認め博士()の学位を授与する						
Dean, Graduate School of							
(Name)	年 月 日						
President, Gunma University							
	(規格 A3)						

別表第5

第3条第4項の規定により授与する学位記の様式

Gunma University	教職修第号					
The Graduate School of Education has awarded upon	群馬大学 印 学 位 記					
<u>(Name)</u> Date of Birth:	(氏名) 年_月_日生					
The degree of Master of Education (Professional) Together with all the rights, privileges and honors thereto appertaining, Conferred in the city of Maebashi, Gunma, Japan	本学大学院教育学研究科教職リーダー専攻専門職学位課程におい て所定の課程を修了したことを認める 群馬大学大学院					
On the <u>(日)</u> Day of <u>(月)</u> , <u>(年)</u> (<u>Name</u>) Dean, Graduate School of Education	教育学研究科長 <u>(氏名)</u> 印 本学の修了を認め教職修士(専門職)の学位を授与する					
<u>(Name)</u> President, Gunma University	年月日 群馬大学長 <u>(氏名)</u> 印 (規格 A3)					

3. 群馬大学大学院理工学府規程

平成 25 年 4 月 1 日 制定 平成 26 年 4 月 1 日 改正 平成 27 年 4 月 1 日 改正 平成 28 年 4 月 1 日 改正 平成 29 年 4 月 1 日 改正 平成 30 年 4 月 1 日 改正 平成 31 年 4 月 1 日 改正

令和2年4月1日 改正

令和3年4月1日 改正

第1章 総 則

- 第1条 群馬大学大学院理工学府(以下「学府」という)に関し必要な事項は,群 馬大学大学院学則(以下「大学院学則」という)及び群馬大学学位規則に定める もののほか,この規程の定めるところによる。
- 第2条 学府は,多様化・複層化が深化する産業活動における諸課題に対して俯瞰的 なものの見方と,総合的実践力・独創力を発揮することにより,これらに適切に対 処していくことのできる人材,さらに,社会の革新・成長を牽引するリーダーとし て社会の各分野で活躍できる実践的かつ独創性を有する高度な研究開発人材を育成 することを目的とする。
- 2 前項の目的を達成するため、理学と工学の分野融合による教育研究活動を基盤に次の各号に掲げる教育を行うものとする。
 - (1)従来の学問分野の枠を超えて俯瞰的に問題を把握し,知識を総合化して課題 を解決できる能力を養う高度な理工学教育
 - (2)各教員の特長を活かした先端的研究の実践を通じて,自ら新たな課題を発見 し挑戦する創造性と実践力を養う教育
 - (3) これからの研究者・技術者に求められる技術マネージメントなどに関する基礎的素養と高い倫理観を養う教育
 - (4) 先端研究者・高度専門技術者としてグローバルに活躍するための国際コミュ ニケーション能力を養う教育

第2章 組 織

第3条 学府博士前期課程に,次の教育プログラムを置く。 物質・生命理工学教育プログラム 知能機械創製理工学教育プログラム 環境創生理工学教育プログラム 電子情報・数理教育プログラム

2 学府博士後期課程に、次の領域を置く。
 物質・生命理工学領域
 知能機械創製理工学領域
 環境創生理工学領域
 電子情報・数理領域

第3章 指導教員

第4条 学生は,指導教員の指導の下に研究並びに履修を行うものとする。 第5条 前条の指導教員は,学府長が定める。

第4章 履 修

- 第6条 学府における授業科目及び単位数は,別表第1(博士前期課程),別表第2(博 士後期課程),群馬大学大学院学則第12条第2項及び群馬大学大学院共通科目に関 する内規に基づく大学院共通科目のとおりとする。
- 第7条 前条に規定する授業科目のうち,博士前期課程においては32単位以上,博 士後期課程においては16単位以上選択履修しなければならない。
- 第8条 学府における授業及び研究指導は,夜間その他特定の時間又は時期において 行うことができる。
- 2 教育方法の特例に関して必要な事項は、別に定める。
- **第9条** 学生は、学期始めの指定された期日までに、履修しようとする授業科目を指 導教員を経て学府長に届け出るものとする。
- 第10条 指導教員が必要と認めて他の教育プログラム及び領域の授業科目を選択履 修させた場合は,履修単位として認定することができる。
- 第11条 学生は、学府と他の大学院との協議に基づき、当該他の大学院の授業科目 を履修することができるものとし、履修期間は、履修に必要な所定の期間とする。
- 2 前項の規定により履修した単位は、10単位を限度に履修単位として認定するこ とができる。
- 3 第1項の規定による履修を志望する学生は,指導教員を経て学府長の許可を得な ければならない。
- 第12条 外国の大学院に留学を志望する学生は、学府長を経て学長に願い出てその 許可を得なければならない。
- 2 前項の許可を得て留学した期間は、1年を超えない範囲を原則として修業年限に 算入することができる。
- 3 第11条の規定は、学生が留学する場合に準用する。

第13条 他の大学院(外国の大学院を含む。以下同じ)に履修を認められた学生は, 履修を修了したときは,直ちに指導教員を経て学府長に,履修報告書及び当該他の 大学院の交付する学業成績証明書を提出しなければならない。

第5章 学位論文及び最終試験

- 第14条 学生は、学位論文の題目を指定された期日までに、指導教員を経て学府長 に届け出るものとする。
- 第15条 学位論文は,指定された期日までに指導教員を経て学府長に提出するもの とする。
- 2 学府長は、学位論文を受理したときは、教授会の審査に付さなければならない。
- 第16条 前条の規定による学位論文の審査は、大学院学則第19条第1項、第3項及 び第4項までの規定に基づき、審査委員を選定して行うものとする。
- 2 学位論文審査のため必要があるときは、学位論文の副本、訳本、模型又は標本等 の資料を提出させることができる。
- 第17条 審査委員は、学位論文の審査が終了したときは、速やかにその結果を教授 会に、文書をもって報告するものとする。
- 第18条 最終試験は、大学院学則第20条の規定に基づき、行うものとする。
 - 第6章 特別研究学生,特別聴講学生,科目等履修生, 研究生,聴講生及び外国人留学生
- 第19条 科目等履修生, 聴講生及び外国人留学生として入学できる者は, 大学院学 則第26条第1項又は第27条の各号のいずれかに該当する者とする。
- 第20条 研究生として入学できる者は,博士前期課程にあっては大学院学則第27条 の各号のいずれかに該当する者,博士後期課程にあっては博士の学位を有する者又 は学府において,博士の学位を有する者と同等以上の研究能力があると認めた者と する。
- 第21条 科目等履修生,研究生及び聴講生の入学は,学生の履修に支障のない場合 に限り,選考の上,学長が許可することがある。
- 第22条 外国人で、学府に入学を志望する者があるときは、選考の上、定員外として入学を、学長が許可することがある。
- 第23条 大学院学則第49条に定める特別研究学生に関しては、別に定める。
- 第24条 他の大学院の学生で、学府の授業科目の履修を志願する者があるときは、 学府と当該他の大学院との協議に基づき、特別聴講学生として受入れを許可するこ とができる。
- 第25条 特別聴講学生,科目等履修生,研究生,聴講生及び外国人留学生については, この規程に定めるもののほか,群馬大学理工学部規程を準用する。

第7章 教務·厚生

第26条 学府学生の教務及び厚生補導に関しては、教務委員会において処理する。

第8章 規程の改廃

第27条 この規程の改廃は、教授会の議を経て、学府長が行う。

附 則

この規程は、平成25年4月1日から施行する。

附 則

- 1 この規程は、平成26年4月1日から施行する。
- 2 改正後の規程は、博士前期課程平成26年度入学者並びに博士後期課程平成26年 度編入学者及び進学者から適用し、平成25年度以前の入学者については、なお従前の例による。

附 則

- 1 この規程は、平成27年4月1日から施行する。
- 2 改正後の規程は、博士前期課程平成27年度入学者並びに博士後期課程平成27年 度編入学者及び進学者から適用し、平成26年度以前の入学者については、なお従前の例による。

附 則

- 1 この規程は、平成28年4月1日から施行する。
- 2 改正後の規程は、博士前期課程平成28年度入学者並びに博士後期課程平成28年 度編入学者及び進学者から適用し、平成27年度以前の入学者については、なお従 前の例による。

附 則

- 1 この規程は、平成29年4月1日から施行する。
- 2 改正後の規程は、博士前期課程平成 29 年度入学者並びに博士後期課程平成 29 年 度編入学者及び進学者から適用し、平成 28 年度以前の入学者については、なお従 前の例による。

- 1 この規程は、平成30年4月1日から施行する。
- 2 改正後の規程は,博士前期課程平成30年度入学者並びに博士後期課程平成30年 度編入学者及び進学者から適用し,平成29年度以前の入学者については,なお従

前の例による。

附 則

- 1 この規程は、平成31年4月1日から施行する。
- 2 改正後の規程は、博士前期課程平成 31 年度入学者並びに博士後期課程平成 31 年 度編入学者及び進学者から適用し、平成 30 年度以前の入学者については、なお従 前の例による。

附 則

- 1 この規程は、令和2年4月1日から施行する。
- 2 改正後の規程は、博士前期課程令和2年度入学者並びに博士後期課程令和2年 編入学者及び進学者から適用し、平成31(令和元)年度以前の入学者については、 なお従前の例による。

- 1 この規程は、令和3年4月1日から施行する。
- 2 改正後の規程は、博士前期課程令和3年度入学者並びに博士後期課程令和3年編入学者及び進学者から適用し、令和2年度以前の入学者については、なお従前の例による。

4. 理工学府課程表・講義要目(博士前期課程)

物質・生命理工学教育プログラム(博士前期課程)

プログラム					単	週	週授業時間数						
	目区分	授	業	科	目		担当教員	位		巨次		巨次	備考
		 (数学系科目 代数 代数 代数 	学	特	論	I	天羽	数 2	前	後 2 2	前	後	 ・理工学特別演習4単位及び理工学特別実験8単位を 含む32単位以上を修得すること。
	学	 代解解解 一、 一、 一、 不 一、 不 日 一、 二、 	タ 角 目)	释 析		Ⅱ Ⅲ Ⅰ Ⅲ Ⅱ Ⅲ Ⅰ Ⅲ Ⅱ	名 宮 高 田 渡 大 関	2 2 2 2 2 2 2 2	2 2 2 2 2	2			QCC。 そのうち、学府共通教育科 目から3単位以上、所属す るプログラムの理工学特別 演習及び理工学特別実験を 除くコア教育科目から6単 位以上を修得すること。 ・重粒子線医理工学グロー バルリーダー養成プログラ ム(重粒子線医理工学ブログラ ム(重粒子和)在籍者は、リー ディングコース科目医理工
物質	府共通教育科	熱 力 子 計 計 計 性 性 (化学系科E	1 理1 理	王 学 学 学 学 学	特、特特特特	論論ⅠⅡⅠⅡ	山本 (隆)·武野 引 原 山本 (隆) 長 尾 高橋 (学)	2 2 2 2 2 2	2 2 2	2 2 2			共通科目群の生命倫理と法 的規制、関連法規・医療倫 理及び研究倫理から1単位 以上、重粒子線医理工学科 目群から2単位以上修得す ること。 リーディング医理工学科目 (学府開放教育科目及び全 教育プログラムのコア科目 中の(★)科目)から4単
· 生	E	固 体 高 分 (インテンジ	化 子 1			論論	花屋・京免・藤沢 米山・奥(浩)	2 2	2	2			位以上履修すること。 リーディング医理工学科目 は上記【修了要件】の修得 単位に含むことができる。
命 理 工 学		理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理	シンンンンンンン シンシンシンン	- ン - ン - ン ン ン ン ン ン	シシシシシシシ	I III IV V VI VI	音 山本(隆) 高橋(学) 守 田 引 原 長 森(真)·兵藤·蕭田	1 1 1 1 1 1 1	1 1 1	1 1 1		1	集中講義 隔年開講 隔年開講 隔年開講 隔年開講 隔年開講
教 育 プ ロ	学府開	 (実践実習和 分析・測定 CAD・CAN プログラミン 環境計測 スキル 	スキル (スキ) ノグスキ ・シミ	ルアッ テルアッ ユレ	プ実践実 / プ実践身 ー ショ	</td <td>山延・松尾 林 加藤(毅) 渡邉・中川・ 桂·野田·若井</td> <td>1 1 1</td> <td>1 1 1</td> <td>1</td> <td></td> <td></td> <td>集中講義 集中講義 ※学府共通教育科</td>	山延・松尾 林 加藤(毅) 渡邉・中川・ 桂·野田·若井	1 1 1	1 1 1	1			集中講義 集中講義 ※学府共通教育科
グラム	放教育科目	 (プロジェク ファイブ 医すて 医理工連携重粒 総合日 	ウト系 ロバ 連 注線治療 本	科目) イオ 携 の物理と 語	工 学 特 特 と 医 学特論 中 級	論論	粕谷 · 河原 · 橘 伊藤(正実) 櫻井 · 花泉他 牧 原	2 1 2 1	2 1	2			 日,学府開放教育科 日及び技術マネージ メント系科目は82 ページ参照 ・総合日本語中級I・
		総 合 日 総 合 日 総 合 日	本 本	語 	中 級 上 級 上 級	П І П	牧 原 大 和 舩 橋	1 1 1	1	1			Ⅱ及び上級 I・Ⅱは 留学生のみ履修可。 修了要件単位に含め ない。
	技術マネージメント系科目	国際コミものづ	ン タ 究 - ユ ユ く	ー ン 発 - シー ケービ	寺 シ 表ョシシジッ特 シ 表ョシシジップ 技ンンヨヨ プ	Ⅰ Ⅱ ス	伊伊全全海山海海松板(正文教教村橋)。 村橋	$ \begin{array}{c} 2 \\ 2 \\ 1 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \end{array} $	2 ^(1年) 2 2	2 2 次に行	5)		ない。 集中講義 集中講義
_° 2× ,				単	週抄	受業	時間	数					
--------------------	--	--	---	--	--	--	------------------	---	--				
プログラム	授 業 科	目	担当教員	位	1年		2年		備考				
・科目区分				数	前	後	前	後					
	 (分野統合科目) 物質・生命理工学特論 物質・生命理工学特論 物質・生命理工学特論 物質・生命理工学特 	Ⅱ(★) 寺 論 Ⅲ	尾崎(広)・森口 武田(茂)・松尾 若松・行木 高橋(浩)・高橋(剛)	2 2 2 2	2 2 2 2								
物質・生命理工学教育プコア教育科目	無無分量分有有有有高生生放化量バ生生物物物物理理機機子子 反構合元子物制計制制。 いんしん しんしん 一般 しん 一般	特特術特製学義義講講講 時 特特 特特 特 基本 特 特 新 新 新 新 新 新 新 新 和 王 Ⅱ Ⅲ Ⅲ Ⅲ	佐白浅園工山山久網海上園井廣齋前阿鮓若各各各各全全(記石・村・奥・(・・田子・京・上瀬野八四師松教教教教教サギ岩・竹住・吉圭中菅(1浅 榎・田 新山・邦教教教教教教教社)イ本田吉内原)村野亘川山本口成本川教他員員員員員	$\begin{array}{c} 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ $	2 2 2 2 2 (1年次; (1年次; (1年次; (1年次; (1年次;))	こ行う) こ行う)		2	隔 年 開 講 講 講 講 講 講 講 講 講 義 義 義 義 義 義 義 義 義 義				
ロ グ ラ ムリーディングコース科目	(医理工共通科目群)生命倫理と法的度理度度速泉度要要>> <t< td=""><td>倫理理学学 学学学学学学語 義義義</td><td>曾曾曾武武 櫻花花山神加山山 加加大武 (茂茂 井泉泉口谷田口口 田田野)</td><td>$\begin{array}{c} 1\\1\\1\\1\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$</td><td></td><td>$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$</td><td>1 1 2 2</td><td></td><td>・リーディングコー ス科目は 型 ローダー を成 プロク テム (第 つ の プログ ラム (第 つ の プログ ラム (第 つ の プログ ラム (第 つ の で を 成 プログ ラム (第 つ の で を 成 プログ ラム (第 つ の の で を 成 プログ の を 成 プログ ラム (第 つ の の の の の の の の の の の の の の の の の の</td></t<>	倫理理学学 学学学学学学語 義義義	曾曾曾武武 櫻花花山神加山山 加加大武 (茂茂 井泉泉口谷田口口 田田野)	$ \begin{array}{c} 1\\1\\1\\1\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$		$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	1 1 2 2		・リーディングコー ス科目は 型 ローダー を成 プロク テム (第 つ の プログ ラム (第 つ の プログ ラム (第 つ の プログ ラム (第 つ の で を 成 プログ ラム (第 つ の で を 成 プログ ラム (第 つ の の で を 成 プログ の を 成 プログ ラム (第 つ の の の の の の の の の の の の の の の の の の				

[コア教育科目]

(分野統合科目)

物 質 · 生 命 理 工 学 特 論 I 尾崎 (広) 教授 · 森口准教授

Special topics in chemistry and chemical biology I

学部の生化学関連講義で取り扱った生体分子,特に核酸関連生体分子を中心に,その化学的性質,化 学合成法,分子間での相互作用など,化学的な立場からより詳細に分子レベルで解説する。

This course provides an overview of organic chemistry, chemical synthesis, and intermolecular interaction of biomolecules such as nucleic acids and the related compounds.

物質・生命理工学特論 I 武田(茂) 教授·松尾教授

Special topics in chemistry and chemical biology II

化学を出発点として生命現象の理解を目指すケミカルバイオロジーの研究について最新のトピックス を紹介する。核酸やペプチド,糖など生体関連物質を用いた化学プローブの合成について,生理活性物 質の構造や相互作用について,化学プローブの生物学的,医学的応用について,などについて解説する。 生物機能解明研究について具体例を挙げて学ぶことで,化学-生物学の分野横断的な考え方を身につけ ることを目的とする。

This course will provide an overview of chemical biology through the recent research topics of this field as follows; synthetic method for chemical probes, interaction and structural analysis of bioactive compounds, biological and biomedical applications of chemical probes.

物質·生命理工学特論Ⅲ 若松教授·行木准教授

Special topics in chemistry and chemical biology ${\rm I\!I}$

タンパク質の作用機序を分子レベルで理解することはその医薬的応用に必須である。タンパク質の発 現機序,それを利用した実験サンプルの調製,タンパク質の静的・動的構造と相互作用の解析について 概説する。

Molecular-level understanding of action mechanisms of proteins is crucial for their application to drug development. We will review the mechanisms of protein expression, its application for the preparation of experimental samples, analyses of static/dynamic structures and interaction of protein molecules.

物質・生命理工学特論N 高橋(浩)教授・高橋(剛)准教授

Special topics in chemistry and chemical biology IV

生物機能の要となる生体高分子の化学的性質・構造・ダイナミックスを明らかにする計測手法につい て講義する。生体高分子の主要物質であるタンパク質を中心にして、その化学的性質、化学合成法、分 子間相互作用、立体構造形成やその安定性の問題を、実験的方法の基礎原理や学部で学んだ知識の復習 も含めて解説する。 Chemical natures, dynamics, and structures of biological macromolecules are fundamentally crucial for the physiological functions of those molecules. Focusing mainly on proteins, their chemical properties, chemical synthesis, intermolecular interactions, three-dimensional structure formation, and stability problems will be reviewed. This lecture also deals with different experimental methods that can be applied to reveal various properties of biological molecules and those assemblies.

分析 化学特論 佐藤(記)教授・ホサイン教授

Analytical Chemistry, Advanced Course

生物分析化学および固体表面分析における代表的分析法の原理と測定に関する考え方を理解する。具体的には,前半では電気泳動,イムノアッセイ,蛍光イメージングなどについて,後半は結晶表面の構造,再構築,逆格子およびその解析手法などについて解説する。

Basic concepts and recent progress of bioanalytical chemistry and surface analysis are discussed. The topics in this course: electrophoresis, immunoassay, fluorescent imaging, structure and reconstruction of crystal surface, reciprocal lattice of surface, different surface probed techniques and its application.

無機固体・表面化学特論 白石(壮)教授·岩本准教授

Structure and Surface Chemistry of Inorganic Solids, Advanced Course

今日,さまざまな機能性固体無機材料が我々の生活を支えるために用いられている。本講義では,固 体無機材料の構造と機能についての基礎的な知識を習得することを目標として,炭素材料および金属酸 化物材料の結晶構造,細孔構造,電気化学特性,表面化学特性などについて解説する。

Nowadays, inorganic solid materials are used in various technological applications. This course provides fundamental knowledge of structure and functions of inorganic solid materials. Especially, crystal structure, pore structure, electrochemical property and surface property of carbon materials and metal-oxides are explained in detail.

無 機 化 学 特 論 浅野教授·村岡准教授·竹田准教授

Advanced Inorganic Chemistry

有機金属錯体を含む遷移金属錯体化学の基礎および応用について解説する。特に化合物の結合,構造, 反応性,物性と電子状態について,分子軌道の考え方をもとに統一的に理解することを目指す。また, 金属錯体の結合や構造,電子状態の理解に必要な群論の基礎を講義する。さらに金属錯体の電子励起状 態および光反応について解説する。

This course provides the basic concept and applications of transition metal complexes including organometallic compounds. Chemical bonding, structures, reactivities, properties, and electronic structure are discussed on the basis of the molecular orbital theory. Basic of group theory is introduced in order to understand electronic structure as well as chemical bonds. Further, properties of coordination compounds in the excited states are discussed in terms of electronic structure and photoreactions.

分子分光学特論

園山教授・住吉教授

Molecular Spectroscopy, Advanced Course

分子・分子集合体の構造や性質の解明に大きな役割を果たす分子分光学の理論や実験方法について講 義する。具体的には、学部の物理化学、分子分光学、構造化学を基礎として、物質科学および生命科学 分野における、赤外吸収・ラマン散乱、蛍光・リン光、マイクロ波、磁気共鳴を用いた研究成果を講述 する。

The aim of this lecture is to understand experimental methods and theories of molecular spectroscopy. This course will provide several topics on recent applications of infrared and Raman, fluorescence and luminescence, microwave, and magnetic resonance spectroscopies in materials and life sciences.

量 子 化 学 特 論 奥津教授·工藤教授·堀内准教授

Quantum Chemistry, Advanced Course

まず,時間に依存しないSchrödinger方程式に関する様々な電子状態理論とその分子物性への応用について学ぶ。また,角運動量の量子化とスピンの概念について講述し,その上で,電子の軌道角運動量の扱いと電子スピンの特殊性を理解する。

One of the aims of this course is to learn a variety of electronic structure theories related to the time-independent Schrodinger equation and the application to some molecular properties. Also provided are the idea of quantization of angular momentum and the concept of spin. Then, the handling of electron orbital angular momentum and the special nature of electron spin are discussed.

分子動力学特論 山路准教授·吉原准教授

Molecular Reaction Dynamics

化学反応速度の動力学的取り扱い法,反応速度に関する理論,拡散律速反応,酵素反応速度論,エネ ルギー移動反応の理論と応用,電子移動反応の理論と応用について講述する。

The aim of this lecture is to understand the kinetics of chemical reactions, representative theories on chemical reactions, diffusion-controlled reactions, enzyme reactions, energy transfer reactions, and electron transfer reactions.

有機反応化学特論 山田(圭)准教授

Organic Reactions, Advanced Course

医薬品やファインケミカルなどの有用な有機化合物の化学合成を理解する上で必要な化学反応につい て、最新の論文に応用された実例を交えながら、講述する。前半は、クロスカップリング反応、カルボ ニル求核反応とその立体化学、アルケン合成などを代表的題材として、有機化学反応全般の理解に応用 可能な考え方の習熟を目指す。後半は、逆合成の考え方に基づく天然有機化合物の合成に関して実例を 交えながら解説する。

Fundamental principles of useful organic reactions for preparation of organic molecules such as pharmaceuticals and fine chemicals are discussed. Students will master prediction of many organic reactions through discussion on frequently utilized reactions that appear among recent papers, for example, cross-coupling reaction, stereoselective nucleophilic reaction of carbonyls, and alkene syntheses. Furthermore, total synthesis of natural organic compounds by retrosyntheric approach will be discussed.

有 機 構 造 化 学 特 論 久新教授·中村教授

Advanced Organic Structural Chemistry

有機機能物質化学の観点から,有機発色性物質(色素,クロミズム),有機発光性物質,有機表示・ 記録物質,有機電導性物質,有機磁性物質,有機エネルギー変換物質,金属捕捉有機物質(有機ホスト - ゲスト化学)等について概論的に講述するとともに,それぞれの実例を挙げて解説する。

This course provides the outline and examples of organic functional materials, such as organic dyes, light-emitting materials, recording materials, display materials, conductors, magnets, energy-conversion and storing materials, and ionophoric materials.

有 機 合 成 化 学 特 論 網井教授· 菅野准教授

Advanced Synthetic Organic Chemistry

現代の有機合成化学の基幹をなす様々な概念について学ぶ。主な内容として,遷移金属触媒を用いた 反応,典型元素試薬を用いた反応,立体選択性,官能基変換反応,不斉触媒反応などを軸として講述す るが,最近のトピックとして天然物合成や機能性材料の合成などについても紹介する。

Essential concepts of modern synthetic organic chemistry are discussed, such as transitionmetal-catalyzed reactions, chemistry of main group elements, stereoselectivity, functional group transformations, catalytic asymmetric reactions, and some recent topics including synthesis of natural products and advanced functional materials.

有 機 元 素 化 学 特 論 海野教授·武田(亘)准教授

Advanced Organic Element Chemistry

(海野教授)ケイ素を含む化合物について,元素特性から合成,材料としての応用まで,広くわかりや すく解説する。また,講義の中で研究の進め方,キャリアアップの方法,海外での研究など周辺的な事 項についても触れる。

(武田准教授)炭素 – 典型元素(リチウム,マグネシウム,ホウ素,ケイ素,リン,硫黄など)結合を 持つ化合物(有機典型元素化合物)の構造,合成,反応性について系統的に解説する。

(Prof. Unno) The basic, synthesis, and material application of silicon-containing compounds are described. Also additional information about research, carrier-up, and activities in the foreign countries is also supplied.

(Prof. Takeda) Structure, synthesis, and reactivities of organic main group compounds having bonds between a carbon and a main group element (lithium, magnesium, boron, silicon, phosphorus, sulfur and so on) are systematically explained.

高分子成形加工特論 上原教授·浅川教授

Polymer Processing

高分子材料の成形加工過程で起こる結晶化・配向などの構造形成機構ならびに,X線・熱分析などの 構造解析法について解説する。また,高分子薄膜の作製プロセスや自己組織化などの時空間ダイナミク スに係るシナジェティクスの基礎事項についても解説する。

This course provides the understanding of polymer crystallization and chain orientation. Analytical methodologies for the crystalline and amorphous phases, including X-ray and thermal analyses, are also introduced. Furthermore, fundamental aspects of synergetics concerning spatio-temporal dynamics such as self-organization processes for polymeric thin films are also given.

生物物理学特論 園山教授

Biophysics, Advanced Course

生物物理学の大きな貢献により解明された生命現象を取り上げ,それに関連した学術論文の講読を通 して,生物物理学の考え方や方法を講義する。具体的には,学部の生物物理学を基礎として,生体運動, タンパク質や生体膜に関する論文の内容を解説,議論し,生物物理学の考え方や方法の理解を深める。

The aim of this lecture is to understand concepts and methodology in biophysics by reading some original papers on biological phenomena investigated with biophysical techniques and theories. The topics in this course will be introduced as follows; biological motions, protein architecture and biomembrane.

生物機能工学特論 井上准教授·榎本准教授

Food Immunology and Cell Engineering, Advanced Course

この講義では食品免疫学と細胞工学についての講義を行う。食品免疫学では,免疫制御に関する分子 機構を理解するとともに,その機能性食品,アレルギーや自己免疫疾患の予防を目的とした食品への応 用に関して考察する。細胞工学では,哺乳類細胞における代謝の制御機構について講義する。また,遺 伝子工学的手法を用いた多機能性細胞の開発や遺伝子改変動物の作製などについて紹介する。

This course covers food immunology and cell technology. "Food immunology" emphasizes the molecular basis of regulation of immune responses and their application to the functional foods, especially to the prevention of allergy and autoimmune disease. "Cell technology" focuses on regulatory mechanism of metabolism in mammalian cells. New techniques such as development of pluripotent cells and establishment of genetically modified animals using genetic engineering will be also introduced.

放射線利用環境浄化技術特論 瀬古教授(客員)・田口教授(客員)・廣木准教授(客員) Environmental Purification Technology using Ionizing Radiation, Advance Course

電子ビームなどの放射線を利用して空気・水中に生成させた活性種の化学反応により,共存する環境 汚染物質を分解・除去する技術,また放射線加工による有害金属等の吸着剤及び生分解性材料の改質に 関わる基礎と応用について講義する。 This lecture covers fundamental and application of chemical reactions of active species induced in air or water by ionizing radiation such as electron beams, relating to environmental purification technologies: decomposition/ removal of coexisting organic pollutants, modification of absorbent materials or biodegradable polymers using ionizing radiation.

化学計量標準特論

齋藤教授(客員)·野々瀬教授(客員)· 羽成講師(非常勤)

Chemical Metrology and Standards

正確かつ精密な化学分析は,研究開発,政策決定,商取引などに不可欠であり,そのために検量学の 概念が化学計測に取り込まれている。化学計測におけるトレーサビリティ,分析値の信頼性,不確かさ の評価,標準物質など,化学計量における重要な項目について講義する。

Discussed are fundamental concepts in chemical metrology such as the traceability in measurements, evaluation of uncertainties in analytical values, role of standard reference materials and etc.

量子ビーム利用機能性材料創製特論 前川教授(客員)・八巻教授(客員)・山本准教授(客員)

Advanced Course on Quantum Beam Application for Creating Functional Materials 電子, イオン, 中性子, X線, y線などの量子ビームの性質および物質・材料に及ぼす照射効果につい て解説する。また, 量子ビームを利用した有機・無機機能性材料の創製に関する研究開発事例について も紹介する。

This advanced course covers the intrinsic the properties and irradiation effects of quantum beams such as electron beams, ion beams, neutron beams, X-rays, and γ -rays. Topics also include some examples of R & D activities for creating organic and inorganic functional materials by quantum beams technology.

バイオプラスチックデザイン工学特論	阿部教授(客員)・沼田(圭)准教授(客員)
	吉川准教授(客員)

Advanced Course on Molecular Design for Bioplastics

本科目では,バイオマスを原料とするバイオプラスチックデザインを体系的に学ぶ。バイオマスから バイオベースケミカルの精製(バイオリファイナリー),バイオベースケミカルを利用したバイオプラ スチック合成,バイオプラスチックの構造および機能制御,バイオプラスチックの生分解性制御など, バイオプラスチックデザインに必要な知見を,先端研究成果を交えながら講述する。

Systematic knowledge that are needed in designing of bioplastics are lectured. This lecture contains different disciplines: biorefinery, synthesis of bioplastics, control of structure and function of bioplastics. Recent studies on bioplastics will be also introduced.

生物科学特别講義 I 生体調節研究所各教員

Special lecture in life sciences I

細胞分子生物学分野の基礎的な学識と手法とともに、最新の研究成果、その考え方を学ぶ。

This course outlines the fundamentals and methodology of molecular cell biology, and the current topics and research achievements are explained.

生物科学特別講義Ⅱ

Special lecture in life sciences II

バイオ医薬品の開発プロセスの概要を学ぶことを目的とする。そのために,非臨床試験(薬理試験・ 薬物動態試験・毒性試験),臨床試験(フェーズ I ~ Ⅲ),原料や製品の品質試験について解説する。タ ンパク質や糖の最新の解析技術が重要である事も紹介する。

The aim of this course is to understand the flow of development processes of biopharmaceuticals. Non-clinical tests (pharmacological, pharmacodynamic and toxicological), clinical tests (phases I, II, and III), and quality tests of materials and products will be outlined. Crucial roles of state-of-the-art analyses of proteins and sugars will also be introduced.

物	質	•	生	命	理	Т	学	特	別	講	義	Ι	各教員
---	---	---	---	---	---	---	---	---	---	---	---	---	-----

物質・生命理工学特別講義 I 各教員

物質・生命理工学特別講義 Ⅲ A教員

物 質 · 生 命 理 工 学 特 別 講 義 N 各教員

理 工 学 特 別 演 習 全教員

物質科学,生物科学,計測科学に関する先端的な概念を学び修士論文作成のために必要な知識を習得 するために,指導教員の指導領域から研究課題を選択して,これに関連した文献調査・講読などの演習 を行う。

理 工 学 特 別 実 験 全教員

物質科学,生物科学,計測科学に関する先端的な研究手法を実践的に学ぶために,指導教員の指導領 域から研究課題を選択して,理論研究・実験・数値解析などの研究をおこない,修士論文の作成指導を 受ける。

知能機械創製理工学教育プログラム(博士前期課程)

プロ	グラム							単位		受業			
	目区分	授	業	科	目		担当教員	位 数	1 1 前	F次 後	2년 前	F次 後	備考
			学学学学学学析	特特特特特特学析	論論論論論	I Ⅲ Ⅲ Ⅱ Ⅲ I 論	天名宮高田渡大 関	2 2 2 2 2 2 2 2 2 2 2 2 2	н 1 2 2 2 2 2 2 2	1 <u>來</u> 2 2 2	UFI		・理工学特別演習4単位, 理工学特別実験8単位及び サイエンスペース機械知能 システム特論2単位を含む 32単位以上を修得すること。 そのうち,学府共通教育科 目から3単位以上,所属す るプログラムの理工学特別 演習及び理工学特別実験を 除くコア教育科目から6単 位以上を修得すること。 ・重粒子線医工学グローバ ルリーダー養成プログラム
知	学府共通教育科	(物理系力 力 量 統統物物 物 性 系科 合 、 物 物 物 物 、 、 、 、 、 、 、 、 、 、 、 、 、 、	や 地理 理理 理理 理理 理理 理理 理理 理理	学 学 学	特 特特特特特特 计计学	論論ⅠⅡⅠⅡ 論	山本 (隆)·武野 引 原 山本 (隆) 長 尾 高橋 (学) 花屋·京免·藤沢	2 2 2 2 2 2 2 2 2 2	2 2 2	2 2 2 2			(重粒子線医工連携コース) 在籍者は、リーディング コース科目医理工共通科目 群の生命倫理と法的規制、 関連法規・医療倫理及び研 究倫理から1単位以上,重 粒子線医工学科目群から2 単位以上修得すること。 リーディング医工学科目 (学府開放教育科目及び全
能 機 械	科目	有 機	化 子 1 目) 科	学 化 学 学	特	明論論 論	九座 泉光 藤(久新・中村 米山・奥(浩) 井上・榎本	$\begin{array}{c} 2\\ 2\\ 2\\ 2\\ 2\\ \end{array}$	2 2	2			教育プログラムのコア科目 中の(★)科目)から4単 位以上履修すること。 リーディング医工学科目は 上記【修了要件】の修得単 位に含むことができる。
創製理工		、「理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理	ンシンシンシン	ロテテテテテテテテ	シシシシシシシシ	I III IV V VI VI	音 山本(隆) 高橋(学) 守 町 見 長 (<u></u> 二 (<u></u>)) (<u></u> 二 (<u></u>)) (<u></u>) (<u></u>) (<u></u>) (<u></u>) (<u></u>) (<u></u>) (<u></u>	1 1 1 1 1 1 1	1	1 1 1	1 1	1	集中講義 隔年開講 隔年開講 隔年開講 隔年開講 隔年開講
学 教 育 プ	学府	 (実践実習和 分析・測定 CAD・CAN プログラミン 環境計測 	スキ) (スキ) ングス ・シ	ルアッ キルアッ ミュレ	プ実践実 > プ実践実 ー シ ョ	</td <td>山延・松尾 林 加藤(毅) 渡邉・中川・</td> <td>1 1 1 1</td> <td>1 1 1</td> <td>1</td> <td></td> <td></td> <td>集中講義 集中講義</td>	山延・松尾 林 加藤(毅) 渡邉・中川・	1 1 1 1	1 1 1	1			集中講義 集中講義
, ロ グ ラ	開放教育科目	 (プロジェク ファイブ 医理工連携重粘 総合日 	ウト系 ロバ 連	科目) イオ 携 豪の物理と 語	特 と医学特論 中 級	論 (★) I	桂·野田·若井 粕谷·河原·橘 伊藤(正実) 櫻井·花泉他 大 丸	2 2 1	2 1	2			 ※学府共通教育科 目、学府開放教育科 目及び技術マネージ メント系科目は82 ページ参照 ・大学院共通科目 (次世代モビリティ
4	++	総合日 総合日 総合日 M O	本	語	中 級 上 級 上 級		舩 橋 大 和 舩 橋 伊藤 (正実)	$\begin{array}{c}1\\1\\1\\2\end{array}$	1	1			高度交通システム) ・総合日本語中級Ⅰ・ Ⅱ及び上級Ⅰ・Ⅱは 留学生のみ履修可。
	技術マネージメン	経	エ レ タ 手 究 ニ ケ	学 ン レ ン 一 発 ジ ー ン 『	特 シッ シッ 表 技 ョン技	論ププ法	伊藤 (正実) 全 教 員 全 教 員 海 野		2	2 2			修了要件単位に含めない。
	ージメント系科目	国際コミ ものづ アントレ	くし プレラ	ケーりビ	ション ショネ ジップ 特	I ス	石 間 石 間 松 村 他 他	$\begin{array}{c}1\\2\\2\\2\end{array}$	1 2 2	2			集中講義 集中講義
	コア教育科目	(分野統合和 サイエンスペ ()		械知能	システム特	寺論	石間・荘司・ 山田・中沢	2	2				

知能機械修

プロ	グラム						単		受業			
	区分	授	業	科	目	担当教員	単位数	1 1 前	F次 後	2 ^全 前	F次 後	備考
		熱 流 エネルギ エネル ル	性 済 ユ ス ス 、 、 、 、 、 、 、 、 、 、 、 、 、	れこく 解解 体学ム 析析	力 学 論 工学特論	座古船天未石川 (月)	$\begin{array}{c}2\\2\\2\\2\\2\\2\\2\\2\\2\end{array}$	2 2 2	2 2 2 2	113	2	隔年開講 隔年開講 隔年開講 隔年開講 隔年開講
知	Э	破構材溶精材界応ソ弾造料 密料面用ト フ		- 計力 生 工学工 学学ル	学校 书特特特特学 一十十一章 一个学校 中学学校 中学学校 中学学校 中学学校 医马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马	荒松岩荘未 半小相井山丸木 (幹原崎司定 谷山原上口山	222222222222222222222222222222222222222	2	2 2	2 2 2 2 2	2 2	隔隔隔隔隔隔隔隔隔隔幕。 年年年年年年年年年年年年 開開講講講講講講講講講講講講講講講
能機械創	ア 教 育 科	機 械 物 ッ 知 ン ユ ー 体 制 ー 、 注 制	理ト機イ動工理	制 行 将 特	⊥ 字 → ス特論 卸 特 論	1 井上定沢定)浦 (功浦	$\begin{array}{c}2\\2\\2\\2\\2\\2\\2\\2\\2\\2\end{array}$	22	2 2 2	2		隔年開講 隔年開講 隔年開講 隔年開講
創製理工	Ħ	iコンピュ ンピテ 人 工 Iマイクロ 産業人	ータ ム 扉 知 T ナノ	シス	テム特論 化特論 特論	魏 もれてド77ドスサマド カマド 山田(功) 鏑 木 鈴木(孝) 荒木・天谷・岩瀬・ 川島・鬼形・小川・	$\begin{array}{c} \overline{2}\\ 2\\ 2\\ 1\\ 2\\ 2\\ 1\\ 2\\ 2\end{array}$	2 1 2	2	2	2	隔年開講 集中講義 隔年開講 集中講義
学 教 育		知能·制御の7 知能機機械倉 知能機機械倉 知能機機械倉	ための数 割製型理理理理理理理理理理	理工学学界制度	タサイエンス 〒別講義Ⅱ 〒別講義Ⅲ 〒別講義Ⅲ	江本·市村·志賀 山榎 金若鈴 木 (秀)	2 1 2 1 2	2 1 1 1	2 1			隔年開講 集中講義 集中講義 集中講義
プログ		知能機械 約 約 能機械 理 理 工 (医理工共	訓製理 訓製理 学 朱 学 朱	工学粮 工学粮	F別講義∨ F別講義Ⅶ F別講義Ⅶ 演 習 実 験	安藤 (哲) 藪渡 登 教 員員	$\begin{array}{c}1\\1\\4\\8\end{array}$	1	1			集中講義 集中講義 集中講義 ・リーディングコー
ラム	リーデ	生命倫関連法	理と 規・ 究 音理	: 法 医 偏 則	的 規 則 理 理 学 学	 曾曾曾 根根 根長 (茂) (茂) 	1 1 1 1		1 1 1	1 1		ス科目は重粒子線医 工学グローバルリー ダー養成プログラム (重粒子線医工連携 コース)在籍者のみ 履修可。医学物理基
	アィングコース 科	力電量物放医統	磁子理線画言	気力数 物 † 英	学語	櫻花花山神加山山 日日日日	$ \begin{array}{c} 2 \\ $		2 2 2 2 2 2 2 2 2 2			礎科目群は、入学時 に履修していない者 のみ履修可。修了要 件単位に含めない。
	Ē	(重粒 中理 加 中理 制 次 射 線 微 大 型 制 数 制 基 加 、 射 線 一 一 一 一 一 一 型 制 線 一 一 一 型 制 、 約 引 、 線 一 一 一 一 一 一 一 一 一 一 一 一 一	・放身 断・核	†線防 医受物	護学講義	加田田 加大野 武田(茂) 武田(茂)	2 2 2 2 2		$2 \\ 2 \\ 2$	2 2		集中講義 集中講義 集中講義

知能機械修

[コア教育科目]

(分野統合科目)

サイエンスベース機械知能システム特論 石間教授・荘司教授・山田教授・中沢教授

Intelligent Mechanical Systems based on Science, Advanced Course

「エネルギーシステム」「マテリアルシステム」「メカトロニクス」「インテリジェントシステム」に関 して,分野を超えて共通の理論体系や解析手法について学ぶ。新しい機械知能システムを創製して行く ことができる高度な知識を身に着け,分野融合型プロジェクトにも参画できる実践力や独創力を養う。

Common theoretical systems and analytical method related with "Energy System", "Material System", "Mechatronics" and "Intelligent System" are learned. Advanced knowledge for developing the new intelligent mechanical systems is obtained. Practical skills and creativity for participating in the field integration project is also developed.

エネルギー変換工学特論 I 座間准教授

Advanced Energy Conversion I

熱エネルギー変換における液体燃料の燃焼方法に用いられる噴霧燃焼について,物理学的また化学反応の立場からの講義を行う。特に燃料噴霧の形成における燃料微粒化,噴霧流動について流体力学的な 観点から理解することを目的とする。そのため,噴霧の現象論的な理解を深めるため,噴流理論や噴霧 計測法,さらには数値解析法などについて解説する。

This lecture provides the physical and chemistry knowledge for spray combustion of liquid fuel. Especially, the aim of this lecture is to understand atomization mechanism and spray characteristics of the liquid fuel in terms of fluid dynamics. To achieve this aim of the lecture, jet theory, measurement technique of the spray, numerical simulation method and so on are explained.

エネルギー変換工学特論 Ⅱ 古畑教授

Advanced Energy Conversion II

熱エネルギー変換における熱発生プロセスとしての燃焼現象について,熱流体の観点から解説する。 特に,乱流場における速度,温度および濃度変動と化学反応や物質移動との関連を理解することを目的 とする。そのために,乱流モデルや燃焼,化学反応とその数学的モデルや数値解析法などについて解説 する。

Combustion phenomena in thermal energy conversion systems are lectured from the view point of thermal fluid flow. The aim of this lecture is to understand the relationship between velocity, temperature and mass concentration fluctuations and chemical reactions in turbulent flow. Numerical models of turbulence and combustion and numerical simulation methods for turbulent combustion are also discussed.

庄 縮 性 流 体 力 学 舩津准教授

Compressible Fluid Dynamics

学部での流体力学,流体力学関連の講義科目を基礎にして流体力学と熱力学の知識を必要とする圧縮 性流体力学を講義する。具体的内容として,1.圧縮性と等エントロピー流,2.衝撃波,3.プラン トルマイヤー流,4.化学反応を伴う流れ,5.管内圧縮流れ,6.極超音速流などである。

This course covers the theory of compressible fluid dynamics on the basis of fluid engineering and fluid dynamics. It provides compressible flows, isentropic flows, shock waves, Prandtl-Meyer flows, flows with chemical reactions, and hypersonic flows.

熱 流 体 工 学 特 論 天谷教授

Advanced Thermo-Fluid Engineering

熱流体工学で取り扱う輸送現象の理解を深めるために,熱流体工学の基礎方程式であるいくつかの微 分方程式を,質量,運動量,エネルギー保存原理から導く。運動量の保存法則からオイラーの運動方程 式やナビエ・ストークス方程式を,エネルギーの保存則から,エントロピー方程式や熱伝導方程式を求 め,これらの方程式から得られるいくつかの解析解についても言及する。

The objective of this course is to learn the basic equations of mass, momentum and energy conservation for understanding of thermo-fluid transport phenomena. In this lecture, general conservation equations for mass, momentum and energy, Euler's equation of motion, Navier-Stokes equation, entropy equation, diffusion equation, heat conduction equation are explained.

エネルギーシステム工学特論 未定

Advanced Energy Systems Engineering

学部の熱力学I&II, 流体工学基礎, 流体力学I&II, エネルギー変換工学, エネルギー計測工学, エネルギー解析工学を基礎として, エネルギーの発生(燃焼と熱移動の理論), エネルギーの利用(内 燃機関と蒸気タービンの熱力学と実際), エネルギーと環境(環境汚染物質の発生と抑制技術)につい て講述する。

On the basis of the thermodynamic cycle analysis and the energy utilization technology, followings are discussed: importance of temperature - entropy diagrams in the consideration of ideal cycle analysis, comparison study between Otto cycle and Diesel cycle, combined effect of Otto cycle and Brayton cycle, and comparison study of Rankine cycle and Carnot cycle. In addition to this, basics of combustion are given by defining the followings; stoichiometry and equivalence ratio, calorific value and enthalpy of formation, specific heat and adiabatic flame temperature, thermal dissociation effect, combustion products and the formation of air pollution, and thermal efficiency of actual heat engines. Recent strategies for suppressing pollutant products are also discussed.

エネルギー解析工学 I 石間教授

Analysis of Fluid Dynamics and Heat Transfer I

流れおよび熱の移動の実験を遂行する際に必要となる流体力学や伝熱工学について講義する。これら を基にして、実験遂行のため計測器の正しい選定と正しい実験計画を行えるような知識を身につける。 さらに、熱と流れの数値シミュレーションの基礎を講義することで実験とシミュレーションの利点欠点 を理解する。

Fluid dynamics and heat-transfer engineering are introduced for planning and performing measurements of flow and heat-transfer. The goal of this lecture is to obtain the knowledge to use the correct planning and selection of the equipment and the experimental method of the fluid and thermal experiments. In addition, fundamentals of numerical simulation are lectured. The advantages and the disadvantages of both experiment and simulation are understood.

エ ネ ル ギ ー 解 析 エ 学 Ⅱ 川島准教授

Analysis of Fluid Dynamics and Heat Transfer II

流れおよび熱移動を理解するために必要な流体力学,伝熱工学について講義する。また,実際に熱お よび流体にみられる偏微分方程式に対して,基礎的な数値シミュレーションを用いた解法を紹介するこ とで,流れおよび熱移動に対する基礎的な知識を習得する。

Fluid dynamics and heat-transfer engineering are introduced to understand of heat and fluid flow. The aim of this lecture is to obtain the knowledge to the phenomena of fluid flow and heat transfer by introducing the governing equations in the fluid dynamics and heat transfer engineering. And, in this lecture the basically numerical analysis is introduced for the equations to understand the fluid flow and heat transfer.

エ ネ ル ギ ー 計 測 工 学 荒木 (幹) 教授

Instrumentation Engineering for Energy Systems

物理現象解明は,現象を適切に計測し,結果を正確に解釈することから始まる。本講では,エネルギー 分野で多用される(1)オリフィス・ベンチュリ流量計,(2)バルブ,(3)熱式流量計,(4)レーザドップラ 流速計,(5)熱電対などの,計測原理・使用法の実際について詳細に解説する。これは単に計測装置の 解説ではなく,流体力学,熱力学,伝熱工学,電気・電子工学といった基礎科目の理解を必要とするも のである。

In order to reveal the physics behind phenomena, it is necessary to measure them correctly and accurately. In this lecture, several instruments often used in energy systems, such as 1) orifice and Venturi flow meters, 2) valves, 3) hot-wire flow meters, 4) laser Doppler anemometers, 5) thermocouples and so on are introduced and their methodologies are explained in detail. This lecture is based on fluid dynamics, thermodynamics, heat transfer, electricity engineering and so on.

破 壞 力 学 松原教授

Fracture Mechanics

脆性破壊や疲労破壊を解析する上で重要となる線形弾性破壊力学について,応力拡大係数の解説を中 心に講述する。

併せて、破壊力学を実際に使用する上で必要となる非破壊検査技術についても解説する。

Give an overview of linear elastic fracture mechanics important for analyzing brittle fracture and fatigue fracture mainly about explanation of stress intensity factor. Give an explanation of nondestructive inspection needed for practically using fracture mechanics.

構造信頼性工学特論 岩崎准教授

Advanced Structural Reliability Engineering

効率的な保全の実施に必要不可欠な,様々な機器・構造・機械要素の信頼性・安全性を確率論をベースに定量評価する手法について講義を行う。具体的には,基礎となる確率論に関する解説から,故障率・破損確率の評価手法,様々な強度に関するパラメータの確率論的な取り扱い,限界状態関数法,FOSM,FORMに関する解説をおこない,それらを用いた信頼性設計法までを講義する。

This course provides the theory of evaluation of structural reliability based on strength of materials, fracture mechanics and statistics. Various topics relating to maintenance of structures via structural reliability engineering will be introduced.

材料設計工学特論 荘司教授

Advanced Materials Design Engineering

学部の機械材料I, Iを基礎にして,構造材料および機能材料について基本的特性とその影響因子を 述べ,機器・装置として使用する場合の問題点と材料設計の考え方および機械設計のための材料選定を 理論および工学の立場から講述する。

The aim of this lecture is to understand methods of control of microstructures, mechanism of materials degradation and materials selection in mechanical design based on the relationship between materials properties and microstructures.

溶接 エ 学 特 論 未定

Welding, Advanced Course

金属材料の切断,溶接,溶射,表面加工などの材料加工の基礎について講義する。具体的には、学部 の機械加工学を基礎にして,熱加工およびプラズマ加工の基礎,アーク,レーザ,プラズマを加工源と した各種加工法の加工現象や特徴などについて講述する。

This course covers the fundamentals of material processing related to cutting, welding, spraying and surface processing. The topics will be introduced as follows; fundamental concepts of thermal processing and plasma processing, phenomena and characteristics of these processing using arc, Laser and plasma.

精 密 加 工 特 論 林教授

Precision Mechanical Engineering, Advanced Course

精密機械の構造,設計原理,加工方法について論じる。主な内容として,精密機械の構成,超精密機 械システムの設計原理とその事例,超精密加工法について議論する。

The aim of this lecture is to understand the precision machine tool and the precision machining process. The topics in this course will be introduced as follows; the configuration of the precision machine tools, design principle and examples of ultra-precision mechanical systems, and ultra-precision machining process.

材料加工学特論 半谷教授

Advanced Materials Production Engineering

学部の機械加工学,機械材料,弾性力学,塑性・塑性加工学を基礎として,加工に必要な基礎的理論 とその解法について述べると共に,各種加工法のメカニズムを概説する。

Give an overview of mechanism and evaluation method of materials production.

界 面 科 学 特 論 小山准教授

Interface Science, Advanced Course

界面科学の基礎理論を概説する。具体的には、複合材料の設計手法、界面反応の熱力学・反応速度論、 不均質材料の強度、異材界面の特性評価法、異材界面の制御法について講義する。

The aim of this lecture is to understand the basic theory of interface science. The topics in this course will be introduced as follows: methods of designing composite materials, thermodynamics and reaction kinetics of interfacial reactions, strength of inhomogeneous materials, dissimilar interface characteristic evaluation methods, and control methods of dissimilar interface.

応 用 力 学 特 論 相原准教授

Applied Mechanics, Advanced Course

分子動力学法に代表される非常に多数の質点からなる質点系の運動状態(位置と速度)とポテンシャ ルから、マクロな熱力学量・力学量・相関関数などを,統計力学の手法を応用して評価する方法につい て講義する。

Lectures are given on how to evaluate macroscopic thermodynamic quantities, dynamic quantities, correlation functions, etc. of the system of particles with a large number of particles, for example, the result of molecular dynamics simulation, from their position, velocity and potential by using the methods of statistical mechanics.

ソフトマテリアルエ学特論 井上准教授

Soft Material Engineering, Advanced Course

有機高分子材料(樹脂,ゴム)などの工学的応用について理解するための物理化学的基礎を講義する。

また、構造材料(エンジニアリングプラスチック,複合材料),機能材料,異種材料接着技術,熱伝導 制御技術など,具体的な機械工学分野での応用例について解説する。

Physicochemical basis of soft materials such as organic polymers (resins and rubbers) is introduced to understand engineering applications of these materials. In addition, practical applications in mechanical engineering including structural materials (engineering plastics, composites), functional materials, adhesives and thermal interface materials are explained.

弹性波動学山口教授

Theory of Elastic Waves

複雑な機械構造物の動特性について,変形を伴う運動の数値解を得る方法を学ぶ。弾性体,粘弾性体 の動的有限要素の基礎理論,慣性行列,減衰行列,剛性行列の導出,要素の高精度化(次数低減積分, 非適合モード),高速応答計算法(複素数による解法,モード座標,大規模自由度の解法)を講義する。

For complicated problems of structures including motions with elastic/viscoelastic deformation, computational methods are given using FEM. Derivation of inertia, damping and stiffness matrix is discussed. Advanced elements (i.e. r educed integration and non-conforming modes) are explained. Fast computation methods (e.g. response analysis using complex matrix, modal coordinates) to calculate responses are provided.

機 械 の ダ イ ナ ミ ッ ク ス 丸山教授

Advanced Dynamics of Machinery

学部の機械力学 I,機械力学 II を基礎にして,機械・構造物の動的解析方法を修得する。具体的には マトリックス法による振動解析,一自由度系の非線形振動,静的平衡点とその安定性,非線形周期応答 とその安定性,多自由度系や連続体の非線形振動問題について講義する。

This course provides analytical method on dynamics of machines and structures. It gives the matrix method, nonlinear vibrations of 1-dof system, static equilibrium state and its stability, nonlinear periodic responses, nonlinear phenomena of multiple dof system and of continuous system.

機械物理計測特論 藤井教授

Mechanical-Physical Instrumentation and Measurement, Advanced Course

機械工学を含む科学技術の広い分野で重要な役割を担う機械物理計測 について,深い理解と,それ に裏打ちされた応用力を養うことを目指す。まず,物理量の計測で基本となる,国際単位系の仕組み, 各単位の標準,各種計測器・センサの校正方法,計測値の不確かさ評価方法について,深く学ぶ。次に, 先端分野として,力センサの動的校正法,宇宙ステーションでの質量計測法,などの機械物理計測を例 にとり,それらの改良案を考えることを通して,実践的な応用力をつけることを目指す。

The aim of this lecture is to give the deep knowledge and the clear understanding on the mechanical-physical instrumentation and measurement. Firstly, the fundamentals of the measurement, such as the International System of Units, the measurement standards, calibration of sensors and the measurement uncertainty, are discussed. Secondly, the advanced applications, such as dynamic

calibration of force sensors, BMMD (Body Mass Measurement Device) for use in the International Space Station, are discussed to improve the practical ability needed for the engineers and the researchers.

ロ ボ ッ ト エ 学 特 論 村上准教授

Robotics

最近のロボット研究の動向,ロボットの運動,制御,軌道計画について講義を行う,特にノンホロノ ミック系の劣駆動型ロボットの運動学を中心として教育を行う。またこれに伴い,非線形システムにつ いての線形化,非線形システム制御,ノンホロノミック制御も扱う。

The aim of this lecture is to understand kinematics, control, and trajectory planning of robot. Especially, it lectures on the Nonhoronomicc control, the nonlinear system control and the linearization of the nonlinear system. The topics in this course will be introduced as follows; kinematics and control of Nonhoronomicc system.

知能機械工学 未定

Intelligent Machine

制御工学を応用した機械の設計と解析において,各種の制御を組み込むことにより知能化や性能の最 適化が行われている。最適化に関する種々の数理的アプローチや知能化の現状などについて例題を交え ながら講義する。

In analysis and design of the machine with use of the control engineering, performance optimization and high intelligence are carried out by the various control theories and intelligence approaches. This lecture deals with the some approaches for the optimization and high performance by using the examples.

ヒューマンインタフェース特論 中沢教授

Advanced Human Interface

学部のメカトロインタフェース,ヒューマンインタフェース,信号数理解析,基礎計測学,応用計測 学等を基礎として,画像処理ならびに各種センサを利用した人間の生体運動と感覚特性のセンシング手 法について講義するとともに,操作者のユーザビリティに基づくヒューマンインタフェースについて講 述する。

Give the method for measurement of human's biomechanics and sensory characteristic using image processing and various sensors, and the advanced human interface based on operator's usability.

生体運動制御特論未定

Human Robotics, Advanced Course

ヒトの優れた生体運動制御機能を応用して,機械システムの知能化を実現するために,生体運動制御 で重要な役割を果たす最適化の基礎について講義する。具体的には,関数最適化法の理論とその計算手

法、変分法の理論とその計算手法、生体運動制御への応用例について講述する。

The aim of this lecture is to understand the basis of optimization theory necessary for developing more advanced and intelligent robotic systems. The topics in this course will be introduced as follows; functional optimization, calculus of variations, and actual optimization problems in human motor control mechanism.

計 測 制 御 工 学 特 論 山田 (功) 教授

Advanced Measurement and Control Engineering

プロパー安定有理関数行列を用いた制御系設計法を概観する。特に,安定化補償器のパラメトリゼー ションと H ∞制御の基礎を説明する。具体的な授業内容は,古典制御,現代制御の復習,安定有理関 数環の基礎,安定化補償器のパラメトリゼーション,H ∞制御等である。

This lecture gives an overview of design methods of control systems using proper stable rational function matrices. Especially give the parameterization of all stabilizing controllers and H infinity control.

信号数理特論 松浦教授

Mathematical science of signal processing, Advanced Course

信号処理の数理を支える「線形空間論」「位相空間論」「関数解析」「確率論」の基礎的部分を講義して, それらの理論が発生した必然性,数学で重要視される理由などを理解させる。その後,これらの数理が 現代信号処理といかに密接な関係があるかを講義し,精緻で膨大な処理手法(これらの各論を広く講義 することは半期の講義では無理である)の背後に横断する本質を理解させる。

Mathematical descriptions of signal processing are given in this lecture. Especially linear space, topological space, functional analysis and probability theory are surveyed as its background.

コンピュータシステム特論 魏教授

Computer Systems, Advanced Course

高速なコンピュータシステムを理解するための計算機算術演算アルゴリズムの基礎について講義す る。具体的には、学部のデジタルシステムとコンピュータシステムを基礎として、算術演算の数系、並 列処理原理、並列演算回路の概要を講述する。

The aim of this lecture is to understand the basis of computer arithmetic algorithms, based on fundamentals of computer and computer hardware. The topics in this course will be introduced as follows: number systems, parallel processing, and arithmetic circuits in parallel.

システム最適化特論 モハマドアブドスサマドカマル准教授

Advanced Optimization Systems

システム最適化問題の分類,計算の複雑さ,解法について講述する。システム最適化手法の基礎的知 識を身に着け,発展的内容として,最適システム制御への実応用についての技術動向を探る。 This course aims at providing basic knowledge about system optimization, classification of optimization problems, computational complexity, and solving techniques while focusing on both the current and future engineering applications in the relevant fields.

人 工 知 能 特 論 山田(功)教授

Advanced Artificial Intelligence

前半では,人工知能における従来の手法とアルゴリズムについて講義を行う。それをもとに,機械の ユーザインタフェース,自動制御,設計最適化,知識処理,感性情報処理,医療工学の各分野における 最新の話題に対して,応用可能性を探る。

In the first half of the class, lectures on the conventional methods and the algorithms in the Artificial Intelligence (AI) technique are given. Then, based on this, it is discussed how to apply these AI techniques to the user-interfaces of machines, autonomous behaviors of agents, design optimizations, knowledge processing, Kansei information processing and medical engineering.

マイクロナノシステム特論 鈴木 (孝) 教授

Advanced Micro and Nanosystems

マイクロナノシステムの創製に必要となる設計・解析,加工,評価・応用に関する各種技術を体系的 に理解し,応用例を含む技術動向について,理解を深めることを目的とする。

The aim of this lecture is to understand the state-of-art technology of micro/nano-systems. Various technologies concerning design, analysis, processing, evaluation and application needed to create micro/nano-systems are systematically understood.

I o T 特 論 鏑木教授(客員)

Internet of Things, Advanced Course

ものづくりへの IoT 活用により生産性向上を実現する手法の基本的な考え方について理解すること を目的とする。実際の製造プロセスでの課題となる計測プロセス,解析プロセスおよびフィードバック プロセス等についての基礎とそれらの関連性を踏まえた制御手法等について講述する。

The aim of this lecture is to understand the fundamental methods for improving productivity by IoT in manufacturing. Typical IoT process such as measurement, analysis, evaluation, feedback and control methods based on their relationship are discussed.

産	業	人	材	育	成	特	論	荒木教授・天谷教授・岩瀬教授・川島教授・
								鬼形講師 (非常勤)・小川講師 (非常勤)・
								江本講師 (非常勤)・市村講師 (非常勤)・
								志賀講師 (非常勤)

Advanced Course of Industrial Human Resource Development

県の基幹産業である自動車産業を中心として、その将来を見据えた人材育成を行う。群馬県の歴史

と伝統,自動車関連の先端研究,自動車のデザイン,産業における IOT,デジタル化に関連した座学, ハイエンドな 3-D CAD である CATIA の体験,県内のものづくり関連企業における短期インターンシッ プ,そして産業に関する PBL 授業を行う。

Focusing on the automobile industry in Gunma, future human resources are developed through the course. Lectures related to the history and tradition of Gunma, advanced research to automobiles, automobile design, IOT in industry, digitization, experience of CATIA, a high-end 3-D CAD, short-term internship at manufacturing companies, and PBL classes on industry are held.

知能・制御のための数理データサイエンス 山田(功)教授

Mathematical Data Science for Artificial Intelligence and Control

情報通信技術の進歩により膨大なデータの取得・処理が可能な時代となり,数理的根拠に基づいて戦略的にデータを扱うことの重要性がますます増大している。我が国が世界に先駆けて Society 5.0 を実現していくために,データサイエンスの活用能力をもつ人材の育成が求められている。そこで本講では,データ解析・機械学習の手法について数学的に講述し,さらにブログ ラミング演習により実践のための素養を確かにする。

With advances in information and communications technology enabling us to acquire and process vast amounts of data, the importance of strategically handling data based on mathematical evidence is increasing. In order for Japan to be the first country in the world to realize Society 5.0, it is necessary to develop human resources capable of utilizing data science. In this course, we will give a mathematical lecture on the methods of data analysis and machine learning, and furthermore, we will use programming exercises to confirm our practical skills.

知 能 機 械 創 製 理 工 学 特 別 講 義 I 榎本講師(非常勤)

Advanced Lecture on Intelligent Mechanics I

振動騒音の基礎から応用までを数値シミュレーションを含めて講義する。基礎から応用へと授業を進 めるのではなく、まず自動車の振動騒音を例にとり実現象とその解決法を解説し、基礎の必要性を知っ てもらう。その後で基礎式とその解法さらに数値シミュレーションについて学ぶ。

Noise and vibration including numerical simulation are lectured. This lecture is not conducted from basic to the application but the application to basic. The example of automobile noise and vibration is showed first, and students know the needs of basic knowledge. Then fundamental equation and its solution are explained. Furthermore the numerical simulation is discussed.

知 能 機 械 創 製 理 工 学 特 別 講 義 I 金子講師(非常勤)

Advanced Lecture on Intelligent Mechanics II

非圧縮性流体を対象に,熱流体シミュレーションを行う上での計算手法,熱移動,境界条件等の基礎 事項について概説する。自然対流,強制対流に関する熱流体シミュレーションの計算プログラムが作成 できるレベルを目指す。

This lecture gives an outline of simulation method, heat transfer, and boundary conditions to

perform the thermo-fluid computer simulation for incompressible fluid. The final goal of this lecture is to understand the thermo-fluid simulation program for natural and forced convections.

知 能機械創製理工学特別講義 Ⅲ 若井講師(非常勤)

Advanced Lecture on Intelligent Mechanics III

繰返し非弾性ひずみと構造物の強度設計について講義する。

Give an overview of cyclic inelastic strain and strength design of structures.

知 能 機 械 創 製 理 工 学 特 別 講 義 N 鈴木 (秀) 講師 (非常勤)

Advanced Lecture on Intelligent Mechanics IV

エンジンのトライボロジーについて理解するために,最初にトライボロジー(摩擦・摩耗・潤滑)の 基本的項目の講義を行う。次に自動車用エンジンのトライボロジーに関係する諸問題,すなわち,摩擦 損失低減,燃費向上,オイル消費,耐久性向上などについて説明し,トライボロジー問題の理解を深める。

This lecture provides the basics of tribology (friction, attrition, and lubrication) to understand the engine tribology. Problems related with automobile engine tribology, i.e. friction loss reduction, improved fuel economy, oil consumption, and improved durability, are explained for deep understanding of the engine tribology.

知 能 機 械 創 製 理 工 学 特 別 講 義 V 安藤(哲)講師(非常勤)

Advanced Lecture on Intelligent Mechanics V

非鉄金属材料は、その材料特性を利用し、軽量化部材や高電導、高伝熱部材、耐食性部材などの様々 な機能機器に使用されている。講義では、非鉄金属材料、特にアルミニウム合金および銅合金の適用方 法と、適用を目的とした材料組織制御について解説する。

Non-ferrous alloys are applied for various functions which are light, high electro-conductive, high heat-conductive and corrosion resistant parts. This course provides application methods of non-ferrous alloys, especially aluminum alloys and copper alloys, and control methods of metallurgical structure for above applications.

知 能 機 械 創 製 理 工 学 特 別 講 義 VI 藪野講師(非常勤)

Advanced Lecture on Intelligent Mechanics VI

機械力学における非線形力学現象について講義する。各種機械システムに発生する非線形現象の制御 と利用例を示すとともに、その基礎となる数学理論を講述する。具体的には、線形ダイナミカルシステ ムの解析、分岐現象とその解析法、摂動法によるダイナミクスの平均化について詳細に解説する。

This course provides analytical method and control on nonlinear phenomena in mechanical systems. It gives analyses on linear dynamical systems, bifurcation phenomena and its analyses, and averaging of dynamics with perturbation method.

知 能 機 械 創 製 理 工 学 特 別 講 義 আ

渡邉教授(客員)

Advanced Lecture on Intelligent Mechanics VII

効率的エネルギー利用を目的として研究開発が進められている次世代パワー半導体に使用される各種 材料の材料特性および接合界面の各種特性について講義する。様々な用途で要求されるパワー半導体モ ジュールの電気機械的特性および信頼性を満足させるために、どの様な思想により、材料設計、構造設 計および製品の量産がなされているのかを解説する。

This course provides materials properties of various materials and various characteristics of joint interfaces in the next-generation power semiconductor that has been researched and developed to efficiently use energy. It gives how materials design, structural design and the mass production of the product are performed based on what kind of thought in order to satisfy electromechanical characteristics and reliability of the power semiconductor module required for various uses.

理 工 学 特 別 演 習 各教員

Seminar in Specialized Topics

「エネルギーシステム」「マテリアルシステム」「メカトロニクス」「インテリジェントシステム」に関 する先端的な概念を学ぶために,指導教員ごとに学生は研究課題を選択し,これに関連した文献調査な どの演習を行う。

In order to learn the advanced concepts on "Energy System", "Material System", "Mechatronics" and "Intelligent System", each student selects a research agenda and exercises, such as paper searching related to own study.

理 工学特別実験 各教員

Experimental Research in Specialized Topics

「エネルギーシステム」「マテリアルシステム」「メカトロニクス」「インテリジェントシステム」に関 する先端的な概念を学ぶために,指導教員ごとに学生は研究課題を選択し,理論研究・実験・数値解析 などの研究を行い,修士論文の作成指導を受ける。

In order to learn the advanced concepts on "Energy System", "Material System", "Mechatronics" and "Intelligent System", each student selects a research topic. The students write their master's thesis along the topic by theoretical work, experiments, or numerical simulation.

環境創生理工学教育プログラム(博士前期課程)

プロ	グラム			~				単		受業			
	目区分	授	業	科	目		担当教員	位数	1年 前	E次 後	2年 前	<u>F次</u> 後	備考
		 (数学系数) (数学系数) (大代数) (大(大)) (大(t)) ((t)) (t) <	学学学学学析解	特特特特特学析	論論論論論	I ⅢⅢI ⅢⅡ I 論	天名宮高田渡大 関	2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	2 2 2			・理工学特別演習4単位, 理工学特別実験8単位及び スマートシティー創生工学 特論2単位を含む32単位 以上を修得すること。 そのうち、単位以上,所属す るプログラムの理工学特別 演習及び理工学特別実験を 除くコア教育科目から6単 位以上を修得すること。 ・重粒子線医理工プロー ブルリーダー養成プロー ラム(重粒子線医理工連携
環境	学府共通教育科目	熱量統統物物物(化固有 力物物物物(化固有	学理物加別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別別	! 学学学学学 学学学		論論ⅠⅡⅠⅡ 論論?	山本 (隆)·武野 引 原田 山本 (隆) 長 尾 高橋 (学) 花屋·京免·藤沢 久坊・ 中村	2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2	2 2 2 2 2			コース) 在籍者は、リー ディングコース科目医理工 共通科目群の生命倫理と法 的規制、関連法規・医療倫 理及び研究倫理から1単位 以上,重粒子線医理工学科 目群から2単位以上修得す ること。 リーディング医理工学科目 (学府開放教育科目及び全 教育プログラムのコア科目) 中の(★)科目)から4単 位以上履修すること。
創生		(生物系科)生物(インテンミンジェンジョン)	科 シブ科 E	学 目)	特 特	論論	米山·奥(浩) 井上・榎本 立	2 2	2 2	1			リーディング医理工学科目 は上記【修了要件】の修得 単位に含むことができる。
理 工 学 教 育		理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理	テテテテテテテ	ンンンン	シシシシシシシシシ	I III IV V VI VI	音 山本(隆) 高橋(学) 守 田 引 原 長 羅·羅·翻	1 1 1 1 1 1 1	1 1 1	1 1 1		1	集中講義 隔年開講 隔年開講 隔年開講 隔年開講 隔年開講 隔年開講
プ ロ	学	(実践実習和 分析・測定 CAD・CAN プログラミン 環 検 計 測	スキル Mスキル ングスキ	レアッフ ルアッ	プ実践ま プ実践ま	ミ 習 実習	山延・松尾 林 加藤(毅)	1 1 1	1 1	1			集中講義 集中講義
グラム	府開放教育科目	環ス(フ医理総総総総約	ア ウ ロ 連 線本本本本 本 本	プ 目イ 携物 語語語語 (1) オ 理 と 中 上 上)	践 学特学级级级级	習 論論(★) I Ⅱ I Ⅱ	渡邉・中川・ ・ ・ ・ 若井 裕藤 ・ 花泉 ・ 花泉 ・ 花泉 ・ 花泉 他 大 舩 木 和橋 和橋 和橋 和橋 和橋 和橋 和橋	1 2 1 2 1 1 1 1 1	1 2 1 1	2 1 1			 ※学府共通教育科 目,学府開放教育科 目及び技術マネージ メント系科目は82 ページ参照 ・総合日本語中級Ⅰ・ Ⅱ及び上級Ⅰ・Ⅱは 留学生のみ履修可。 修了要件単位に含めない。
	技術マネージメント系科目	 M 経 イ 長 科 コ 国 国 も ア O 営 々 研 ニ ミ 察 際 の ン レ 研 ニ ミ ミ づ レ 	ン タ 手 究 - ニ エ ニ り	ケーシ ケーシ ビ	特 シ ショョジ	I Ⅱ ス	伊藤 (正実) 伊藤 (正実) 全 教 野 日 中 村 村 橋	$2 \\ 2 \\ 1 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2$	2 2 2 2	2			集中講義 集中講義

プロ	グラム							単位		受業				
	目区分	授	業	科	目		担当教員	位数	1 1 前	F次 後	2年 前	F次 後	備	考
		 (分野統合和 スマートシ 環境分 	ティ 析	科	学特	論	全 教 授 板橋・樋山	2 2	0.01	2	111	2	隔年開講	
			コセ	イフ	特 特 特 帯 学 学 作 特 特 特 特 特 学 特 特 特 特 特 特 二 学 作 特 特 特 特 特 特 二 学 作 件 特 特 特 特 特 特 特 特 特 特 特 特 特	ⅠⅡ論論論論	未 定 森 本 田 歴 佐 藤 尾崎(純) 桂	2 2 2 2 2 2 2 2 2	2	2 2	2	2	隔年開講 隔年開講講 隔年開開講講 隔年開開講	
	2	• • •	シス - プロ プロ	テム. 1セス	工 学 特 L 学 特		野中原大 1 野中原大大 重	2 2 2 2 2	2	2	2 2	2	隔年開講 隔年開講講 隔年開開講 開 二	
環	ア 教	環 境 エ 学 テ イ	ネルーチ	•	ー 理 グ 実	工 習	森本・原野 野田・大重 佐藤 (和)・樋山	2						
境創生理工学	育 科 目	地盤環境 地 盤環 圏 現 災 害	オテク	ノエ 災学 会	二 学 特 特	論論論論論論学学論	渡伊小齋若 鵜清金未 夏)澤 藤 藤 蔡 崎水井 本	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2	2	2 2 2 2	2	隔隔隔隔隔隔隔隔隔隔隔隔隔,而而。 年年年年年年年年年年年年 日期開開開開開開開開開開開開開開開開開開開開開開開開	
教 育 プ ロ		工燃環環境 續創創 算 境 創 創 生 生 環 環 境 創 創 生 生 二 環	コ 環 理理理	境特特特特别	工 工 講 講 講 演 演	学学ⅠⅡⅢ	白井·野野澤 田·丹·野野 瀧鷹、木·佐藤·秦· 大林·佐藤·秦· 大末 大 末 全 教	2 2 2 2 2 2 4 8	2 2 2 2		2 2		隔年開 集 不 一 不 一 不 一 不 一 不 一 不 一 不 一 不 一 不 一 不	集中講義 集中講義 集中講義 集中講義
グラム	IJ		理と規・究音理	: 法 医 偏 1	的 規 療 倫	則理理学学	 曾 根 根 根 根 根 (茂) 武 田 (茂) 	1 1 1 1 1		1 1 1	1		理工学グ リーダー	 ¹ 粒子線医 ¹ ローバル ¹ 成プロプログ ¹ 大線医 ¹ ス)
	ディングコース科	力 電量物 放 射 医 統 科	滋子理 線画 言	気力数 物 情 英	理 青 報	学学学学学学語	櫻花花山神加山山	2 2 2 2 2 2 2 2 2 2 2		2 2 2 2 2 2 2 2 2 2 2			1 物理 基礎 に れ 。 (修 に れ 。 ()) ()) () () ()) ()) () ()) ()) () ()) ()) ()) ()) ()) ()) () ())) () ())))	科目群は, 員修してい み履修可。
	E	(重粒子線) 保健物理 放射線診断 放射線 基 礎 放 射	・放 f・核	†線防 医学物 物 理	護学講 70理学講		加田田 加田 大野 武田(茂) 武田(茂)	2 2 2 2 2 2		2 2 2	2 2		集中講義 集中講義 集中講義	

[コア教育科目]

(分野統合科目)

スマートシティー創生工学特論 全教授

Engineering topics for smart city creation

新エネルギーによる省資源化および環境配慮型の技術とともに,自然災害からの脅威を克服し安全・ 安心な都市(スマートシティ)づくりをテーマとし,教員が関連する研究プロジェクト等の紹介を通じ て講義する。

A lecture is given as a series of research topics that are related to new-energy, eco-friendly technologies, infrastructure, environment and so on, for a safe society and a smart city.

環 境 分析科学特論 板橋教授·樋山准教授

Environmental Analytical Sciences, Advance Course

環境科学の分野で利用されている分析技術に関する知識を習得するため,環境中に存在する様々な成 分の分析に利用されている方法について,その測定原理と応用範囲を解説する。また,環境中の微量成 分分析に必要な分離技術と濃縮技術について講義する。

The aim of this lecture is to master knowledge on analytical techniques employed in the field of environmental science. This course can learn the theories and the principles of typical analytical methods for chemical compounds in environments and their application to real samples.

電気化学工学特論 I 未定

Advanced Electrochemistry I

学部の電気化学,物理化学を基礎として,電池等のエネルギー変換デバイスの基礎と応用について幅 広い観点から講述する。

This course provides fundamental theory and applications of batteries based on electrochemistry and physical chemistry.

電 気 化 学 工 学 特 論 Ⅱ 森本准教授

Electrochemical Engineering, Advanced Course II

学部の物理化学, 電気化学, 材料科学などを基礎とし, 電気化学エネルギーデバイスと機能性材料に ついて講述する。特に, 電池の電極と電解質との界面に関する電気化学測定法および電気化学反応につ いて解説する。

This course provides an overview of the fundamentals of electrochemical energy devises and functional materials based on the physical chemistry, electrochemistry and material science. Especially, electrochemical measurements and reactions on the interface of electrode materials and electrolytes for batteries are explained.

マ テ リ ア ル ラ イ フ エ 学 特 論 黒田教授

Materials Life Engineering, Advanced Course

高分子材料の耐久性と寿命制御に関する理解を深めることを目的として,劣化反応のメカニズムと劣 化防止・安定化の手法および,劣化反応に伴って発現する化学構造変化と諸物性の変化を説明する。さ らに,高分子材料の寿命予測ならびに寿命制御の方法を解説する。

Aiming to understand the durability and lifetime control of polymeric materilas, the degradation mechanisms, stabilization techniques, and the changes in physical properties owing to the chemical changes during degradation are described. Furthermore, the methods for the prediction and control of the lifetime of polymeric materials are explained.

微 粒 子 プ ロ セ ス エ 学 特 論 佐藤准教授

Fine Particle Process Engineering, Advanced Course

エネルギー,環境,医療など,様々な分野で不可欠な微粒子プロセスに関する基礎的な知識の習得を 目的に,粉体工学,コロイド科学等を中心とした講義を行う。また,近年注目されているナノ粒子のプ ロセスについて,通常の微粒子との共通点や相違点を中心に講述する。加えて,微粒子の物理的・化学 的性質を評価する手法について,実例を交えながら,その原理や特徴を解説する。

This course aims to learn fundamentals and applications of fine particle processing based on powder technology and colloidal science. Recent topics on nanoparticles processing are covered, especially from the view point of similarity and difference between nanoparticles and conventional fine particles. The principles of characterization method of fine particles are also lectured.

材料プロセスエ学特論 尾崎(純)教授

Advanced Process-Oriented Material Engineering

はじめに,無機材料の構造と物性の関係について述べる。次いで,それらを実現する製造プロセスに ついて講述する。特に燃料電池用電極触媒炭素の調製を例とし説明する。

Relations between structures and properties of inorganic materials are given. Next, the fabrication processes including chemical reactions are discussed to achieve the desired properties or functions. Many examples come from our recent results of developing of non-platinum cathode catalyst carbons.

微小プロセス操作特論
 桂教授

Advanced Engineering on micro-manipulation and fabrication

微小粒子や分子の検出法やこれらの微粒子の操作に用いる力とその性質について講義するとともに, 操作の場を作成するために微細加工技術についても講義する。

This course provides principles of detection and manipulation methods for particles and molecules. Techniques of micro-fabrication are also introduced.

プロセスシステム工学特論 野田准教授

Process System Engineering, Advanced Course

効率のよいエネルギー変換プロセスシステム設計のための方法論について解説する。様々なプロセス についてエクセルギー解析やピンチ解析を利用して高効率化への方法論を理解する。

This lecture explains the methodology for planning and design of efficient energy conversion processes. The topics of this lecture are concept and method of pinch analysis and exergy analysis of energy conversion processes.

エネルギープロセス工学特論 中川教授

Energy Process Engineering, Advanced Course

化学プロセスおよびそのシステムについて,熱力学を基にしたエネルギー・エクセルギー評価法について講義する。また,燃料電池について,その発電原理,プロセスの仕組み,動作特性評価手法や最近の開発状況について解説する。

This course provides unique method of energy and exergy evaluation for chemical process systems based on thermodynamics. It also provides subjects related to fuel cells including principles, evaluation method of the cell performance, actual system structures and recent topics in R&D.

環境化学プロセスエ学特論 原野准教授

Environmental and Chemical Engineering, Advanced Course

今日の大気に関する地球環境問題を学部の物理化学や化学工学の知識を基礎として理解する。さらに 大気に関する環境保全技術を紹介し、その原理と理論を学ぶ。

This course provides the basic principles of the effects of pollutants on atmosphere, the formation mechanism of pollutants, and the control technologies associated with the areas of air quality based on physical chemistry and chemical engineering.

バイオプロセスエ学特論 大嶋教授

Bioprocess Engineering

本科目は講義形式で行う。微生物や細胞を用いたプロセスの実際を紹介するとともにプロセス設計の ための指針を学ぶ。生体材料や生化学反応の特徴と利用方法の基礎を学ぶとともに,発酵,水処理への 化学工学的発展を理解する。プレゼンテーションを通して微生物細胞などの生体触媒の種類や特徴につ いて深く理解するとともに,これらの工学的利用方法について考察する。

The aim of this lecture is to understand characteristics of bioprocess using microorganism and cell, and study the indicator for a process design. While studying a biomechanical material, the feature of a biochemistry reaction, and the foundation of the usage, fermentation and chemical engineering development in water disposal could be understood. We understand the kind, the features, and these engineering use methods of living body catalyst, such as a microbial cell.

分子設計プロセス特論 大重准教授

The special theory of molecular design process

本講義は,触媒のためのナノ粒子,創薬のための化学物質(化合物,核酸,タンパク質),再生医工 学のための細胞の設計開発方法についての理解を目指します。 講義およびその内容に関連する論文を 読み,発表を行なってもらいます。

This course provides the design and the development methods of the nano-particle for the catalyst, the chemicals for the medicine and the cells for the tissue engineering, including seminar with reading and presentation.

環境エネルギー理工学ティーチング実習 全教員

Practice on Teaching and Experimentation in Chemical and Environmental Engineering

環境プロセス工学に関する実験の,指導補助をとおし,環境プロセス工学の各分野で必要とされる測 定,分析,評価法を修得する。

Practice on teaching and experimentation for some subjects in Chemical and Environmental Engineering

環境整備工学特論 渡邊教授

Environmental Engineering, Advanced Course

生活環境の保全ならびに水環境保全に対して中心的な役割を演じる廃水処理技術の設計・操作の基礎 と応用について、生物学的廃水処理法における微生物機能と役割ならびに速度論的取扱いや反応装置工 学の基礎を講述する。これらを踏まえ、活性汚泥モデル(ASMs)を例として、生物学的廃水処理にお ける水質予測や運転管理への応用について述べる、さらに、最新の水質浄化技術も紹介する。

This course focuses on biological water/wastewater treatment processes. It includes fundamentals of microbial aspects, stoichiometry of biological reactions, microbial kinetics, reactor engineering and numerical approaches using activated sludge models (ASMs) and emerging applications.

環境バイオテクノロジー特論 伊藤(司)准教授

Environmental Biotechnology, Advanced Course

微生物の持つ優れた機能や潜在的能力を理解し,それらを環境保全などの応用するための知識と手法 を修得する。呼吸,代謝,物質構成,エネルギー生成等,生物が生きる仕組みを細胞レベルで理解し, これらを基礎としてヒトを含む生態系の成り立ちを理解する。

Students will learn what the life is, how the life works, and how the ecosystem on earth is. Based on the leaning students will learn how microorganisms are introduced in technologies in the environmental engineering field, agricultural field, and medical field.

構造材料工学特論 小澤教授

Structural Materials Engineering, Advanced Course

コンクリートの若材齢時の体積変化と応力解析方法およびひびわれの制御方法について講義する。加 えて、コンクリートの耐火性についても講義する。

キーワード:若材齢、温度応力、自己収縮、乾燥収縮、クリープ、ひび割れ、耐火性、爆裂

Controlling early-age cracking due to volume changes is essential to achieving long-term durability of concrete structures. The aim of this lecture is to understand as follow; characteristics of volume change at early ages, stress analysis method. Additionally, fire resistance of concrete is introduced. Keywords: early-age, thermal stress, autogenous shrinkage, drying shrinkage, creep, crack, fire resistance, spalling.

構造解析学特論 斎藤准教授

Advanced Structural Analysis

本講義では,代表的な構造解析手法の1つとして知られる有限要素法について講義する。具体的には 有限要素法の定式化,ガラーキン法による有限要素方程式の離散化,連立一次方程式の解法,そして有 限要素法のためのプログラミング技術について講義する。また,有限要素法を用いたいくつかの数値解 析事例についても紹介する。

This lecture presents an overview of the finite element method (FEM), which is one of the most widely used structural analysis methods. The general finite element formulation, finite element discretization using Galerkin method, methods of solving a system of linear equations, and programming skills needed to understand FEM are lectured. In addition, some numerical examples are demonstrated to show the effectiveness of FEM.

地 盤 環 境 · 防 災 工 学 特 論 若井教授

Geotechnical and Geo-environmental Engineering, Advanced Course

学部の地盤力学,地盤工学,耐震工学に関する講義を基礎にして,地盤防災・地盤環境工学に関する 最近の話題について講述する。

Based on the lectures such as Geo-mechanics, Geotechnical Engineering and Earthquake-resistant Engineering given in the undergraduate course, recent topics on Geo-environmental Engineering and Disasters related to Geotechnical Engineering are presented.

地 盤 力 学 特 論 蔡准教授

Soil Mechanics, Advanced Course

地盤工学に関わる種々の力学現象はほとんどが微分方程式の初期値・境界値問題として定式化しうる。 連続体力学の視点から,地盤の挙動(浸透・変形・破壊)を電子計算機による数値計算によりシミュレー トする手法を講義する。各現象の理解を深めるために,簡単な有限要素法プログラムを利用した問題解 決(課題は自由に各自が選択)を実施するとともに,その計算結果の解釈に関わる技術的考察を含めた プレゼンテーション能力の修得にも取り組む。 Various mechanical phenomena in geotechnical engineering can be mostly formulated as initialboundary value problems of differential equations. This course introduces the numerical methods to simulate the various ground behaviors such as seepage, deformation and failure from a viewpoint of the continuum mechanics. The exercises using the finite element method (FEM) programs to solve some practical problems and presentation of the numerical results are also included in the course.

水 圈 環 境 学 特 論 鵜﨑准教授

Water Environmental Science, Advanced Course

環境創生理工学プログラムのコア教育科目である本授業では,水圏が係わる環境と災害問題の物理的, 化学的メカニズムを解説しながら,広域的な環境形成や災害発生のプロセスとその保全・防災対策につ いて学ぶ。基本的には,河川・湖沼や海岸における環境と災害問題に対して,水理学的なアプローチで そのメカニズムと対策を検討する。

In this lecture, which is the one of main subjects of the educational program of department of environmental and engineering science, mechanisms of water disaster and environmental problems are discussed on the viewpoint of hydraulics and studied the solution method of those problems. Especially, water disaster and environmental problems of river and coastal engineering and hydrology are lectured. The understanding of mechanisms of them with regard to the global warming and countermeasures are described in detail.

環 境 水 理 学 清水教授

Environmental Hydraulics

河川,湖沼などの水域における水,土砂,物質の輸送,水質形成に係わる水理現象について,その理 論的な取り扱い,水理モデル構築および数値解析手法について解説する。とくに,移流拡散,密度流, 土砂水理,水質,河川植生に焦点を絞り,環境水理の基礎を解説する。

The aim of this subject is to get a fundamental understanding of the hydraulic processes that govern mass and momentum transfer in the river basin environment. The lecture provides students with hydraulic principles, including advective, diffusive and dispersive processes in the water environment and applications to transport and mixing in rivers.

災 害 社 会 工 学 金井教授

Disaster Social Engineering

自然災害による人的被害を最小化するためのソフト対策について講述する。具体的には、地域防災計 画、避難計画、災害情報システム、リスク・コミュニケーション、ハザードマップについて、現状の課 題や解決策について講義する。

This course is to study regional plan for disaster prevention, evacuation behavior, disaster information system, risk communication and hazard map as the non-structural measurement against natural disaster.

都市・交通工学特論 未定

Urban Planning and Traffic Engineering, Advanced Course

都市開発とは社会,経済,工学等の分野を総合したシステム技術のもとで行われるものであり,種々 の確度から相互メカニズムの把握,それに基づくトータルシステムの構築等についての基礎理論を論述 する。

This course is to study the basic theory of urban planning as the synthetic technology around sociology, economics and engineering science from various points of view.

エ ー ロ ゾ ル エ 学 白井教授(客員)・野田教授(客員)・丹野准教授(客員)

Aerosol Engineering, Advanced Course

エネルギー変換システムから発生する微粒子の特性とその制御ならびに除去や利用を中心的な内容と して, 微粒子の基本特性, 気流からの微粒子分離・回収方法, 粒子の諸性状の計測方法および機能性微 粒子の特徴と応用について講義する。

This course focuses on generation characteristics and control technology of particulate matter formed in conversion system of fossil fuel energy and is lectured as follows, outline and classification of aerosol, influence of suspended particulate matter on human body, relation between particulate matter generation and combustion, control technology of particulate matter, measuring methods of particulate matter and suspended particulate matter and collection technology of particulate matter.

燃 焼 環 境 エ 学 白井教授(客員)・野田教授(客員)・丹野准教授(客員) Environmental Combustion Engineering, Advanced Course

化石燃料の中で賦存量が最も多く産出地の偏りも少ない石炭をクリーンに利用するために重要な低 NOx 燃焼技術や低負荷対応燃焼技術,脱硝技術,集じん技術,脱硫技術などの各種要素技術に関して, 実用技術の特徴,性能,運用上の課題について講義する。また,高性能化を目指した新技術を概説する。

This course focuses on recent coal combustion technology and is lectured as follows, fundamental of formation mechanisms of SOx and NOx in fossil fuel combustion, the NOx and SOx reduction technologies, dust collector technologies and the harmonious flue gas treatment technologies with environment.

環境創生理工学特別講義 I

Special Program on Chemical and Environmental Engineering I 環境プロセス工学およびその関連分野に関する講義。

環 境 創 生 理 工 学 特 別 講 義 Ⅱ

Special Program on Chemical and Environmental Engineering II 環境プロセス工学およびその関連分野に関する講義。

環 境 創 生 理 工 学 特 別 講 義 Ⅲ

Special Program on Civil and Disaster Engineering Ⅲ 社会基盤工学・防災工学およびその関連分野に関する講義。

環境創生理工学特別講義 Ⅳ

Special Program on Civil and Disaster Engineering IV 社会基盤工学・防災工学およびその関連分野に関する講義。

理工学特別演習

環境分析,機能性材料,エネルギー有効利用,エネルギー変換デバイス,エネルギーシステム,分離・ 回収・除去,物質循環,社会基盤工学,環境工学,安全・防災の分野において,指導教員ごとに学生に 以下に示す領域等から研究課題を選択させて,これに関連した文献講読などの演習を行う。

理工学特別実験

微量分析,機能性材料,エネルギー有効利用,エネルギー変換デバイス,エネルギーシステム,分離・ 回収・除去,物質循環,社会基盤工学,土木工学,安全・防災の分野において,指導教員ごとに学生に 以下に示す領域等から研究課題を選択させて,理論研究・実験・システム作成などについて研究を行わ せ,修士論文の作成指導を受ける。

電子情報・数理教育プログラム(博士前期課程)

プロ	ログラム	+	<u>-भूर</u> -	1¢				単位		授業			LH: - +7.
・科	目区分	授	業	科	目		担当教員	 数	⊥⊥ 前	F次 後	<u>2</u> 企 前	F次 後	備考
		 (数 (数 (数 (数 (数 (数 (数 (本) (*) <l< td=""><td>学学学学学析</td><td>将特特特特特学 析</td><td>論論論論論論 時</td><td></td><td>天名宮高田渡大 関 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</td><td>2 2 2 2 2 2 2 2 2 2 2 2</td><td>2 2 2 2 2 2</td><td>2 2 2</td><td></td><td></td><td>・理工学特別演習4単位及 び理工学特別実験8単位を 含む32単位以上を修得す ること。 そのうち、学府共通教育科 目から3単位以上、所属す るプログラムの理工学特別 演習及び理工学特別実験を 除くコア教育科目から6単 位以上を修得すること。 ・重粒子線医理工学グロー バルリーダー養成プログラ</td></l<>	学学学学学析	将特特特特特学 析	論論論論論論 時		天名宮高田渡大 関 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	2 2 2			・理工学特別演習4単位及 び理工学特別実験8単位を 含む32単位以上を修得す ること。 そのうち、学府共通教育科 目から3単位以上、所属す るプログラムの理工学特別 演習及び理工学特別実験を 除くコア教育科目から6単 位以上を修得すること。 ・重粒子線医理工学グロー バルリーダー養成プログラ
	学府共通教育	熱 力 子 物 量 計 軟 計 計 性 物 性 化学系科	物 加 理 理 理 理 理 理 理 理 理 理 理 理 理 理 理	学学学	特特特特	論論III	山本 (隆)·武野 引 原田 山本 (隆) 長 尾 高橋 (学)	2 2 2 2 2 2 2	2 2 2	2 2 2			ム(重粒子線医理工連携 コース)在籍者は、リーディ ングコース科目医理工共通 科目群の生命倫理と法的規 制、関連法規・医療倫理及 び研究倫理から1単位以上、 重粒子線医理工学科目群か ら2単位以上修得すること。 リーディング医理工学科目 (学府開放教育科目及び全
電子情	科目	固体 有機 高分 (生物系科目 生物 (インテンミ	目) 科	学 学 化 学 目)	特 特 特 特	論論論 論	花屋·京免·藤沢 入新・中村 米山·奥(浩) 井上・榎本	$\begin{bmatrix} 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ $	2 2	2 2			(子)) 所成教育科白及の4 教育プログラムのコア科目 中の(★)科目)から4単 位以上履修すること。 リーディング医理工学科目 は上記【修了要件】の修得 単位に含むことができる。
····································		理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理理	ンジンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシン	ンンンンンンンン	シシシシシシシ	I III IV V VI VI	音 山本(学)) 高橋(学)) 守 引長 展 (真)·兵藤·離·	1 1 1 1 1 1 1	1	1 1 1	1	1	集中講義 隔年開講 隔年開講 隔年開講 隔年開講 隔年開講
教 育 プ ロ	学府開放	環境計測	スキ) (スキ) (スキ) ングス ・ シッ アッ	ルアッ キルアン ミュレ プ 実	プ実践身 ップ実践第 - ショ	ミ習 尾習	山延・松尾 林 加藤(毅) 渡邉・中川・ 桂・野田・若井	1 1 1 1	1 1 1	1			集中講義 集中講義
グラム	教育科目	フ医理工合合合合総総総総	ロバ 連 緑本本本 本	イ 携 の 語 語 語 語	工 理中中上上学特医級級級級	論	粕谷 · 「 (正 実) 中野 · 花泉 和橋 水 (正 実) 他和橋和橋	2 1 2 1 1 1 1 1	2 1 1	2 1 1			※学府共通教育科目,学府 開放教育科目及び技術マ ネージメント系科目は82 ページ参照 ・総合日本語中級I・II及 び上級I・IIは留学生のみ 履修可。修了要件単位に含 めない。
	技術マネージメント系科目	M 経 イ 長 科 コ コ マ タ 研 コ ミ マ	ン タ 「 究 ニケー ユニ	学ンー発シー	表 技 ヨン 技 ション	Ι	伊藤 (正実) 伊藤 (正実) 全教 員野 関盟 (国本)	$ \begin{array}{c} 2 \\ 2 \\ 1 \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \end{array} $	2 2	2			
			くり プレフ	りビ	ション ジ ネ (ップ特	Ⅱ ス 論	関 松 村 板 橋	$ \begin{array}{c} 2\\ 2\\ 2 \end{array} $	2 2				集中講義 集中講義
	コア教育科目	(分野統合称電子情報) 電子情報電子情報電子情報	報 理 報 王 数	工 学 理 辑 辑	注 特 論 別 講 義		弓 仲·三 輪 荒木(徹) 各 教 員 各 教 員	2 2 1 2	2 (1年次 (1年次				集中講義 集中講義

電情·数理修

プログラム						単		受業				
・科目区分	授	業	科	目	担当教員	位数		手次		下次	備	考
・科 電子情報・数理教育プログラ目区分 コア教育科目	(エ光光電固電気波先先医物光パシ集電シ 現 先(ア計計プソ気ネデエ 体子体動端学 ワス ミ 代 端報 ロフ電ルバレ子 デ 計物性物エテ 子レ 物 端科ル ロフィバレ子 デ 計物性物エテ 子レ 物 学 算グト	一分ギイケーの「「雪」「別デ計」(クムリーシー里(「分ゴ算)(ウ機」「愛っ」「ハーダーグリースト物性(子報制バ測)性や集路エコージー(子)・「「「「「「「「「」」」(「「」」」「「」」(「」」「「」」」	したこれ、「「「「「「」」」」「「」」」「「」」」「「」」「「」」」「「」」」「「」	「「「「」」」」」」「「」」」」「「」」」「「」」「」」「「」」」」「「」」」」	橋花高櫻古尾高本小曾神鈴後田三松齊佐 高田 後 浅 中未天藤安未高未未加加伊太奥河未浜 渡泉橋 崎俊 根・木 内 滞れ木 伊 手 、 (((第二十十十十十十十十十十十十十十十十十十十十十十十十十十十 一 一 一 一 一 一	数 222222222222222222222222222222222222	前 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 後 2 4 <l< td=""><td>前 2 2 2 2 2 2</td><td>2</td><td>隔隔隔隔隔隔隔隔隔隔 集 集集 隔 集 隔 隔隔隔隔隔隔隔隔隔隔隔隔隔隔隔 件 中中中 年 中 年 年年年年年 年年 中中中 年 中 十二 年 年年 年年年 年年 年年 中 中中 年 中 十二 年 年 年年 年年 年 年 年 年 年 年 年 年 年 年 年 年 年</td><td>集中講義</td></l<>	前 2 2 2 2 2 2	2	隔隔隔隔隔隔隔隔隔隔 集 集集 隔 集 隔 隔隔隔隔隔隔隔隔隔隔隔隔隔隔隔 件 中中中 年 中 年 年年年年年 年年 中中中 年 中 十二 年 年年 年年年 年年 年年 中 中中 年 中 十二 年 年 年年 年年 年 年 年 年 年 年 年 年 年 年 年 年 年	集中講義
Д	理 工	学 ^集 学 ^集	寿 別			4 8						
リーディングコース科目	(生関研解生(力電量物放医統) (生関研解生(力電量物放医統) 一、「」」 「一、「」」 「一、「」」 「一、「」」 「一、「」 「一、「」 「一、「」」 「一、「」 「一、「」 「一、」 「」 「」 「	究 物 磁子理 学線・新 理 線画 医放・ ままりまる 言まりまる	• · · · · · · · · · · · · · · · · · · ·	的療 科 青 茶護理規倫 目 理報 目学学、学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学	::::::::::::::::::::::::::::::::::::	$ \begin{array}{c} 1\\1\\1\\1\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$		$ \begin{array}{c} 1\\1\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$	1 1 2 2		ス理リラエ者物入な 1000000000000000000000000000000000000	ィーケーを転していた。そのでは、「「「「「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、

[コア教育科目]

(分野統合科目)

電子情報理工学特論 I 弓仲准教授·三輪准教授

Theory and Practice in Electronics and Informatics, I

電子情報通信技術の理工学的基礎となるプログラミング技術,シミュレータ技術について講述する。 特に,WindowsベースのCプログラムによる物理シミュレーションや視覚化手法,また,その応用で ある集積回路設計ツールの原理,具体的回路設計手法に関して,基礎から実践までの技術の習得を目的 とした講義を行う。

For obtaining basic skills from theory to practice in Electronics and Informatics, simulation and visualization techniques of physical phenomena are discussed via Windows based-C programming. Theory and design of electric circuits with EDA tool are also lectured.

電子情報理工学特論 I 荒木 (徹) 准教授

Theory and Practice in Electronics and Informatics, II

グラフ理論は,情報科学の基礎となる数学として研究されている分野である。この講義では,学部の 離散数学 I および II を基礎として,グラフ理論の基礎的な理論を解説する。特に,グラフ,有向グラフ, 木,距離,連結度,マッチング,彩色などの概念や基本的な性質について講義する。

This course provides an introduction to graph theory. The topics of this course include the basic notion of graphs and digraphs, trees, distance on graphs, connectivity, matching, and coloring.

電子情報・数理特別講義 I 各教員

Special Lecture on Electronics and Informatics I

電気電子工学,情報工学,および数理分野の最近の重要な話題を幅広く取り上げ,講義する。なお, 講義は集中講義形式で行う。

This course lectures recent important topics in electrical and electronic engineering, and computer science. The lecture is offered in intensive course style.

電子情報・数理特別講義 I 各教員

Special Lecture on Electronics and Informatics II

電気電子工学,情報工学,および数理分野の最近の重要な話題を幅広く取り上げ,講義する。なお, 講義は集中講義形式で行う。

This course lectures recent important topics in electrical and electronic engineering, and computer science. The lecture is offered in intensive course style.
エネルギー変換工学特論 橋本教授

Electromechanical Energy Conversion

前半では,制御対象のモデリングと現代制御理論に基づく設計法について講述する。同時に,制御系 設計用 CAD によるシミュレーション検証を行う。後半では,ニューラルネットワークに基づく知能化 制御法の基礎について,その応用を交えて解説する。

In the first half, modeling and control design based on the modern control theory are given. Moreover, the simulation using CAD tool for the control system design is carried out. In the latter half, this course gives the explanation of the basics of intelligent control methods based on neural networks, including their applications.

光 デ バ イ ス エ 学 特 論 花泉教授・三浦准教授

Photonic Devices

最新の光デバイス工学技術について講述する。具体的には,①デバイス工学におけるイオン注入技術, ②光機能デバイス(光スイッチ,光変調器,フィルタなど),③先端光デバイス工学(フォトニック結 晶など)について解説する。

Latest technologies of photonic devices are lectured. Ion implantation technologies for photonic devices, functional devices (optical switches, modulators, and filters), and advanced device technology such as photonic crystals are introduced.

光 エ レ ク ト ロ ニ ク ス 特 論 高橋 (佳) 准教授

Optoelectronics, Advanced Course

光通信,光情報処理において重要な役割を果たすオプトエレクトロニクスデバイスの概念,原理,その応用について理解させるために,マックスウェルの方程式から出発してオプトエレクトロニクスデバイスの例としての光ファイバの原理と現状までを講義する。

To understand optoelectronics devices which are important in optical communication and optical information processing, the course will cover the basic concept of lasers starting with Maxwell equations, and the principle and current status of optical fibers.

電 子 物 性 特 論 櫻井教授

Solid-State Physics of Electronic Materials

エレクトロニクス産業で重要な役割を担っている電子デバイスは、電子輸送&光デバイスと磁性&ス ピンエレクトロニクスデバイスに大別できる。本講義では、これらデバイスの最先端な研究成果を紹介 し、それらの原理や概念を講述する。

The electronic devices taking an important role on in electronic industry can be classified into two groups: (1) electronic transportation & photonic devices and (2) magnetic & spintronic devices. The aim of this lecture is to introduce principles of such devices and corresponding recent topics.

固体物性工学特論 古澤准教授

Solid State Physics, Advanced Course

固体物性の基礎と応用について講義する。具体的には,固体の結晶構造,バンド理論,誘電現象,電 気伝導現象,光学特性,薄膜作製と特性などについて講述する。

This course lectures about the fundamental concepts and applications of solid state physics. The topics in this course will be introduced as follows; crystal structure of solids, band theory, dielectric phenomena, carrier transport phenomena, optical properties, preparation and physics of thin solid films.

電子 デバイスエ学特論 尾崎(俊)准教授

Electronic Devices

半導体におけるキャリアの輸送現象, pn 接合について復習した後, バイポーラトランジスタの静特性・ 周波数特性,及び MOS 集積回路システムにおける信号遅延とチップ面積の最小化のため,各世代のプ ロセス技術でどのような設計指針や回路構成がとられてきたかを講義する。

The aim of this lecture is to understand semiconductor devices for integrated circuits. The topics in this course will be introduced as follows; 1. Electrical transport in semiconductors, 2. pn junction, 3. Characteristics of bi-polar and MOS transistors, 4. Operation of C-MOS inverters and signal delay in integrated circuits.

気体電子工学特論高橋(俊)准教授·佐藤(守)准教授

Gaseous Electronics

放電現象を含む弱電離プラズマから高温の完全電離プラズマに至る幅広い電離気体を対象とし,その 性質や物理を講義する。また,プラズマの計測法,イオン源や加速器,および核融合など工学への基礎 や応用等を講述する。

This lecture deals with ionized gases such as weakly-ionized plasmas including discharges and high temperature fully-ionized plasmas. Their properties and physics are discussed. Plasma diagnostics, ion sources and accelerators, and fundamentals and applications to fusion engineering will be reviewed.

波 動 情 報 工 学 特 論 本島教授

Wave and Information Engineering, Advanced Course

通信メディアである電波の振る舞いを情報工学として修得するために、電波の基礎理論から出発し、 最新の解析方法まで発展させた内容を講義する。具体的には、実践的波動情報解析法として有限差分時 間領域法(FDTD法)を取り上げ、その理論の理解及び数値解析法の概要を講述する。

The aim of this lecture is to understand behavior of electromagnetic wave for advanced information engineering. The topics in this course are theory of practical analysis on electromagnetic wave, finite difference time domain method for numerical analysis and architecture of programming code.

先端計測制御工学特論 小林教授

Measurement and Control Technology

計測制御技術の先端知識を習得することを学習目標に,アナログデジタル変換器 / デジタルアナロ グ変換器,デジタル信号処理技術,アナログ集積回路のテスト技術,電源回路技術,計測制御と電子回 路技術,アナログフィルタ回路,インターリーブ AD 変換器,自己校正技術とアナログ回路技術,冗 長性を用いたアナログ回路技術,信号処理とアナログ回路技術に関する説明を講師の研究事例をベース に行う。

The aim of this lecture is to understand measurement and control technology, such as analog-todigital converter, digital-to-analog converter, digital signal processing, LSI testing, power supply circuit, analog filter, interleaved analog-to-digital converter, and self-calibration techniques.

先端計測デバイス特論 曾根教授・尹准教授

Advanced Device and Metrology

電子情報学の基礎となる電子デバイス,特に,先端デバイスを理解できる知識を修得するために,電 子デバイス,プロセス技術,先端計測技術の現状と将来について講義し,先端デバイス研究開発のため の実践力を身に付ける。

To understand electronic devices, especially advanced devices based on electronics and informatics, this course covers current and future technologies for electronic devices, processing and advanced metrology. Then, the practical knowledge in research and development of advanced devices are obtained.

医学物理計測制御特論 神谷教授·栗田准教授

Bases of medical engineering

医工学の基礎について講義する。具体的には人工心臓などの電気機械装置を利用した人工臓器の基礎 と最新技術について講義する。さらに、高エネルギーイオンビームを基盤とした医学・医療分野等への 応用技術について講義する。

This course lectures on bases of medical engineering, specifically it lectures on a basis and recent progress of the artificial internal organ technology such as an artificial heart using electromechanical devices. It also lectures on a basis on a high-energy ion beam technology applied to the field of medical science and technology.

物 性 科 学 特 論 鈴木 (真) 准教授

Material Science Advanced Course

本講義では,表面・界面科学,磁性,誘電体物性,マルチフェロイクスなど,電子材料研究に必要な 物性物理学の基盤と最新の研究についての解説を行う。

This Course lectures on the surface/interface science, magnetism, dielectrics, and multiferroics that is important for the materials research. Related fundamental physics and recent studies are presented.

光 物 性 物 理 学 後藤教授

Physics of Photoelectric Materials

光と物質の相互作用に関する物理と応用について講義する。光学・固体物理学の基礎から光吸収・放 射などの光学遷移の理解を深めた後、半導体や絶縁体の光物性と光電子デバイスへの応用について講義 する。

This lecture gives an introductory treatment of the optical properties of solids. The fundamental principles of absorption, reflection, and luminescence are discussed for semiconductors and dielectrics. Examples also include optical devices.

パワーエレクトロニクス回路工学論

田中教授(客員)·小関教授(客員)· 三谷准教授(客員)

Power Electronics Circuit

パワーエレクトロニクスの先端技術を習得することを学習目標として,パワー系化合物およびシリ コン半導体の材料・プロセス・デバイス・回路およびそのアプリケーション,将来技術の講義を行う。

The aim of this lecture is to understand power devices, materials and processes as well as their applications and future trends.

シ	ス	テ	Ъ	集	積	旦	路	Т	学	論	三木教授(客	客員)・	伊藤講師	(非常勤)・
											岩渕講師(非	非常勤)		

System Integrated Circuit

システム LSI 内に用いられているアナログ回路の設計・解析ができることを学習目標として,アナ ログデジタル変換回路,デジタル穴路尾久変換回路の設計技術の講義を行う。それに加えて人工知能の 概論の講義を行う。

The aim of this lecture is to understand the advanced analog circuit technology, such as analog-todigital converters, digital-to-analog converters as well as artificial intelligence technologies.

集 積 回 路 設 計 技 術 松田教授(客員)・岡部講師(非常勤)・ 元澤講師(非常勤)

Integrated Circuit Design Technology

マイクロエレクトロニクスの先端技術を習得することを学習目標として、半導体デバイス、半導体プロセス、半導体デバイスモデリング技術、アナログデジタル変換回路、アナログフィルタ回路、高周波回路、LSIの信頼性について講義する。

The aim of this lecture is to understand micro-electronics technology, such as semiconductor devices, semiconductor processes, MOS and Bipolar transistor modeling, analog-to-digital converter, analog filter, high-frequency circuit, and LSI reliability.

電 子 工 学 特 論

Electronic Engineering, Advanced Course

超伝導現象の基本を概説し,巨視的量子効果についてその特徴を超伝導材料と合わせて説明する。 その後,巨視的量子効果に基づく電子回路応用(高速デジタル回路,超高感度磁気センサ)について講 義する。

In this course, firstly, basic phenomena of Superconductivity will be introduced with the context of Macroscopic Quantum effect and Superconductive material. In addition, Superconductive electronics application will be given including High-speed Digital circuit and high sensitive magnetic sensor based on the feature of Macroscopic Quantum effect.

シミュレーションとナノ計測工学特論 佐々木教授(客員)・原田教授(客員)

Micro-scale Computer Simulation and Nano-metrology

流体・構造等マクロ領域の解明や,ナノ領域での原子,分子の振る舞いを解析し,界面現象や潤滑な どを予測するシミュレーション工学について講義する。また,ナノ計測では,原子レベル分解能を持つ 透過電子顕微鏡の構造と画像情報,およびナノ材料やナノデバイスの微細構造解析への応用について講 義する。

This course provides an overview of the recent developments and the problem for further effective practical use in Micro-scale simulation technologies. Furthermore, as for Nano-metrology, the configuration and the image information of an transmission electron microscope which has an atomic order resolution will be lectured and then their applications for fine structure analysis of nanomaterials and nano-devices.

```
現代物理学インテンシブ
```

高橋(学)教授・長尾教授・守田准教授・ 引原准教授・山本(隆)教授・後藤教授・ 鈴木(真)准教授

Modern Physics Intensive Course

現代物理学の中から、次のテーマについて解説、講義を行う。

 1) d 電子系物性理論,2) f 電子系物性理論,3)低次元量子系理論,4)量子スピン系理論,5) 結晶成長理論,6)光物性実験,7)構造物性実験。

The following research fields of modern physics are lectured: 1) theoretical study of d-electron systems, 2) theoretical study of f-electron systems, 3) theoretical study of low dimensional quantum systems, 4) theoretical study of quantum spin systems, 5) theoretical study of crystal growth, 6) experimental study of optical properties of matter, 7) experimental study of atomic structure of matter.

アルゴリズム論 中野教授

Algorithm Theory

学部のアルゴリズム I および Ⅱを基礎に,様々なアルゴリズムの設計と解析について解説する。 キーワード: N P 完全,前処理,ならし解析,計算幾何,近似アルゴリズム,平面グラフ

This is a graduate course on the design and analysis of algorithms, covering several advanced topics not studied in Algorithm I and II in undergraduate course.

Keyword: NP-complete, preprocessing, amortized analysis, computational geometry, approximation algorithm, plane graph.

計 算 理 論 未定

Theory of Computing

アルゴリズムの設計,解析およびそれらの計算量について学ぶ。NP困難性,近似アルゴリズム,確 率的アルゴリズム,固定パラメータ計算量,確率的手法等を題材として講義が行われる。

This course provides an introduction to the design and analysis of algorithms and their complexities. Topics include : NP-hardness; Approximation algorithm; Randomized algorithm; Fixed parameterized complexity; Probabilistic methods.

計算量特論 天野(一幸)教授

Computational Complexity, Advanced Course

日常遭遇する様々な情報処理や計算の問題に対して、その本質的な困難さ、すなわち、その問題を解 くのに必要とする時間やメモリ量を明らかにすることを目指す分野である、計算量理論について講義す る。特に、種々の計算モデルと計算量クラス、P vs NP 問題、並列計算量などについて学ぶ。関連する 最近の研究結果の解説も併せて行う。

This course studies the theory of Computational Complexity that investigates the amount of computational resources (time, memory, etc.) needed to solve various computational problems. The topics includes: models of computation and complexity classes, P versus NP problem and parallel computation. Some advanced topics will also be covered.

プ ロ グ ラ ミ ン グ 言 語 藤田准教授

Programming Language

学部のプログラミング言語およびソフトウェア工学を基礎にして,命題論理の意味論と構文論,ラム ダ計算に基づく計算理論,およびプログラムの型と論理式とのカリー・ハワード同型対応について学ぶ。

A gentle introduction to parts of proof theory of propositional logic and related aspects of lambdacalculi for the Curry-Howard isomorphism, following the undergraduate course of programming language and software engineering.

ソフトウェアエ学特論 安藤准教授

Software Engineering, Advanced Course

学部科目のプログラミング言語およびソフトウェア工学を基礎にして,プログラム意味論,プログラム検証,第1階述語論理,ラムダ計算,型理論などの基礎理論を解説する。

This class, following the undergraduate studies on Programming Languages and Software Engineering, deals with various topics from Logic in Computer Science including semantics of programs, program verification, first-order predicate calculus, lambda calculus, and type theory.

計算機構成特論 未定

Computer Organization, Advanced Course

計算機のハードウェアに関する講義である。計算機が行う処理の中で最も重要なものの一つが算術演 算,特に四則演算である。計算機に含まれている四則演算を実行する論理回路の設計方法について,基 本的なハードウェアアルゴリズムの話題を講義する。

The purpose of this lecture is to understand the main ideas and concepts in computer arithmetic, which includes, addition, subtraction, multiplication, and division. The topics in this course will be introduced as follows: two-operand addition, multioperand addition and multiplication, division and integer square root.

情報通信工学特論 高井准教授

Information and Communication Engineering

通信経路上の多くの信号の中から情報を取り出すために必要なフィルタ理論について講義する。バ ターワース,チェビシェフ,ベッセルフィルタの伝達関数の数学的な解析を学んだ後,具体的にそれぞ れのフィルタを設計する手法を講義する。最後に設計したフィルタを実際の回路として構成するための 回路設計法を講義する。

The aim of this lecture is to understand analog filter theory which is very important theory to select a desired signal from the communication line. At first, mathematical analyses of the Butterworth, Chebyshev, Bessel filter are given, and design methods of these filters are given. Finally, circuit designs of these filters are discussed.

計算機網工学特論 未定

Computer Communication Networks, Advanced Course

計算機網の多様な振舞について記述し、計算機網の制御法と応用例について講義する。具体的には、 ゲーム理論を用いた記述法、自動車で構成されたアドホックネットワーク(VANET)における渋滞回 避方法を講述する。

The aim of this lecture is to understand characteristics of behavior in computer networks and construct control mechanism of computer communications. The topics in this course will be introduced as follows; fundamental computer communications concepts, game theory, VANET, congestion control.

モバイルコンピューティング 未定

Mobile Computing

学部のコンピュータネットワークを基礎にして、モバイルコンピューティングを実現するための基礎 技術について学ぶ。特に、無線通信技術の基礎知識、IEEE802.11 無線 LAN 標準や BlueTooth などに おけるネットワーク構成法・メディアアクセス方式・セキュリティ技術などについて学習する。

This course provides an overview of fundamental techniques of wireless computer communication to realize mobile computing environments. The topics are as follows, based on the practical techniques such as IEEE802.11 standards and BlueTooth: network architecture, media access control, security and so on.

知識情報処理特論 加藤 (毅) 准教授

Knowledge Information Processing, Advanced Course

機械学習・データマイニングの理論について学ぶ。当該分野における方法論について概観するととも にその理論的性質と応用例を解説する。

The course provides an overview of a variety of techniques used in machine learning and data mining. We will cover their theoretical properties and practical applications.

パターン認識特論 加藤(毅)准教授

Pattern Recognition, Advanced Course

パターン認識において、サポートベクトルマシンと呼ばれるアルゴリズムが近年急速な発展を遂げ、 手書き文字認識、テキスト分類、画像分類、生体配列分析などの応用分野は多岐に広がっている.サポー トベクトルマシンは、再生核ヒルベルト空間、学習理論、双対表現、最適化理論、アルゴリズム論など 多くの理論が基盤になっている.本講義では、双対表現および最適化理論を中心にサポートベクトルマ シン理論を解説する.

Recent advances of support vector machines (SVMs) have facilitated rapid explosions of its applications. SVMs are built based on a wide range of material including reproducing kernel Hilbert space, learning theory, dual representation, optimization theory, and algorithmics. In this class, the theories of SVMs are introduced from the perspective of the dual representation and the optimization theory.

計算知能特論 伊藤(直)准教授

Computational Intelligence, Advanced Course

知的な情報処理の基盤をなすパターン認識について,その基礎理論(ベイズ決定理論,最尤推定,ベ イズ推定)を原理から系統的に学習し,音声認識や光学的文字認識,ジェスチャー認識などへの応用に 関する例題も交えて,様々な目的や用途に応用するための知識を習得する。

Pattern recognition forms the technical ground of intelligent information processing. The aim of this course is to learn systematically the basis theories of pattern recognition. This lecture will deal with Bayesian decision theory, maximum likelihood estimation method, Bayesian estimation and their

画 像 情 報 工 学 太田教授

Image Processing Theories, Advanced Course

画像復元の数理的な基礎になっているフーリエ変換と,画像による3次元解析の基礎になっている射 影幾何学を,それぞれの応用に密着した形で具体的に講義する。

Fourier Transform, which gives the mathematical basis for image restoration, and Projective Geometry, which is used for 3D shape reconstruction from images, are lectured. They are practically explained using real examples.

画 像 シ ス テ ム 特 論 奥(寛)教授

Imaging Systems, Advanced Course

画像システムを構成する二つの要素である撮像用光学系と画像処理系について基礎を講述するととも に、コンピュテーショナルフォトグラフィに代表される、光学系の性質を積極的に利用する先端的な画 像システムについて概説する.

Optical system and image processing system are two major components of imaging system. This lecture describes the basic mechanism of these components, and introduces the state-of-the-art imaging technologies utilizing the characteristics of optics, such as computational photography.

情報システム工学 河西准教授

Information Systems

確率統計 I, IIとオペレーションズリサーチ,及びコンピュータネットワークで修得した内容を発展 させるため,確率過程とその応用について学ぶ。工学上の問題を確率過程でモデル化する手法を理解す るため,計算機システムの性能評価法や確率的アルゴリズムなど,確率過程の応用を学ぶ。

Based on Probability and Statistics, Operations Research and Computer Networks in undergraduate course, this course gives an introduction of stochastic processes and their applications. The topics include the mathematical methods in stochastic processes, modeling and performance analysis of computer systems.

数理構造特論 未定

Mathematical Structures, Advanced Course

組合せ論,計算量理論,グラフ理論,数理論理学に現れる数理構造について学ぶ。組合せ論では,数 え上げの基礎およびマトロイド理論の基礎を解説する。計算量理論では,チューリング機械をはじめと する様々な計算モデルについて概説する。グラフ理論では,四色定理やメンガーの定理などの幾つかの 有名かつ基本的な定理を紹介する。数理論理学では,一階述語論理について例を通して説明する。

This course provides various mathematical structures in combination theory, computational complexity theory, graph theory, and mathematical logic. Topics include: Counting: Matroid theory;

現代数学インテンシブ

渡辺(秀)教授·田沼教授·大塚准教授·名越准教授· 天羽教授·高江洲准教授·宮崎准教授

Modern Mathematics Intensive Course

現代数学の中から、次のテーマについて解説、講義を行う。

1)数理解析・数理物理学,2)確率解析,3)応用解析・微分方程式,4)整数論

The following research fields of modern mathematics are lectured: 1) mathematical analysis, mathematical physics, 2) stochastic analysis, 3) applied analysis, differential equations, 4) number theory.

先端電子計測工学 浅見教授(客員)·石田教授(客員)

Electronic Measurement Technology Course

電子計測器および半導体試験装置関係の先端的な電子計測技術,電子回路システム,信号処理・計測 アルゴリズムについて国際会議発表や産業界での研究開発事例をもとに講義を行う。

This course provides wide and deep knowledge of advanced electronic measurement technologies and electronic circuits & systems as well as signal processing & measurement algorithms related to electronic measurement instruments & automatic test equipment, based on recent international conference publications and industry trends.

理工学特別演習

Seminar in Specialized Topics

電子デバイス,計測・制御・エネルギー,情報通信システム,計算機科学,数理科学,物理学の分野 において,指導教員ごとに学生に以下に示す領域等から研究課題を選択させて,これに関連した文献講 読などの演習を行う。

理工学特別実験

Experimental Research in Specialized Topics

電子デバイス,計測・制御・エネルギー,情報通信システム,計算機科学,数理科学,物理学の分野 において,指導教員ごとに学生に以下に示す領域等から研究課題を選択させて,理論研究・実験・シス テム作成などについて研究を行わせ,修士論文の作成指導を受ける。 (数学系科目)

代 数 学 特 論 I 天羽教授

Algebra I, Advanced Course

群についての理解を深めることを主目的とした楕円曲線の入門コース。単位円および双曲線の群構造 について述べてから,実数体上の楕円曲線を導入し,その群構造について解説する。さらに,有限体を 含むその他の体上での楕円曲線について概説し,暗号理論への応用を紹介する。

This is an introductory course to elliptic curves for understanding the notion of group well. The following topics will be treated here; the group structure of the unit circle and hyperbolas; the group structure of elliptic curves over the reals; elliptic curves over other fields including finite fields; applications to cryptography.

代 数 学 特 論 I 名越准教授

Algebra II, Advanced Course

整数論におけるいくつかの基本的な定理たちを解説し, 暗号の理論へのそれらの応用を述べる。具体 的な内容は, ユークリッドの互除法, 合同, 一次合同式, フェルマーの小定理, 原始根, 離散対数, 平 方剰余の相互法則, 素数判定法, 素数分布, 素因数分解アルゴリズム, 暗号, RSA, デジタル著名, 疑 似乱数生成である。

This course explains some basic theorems in number theory and gives their applications to the theory of cryptography. The following topics will be discussed: Euclidean algorithm, congruence, linear congruence equation, Fermat's little theorem, primitive roots, discrete logarithm, quadratic reciprocity law, primality tests, distribution of primes, prime factorization algorithms, cryptography, RSA, digital signature, pseudorandom number generators.

代数学特論 Ⅲ 宮崎准教授

Algebra ${\rm I\!I}$, Advanced Course

初等整数論の基礎と応用について学ぶ。整数の集合を割り算によって分割して出来る剰余類の概念を 学ぶことを通して、その背後にある群論の基本を理解する。また合同式を使ってそれらを表現し、整数 に関わるより高度な計算が出来る様になることを目指す。さらに、初等整数論がどのように応用される かを知ることにより、理論の理解を深める。

This course explains some basic facts in elementary number theory and their applications. Through the notion of residue class of integers, we will understand the basic of the group theory. We express them by using congruence to work out non-trivial computations among integers. Moreover, some topics will be presented as applications of elementary number theory.

解析学特論 I 高江洲准教授

Analysis I, Advanced Course

原子・分子の系のスペクトル・散乱現象は量子力学の理論で記述される。この講義では、量子力学の 理論で中心となるシュレディンガー方程式の解析に関する基本的事項について学ぶ。

Quantum mechanics describes the spectrum and scattering phenomenon of the systems of atoms or molecules. In this class, we study the basic analysis of Schrödinger equation, which is the main topics in the quantum mechanics.

解析学特論 Ⅱ 田沼教授

Analysis, Advanced Course

デルタ関数は、一点に単位質量(または単位電荷)が存在するときの質量密度関数(または電荷密度 関数)として特徴づけられるが、微分積分学の範疇では理解しにくい関数である。そこで本講義ではデ ルタ関数を出発点に、関数という概念をいくつかの数学的観点から見直し、超関数(distribution)の 紹介を行う。さらに解が特異性を有するような微分方程式を対象に、初期条件、境界条件を与え、解の 構成方法と解のもつ性質を中心に解説する。その際、外力項をデルタ関数においた微分方程式の解(グ リーン関数)を構成することが要点となる。以上の内容を理工学府全教育プログラム向けに基礎から丁 寧に講義する予定である。

Starting from a question "What is the delta function?", we introduce a basic theory on distributions. We then study various methods for solving differential equations whose solutions develop singularities and investigate the properties of those solutions. Construction of the Green functions will be useful.

解析学特論 Ⅲ 渡辺教授

Analysis III, Advanced Course

関数解析学とそれの量子力学への応用とについての基本的な力の習得を目標とする,講義を主体とした授業を行う。まずは,ブラケット記法による量子力学の物理学的な定式化を,次に,ブラケットをヒルベルト空間の要素として,物理量をその上の線形作用素としてそれぞれ扱うことを学ぶ。

Give an overview of mathematical foundation of quantum mechanics. Understand the basic concepts of quantum mechanics including bras, kets and observables. Understand functional analytical formulation of bras, kets and observables in quantum mechanics.

関数 解析学特論 I 大塚准教授

Functional Analysis I, Advanced Course

本講義では微分方程式や変分問題を解析するための基礎理論である関数解析学の講義を行う。バナッ ハ空間やヒルベルト空間における収束列と完備性,縮小写像の原理,線形作用素について学び,これら の応用として弱形式や半群理論を用いた微分方程式の解法,数値計算法などについて解説する。

This lecture is a brief introduction to functional analysis. A theory of compactness, completeness, Banach and Hilbert space, contraction mapping and Linear operator is given. Their applications to numerical analysis, weak form or semigroup theory for differential equation are introduced.

データ解析特論 関教授

Data Analysis, Advanced Course

多変量のデータ解析の方法論に関し概観し,さらに,重回帰分析,判別分析,主成分分析の基礎的な データ解析方法について,その原理を応用例に触れながら述べる。多変量データの基本的な取り扱い方 と,探索型と検証型の主なデータ分析手法について基礎的な考え方を理解し,これらを利用できるよう にすることを目標とする。

This course provides an overview of methods for multivariate data analysis. It covers the theory and its applications of multiple regression analysis, discriminant analysis, principal component analysis and so on. The main objectives are to understand basic methods for handling of multivariate data, as well as exploratory and confirmatory data analysis methods.

(物理系科目)

熱 力 学 特 論 山本(隆)教授·武野准教授

Thermodynamics, Advanced Course

非常に多くの自由度を持つ系を単純に理解することのできる熱力学の精神について深く理解し応用力 を培うために,熱力学の第一法則,第二法則といった巨視的法則の視点と,微視的な構造から巨視的な 性質を導出する統計力学の視点という二つの視点から高分子鎖および高分子溶液の熱的性質を講義す る。

The aim of this lecture is to achieve great understanding of thermodynamics and to cultivate applied skill of it through discussing the thermodynamic properties of polymer chains and polymer solutions on the basis of both the macroscopic thermodynamic laws and the microscopic statisticalmechanical analysis.

量子物理学特論 引原准教授

Quantum Physics

現代の工学に共通する基礎理論としての量子力学について講義する。原子・分子や固体中の電子など、 様々な研究対象を解析するための量子力学的手法について学習する。具体的には、シュレーディンガー 方程式の解法、摂動論などを学ぶ。

The lecture concerns basic theory of quantum mechanics. Several fundamental techniques of quantum mechanics including a solution of Schrodinger equation and perturbation theory will be discussed.

統 計 物 理 学 特 論 I 守田准教授

Statistical Physics I, Advanced Course

凝縮系物理学の話題を中心に,統計物理学における種々の方法を学ぶ。

Focusing on topics of condensed matter physics, we shall discuss the methods of statistical physics.

統 計 物 理 学 特 論 Ⅱ 山本(隆)教授

Statistical Physics II, Advance Course

要素のダイナミックスを支配する力学から,集団の性質の質的変化という相転移現象がどのように理 解できるかを統計物理学の原理に基づき簡単なモデル例で具体的なイメージをもたせるよう工夫しなが ら講義する。

The aim of this lecture is to achieve microscopic understanding of the phase transition phenomena through analyzing some simple models on the basis of statistical mechanics.

物 性物理学特論 I 長尾教授

Material Physics, Advanced Course I

本講義では,可視光やx線など,光実験によって観測される結晶の物性を理解するための理論の基礎 を講義する。光(光子)と物質の相互作用という統一的な観点から,観測された現象の微視的な発現機 構を理解するために役立つ話題を基礎から発展的なものまで紹介する。

In this lecture, theoretical foundation to understand the physical properties of crystals experimentally probed by light such as visible light and x-ray is presented. On the basis of the interaction between the matters and light (photon), several interesting topics, from fundamental to advanced (e.g., resonant x-ray scattering, x-ray absorption) ones are introduced to understand the microscopic mechanism of the experiments.

物 性 物 理 学 特 論 Ⅱ 高橋 (学) 教授

Theoretical Solid State Physics II

物質の磁性を中心に,物質の性質の発現機構を基礎的な物理学の原理から講義する。強磁性体,常磁 性体,反磁性体の特性とそれらの発現機構を量子力学を用いて電子状態から理解する。

In this introductory course to the theory of magnetism, we aim at understanding the magnetic properties of materials from the fundamental principles in physics. The properties of the ferromagnetic, paramagnetic, and diamagnetic materials, and the mechanisms how their properties emerge are discussed from the viewpoint of electronic structures based on quantum mechanics.

(化学系科目)

固 体 化 学 特 論 花屋教授·京免教授·藤沢准教授

Advanced Solid State Chemistry

結晶構造に関連する様々な用語や表記法および結晶構造を決定する方法である回折実験の原理を理解 し、物質の性質を理解する基本情報である原子配置に関する基礎的知識を身につける。また、交流誘電 率測定、熱測定・熱分析、固体高分解能 NMR の基本的な原理を理解し、その応用に関する基礎的知識 を身につける。

Crystallography and the principles of diffractometry, dielectimetry, thermal analysis, calorimetry, and high resolution solid-state NMR are explained with exhibiting the applications of those methods

有 機 化 学 特 論 久新教授·中村教授

Advanced Organic Structural Chemistry

有機機能物質化学の観点から,有機発色性物質(色素,クロミズム),有機発光性物質,有機表示・ 記録物質,有機電導性物質,有機磁性物質,有機エネルギー変換物質,金属捕捉有機物質(有機ホスト - ゲスト化学)等について概論的に講述するとともに,それぞれの実例を挙げて解説する。

This course provides the outline and examples of organic functional materials, such as organic dyes, light-emitting materials, recording materials, display materials, conductors, magnets, energy-conversion and storing materials, and ionophoric materials.

高分子化学特論 米山准教授·奥(浩)准教授

Polymer Chemistry, Advanced Course

高分子材料の構造・物性を理解するために以下の内容について講義する。(1) 高分子の構造と物性の 概観。力学的性質, 粘弾性及び測定法。(2) 電気的性質, 熱的性質と高分子材料の機能および高分子の 反応。(3) 高分子構造を調べるための分析法。

The aim of this lecture is to understand characteristics of polymer materials. The topics in this course will be introduced as follows: (1) Over view of polymer structure and physical properties. Mechanical and rheological properties. (2) Electric and thermal properties. Functional polymers. Polymer reactions. (3) Structural analytical methods.

(生物系科目)

生物科学特論 井上准教授·榎本准教授

Food Immunology and Cell Engineering, Advanced Course

この講義では食品免疫学と細胞工学についての講義を行う。食品免疫学では,免疫制御に関する分子 機構を理解するとともに,その機能性食品,アレルギーや自己免疫疾患の予防を目的とした食品への応 用に関して考察する。細胞工学では,哺乳類細胞における代謝の制御機構について講義する。また,遺 伝子工学的手法を用いた多機能性細胞の開発や遺伝子改変動物の作製などについて紹介する。

This course covers food immunology and cell technology. "Food immunology" emphasizes the molecular basis of regulation of immune responses and their application to the functional foods, especially to the prevention of allergy and autoimmune disease. "Cell technology" focuses on regulatory mechanism of metabolism in mammalian cells. New techniques such as development of pluripotent cells and establishment of genetically modified animals using genetic engineering will be also introduced.

理 学 イ ン テ ン シ ブ I

Science Intensive Course I

主に学外から講師を迎えて,物理学の関連分野からトピックスを選び講義する。講義のトピックスは 毎年変わる。講義の詳細はシラバスを参照すること。最先端の物理 関連の理学研究について,基礎か ら応用まで概観する。物理学としての研究成果だけでなく,それらがどのように応用されているか役に 立っているかまで講義する。

We invite lecturers mainly from outside the university to give lectures on selected topics in related fields of physics. The topics of the lectures will change every year. Refer to the syllabus for details. This course. provides an overview of the latest physics-related scientific research, from basic to applied. The lecture will cover not only the results of research in physics, but also how they are applied and useful.

理 学 イ ン テ ン シ ブ I 山本 (隆) 教授

Science Intensive Course II

熱力学的視点から論じられることの多い1次相転移現象を,統計力学的な視点から講義することで, 1次相転移現象についての深い理解と応用力を養う。

The aim of this lecture is to achieve great understanding of the first-order phase transition and to cultivate applied skill of the first order-phase transition phenomena. To achieve the aim, the firstorder phase transition is discussed on the basis of statistical mechanics.

理 学 イ ン テ ン シ ブ Ⅲ 高橋(学)教授

Science Intensive Course III

学部の力学に関連する講義で学んだことを基本にして、剛体の運動および角運動量について学ぶ。

In this intensive course we discuss the elementary dynamics of rigid bodies and the concept of angular momentum.

理 学 イ ン テ ン シ ブ N 守田准教授

Science Intensive Course IV

凝縮系物理学の話題を中心に,自然科学における種々の方法をまなぶ。 Focusing on topics of condensed matter physics, we shall discuss the methods of science.

理 学 イ ン テ ン シ ブ V 引原准教授

Science Intensive Course V

自然科学の様々な分野で登場する概念であるエントロピーについて学習する。各分野におけるエント ロピーの物理的意味についての理解を深めるとともに、エントロピーを通して浮かび上がる自然科学の 様々な領域に共通する普遍性についての理解を涵養する。

This course will focus on Entropy, a fundamental concept appearing in various fields of science. Variety and universality of entropy in several fields such as thermodynamics, statistical mechanics, and information theory will be discussed.

理 学 イ ン テ ン シ ブ VI 長尾教授

Science Intensive Course VI

分子や結晶の示す物性は、その系の対称性を考察することにより、詳細な理論計算を駆使せずとも定 性的に理解できることが多い。本講義では群論の表現論について必要最小限の知識を補った後、その分 子、結晶の物性研究の具体的な対象への使用例を紹介する。

Consideration on the basis of the symmetry possessed by the systems, such as molecules and crystals, is quite useful to understand the qualitative properties shown by them without massive theoretical calculation. In this lecture, after introducing minimum ingredients of representation theory of group, several applications to the study of molecules and crystals are explained.

理	学	1	ン	テ	ン	シ	ブ	VII	鈴木 (真) 准教授 · 兵藤講師 (非常勤) ·
									満田講師(非常勤)

Science Intensive Course VII

本講義では,光と物質が織りなす光物性とその実験手法,および磁性物理と医工学への応用について, 最近の研究例を挙げながら解説を行う。

This course lectures on the optical property of materials and its experimental details. Practical use for the magnetic and medical engineering is also presented.

[学府開放教育科目]

(実践実習科目)

分析・測定スキルアップ実践実習 山延教授·松尾教授

Advanced Practice in Instrumental Analysis

NMR, 質量分析の基本原理, 応用例について説明する。この理解のもとに実際の有機化合物の構造解 析実習を行い,装置の基本的操作,データ解析法を身につける。

The fundamentals of NMR and MASS spectroscopy and their applications are lectured. On the basis of these lectures, the practices of the NMR and MASS spectroscopy are carried out in order to learn the basic operation of machines and the analytical method of the obtained data.

CAD・CAM スキルアップ実践実習 林教授

Practical training and exercise in skill development of CAD/CAM

CAD ソフトウェア Solidworks を使用して,三次元設計および設計の基本についてのスキルアップを するための実践演習科目である。本演習では,幾何学的構造,スケッチ,直線,3D モデリング,投影法, 副視図,寸法公差,フィット,アッセンブリー,パラメトリック等について学ぶ。三次元モデルの例題 を作成し図面を読むための基本的なスキルとその知識を修得することが本科目の目的である。

This course covers exercises and practical training in skill development for basic designing, a three dimensional design using a CAD software (Solidworks). Topics includes a geometric construction, sketching, lines, a 3-D modeling and drawing, orthographic projection, auxiliary views, dimensioning & tolerancing, tolerance and fit, assembly, parametric modeling etc.. The aims of the course is providing knowledge and basic skills for reading engineering drawing and production of some examples of 3-D models.

プログラミングスキルアップ実践実習 加藤(毅)准教授

Lab for Advanced and Practical Computer Programming

分子生物学データ解析,ネットワークプログラミング,グラフィックユーザインタフェース (GUI) の開発方法を習得する。

The course provides an opportunity to learn how to develop computational tools for molecular biological data analysis, network programming, and graphical user interface.

環境計測・シミュレーションスキルアップ実践実習

渡邉教授・中川教授・桂教授・ 野田准教授・若井教授

Practical training of measurement and simulation for environmental research

自然環境や化学プロセス内で起きる様々な現象をモデル化し,シミュレーションするために必要とな るシミュレーターの利用法や計算や結果の評価に必要なデータを得るための各種計測技術についての実 習を行う。

This course provides practical trainings for mathematical modeling of physical phenomena and utilization of a computer simulator as well as measurement techniques in order to get the data for the simulation. The subjects of the modeling and the simulation are in the field of environmental and chemical engineering.

ファイブロバイオエ学特論

粕谷教授・河原教授・橘准教授

Fibro-bioengineering, Advanced Course

環境調和型材料を天然高分子,バイオマスプラスチックや生分解性高分子から創成するためには,分 子構造と物性との関連だけではなく環境中での分解機構まで理解する必要がある。本講義では,植物の 繊維細胞や,絹フィブロインタンパク質,羊毛ケラチンなどの天然高分子の基本物性と構造の関連性や, バイオマスプラスチックおよび生分解性高分子の構造 – 物性,および生分解性機構について解説する。

In order to develop eco-friendly materials from natural biopolymers, biomass-based plastics, and/ or biodegradable functional polymers, it is very important to understand the relation between the molecular structure and hydrolyzation mechanism by environmental microorganisms as well as the basic physical properties for those polymers. In the classes, fundamental properties of natural biopolymers such as fibrous cells of vegetables, silk fibroin, wool keratin will be introduced, the synthetic method and properties of biomass-based plastics, and the structures, physical properties, and biodegradabilities of biodegradable plastics will be presented.

医工連携特論 伊藤(正実)教授

Partnership of medicine and engineering research

この講座では,工学系及び医学系の専門分野の研究者が自身の最新の研究成果についてプレゼンし, 異種分野との連携の可能性を議論することを聴講し,学際領域の知識形成のプロセスを理解することを 狙いとする。

This course aims the understanding of the knowledge formation process in the interdisciplinary area by listening the presentation of latest research results of engineering and medicine and the discussion about the potential to seek the research project by the collaboration between both area.

医理工連携重粒子線治療の物理と医学特論 櫻井教授・花泉教授 他

Physics and Medicine of Heavy Ion Therapy for Cooperation of Medicine and Engineering, Advanced Course

放射線・粒子線の物理学の基礎,その加速器等発生装置・線量測定の基礎について学ぶ。さらに,そ れらを利用した人体の構造のイメージング,治療の基礎と線量測定による治療計画立案の考え方を学ぶ。 これらの講義を通して,重粒子線治療の概要とポイントを把握させることを目的とする。

This course covers essential physics of radiation, particle beam, accelerator and dosimetry. Those applications for human body imaging and design for treatment plan are also discussed. Students study concept and essence of heavy ion therapy.

総合日本語中級I 大和講師 (国際センター)

Comprehensive Intermediate Japanese I

中級レベルの文章を読みこなす能力を育成する。あわせて,中級レベルの文法項目を用いて正確な文 章を算出できるようにする。日本語による資料の読解能力を高め,コミュニケーション能力を育成する ことにより,大学において学習や研究活動を支障なく行える日本語能力を涵養する。これにより円滑な 学位取得を可能とすることを目指す。

The aim of this course is to cultivate the ability to read Japanese intermediate level sentences. In addition, practice to make accurate sentences using intermediate level grammar items. Students will improve Japanese reading skills and acquire high communication skills.

総合日本語中級 I 舩橋講師(国際センター)

Comprehensive Intermediate Japanese II

中級レベルの文章を読みこなす能力を育成する。あわせて,中級レベルの文法項目を用いて正確な文 章を算出できるようにする。日本語による資料の読解能力を高め,コミュニケーション能力を育成する ことにより,大学において学習や研究活動を支障なく行える日本語能力を涵養する。これにより円滑な 学位取得を可能とすることを目指す。

The aim of this course is to cultivate the ability to read Japanese intermediate level sentences. In addition, practice to make accurate sentences using intermediate level grammar items. Students will improve Japanese reading skills and acquire high communication skills.

総合日本語上級I 大和講師(国際センター)

Comprehensive Advanced Japanese I

上級レベルの学習者を対象に,専門的な学習に必要な日本語の技能をさらに伸ばします。また,将来の進路に視野をおき,日本企業への就職に必要となる高度な日本語能力の育成を図ります。できるだけ,総合日本語上級IIと合わせて通年で履修してください。

This course is for advanced learners of Japanese language wishing to brush up their skills necessary for the latter half of university study and life. Students are advised to take classes in full year together with Comprehensive Advanced Japanese II.

総合日本語上級Ⅱ 舩橋講師(国際センター)

Comprehensive Advanced Japanese II

上級レベルの学習者を対象に,専門的な学習に必要な日本語の技能をさらに伸ばす。また,将来の進路に視野をおき,日本企業への就職に必要となる高度な日本語能力の育成を図る。できるだけ,総合日本語上級 I と合わせて通年で履修することが望ましい。

The aim of this class is to impart Japanese language skills that are required for professional learning by learners at advanced levels. Moreover, this class will focus on the future careers of learners and foster advanced Japanese language skills that are essential for finding employment in Japanese companies. Those at Comprehensive Advanced Japanese I level should also participate as

[技術マネージメント系科目]

M O T 特 論 伊藤(正実)教授

Management of Technology

かなりの割合の方が将来,企業で研究開発の仕事に従事するものと思います。企業での研究開発を従 事する上で,技術経営(MOT)の素養は必須のものです。本講義では企業における研究開発の戦略, 研究開発のプロセスの有り方,研究開発の成果を効率よく事業に結び付ける為の方法論,あるいはこれ を守る為の知的財産の取扱い方まで含めて取り扱います。すなわち,技術経営とは,研究開発から事業 化までのプロセスの効率性を向上させ,新しい経済的価値を創出していくための戦略を立案・決定・実 行する方法論を体系知化したものです。本講座ではこうした技術経営の基本的な考え方を習得していた だく事を目指していきます。特に,研究開発による経済的価値の創出を統合的に理解することを目指し て,講義を展開します。また,具体的な企業の研究開発事例等を用いたディスカッションも講義の中に 取り入れます。

"Management of Technology" is the systematized knowledge to perform planning and operation of the strategy to create new economical value by improving the efficiency of the process from R&D to commercialization. This class aims to understand the basic way of thinking for the management of technology. Also, the class includes the group discussion by use of case study.

経 営 工 学 特 論 伊藤 (正実)教授

Industrial engineering for production activities

経営工学という言葉は様々な意味で用いられるが、ここで言う経営工学は企業での生産活動の経済的 価値最適化の在り方を中心に理解を深める事を目的とします。即ち,製品の生産においては,設備,材料, ワーカーの最適な組み合わせを探し,ねらい通りのものを,計画した数量分効率よく生み出すための「し くみ」(工程)をつくる必要があり、そのためには、システム的な思考に基づいて工程を設計、それを 実際に運用して継続的に改善することが必要です。即ち、生産管理、品質管理、コスト管理などの基本 的な考え方と数理手法を適用して、ライン編成を中心とした生産工程の設計を行い、設計した工程を実 際に動かし、そこで発生するさまざまな問題の解決に取り組むことで、生産システムの設計、改善、統 制について理解します。さらに、これに関連して、複数の企業間での物流システムの最適化によって経 営の効果を高める手法であるサプライチェーンマネジメントの概念まで含めて習得します。

The objective of this course is focused mainly to understand the optimization of production activities to increase economical value. Thus, for the production activities, it is necessary to create efficient "production process" based on the plan by establishing the best combination of equipment, material and worker. Therefore, this course shows basic concepts such as manufacturing control, quality control, cost control and so on. In connection with these concepts, SCM (Supply Chain Manegement) which is management method to improve the efficiency by the optimization of interenterprise logistic system, is introduced.

インターンシップ

Internship

企業において修得した学問を実践的に活用する能力を培うために,企業におけるインターンシップを 行う。事前のガイダンスの後,インターンシップを行い,発表会を開催しそこでの発表・討論を経験さ せる。

長期インターンシップ

Long-term Internship

修得した学問を企業において実践的に活用する能力を培うために,事前教育を含めて3ヶ月程度の長 期間の企業におけるインターンシップを行う。事前教育としては,企業におけるマナー,知的財産,安 全管理について教育する。加えて,派遣先の企業およびそこでの職務に応じた周辺分野の教育も行う。 派遣先企業の担当者と協議を基に経過報告書を作成することを義務づけ,最終的な報告書を提出させ, 最後に発表会を開催しそこでの発表・討論を経験させる。

科 学研究発表技法 海野教授

Scientific research presentations

研究発表の手法には口頭発表とポスター発表があり,形式は異なるが基本的な技法は共通している。 本講義では実験結果の提示手法,口頭発表手法などを実施により身に付けることを目標とし,加えて質 疑応答における発表者の対応とともに,質問の仕方についても紹介する。また,レポートや総説,研究 論文を書くためのトレーニングも行う。ネイティブの論文を参考とし,一流学会誌や国際会議で遜色の ない発表を行うための基礎作りを行う。

There are two different styles for research presentation, an oral presentation and a poster presentation, and their basic techniques are similar each other. In this course, students will learn how to present experimental data and voice controls for the presentation. Also, hints for asking and answering questions in discussion for presentation will be introduced. In addition, students will make a practical training on the writing of technical reports, reviews and research papers on chemical topics.

コミュニケーション技術 山延教授

Practice on Teaching and Instruction in Chemistry and Chemical Biology

化学・生物化学実験の実験補助を通して、わかりやすく確実な教育方法を修得する。これにより、将 来指導的立場になった時に必要な指導スキルを得ることができる。

Through the practice of teaching assistant in chemistry and chemical biology experiments, the teaching and instructional technique in the field of chemistry and chemical biology are obtained.

国際コミュニケーション I 各教員

International Communications I

外国人と協調して仕事に取り組める人材を育成するために、国際語である英語のコミュニケーション 能力および異文化の知識を習得するため、一定期間以上(1週間程度以上)の海外の群馬大学協定校に おける研修、または海外における専任教員が引率する研修会における研修を行う(実習 29 時間)。研修 では、海外の学生や教員、研究者との交流会やディスカッション、ミーティング、共同作業への参加、 または海外の学術機関における実験、実習のいずれかを行う。最後に、研修終了後研修内容を発表会で 発表させる(演習 8 時間)。

The aim of this course is to acquire English communication skill and knowledge of other cultures. Students undergo training at partner universities of Gunma University over a period of time (longer than a week) or attend workshops overseas. After completing their training students present about their experience.

国際コミュニケーション Ⅱ 各教員

International Communications II

外国人と協調して仕事に取り組める人材を育成するために、国際語である英語のコミュニケーション 能力および異文化の知識を習得するため、一定期間以上(2週間程度以上)の海外の群馬大学協定校に おける研修、または海外における専任教員が引率する研修会における研修を行う(実習 74 時間)。研修 では、海外の学生や教員、研究者との交流会やディスカッション、ミーティング、共同作業への参加、 または海外の学術機関における実験、実習のいずれかを行う。最後に、研修終了後研修内容を発表会で 発表させる(演習 8 時間)。

The aim of this course is to acquire English communication skill and knowledge of other cultures. Students undergo training at partner universities of Gunma University over a period of time (longer than two weeks) or attend workshops overseas. After completing their training students present about their experience.

ものづくりビジネス 舩橋講師・松村講師(非常勤)他

Business in Engineering

大学近隣企業などから派遣された講師によるオムニバス形式の講義と工場見学を通じて,ものづくり ビジネスの実際について学ぶ。また,世界でビジネスを展開している企業の社員と触れ合い,意見交換 する中で,グローバル社会で活躍する人材となるための姿勢を涵養する。

Through factory tours and an omnibus lecture series given by employees of companies in the university's vicinity you will learn about the practicalities of businesses involved in manufacturing. The aim is to develop talent with a global perspective by bringing students into contact with companies with an international presence as well as through exchange of opinions with company staff. 15 places are available - if capacity is exceeded overseas students will be prioritized.

アントレプレナーシップ特論 板橋教授他

Advanced Lecture on Entrepreneurship

起業に必要な事項について解説した後,実際の起業ケースの成功事例・失敗事例から得られる教訓を 基に,事業を成功に導くための必要条件について講義する。また,個々の受講生のシーズをビジネスに つなげるためのプラン作成について指導すると共に,考案したビジネスモデルの発表会を通して,効果 的なプレゼンテーション方法について議論する。

The aim of this course is to help you understand, from the viewpoints of success and failure cases in business, the significance and determinants of entrepreneurship, and effective policies to promote entrepreneurial activities. The effective presentation skill on business is also provided through the discussion about your business model. (医理工共通科目群)

生命倫理と法的規則 曾根教授

Bioethics and Legal Restrictions

倫理を法と混同していたり,既成の規制を受け身で守っていさえすればいいと思いこんでいたり,現 実の問題を機械的に解決してくれる倫理の理論があると思っている方々の誤解を解くことが,本講義の 狙いである。

This course aims at removing false ideas of those who confuse ethics with law, assume that they have only to observe established regulations or believe that there exists an ethical theory which solves practical problems automatically.

関連法規·医療倫理 曾根教授

Medical Ethics and Related Laws

医学物理士の業務に必要な放射線関連法規および勧告を学び,臨床医学と科学研究における,医療従 事者としての心構えや倫理上の問題を取り扱う。倫理について文書化された行動規範を学ぶことに加え て,行動の選択が必要な場面を知っておく必要があり,授業の中でケーススタディを行う。

To learn acts and laws regarding to ionizing radiation hazard prevention is very important for students who aim at working as a medical physicist. And medical staff who works for clinical medicine and medical research should know ethics on medicine and clinical research. In classes, we learn ethical problems in various situations with case-study.

研 究 倫 理 曾根教授

Research Ethics

「人を対象とする医学研究に関する倫理指針」では「研究者等は、研究の実施に先立ち,研究に関す る倫理並びに当該研究の実施に必要な知識及び技術に関する教育・研修を受けなければならない。また, 研究期間中も適宜継続して,教育・研修を受けなければならない。」とされている。本講義では,専門 分野で独創的あるいは学際的な研究を遂行する際にふまえておかなければならない倫理の基礎をカバー する。

This e-learning course provides students with the very basic of research ethics. This relates to CP1. Ethical Guidelines for Medical and Health Research Involving Human Subjects prescribes that all investigators shall receive education and training on the ethics of research and on knowledge and skills necessary to carry out the research prior to its implementation.

Physiology

人体の生理機能の概略について、系統別に解説する。恒常性により健康な体がどのように維持されて いるのかについて、および恒常性の破たんと疾患の関わりについての理解を深める。特にがんとがん治 療を視野に解説する。

Outline of physiological functions of the human body will be discussed. Students will study about how healthy bodies are maintained by homeostasis, and relationships between the disorder of homeostasis and disease. In particular, cancer and cancer treatment will be focused.

解 剖 学 武田(茂)教授

Anatomy

人体の構造の概略について,系統別に解説する。臓器や器官の位置と役割について正常な形態と構造 を学ぶことで,疾患がもたらす異常と問題について理解を深める。特にがんとがん治療を視野に解説す る。

Outline of the structure of the human body will be discussed. Students will study the normal position and morphology of organs, and relationships between the disorder of organs and disease. In particular, cancer and cancer treatment will be focused.

(医学物理基礎科目群)

カ

櫻井教授

学

Mechanics

高校レベルの物理学で学習した力学分野を復習し、より詳細について学ぶ。単に力学の知識を得るだけではなく、様々な専門科目を今後学ぶにあたっての基礎となる方法論を身につけることを目標とする。

In this lecture, first we review important points of the mechanics field you've learned in high school and then we study more details of mechanics. The final goal of this course is to acquire the methodology that should be a foundation when you will learn various specialized major subjects in future.

電 磁 気 学 花泉教授

Electromagnetism

電磁気学の基本法則の理解を目的とする。クーロンの法則およびガウスの定理について述べてから, アンペールの法則およびビオ・サバールの法則について解説する。さらに,電磁誘導や電磁波の伝搬に ついて解説する。

This is an introductory course for understanding fundamental laws of Electromagnetism. The following topics will be treated here; Coulomb's law, Gauss theorem, Ampere's theory, Bio-Savart law, electromagnetic induction, and propagation of electromagnetic wave.

量 子 力 学 花泉教授

Quantum Mechanics

量子力学の基本概念の理解を目的とする。光の粒子性および物質の粒子性について述べてから,不確 定性原理について解説する。さらに,種々の場合におけるシュレディンガー方程式の取り扱いについて も解説する。

This is an introductory course for understanding basic concept of Quantum Mechanics. The following topics will be treated here; quantum theory of light and materials, uncertainty principle, and treatment of Schrodinger equation in various cases.

物 理 数 学 山口教授

Physical Mathematics

基礎的な数学と応用数学について理解を深めることを目的とし,(1)フーリエ級数、(2)フーリエ変換,(3) ラプラス変換,(4)ベッセル関数,(5)ルジャンドル関数などの基礎及びそれらの理工学分野への応用例 について講義する。

The aim of this lecture is to understand basic and applied mathematics. And basic idea and application of (1)Fourier series, (2)Fourier transform, (3)Laplace transform, (4)Bessel function, and(5) Legendre function etc. for science and technology, are explained.

放 射 線 物 理 学 神谷教授

radiation physics

放射線物理学では、放射線と物質の相互作用を扱い,放射線に関連する種々の自然現象について理解 する。そのために必要な各種物理量と単位,原子や原子核の構造を学ぶことから始め,各種放射線の発 生過程及び物質との相互作用を理解する。また粒子線治療等に用いられる荷電粒子に関しては加速器及 びビーム制御・計測技術と実際の応用について学ぶ。そして放射線量について,放射線場の量,相互作 用の係数及び線量計測量に関する理解を深める。

Main subject is an interaction between radiation and materials. The purposes of this class is to learn units of physical quantities, interactions between radiation and materials, radioactive decay of radioisotopes, energy deposition and energy absorption, nuclear reactions and related issues. And it is also to learn about particle accelerator, beam control, measurement technology and its applications such as particle therapy. And then understanding about the radiation dose is deepen.

医療 · 画像情報学 加田准教授

Medical · Image Informatics

医療画像・情報学の基礎と応用を学ぶことを目標とした科目である。まず,情報理論、信号理論を基礎として画像の数式表現,画像変換などを解説する。これらを基礎に医用画像の解析や圧縮等について 学習する。また,コンピュータトモグラフィなど基本的な医用画像構成法について講義する。

Aim of this lecture is learning the foundation and application of medical image / information science. First, based on information theory and signal processing theory, mathematical expressions

of images and image conversion are discussed. Then, image analysis and image compression of medical images are lectured. In addition, basic medical image construction methods such as computer tomography are presented.

統 計 学 山口 教授

Statistics

確率論の基礎概念(確率空間,確率変数,条件付き確率,独立性,分布関数,期待値,母関数など)から, 大数の法則と中心極限定理まで,確率論の基礎を解説する.高等学校で習う組み合わせ論に基づいた離 散的な確率の概念だけではなく,連続的な量についても扱える確率論を学ぶ。現代の確率論を数学的に 扱うための枠組みを初歩的に紹介する。

In this class, we learn the basics of probability theory, including concepts of probability space, random variable, conditional probability independence of random variable, distribution function, expectation, generating function. We also learn the law of large numbers and the central limit theorem. We learn not only discrete type probability in high school but also continuous type probability. Introductory explanations of mathematics of modern probability theory will be provided.

科 学 英 語 山口 教授

Scientific English

科学技術の最新情報に関するプレゼンテーションを基に作成されたリスニング教材を使用してリスニ ングトレーニングをする。またその分野で著名な学者に関するリーディング教材を使用して英文理解を する。

The materials for listening practice are provided by the hot topics in science and technology. And the materials for reading practice are provided by the articles of the big names in research area.

(重粒子線医工学科目群)

保健物理・放射線防護学講義 加田准教授

Health Physics and Radiation Protection

保健物理・放射線防護に関する基礎的・包括的な知識の習得を目的とする。線量の単位や放射線影響 などの基礎概念について述べてから、国際放射線防護委員会(ICRP)の放射線防護体系および被ばく 線量の評価方法について解説する。さらに、具体的な防護方法及び日常の安全管理等も紹介する。

This is an introductory course for understanding basic and comprehensive concept of Health Physics and Radiation Protection. The following topics will be treated here; basic concept of unit of radiation and radiation effect, protection system of radiation and evaluation method of radiation exposure of ICRP, and protection method and security control of everyday.

放射線診断・核医学物理学講義加田准教授

Physics in Radiation diagnosis and Nuclear Medicine 放射線診断

電離放射線,超音波,核磁気共鳴など,おもに疾患による形態上の変化を画像化して診断に用いる医 学の一分野である。これらの技術の原理を理解する。

核医学物理学

放射性医薬品の物理的性質および生成法を学び、ガンマカメラ、PET システム、SPECT システム, PET/CT システムといった新しい測定システムも含め、その原理と性能評価、および管理について言 及する。

Radiological diagnosis

Radiological diagnosis is a field of medicine used for diagnosis by imaging morphological changes mainly due to diseases such as ionizing radiation, ultrasound, and nuclear magnetic resonance. Students learn the principles of these technologies.

Nuclear medicine physics

Students learn the physical properties and production method of radiopharmaceuticals. They learn the principle, performance evaluation and management for new measurement systems such as gamma camera, PET system, SPECT system, PET / CT system.

放射線 治療物理学講義大野講師(非常勤)

Physics in Radiation Therapy

放射線治療における物理的性質を理解することを目指す。まず吸収線量に関係する物理量についての 定義について説明する。様々な条件によって変わる線量分布の変化について,その物理的な原因を含め て理解することを目指す。

Students learn the physical properties in radiotherapy. The definition of the physical quantity related to the absorbed dose is lectured. Students can understand the change of dose distribution which varies depending on various conditions, including its physical cause.

基礎 腫瘍学 武田(茂)教授

Basic oncology

がんとはどんな病気なのか,どのような研究や治療が行われているのか,についての概略を学ぶ。が ん治療における放射線療法の特徴の理解に繋げる。

Outline of the feature of cancer, cancer research, and cancer treatment will be discussed. These studies will lead to understanding of characteristics of beam radiation therapy for cancer.

放射線 生物学武田(茂)教授

Radiation biology

臓器ごとのがんの特徴について理解することを含めて,がんの標準的な治療方法を紹介する。それに 加えて放射線が与える細胞,組織,臓器への影響を解説し,放射線療法の特徴の理解に繋げる。 This lecture will introduce cancer standard treatment methods, including understanding of cancer characteristics of each organ. In addition, the effects of radiation on the cells, tissues and organs will be discussed to understand the characteristics of radiation therapy.

5. 理工学府課程表・講義要目(博士後期課程)

物質·生命理工学領域

プロゲニノ										週授業	時間数		
プログラム ・科目区分			授	業	科	目		担当教員	位	1年~	3年次	備	考
11									数	前	後		
物質・生命理工学領域	学府共通専門科目学	国上研実実実理理理理日日日理理 医	際長丸材	シイ就プーー学学学学語語語語研研 満	ータポレダバ 究院 電 ータカナール特特特特中中上上特特 ビンーオーシュ	ン養シ、研シ成ツの完論論論論級級級級別別は、シ成ツの完論論論論級級級級の調実論、学校の構成では、	ププ礎論	全全全本本本本各各各各牧舩大舩全全 曾櫻教教教島島島島教教教教 教教 外教教 外教教 化 教教 化 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	$ \begin{array}{c} 1\\1\\2\\2\\1\\1\\1\\2\\2\\2\\1\\1\\1\\1\\2\\6\end{array} \end{array} $	2 1 1 1 1 1 2	1 1 2	目,全ての句 門科目の中 位以上修得す ロポーザル ターンシップ 究特別演習及び 業力養成基礎 る。	
	 	医工 医工 医	連携先進 連携シ 用 画	イオンビ ステム 像基	-ム応用 と制御工 礎 原	工学特論() 工学特論() 〔 理 特	★) ★)	花泉・三浦 山田(功) 花屋・山延・太田	2 2 2		2 2	 ・重粒子線医 バルリーダー ラム(重粒子 コース)在 	-養成プログ -線医工連携 音者は, リー
	領域専門科目	界複高生生生計生バ生生生複無ナ酸高	機機面合分体体体 物介体体体合 ノ化分能金 体子 しゃん 算機 大機 材物 解	予 虫のム 属の機 昼幾す 能ノ能の 光料 能化析化化媒性材 材性能 連能料化材プ構質 電気 気気 しんがい しんがい しんがい おうしょう おうしょう おうしょう しんかい しんかい しんかい しんかい しんかい しんかい しんかい しんかい	学化化料料工生化化学料七物化制工作化化化学料七物化制工作化化化学料七物化制工作和制工作化化学工作用、当时、100000000000000000000000000000000000	料学、学学学学、生学学学、学期科学、特学学学、学学学学学学学学学学学学学学学学学学学学学学特特特特特特特特特特		未奥佐未海網花山中久浅武粕未園松工若未未尾高山浅白京住(()))))))))))))))))))))))))))))))))))	$ \begin{array}{c} 2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	バラコデ習こリ目び中単リ目修き博線ゲ粒に期コ目制あ単 ※府ペー・上履含のしては得る士医一子入課一群、る位 学開ー 日級修めの)履ン【に 課グプエた講目命法研修 通門型、 の)履ン【に 課グプエた講目命法研修 通門型、 和工町総合 を国門型、 の、 の、 の、 の、 の、 の、 の、 の、 の、 の、 の、 の、 の、	引な 、 な頃は1000 なり、 して、 な頃は1000 1000 111111111111111111111111111
	分野技術実習科目	他研	分 究 発	野	研 究 論 セ		羽白 ー	プログラム担当教員 プログラム担当教員	2 1			 ・リーディン 術実習科目は 工学グローバ 成プログラム 理工連携コー み履修可。 	重粒子線医理 ルリーダー養 (重粒子線医

光 化 学 特 論 未定

Photochemistry, Advanced Course

光化学の基礎概念と実験技術の理解を基礎にして、フェムト秒レーザー分光法を用いた超高速反応の 研究、有機 EL ディスプレイの研究開発状況,発光プローブを用いた分子イメージング技術の最近の進 歩等について講述する。

Fundamental aspects of theoretical photochemistry and experimental techniques in photochemistry are briefly described. Based on this knowledge, current topics on photochemistry exemplified by femtosecond laser spectroscopy, organic electroluminescence techniques, molecular imaging technology using luminescent probes will be introduced.

分子 化学特論 奥津教授

Molecular chemistry, advanced course

結晶成長学の基礎的概念を講述し,金属結晶の成長,分子結晶の成長,気体の凝縮等について熱力学 的および動力学的に論じる。結晶成長における核形成過程と成長過程の特徴を理解することを目的とす る。特にタンパク質の結晶育成について解説する。

The aim of this lecture is to study fundamental of crystal growth. Understanding of crystal growth is explained from the aspect of thermodynamics and kinetics.

分光分析化学特論 佐藤(記)教授

Special Topics in Analytical Spectroscopy

近年発展が著しいマイクロ分析化学について概説する。化学プロセスをマイクロ化する意義とその特 長を活かした分析法について説明し,特にイムノアッセイや細胞を用いたバイオアッセイシステムの開 発について詳細に解説する。また,その応用としてのマイクロ臓器モデルの開発について最新の事例と 将来展望について講義する。

This course provides an overview of microanalytical chemistry, a field that has been developing rapidly in recent years. The significance of microanalytical chemistry and its application to chemical processes will be explained. In particular, the development of immunoassays and cell-based bioassay systems will be explained in detail, and the latest examples and future prospects for the development of Organ-on-a-Chip systems as an application of these systems will be discussed.

錯体 化学特論 未定

Special Topics on Coordination Chemistry

最近,有機金属化学の発展系として,炭素以外の典型元素と遷移金属との間に結合を有する化合物群 が注目され,無機金属化学として盛んに研究されている。本講義では,無機金属化合物の概念,基礎お よび応用と最近のトピックスについて議論し,無機金属化学の理解を図る。

Chemistry of inorganometallic compounds, i.e., transition metal complexes with metal-non

carbon covalent bonds, have been developed rapidly. In this course, we will discuss the basics and applications of the inorganometallic compounds as well as recent topics in this field.

有 機 化 学 特 論 海野教授

Special Topics in Organic Chemistry

ヘテロ原子を含む有機化合物を題材として,有機合成のプランニングと実施,構造決定の方法,最近 のトピックスについて詳しく述べるとともに,有機化学の分野で研究を行っていくために必要なことを 中心に講義する。

This course provides the research planning and methods of organic chemistry. Based on the organic heteroatom compounds, synthesis, structure determination, and recent topics are summarized. Additionally, how to carry out research in the field of organic chemistry is also described.

有機触媒化学特論 網井教授

Special Topics in Catalytic Organic Transformations

有機合成における新手法の開発について講義する。特に,分子触媒(遷移金属触媒や有機分子触媒) の飛躍的発展について,最近の高選択的触媒反応の実例を紹介しながら講述する。

This course overviews the development of new methodologies for organic synthesis. In particular, the recent remarkable progress of highly selective transformations using catalysts, such as transition metal complexes and organic molecules will be presented.

無機物性化学特論 花屋教授

Special Topics in Inorganic Materials Chemistry

無機材料の微視的構造と物性との相関について、イオン伝導ガラスやダイポールガラスなどの具体例 をあげて解説する。さらに、ナノスケール構造制御に基づく物性制御の可能性について解説し、物性化 学の見地から無機材料を設計するための考え方を身に付ける。

The correlations are explained between the microscopic structure and the physical property of inorganic materials, and the possibility is discussed of the physical-property control based on the nano-structure construction.

シ ス テ ム 材 料 化 学 特 論 山延教授・上原教授

Special Topics in Systematization of Materials 高分子材料の構造と機能に関して具体例を挙げて概説する。特に X 線回折, NMR, 熱分析等を用いた 静的及び動的構造に関する情報と材料物性の関連について解説する。

This course describes about the relationship between the structure and the function of polymer materials in the light of static and dynamic structure of polymers obtained by X-ray diffraction, NMR, thermal analysis etc.

光機能有機材料特論 中村教授

Advanced Photo-Functional Organic Materials

光機能性を有する有機物質や高分子について,物質科学の立場から講述する。特に,フラーレンやシ クロファンをはじめとする π 共役系化合物の物性と応用について論じる。さらに,光機能性が関連する 超分子化学についても議論する。

This course provides the recent topics on advanced organic photo-functional materials, especially the properties and application of π -conjugated such as fullerene and cyclophanes. This course also includes the photo-functional supramolecular chemistry.

有機金属材料化学特論 久新教授

Advanced Chemistry of Organometallic Materials

有機金属化合物の光電子材料(発光材料,液晶,色素,磁性体,伝導体,絶縁体など)への応用について,最近のトピックスを説明する。

This course provides recent topics on the application of organometallic compounds to optoelectronics materials, including light-emitting materials, liquid crystals, dyes, magnetic materials, conductive and non-conductive materials, etc.

界面物性工学特論 浅川教授

Advanced interface science and technology

有機・高分子電子デバイスの物性・機能を理解するために,有機・高分子半導体薄膜と金属や無機物 質との界面で起こる特徴的な現象や物性に関する最近のトピックスを説明する。さらに,有機薄膜の乱 れた構造や高分子薄膜の不均一構造に着目し,物性との関係について議論する。

This course provides recent topics concerning various phenomena and physical properties observed on interfaces between organic semiconductors and the other materials such as metals or insulators, which are related to organic electronic devices. Furthermore, the correlation between physical properties and disordered or inhomogeneous structure of organic / polymer thin films is discussed.

複合体機能工学特論武田(茂)教授

Molecular Assembly: Introduction and Applications

ナノスケールの分子複合体に関する化学構造と物理機構について解説する。構造決定方法,単分子解 析,高次構造体の分子設計について議論する。

This course is for understanding chemical structure and physical mechanisms of nano-scale molecular complex. Structure determination, single molecular manipulation, and structure design for high-ordered structure will be discussed.

高分子物性工学特論 約谷教授

Advances engineering of polymer materials

高分子の構造と生分解性との関係について後述する。また、生分解性高分子の最新のトピックスを紹介する。

This course provides recent findings for relationship between structure of polymer and its biodegradability. Latest studies on biodegradable materials will be also introduced.

生体関連化学特論 未定

Chemical Biology, Advanced Course

生体分子として最も基本となる核酸について,その化学構造と機能の相関について解説するとともに, 構造の一部を化学的に改変することによって,新たな薬剤としての応用も含めた化学的,生物学的機能 を付与する最近の研究例などについて解説する。

The aim of this lecture is to understand the relationship of structure and function about nucleic acids, the most fundamental chemical substance for life. The recent topics about chemically modified nucleic acid analogs and their chemical and biological features including the application as a drug are also discussed.

生体機能化学特論 園山教授

Biomolecular Science, Advanced Course

生命科学と情報科学の融合分野であるバイオインフォマティクスの考え方や方法について講義する。 具体的には、学部の生化学、生物物理学を基礎として、バイオインフォマティクス誕生の背景、アミノ 酸配列情報に基づくタンパク質の構造・機能の予測法を講述する。

The aim of this study is to understand concept and methodology of bioinformatics. The topics in this course will be introduced as follows; birth of the discipline, amino acid sequence analysis, prediction method for structure and function of proteins.

生体材料 化学特論 松尾教授

Special topics in biomaterials

生体材料に関して具体的な例を挙げて概説する。特に機能性生体材料の構造と機能の関連について化 学的視点により解説する。

The focus of this course is the structure-function relationships of biomaterial, and rerated topics in biomaterial synthesis and characterization. Recent topics of chemicalbiology will be also introduced.

計算化学特論 工藤教授

Computational Chemistry, Advanced Course

量子化学特論で学んだ HF 法,電子相関を含む方法,密度汎関数法など様々な電子状態理論をそれぞ れの研究における問題に正しく応用出来る事を目標とする。そのため,具体的な応用例を詳しく解説し,
最新の理論化学の動向についても紹介する。

The aim of this lecture is to learn a method to apply the electronic structure theories every issue of study appropriately. This course provides a brief review of electronic structure theories, some examples of application and the recent trends of theoretical- and computational chemistry.

生物機能材料工学特論 若松教授

Advanced Functional Biomaterials

客観的で信頼性の高い文献検索は質の高い研究に必須である。研究計画の立案と論文作成において役 立つ文献をデータベースから迅速に検索する最新の方法について紹介する。

Objective and reliable reference searching is essential for high quality research. Quick and state-ofthe-art search methods to find from databases those references that help you plan research and write papers will be introduced.

バイオナノプロセス工学特論 未定

Nanoprocessing Engineering in Biological Systems

タンパク質のナノ構造での特異的相互作用に基づく種々の調節,制御メカニズムについて解説する。 これを通して,複雑な生命活動の各段階を「プロセス」として理解し,そのプロセス間にどのような支 配や制御がなされているかを理解する。

Discuss about various controlling and regulating mechanisms working in biological systems. Since these mechanisms are based on specific interactions among various proteins, in this course, each step of complicated activities of life will be understood as "nanoprocessing" and discuss about systems controlling each nanoprocess. For example, a bacterium is a such nano-system which constitute complicated processes for its life. We will focus on a bacterial system for explanation of functions and mechanisms of nanoprocessing in biological systems and discuss about possible applications.

生 体 機 能 構 造 物 性 学 特 論 未定

Structural Physics of Biological Functions, Advanced Course

生体高分子の構造と機能の生物物理学的な理解は,生命科学・工学の基礎となっている。中でも,量 子ビーム(中性子線,放射光X線)を用いた静的および動的な構造の研究手法は,現在,様々な物質・ 材料系のナノスケールでの機能構造解明にとって極めて有効な手法となっている。それらの研究手法に ついて,物理的な原理,利用法の概略を学ぶ。生命科学分野での具体的な研究例を取り上げ,理解を深 める。

Biophysical understanding of the structure and function of biological macromolecules are the basis of biological science and engineering. In particular, the current methods for studying static and dynamic structures using quantum beam (neutron, synchrotron radiation X-ray) have become very effective techniques to elucidate functional properties of various materials and substances in nanoscale. Learn an overview of these methods on the physical principles and on the usage. In order to attain better understand of these methods, this lecture will pick up some research topics in the field

生体物質化学特論 尾崎(広)教授

Special Topics in Biological Molecules

本講義では生体内で重要な働きをしている核酸分子について論じる。特に遺伝子の発現制御に関する 分子と、その作用に基づく人工分子の設計と合成、応用について最近のトピックを説明する。

This course provides recent topics of nucleic acid chemistry, especially recent topics on the design, syntheses and applications of the modified nucleic acids, which regulate gene expressions.

生体分子計測学特論 高橋(浩)教授

Advanced Techniques in Molecular Biophysics

現代科学は、生命を、情報、機械、エネルギーの観点から解明しようとしている。本講義では、生体 分子、すなわち、「分子機械」の構造と仕組みを解き明かすために、開発された生体分子構造の決定方 法や生体分子のエネルギー変換・利用メカニズムを解析する生物物理的計測手法の理論と実際的な実験 方法について講義する。

In modern molecular biology, "life" is believed to be understood in terms of information, machine and energy. This course provides an overview of the theory and practical methods of biophysical measurements on biomolecules, i.e., "molecular machines". The main topics are the structural determination of biomolecules and the techniques for energy analysis of biomolecules and biomolecular assembly systems.

複 合 体 物 性 工 学 特 論山本 (隆) 教授

Statistical Physics of Composite Materials

複数の相よりなる系,たとえば,固体一気体系,濃厚相溶液一希薄相溶液系等の静的,動的物性について統計力学に基づき講義する。

Statistical mechanics and kinematics of many-phase systems such as solid-gas system and phaseseparated solution are discussed. An idea to understand many-phase systems by focusing "interface" is provided.

無 機 光 化 学 特 論 浅野教授

Inorganic Photochemisty, Advanced Course

光吸収·発光の基礎原理と励起状態の動力学を解説し,金属錯体を含む配位化合物の励起状態の性質・ 緩和過程と種々の電子移動・エネルギー移動などの動的過程を電子構造に基づいて,講義する。さらに 最近の研究例や応用への展開について解説する。

This course describes photochemistry and photophysics of coordination compounds in relation to their electronic structure. In particular, excited-state dynamics involving energy and electron transfer is discussed Current topics on application of the photo-excited state of coordination compounds is also included.

ナノ材料電極化学特論 白石(壮)教授

Advanced electrochemistry on nanomaterials

本講義では、ナノ材料の一つである炭素ナノ材料に注目して、ナノ材料の形状、結晶構造、細孔構造、 化学組成が電気化学的な性質に与える影響について説明する。特に炭素ナノ細孔体・カーボンナノチュー ブ・グラフェンのキャパシタや二次電池といった蓄電デバイスへの応用例ならびに評価技術を中心に講 義する。

This lecture gives an over view of influence of morphology, crystal structure, pore structure, or, chemical composition on electrochemical properties for nanomaterials such as nanocarbons. Especially, the evaluation technique and the application example as electrode of rechargeable battery and electrochemical capacitor are introduced for nanoporous carbon, carbon nanotube, and graphene related materials.

酸化物材料科学特論 京免教授

Special Topics in Oxide Materials

酸化物強誘電体,酸化物磁性体,酸化物透明導電体,酸化物蛍光体などの金属酸化物材料を取り上げ, その合成方法と単結晶や薄膜等の作製方法,結晶構造や焼結体における二次構造,電子構造について講 義する。さらに,それぞれの材料の機能がその材料のどのような特徴によって発現するかについて講義 する。

This course provides crystal structures, secondary structure, and electric structures of oxide materials such as ferroelectric, ferromagnetic, transparent conductor, and phosphors and their relation to the functions of the materials. In addition, the preparation methods of their single crystal, ceramics, thin films, and nanoparticles are provided.

高分解能分光計測学特論 住吉教授

High-resolution Molecular Spectroscopy, Advanced Course

赤外レーザーやマイクロ波を光源とする高分解能分子分光計測に関する基礎理論を講義する。分子構 造決定や分子間相互作用研究への応用例として,マイクロ波分光研究を中心に,最近の研究成果につい て解説する。

Basic theory on high-resolution molecular spectroscopy with coherent light sources in the infrared and microwave regions is lectured. Recent studies on the determination of precise molecular structures and intermolecular interactions using the technique are provided.

/		以生工于 例											
	1グラム ・目区分	授	業	科	Ħ	担	旦当教	員	単位数		時間数 3年次 後	備	考
知 能 機	学府共通専門科目	理国上研実実実理理理理日日日日理理 医医医工学際級究践践践 エエー連連携携専ィースングエエエエ本本本本 学学携が進	シ月材トニロ : :	ータボレダバ 一夕カナール特特特特中中上上特特 ビ・ンー 養いシの	シをンッ冊シシ成ップ究論論論論級級級級別は特特シシ成ップ究論論論論級級級級派は、「「「」」」」では「「」」」」」」では「「」」」」」」」」」」では「「」」」」」」」」		教教教島島島島教教教教 教教 · ·		$ \begin{array}{c} 1\\1\\2\\2\\1\\1\\1\\2\\2\\2\\1\\1\\1\\1\\2\\6\\2\\2\\2\end{array} $	2 1 1 1 1 1 2	1 1 2 2	【修門目門位・ロタ究特業るたは及基はロタ材科・上履含重 で目金目上ですり、「たいの人」であった。 「「「「「」」」では、「「」」」では、「」」」では、 「「」」」では、 「」」」では、 「」」」」、 「」」」」、 「」」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」、 「	放のらこサ国理工究必 にン業にサ国び礎 ・学件専領 16。チイ学研材と いッ養いチイ究選 及の位科専単 プン研究就す てプ成てプン人択 びみに
械創	事 門 科 目	医用画					·山延		2			バルリーダー育 ラム(重粒子線 コース)在籍者 ディング専門分	成プログ 医工連携 は,リー 野技術実
製理工学領域	領域専門科目	先 構 計 非 マ 医 計 マ 知 構 熱 、 、 、 、 、 、 、 、 、 、 、 、 、	、ギギ強シ加斗イ」のンス機口の動ミーニャース「エミーダンム」ナ数51	ショ度 エプッ学イタ制工 「聖音レス計」テープッ ナフ御 ノデ予・「クーナフ御」 「予・「別学」学・スーミェエ学工サ測シー	イー学 ム セ特特クー学 イエョンム学 特特特ス論 スス論特 ジェ学ン特特特 (特特(特な特)) (特特特) (特特特) (特特特) (特特特) (特特特) (特特特) (特特) (特) (荒古石松荘 半山藤丸中山 鈴山未金	林田(魏田(木 功) 定子	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2	習こ連科門かこり目修き博線ダ粒に期コ目制あ単 ※府ページング修含・世紀学校に関コ目制あり、「「「「「「」」」、「「」」、「」」、「」」、「」」、「」」、「」」、「」」	履ン開の)履 工要こ らバラ書、デエと医理る 科目修グ放領科修 連件と 重ルムコ博ィ共法療かこ 目はす医専域目す 携】が 粒リ(ス士ン通的倫らと 111111111111111111111111111111111111
	分野技術実習科目	他 分 研 究 発	-	研 究 論 セ	実 ミナー		グラム担 グラム担					 ・リーディング専 術実習科目は重素 学グローバルリー プログラム(重素 連携コース)在集 修可。修了要件単 ない。 	立子線医工 - ダー育成 立子線医工 養者のみ履

知能機械博

熱 流 体 力 学 特 論 天谷教授

Advanced Course of Thermo-Fluid Dynamics

熱流体力学に関連した,多成分多相系の熱流体力学に関する話題を解説する。特に,混相流動現象を 取り扱うための一般的な基礎理論を展開し,多成分多相系の質量,運動量,エネルギーに関する保存方 程式や,保存方程式系を補完するために必要な各種構成方程式を導出する。

The aim of this lecture is to understand the general theory of multi - component and multi-phase flow. The topics in this course will be introduced as follows; conservation equations of mass, moment and energy for two-phase, derivation of constitutive equations for construction of basic equations.

モデルベースデザイン特論 荒木教授

Advanced Course of Model Based Design

Industory4.0の中核をなすモデルベースデザイン・モデルベール開発について理解を深める。とくに 極超音速航空機・ナノ超微粒子生成・新エネルギーキャリアといったこれからのエネルギー環境分野に おけるモデルベースデザイン適用事例の成果と課題について横断的な知識を身に着け、同時にいくつか の事例について具体例をあげながら理解を深めていく。

The aim of this course is to understand the concept of model based design/ model based development, which is the key part of Industory4.0. We will review several applications of model based design in the field of energy and environment and will focus on some particular cases, e.g., hypersonic transport, nanometer-sized ultrafine particles, and new energy carriers.

エネルギーシステム特論 古畑教授

Advanced Energy System

エネルギーシステムを科学として扱い,エネルギーシステムと社会,エネルギー経済との関連,トー タルシステム,省エネルギー,輸送・貯蔵と安全性を工学的立場より講義する。

The energy conversion from chemical energy of fossil fuel to thermal energy by means of combustion is the basic process of thermal utility of energy. In this course, the combustion phenomena of gas, liquid and solid fuels will be lectured. As for the example of the process, industrial furnace and internal combustion engine are explained with the environmental problems caused by the combustion products.

エ ネ ル ギ ー 計 測 学 特 論 石間教授

Advanced Measurement and Instrumentation on Energy System

レーザ応用計測法を中心とした光学的手法を用いて, 燃焼場における流体の温度, 成分・濃度, 粒子の大きさと数および速度の計測について, 原理, 信号処理, データ処理などについて講義する。

Application of optical diagnostic techniques mainly using laser on combustion phenomenon will be discussed. Measuring objects are temperature, pressure, element and its concentration and velocity of the fluid, and also size, number and velocity of the particles in the combustion field. Principle, signal detecting and data processing of the techniques are introduced with application examples.

構造強度学特論 松原教授

Advanced Strength on Structures

延性破壊を解析する上で重要となる弾塑性破壊力学について, J-R 法や R6 法の解説を中心に講述する。 破壊力学が適用できないき裂構造物の破壊を評価する塑性崩壊概念についても解説する。

Give an overview of elastic plastic fracture mechanics important for analyzing ductile fracture mainly about explanation of J-R analysis and R6 method.

Give an explanation of plastic collapse concept applied to fracture analysis of cracked structures.

材料システム特論 荘司教授

Advanced Metallurgy and Alloy Design

金属材料の機械的性質を支配するナノ・ミクロ組織の制御方法及び先端分析機器を用いた評価解析方 法を理解することを目的とする。金属材料の強度, 靭性, 高温特性, 低温特性, 耐食性, その他の機能 に関する概要を述べ, 様々な用途に対応する合金設計の考え方を金属組織学に基づいて講述する。

This lecture reviews the control methods of microstructures of structural and functional materials and the analysis methods of environmental degradation of materials with the latest analysis systems. It also covers the problems of materials from a viewpoint of resources, energy and environment.

先端加工学特論林教授

Frontier of Manufacturing Science, Advanced Course

先端加工技術を体系的に理解し,除去加工,付加加工,成形加工を含む生産加工分野における国内外 の最先端技術動向について講述する。

This course covers current topics in frontier of manufacturing science include the removal machining, the additive manufacturing and the deformation processing fields.

先端材料加エプロセス特論 半谷教授

Theory of Advanced Metal Forming Process

金属成形における先端材料加工プロセスの理論と加工プロセスおよびその性能の関係について講述す る。基本的な塑性理論に基づいた先端的な金属材料成形加工法と大変形プロセスについて講義する。こ の講義では、先端的な軽量化技術について焦点があてられ、先端的な金属材料成形の特徴やおよびその 加工法が製造業に果たす役割について、材料科学と成形プロセスの実用化の観点から論じられる。

This course provides the theory of advanced metal forming process and the relationship between processing and performance. Topics include advanced processing of metal, a large deformation processing in advanced metal forming based on the fundamental theory of plasticity. In the course, advanced weight reduction approach has been focused. Characteristic features of the advanced metal forming process and their roles in manufacturing industries are also discussed from the viewpoint of materials science and practical use of the advanced metal forming process.

構 造 の ダ イ ナ ミ ッ ク ス 特 論 山口教授

Advanced Dynamics of Structures

機械構造の動特性(線形・非線形挙動)について講述する。基礎式である非線形連立微分方程式の数 値解析法,入力の大きさによる挙動の変化を示す。非線形共振,カオス振動を説明する。複雑な応答を 抑制するための減衰設計法(制振材のヒステリシス減衰付加,多孔質材の粘性減衰付加)と数値解析法 を示す。

Linear/nonlinear dynamic problems for mechanical structures are explained. Numerical analysis methods for nonlinear simultaneous differential equations as basic equations of the problems are given. And transitions of the dynamic behaviors according to magnitude of input force are discussed. Nonlinear resonances and chaotic oscillation are explained. To adjust the responses, damping design methods are provided.

計 測 学 特 論 藤井教授

Instrumentation and Measurement, Advanced Course

計測工学について,深い理解と,それに裏打ちされた応用力を養うことを目指す。まず,物理量の計 測で基本となる,国際単位系の仕組み,各単位の標準,各種計測器・センサの校正方法,計測値の不確 かさ評価方法について,深く学ぶ。次に,先端分野として,力センサの動的校正法,宇宙ステーション での質量計測法,などの機械物理計測を例にとり,それらの改良案を考えることを通して,実践的な応 用力をつけることを目指す。

The aim of this lecture is to give the deep knowledge and the clear understanding on the instrumentation and measurement. Firstly, the fundamentals of the measurement, such as the International System of Units, the measurement standards, calibration of sensors and the measurement uncertainty, are discussed. Secondly, the advanced applications, such as dynamic calibration of force sensors, BMMD (Body Mass Measurement Device) for use in the International Space Station, are discussed to improve the practical ability needed for the engineers and the researchers.

非線形系のダイナミクス特論丸山教授

Advanced Dynamics of Nonlinear Systems

機械・構造物の高度な動的解析方法の修得を目的として,非線形系における自励振動および係数励振 振動,多モード間の連成非線形現象・内部共振,電磁力関連や流体との連成系における非線形動的現象, 分岐とカオス振動について解説する。

This course provides analytical method on dynamics of machines and structures. It gives selfexcited vibrations and parametric excitation in nonlinear systems, coupled nonlinear phenomena in multiple degree-of-freedom system and internal resonance, nonlinear phenomena in electromagnetic induced vibrations and fluid-solid interactions, bifurcations and chaotic vibrations.

マンマシンインタフェース特論 中沢教授

Advanced Man-Machine Interface

人間と機械をつなぐ先端的なマンマシンインタフェースについて解説するとともに,円滑なインタラ クションを支援するための各種センサならびに画像処理による人間情報のセンシング技術について講述 する。

This lecture reviews advanced man-machine interface to connect humans and machines, various sensors to support smooth interaction, and human sensing technology by image processing.

医工連携システムと制御工学特論 山田(功)教授

Advanced Engineering on System and Control for Cooperation of Medicine and Engineering, Advanced Course

システム工学,システムの制御工学について講述する。基礎理論を中心に述べる。①システムの安全 性,②プロパー安定有理関数行列を用いた制御系設計法,③不確かなシステムに対する制御について解 説する。

This lecture gives an over view of system engineering and control engineering. Broad area from fundamental theory to applications of these engineering are included. Especially, we introduce ① safety of the system ② design methods of control systems using proper stable rational function matrices ③ controller design for uncertain systems.

計 算 機 工 学 特 論 魏教授

Advanced computer organization

算術演算アルゴリズムについて講義する。非慣用の負の基数数系や冗長な数系(符号付け数系)に関 する性質を理解する。並列な算術演算を実現できる数系を用いた加減算,乗算除算と開平方演算アルゴ リズムおよび剰余演算の暗号化処理システムについて勉強する。

The aim of this lecture is to understand the computer arithmetic algorithms, based on fundamentals of computer and computer hardware. The topics will be introduced as follows: number systems, parallel computing, and arithmetic circuits in parallel.

マ イ ク ロ ナ ノ エ 学 特 論 鈴木教授

Advanced Micro-Nano Science and Technology

マイクロ・ナノメートル領域の代表寸法を持つ材料,加工,運動,制御等を対象とする工学技術とその多岐に広がる応用について講述する。ヒトが自在に扱える人工物の最小寸法は、マイクロメータから ナノメータ領域へと微細化し、エネルギー・情報・バイオ・メディカルなど、成長・拡大が期待される 基幹技術になりつつある。本講義では、材料からシステム構築に至る過程に存在するマイクロスケール、 ナノスケールの現象を理解するともに、それらを工学的に制御する方法と、その応用システムの動向に ついて解説する。

In recent years, engineering and science in a small-size domain on the order of micrometer- and nanometer-ranges have globally emerged and are in a rapid growth. The micro-nano technologies are the main driving force for creating innovative devices/systems in areas such as energy, information, bio, and medical applications. This lecture reviews microscale and nanoscale phenomena existing in the process from materials to system construction, and gives an overview of engineering methods for controlling these phenomena and the trend of these applications.

知能・制御のための数理データサイエンス特論 山田(功)教授

Advanced Course of Mathematical Data Science for Artificial Intelligence and control

データサイエンスの技術発達は自然科学の広範な分野のアプローチに影響を及ぼしており,特に知能・ 制御分野においては,学習や認識の機能を備えたより知的な制御システムの構築に期待が寄せられてい る。本講では,システム制御の近接分野に焦点を当てながら,データサイエンスの代表的手法である機 械学習,フィルタリングについて講述する。データサイエンスと知能・制御の手法を合わせて学ぶこと で分野横断的な学識を深める。

The development of data science technology affects approaches to a wide range of natural sciences, and it is expected that a more intelligent control system with learning and recognition functions will be established, especially in the field of intelligence and control. In this course, we will give lectures on machine learning and filtering, which are representative methods of data science, while focusing on areas close to system control. Deepen cross disciplinary learning by learning the combination of data science and intelligence and control techniques.

構造と振動騒音予測工学特論 未定

Advanced Engineering of Structure and Noise and Vibration Prediction

実社会で物を作る上で構造上どのような振動騒音現象が問題となっているかを説明し,課題を認識す る。次にそれらの課題を解決するために必要な技術とそれを支える基礎学問について具体例を示しなが ら解説する。解析解と数値解析を平行して講義し,さらに実際のシミュレーションソフトを使った振動 シミュレーションの体験も行う。

The noise and vibration problems in industrial world are explained and recognized. Then the required technic and fundamental science to solve these problems are discussed. The both of analytical solution and numerical analysis are lectured. Furthermore students experience the calculation of vibration using simulation software.

熱 流 体 シ ミ ュ レ ー シ ョ ン 特 論金子講師(非常勤)

Computer Thermal Flow Simulation, Advanced Course

実際の産業機器を対象にした熱流体シミュレーションを実施する。特に,乱流場における数値解析上 の問題点や誤差要因を分析し,これらの課題を解決するための方策について講義する。

This lecture aims to conduct thermo-fluid computer simulations that target the actual industrial equipment. This lecture gives the problems and error sources in the numerical simulation in the turbulent flows and gives methods to solve these problems.

環境創生理工学領域

					週授業	 時間粉	
プロ	コグラム	授業科目	担当教員	単位		时间 <u>数</u> 3年次	備考
・科	·目区分	授業科目	担ヨ软貝	位数			加大
					前	後	
環境	学府共通専門科目	理工学専攻リサーチプロポーザル 国 に アンターンシップ で た 期 インターンシップ た 期 インターンシップ た 期 インターンシップ た 成 プ レ ナーシップ た し ー ズ ル プ レ ー ズ レ ー ン シップ で た い プ レ ー ズ シ ップ の で た 、 の の の の の の の の の の の の の の の の の の	全全全本本本本各各各各大舩大舩全全教教教島島島島教教教教 人員員員他他他他員員員員和橋和橋員員	1 1 2 2 1 1 1 2 2 2 2 1 1 1 1 2 6	2 1 1 1 1	1	【修了要件】学府共通専門科目, 全rの領域の領域専門科目, 全ての領域の領域専門科目 の中から,16単位以上修 得すること。 ・理工学専攻リサーチプロ ポーザル,国際インターン シップ,理工学研究特別濱及 び研究人材就業力養成基礎 は必修とする。 ただし,留学生においては 国際インターンシップ及び研究人材就業力養成基理工 学専攻リサーチプロポーザ ル,国際インターンシップ 及び研究人材就業力者成基理工 学専攻リサーチプロバーボー がし、部とする。 ・重粒子線医工学グローバ ルリーダー育成プログラム (重粒子線医工連携コース) 在籍者は、リーディング専
創 生 理 工	専門 科 開 放	医工連携先端荷電ビーム特論 (★) 医工連携放射線制御・計測特論 (★) 医工連携先進イオンビーム応用工学特論 (★) 医工連携システムと制御工学特論 (★) 医 用 画 像 基 礎 原 理 特 論	¹	2 2 2 2 2 2	2	2 2 2	門分野技術実習科目3単位 を履修すること。 リーディング医工連携科 目(学府開放専門科目及び 全領域の領域専門科目中の (★)科目)から2単位以 上履修すること。 リーディング医工連携科目
上学 領 域	領域專門科目	エー転換工学等特論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論	佐尾中大 黑板河渡小若清金白 藤)川嶋 田橋原邊澤井水井野	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2	2 2 2 2 2	は上記【修了要件】の修得 単位に含むことができる。 博士後期即ローバルリーダー 育成プログラム(重粒子線 医工学グログラム(重粒子し た者は、博士前期課程開 度工連携コース)に入学し た者は、博プコース科品 開 理工共通制制、関連法規・ 医療倫理あるいは研究倫理 あるいは研究倫理 あるいは研究 倫理 あるいは研究 倫理 あるい は 研 男 利 目 に 2 と 。 第 本 子 の に 人 学 し た 者 は、 地 子 に の に 入 学 し た 者 は、 博士 (知 二 、 の が つ 二 、 の に の に の に の に の に の に の に の に の に の
	分野技術実習科目	他 分 野 研 究 実 習 研 究 発 表 討 論 セ ミ ナ ー		21			・リーディング専門分野技 術実習科目は重粒子線医理 工学グローバルリーダー養 成プログラム(重粒子線医 理工連携コース)在籍者の み履修可。 修了要件単位に含めない。

エ ネ ル ギ ー 転 換 工 学 特 論 佐藤准教授

Science and Engineering of Energy Conversion, Advanced Course

エネルギー転換技術,特に不均一触媒や固体酸化物燃料電池の電極における微細構造と特性との関わりについて述べるとともに,これらの高性能化を達成するための材料合成技術について実例を示しなが ら説明する。

This advanced course lectures the energy conversion technology, especially in the design of heterogeneous catalysts and solid oxide fuel cell electrodes based on the fundamentals of structureproperty relationships. Some examples on material synthesis technologies aiming better performance of these devices are also provided in detail.

カ ー ボ ン 材 料 工 学 特 論 尾崎(純)教授

Carbon material science and engineering, Advanced Course

はじめに,無機材料の構造と物性の関係について述べる。次いで,それらを実現する製造プロセスに ついて講述する。特に燃料電池用電極触媒炭素の調製を例とし説明する。

Relations between structures and properties of inorganic materials are given. Next, the fabrication processes including chemical reactions are discussed to achieve the desired properties or functions. Many examples come from our recent results of developing of non-platinum cathode catalyst carbons.

環境エネルギーエ学特論 中川教授

Energy and Environmental Engineering, Advanced course

燃料電池などの高効率,低負荷環境のエネルギープロセス・デバイスについて,その原理,デバイス 構造,反応および物質移動に関する速度論モデル,システム構成などを示しながら,開発状況と実用化 に向けた課題や展望について講述する。

This course provides some technologies related to fuel cell systems including design of electrode structure, properties of the constituent materials, kinetics of the electrode reactions and the mass transport through the cell and system structure. Progress, issue, vision in the development will be summarized.

バイオエンジニアリング特論 大嶋教授

Biotechnology and Bioengineering

本科目は講義形式で行う。微生物や細胞および酵素など生体触媒を用いたプロセスの実際を紹介する とともにプロセス設計のための指針を学ぶ。またこれらのプロセスを支えるバイオテクノロジーを理解 する。生体材料や生化学反応の特徴と利用方法の基礎を学ぶとともに,発酵,水処理への化学工学的発 展を理解する。化学工学の技術がそのまま使える分野と,生体触媒に特有の技術を学ぶ。

The aim of this lecture is to understand characteristics of biotechnology and bioprocess using microorganism, cell, and enzymes, and study the indicator for a process design. While studying a

biomechanical material, the feature of a biochemistry reaction, and the foundation of the usage, fermentation and chemical engineering development in water disposal could be understood. We would understand chemical engineering by using biological catalyst.

微小環境操作特論 桂教授

Advanced Engineering on micro-manipulation of biological molecules

微小粒子や分子の検出法やこれらの微粒子の操作に用いる力とその性質について講義するとともに, 操作の場を作成するために微細加工技術についても講義する。さらに,1分子の観察・操作により可能 になった解析法について議論する。

This course provides principles of detection and manipulation methods for particles and molecules are discussed. Techniques of micro-fabrication and the applications for analytical methods are also introduced.

表面創成科学特論 黑田教授

Surface Creation Science, Advanced Course

材料表面に機能性を付与するために用いられる非平衡プラズマをはじめとする種々の表面処理技術を 解説するとともに、材料表面における化学構造変化のデプスプロファイルとダイナミクスに注目するこ とにより、機能性表面を創生するために重要な科学的理解を深める。

Various surface treatment technology are explained including the nonequilibrium plasma which gives the functionality to the material surface. The depth profile and dynamics of chemical changes in the material surface are also described to deepen the scientific understanding about the creation of functional surface.

無機分離化学特論 板橋教授

Special Topics in Separation Chemistry

物質分離の基本となる化学反応を系統的に分類し,それらを超微量分離技術に結びつける過程につい て実例を挙げて議論する。

This course provides methods for the separation of materials by chemical reactions, and the separation of trace metals using chelate extraction is designed on the basis of the concept of HSAB.

繊維構造科学特論 河原教授

Fiber Structure Science

繊維は,宇宙・航空分野などで使われる先端材料の設計において不可欠な構造要素であり,さらなる 高性能繊維を開発するためには,繊維の力学特性を支配する微細構造の発現について十分に理解する必 要がある。高分子化学を基礎として,繊維材料の高次構造と物性の関連について理解を深め,材料設計 に必要な要素技術の修得を目指し講義を行う。

Fibers are essential structural elements to design the advanced materials for aerospace fields.

The physical properties of fibers are greatly influenced by the fine structure produced in the course of fiber processing. In this lecture, some relations between the higher order structure of fibrous materials and their physical properties are discussed. This lecture also deals with the evaluation techniques for the fiber structure.

環境創生工学特論 渡邊教授

Special Topic in Environmental Engineering, Advanced Course

利水や環境保全上健全な水循環を確保するために不可欠な水質変換や水環境修復等に関わる要素技術 を主たる対象とし,設計や操作に必要な考え方や知識を修得するとともに低炭素社会,循環型社会およ び自然共生型社会の構築へ向けた技術の方向性や最新動向について講義する。

Current technologies for water/ wastewater quality control are outlined. Elemental technologies and systems needed for the creation of a recycling-oriented society with a low impact on the environment are discussed.

構造設計工学特論 小澤教授

Structural Design Engineering, Advanced Course

土木設計の実務,特に技術的に高度な設計を必要とする場面において重要な役割を果たしている数値 シミュレーション技法の代表格として「有限要素法」がある。近年,土木構造物の設計体系は従来の仕 様設計から性能照査型設計に移行しつつあり,構造工学分野あるいは地盤工学分野において取り扱われ てきた多くの技術的課題が要求性能を定量的に評価しうる解析手法によって取り扱われるようになって いる。こうした背景を踏まえ,数値シミュレーション技術の具体例を題材に,その理論的事項の詳細を 修得するとともに,実務への応用方法と今後の課題について理解を深める。

The finite element method (FEM) is well known as one of the typical methods to solve highlycomplicated engineering problems in civil engineering field. A recent change of design procedures from specification-based design to performance-based design for infrastructures has promoted the sudden spread of more rigorous design frameworks which can be applied to the latter procedures. Considering the above, this course includes the discussion of the application of the FEM to practical engineering problems as well as the demonstration of the numerical analyses based on the FEM to achieve the performance-based design.

地 盤 環 境 工 学 特 論 若井教授

Geotechnical and Geo-environmental Engineering, Advanced Course

土の力学的挙動に関する最新の研究成果について講述するとともに, 地盤環境工学の最新の話題について講述する。

Recent development and advanced topics on mechanical behavior of soils and geo-environmental technology are presented.

流 域 環 境 学 特 論 清水教授

Environmental Hydraulics and Ecology, Advanced course

流域の環境の修復・保全のための社会技術やシステムを構築するための基礎知識と考え方を解説する。 具体的には,河川を軸とした流域の水環境の捉え方,基本構成要素となる物理,化学的環境と生物の生 息条件との関係,環境と生物動態,生態系の中での生物と環境との係わり,相互作用について解説する。

The course objective is to understand ecology and hydraulics fundamentals for river basin management. The lecture presents 1) the relationship between habitat suitability and physical, chemical environment, 2) concepts of ecosystem in rivers and 3) applications of conservation and restoration for river basin management.

災 害 社 会 工 学 特 論 金井教授

Disaster Social Engineering, Advanced Course

自然災害に対する危機管理,現在対策,情報伝達システムについて講述する。社会政策のみならず, 災害に対峙した人間の心理特性にも焦点をあてる。

This course is to study the social measurement and policy against natural disaster around the crisis management, mitigation measures, disaster information system and the psychological characteristic of residents against natural disaster.

固体炭素資源転換工学 Energy Conversion of Coal and Biomass, Advanced Course

再生可能エネルギーとされるバイオマスや化石燃料の中で賦存量が最も多い石炭などの固体炭素資源 に焦点をあて,燃料としてのポテンシャルや特徴,これらを高度に利用するための乾燥,粉砕,可燃分 分離,燃焼,ガス化,液化などの単位操作の原理と特徴について,最新の技術開発動向を踏まえながら 述べる。

This course focuses on characteristics of coal and biomass for energy materials and current energy conversion technology of them. It is lectured as follows, general characteristics of coal and biomass, pretreatment technology (drying and pulverization), combustion, gasification and liquefaction.

電子情報・数理領域

			単	週授業時間数	¢ 🗌
プログラム ・科目区分	授業科目	担当教員	- 位 数	1年~3年次	備 考
学府共通専門科目	理工学専攻リサーチプロポーザル 国際インターンシップ 上級長期インターンシップ 研究人トレプレーシップ特部 調査 アントリーダブル 等業 支援 プレーバ、特許 論論 工工 学学学特許 語語 語 語 語 時 期 日 日 日 日 日 日 日 日 日 日 日 日 日 日 田 郡 衆 級 級 演 業 男 オ ン シ ップ ア ン シ ップ ス 第 本 、 ン や フ ン ク ー ンシップ ス の の の の の の の の の の の の の の の の の の	。 一全全本本本本各各各各大舩大舩全 教教島島島島教教教教 教 教	$\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\$	前後 2 1 1 1 1 1 1 1 1 1 1	【修了要件】学府共通専 門科目,学府開放専門科 目,全ての領域の領域専 門科目の中から,16単 位以上修得すること。 ・理工学専攻リサーチプ ロポーザル,国際イン ターンシップ,理工学研 究特別実験,理工学研究 特別演習及び研究人材就 業力養成基礎は必修とす る。 ただし,留学生において は国際インターンシップ 及び研究人材就業力養成 基礎を,社会人において は理工学専攻リサーチプ ロポーザル,国際イン
専学 門府 科開 目放	医工連携システムと制御工学特論(★ 医 用 画 像 基 礎 原 理 特 論		2 2	2	 ターンシップ及び研究人 材就業力養成基礎を選択 科目とする。 ・重粒子線医工学グロー
電 子 情 報 · 数 理 領 域	応数応応電物半先医電高量先先先電計応固数情離経計プ離情画知機動パシン 学学 程料学ス加学制物工理制情工能 単子学学 工工 習制の 用理用用子性体 用エプ子電子計波通 物物物 理テ工理ミ ラス情情 映しん 期期代分材工バ測工ギズ子報測動信知 理理理 ム学論グ理工学学 御助 工工 和理学学御報学 学学学工 言論学 葉 単丁二 一マ 工工 工工 1111111111111111111111111111111	田天田櫻古尾曾神橋橋高弓小本高伊筱橋守加中 山藤荒河太天加奥田羽 崎根谷 ())橋仲 藤、翁学、(二、丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁丁	$\begin{array}{c} 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 ・重粒子線医工学グローバルリーダー養成プログラム(重粒子線医工学グローディング専査機医工学規コース)在籍者野丁を履修すること。 リーディング専門分車位を履修すること。 リーディング医門科目3単位を履修すること。 リーディング医門科目3単位を履修すること。 リーディング医門科目100(★)利目)から2単位(学領域の領域)利目)から2単位(学領域の領域)利目)から2単位(学術)本)目は上記【修合むことができる。 第二、一、「「「「」」」」 第二、一、「」」」 第二、一、「」」」 第二、一、「」」」 第二、一、「」」」 第二、一、「」」」 第二、一、「」」」 第二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、

プロ	コグラム							単		時間数		
・利	相区分	授	業	科	目		担当教員	位料	-	3年次	備	考
								数	前	後		
	領	次世代	集 積 [可路	工学特	論	松田・元澤	2	2			
æ	城専門	医工連携分				,		2		2	集中講義	
電子情報		医工連携放	(射線制征	卸・計測	則特論(★)	櫻 井	2	2		集中講義	
情	科	医工連携先進				,	花泉・三浦	2		2	集中講義	
報	目	先端電	子 計	測 工	学特	論	浅見・石田	2		2	集中講義	
数	分り	他分	野石	研 究		羽日	プログラム担当教員	2			 ・リーディンク 術実習科目は重 	
数理領域	分リ 野 支 ディ	研究発	表 討	論セ	:ミナ	_	プログラム担当教員	1			工学グローバル	レリーダー養
[[」 [」	「「ショダ										成プログラム 理工連携コーン	
	「イング専門										み履修可。	
	111											

応 用 解 析 学 特 論 渡辺教授

Applied Analysis, Advanced Course

量子力学における交換関係と積分変換との密接な関連について関数解析学的な理解を深めることを目標とする。正準交換関係の1つの拡張となる Wigner 型の交換関係に従う運動量作用素を掛け算作用素 へ変換する変換を Hilbert 空間上にて構成するとともに、その性質について講義する。

Give an overview of Wigner's commutation relations in quantum mechanics and the related integral transform from the viewpoint of functional analysis. Understand the basic concepts of unbounded linear operators in Hilbert spaces and integral transforms.

数理解析学特論 田沼教授

Topics in Mathematical Analysis

複雑な微分方程式系である非等方弾性波動方程式に対して考察されてきた数学的フォーマリズムを, 力学信号と電気信号との相互作用も考慮する圧電体方程式に適用し,圧電体を伝わる表面波を念頭に, その波動解の導出と解の性質の吟味,現象へのフィードバック,そして逆問題へ応用をはかる。いった んフォーマリズムを確立すると,どんなにパラメータが多様になっても,連立系を構成する方程式の個 数がどんなに多くなっても,解の構成等が systematic な方法でアプローチできるのが数学の強みであ る。

Piezoelectric materials have been used in many engineering devices because of their intrinsic direct and converse piezoelectric effects that take place between electric fields and mechanical deformations. The mechanical stress and the electric displacement are related to the mechanical displacement and the electric potential through the elasticity tensor, the piezoelectric tensor and the dielectric tensor, and it is the piezoelectric tensor through which the elastic fields and electric fields can be coupled with each other. We apply the formalism developed for elasticity equations to solve the equations in piezoelectricity and study their surface-wave solutions.

応 用 代 数 学 特 論 天羽教授·名越准教授·宮崎准教授

Applied Algebra, Advanced Course

群論およびディオファンタス近似論の有用性についての理解を深めることを目的とした不定方程式の 基礎コース。取り扱う方程式は、単位円、双曲線、楕円曲線、トゥーエ曲線などの方程式である。

This is a fundamental course to indeterminate equations for understanding usefulness of the theory of groups and that of diophantine approximations. Equations of the following curves will be treated here: the unit circle; hyperbolas; elliptic curves; Thue curves.

応 用 微 分 方 程 式 特 論 田沼教授

Differential Equations in Solid Mechanics

固体力学に現れる微分方程式、具体的には弾性体方程式、弾性波動方程式を対象に、解の構成、解の

性質の精査を通じて,弾性力学における運動の数学的側面を検討する。一方,解の一部の観測から,弾 性体の性質を再構成する逆問題へのフィードバックも目標とする。

We study differential equations in solid mechanics, namely, elasticity equations and elastic wave equations. We construct their solutions and investigate the properties which those solutions possess. We also consider inverse problems, i.e., the problems of reconstructing unknown parameters of elastic media from partial observations of the solutions.

電子材料特論 櫻井教授

Physics of Electronic Materials

博士前期課程の理解度を踏まえ, さらなる高度な電子材料に関する学問およびその体系を教授する。 内容は,基礎材料物性から応用指向の極めて強い先端電子・光デバイス,磁性デバイスまでの広い領域 にわたる。

Based on a student's understanding of the lecture in the master's course, we teach the study about further high electronic materials and device systems. They cover from basic materials science to strongly application-oriented devices.

物 性 工 学 特 論 古澤准教授

Solid State Physics for Engineering, Advanced Course

固体材料の物性を決定している物理的メカニズムおよび電子デバイスの動作原理の基本原理・概念に ついて講義する。具体的には,誘電体および半導体における電気伝導現象,光物性などについて先端的 デバイスを例に取り上げながら解説する。

This course lectures about the fundamental physics of solid and the fundamental principle of the operation of electronic device. This lecture includes the electrical conduction and optical property of dielectric materials and semiconductor.

半 導 体 デ バ イ ス エ 学 特 論 尾崎 (俊) 准教授

Semiconductor Devices, Advanced Course

半導体におけるキャリアの輸送現象, pn 接合について復習した後, バイポーラトランジスタの静特性・ 周波数特性,及び MOS 集積回路システムにおける信号遅延とチップ面積の最小化のため,各世代のプ ロセス技術でどのような設計指針や回路構成がとられてきたかを講義する。

The aim of this lecture is to understand semiconductor devices for integrated circuits. The topics in this course will be introduced as follows; 1. Electrical transport in semiconductors, 2. pn junction, 3. Characteristics of bi-polar and MOS transistors, 4. Operation of C-MOS inverters and signal delay in integrated circuits.

先端計測加工特論 曾根教授·尹准教授

Fabrication and Metrology, Advanced Course

電子情報学の基礎となる電子素子等の電子材料や電子物性をどのように計測分析するか高度な計測技 術を習得するため、プローブ顕微鏡、元素分析装置などについて、それらの原理、構成素子、操作方法 等を講義する。これにより、最先端の計測分析技術の基礎及び応用力を身につける。

To understand advanced metrology and analysis of materials and properties in electronic devices based on electronics and informatics, this course covers theories, elements and procedures of advanced measurement system, such as scanning probe microscope and elemental analyzer. Then, the advanced knowledge of metrology and analysis from basic to application are obtained.

医用工学特論 神谷教授·栗田准教授

Advanced medical engineering

医工学の発展的内容について講義する。具体的には、人工心臓などの電気機械装置を利用した人工臓 器の基礎と応用技術、そしてさらに最新技術の詳細についても講義する。また、マイクロビーム等の高 度な高エネルギーイオンビームの計測・制御技術に基づく医学・医療分野等への応用について講義する。

This course lectures on advanced medical engineering, specifically on a basis of the artificial internal organ technology and its applications such as an artificial heart using electromechanical devices as well as the details of their recent progresses. It also lectures on an advanced ion beam measuring and controlling technology such as a high-energy ion microbeams applied to the field of medical science and technology.

電 気 エ ネ ル ギ ー 制 御 工 学 特 論橋本教授

Electrical Energy Control Engineering, Advanced Course

非線形制御や適応同定などのアドバンスド制御理論とその応用について講述する。ニューラルネット ワークに基づく,知能化制御についても説明する。また,それらの手法について,制御系設計用 CAD を用いたシミュレーションにより学ぶ。

Advanced control theory such as nonlinear control, adaptive identification and its application are discussed. Intelligent control based on neural networks is also lectured. These methods are demonstrated by simulation using CAD software.

高温プラズマ物理学特論 高橋(俊)准教授・佐藤(守)准教授

High Temperature Plasma Physics, Advanced Course

核融合発電を目指した,高温完全電離磁気閉じ込めプラズマや慣性核融合プラズマを対象としたプラ ズマ物理学について講義する。つまり,プラズマの平衡及び安定性,プラズマ中の波動および輸送現象 などである。最新の高温プラズマ研究についても紹介する。

Students learn about plasma physics in high temperature fully-ionized plasmas confined by magnetic fields and inertial confinement fusion plasmas for nuclear fusion reactors. In particular, equilibrium and stability, waves and transport in plasmas are discussed. Recent high temperature plasma studies will be also overviewed.

量子電子工学特論高橋(佳)准教授

Quantum Electronics, Advanced Course

光通信,光情報処理において重要な役割を果たすオプトエレクトロニクスデバイスの最先端技術について理解させるために,レート方程式から出発してレーザの最先端技術を講義するとともに,パッシブ デバイスの代表例である石英系導波路,光ファイバの最新解析技術を講義する。

To understand up-to-date optoelectronics devices which are important in optical communication and optical information processing, the course will cover the concept of lasers and the state-of-the-art technology, and introduce the current technologies of quartz optical waveguides and optical fibers.

先端 電子情報理工学特論 I 弓仲准教授·三輪准教授

Theory and Practice in Electronics and Informatics, I, Advanced Course

電子情報通信技術の理工学的基礎となるプログラミング技術,シミュレータ技術について講述する。 特に,動的回路のCプログラムによる解析や視覚化手法,また,その応用である集積回路設計ツールの 原理,具体的回路設計手法に関して,最先端の話題を交えながら実践技術の習得を目的とした講義を行 う。

For obtaining basic skills from theory to practice in Electronics and Informatics, analysis and visualization techniques of physical phenomena are discussed via C-programming. Theory and design of electric circuits with EDA tool are also lectured.

先端計測制御特論 小林教授

Measurement and Control Technology, Advanced Course

計測制御技術の先端知識を習得することを学習目標に,アナログデジタル変換器 / デジタルアナログ 変換器,デジタル信号処理技術,アナログ集積回路のテスト技術,電源回路技術,計測制御と電子回路 技術,アナログフィルタ回路,インターリーブ AD 変換器,自己校正技術とアナログ回路技術,冗長 性を用いたアナログ回路技術,信号処理とアナログ回路技術に関する説明を講師の研究事例をベースに 行う。

The aim of this lecture is to understand advanced measurement and control technology, such as analog-to-digital converter, digital-to-analog converter, digital signal processing, LSI testing, power supply circuit, analog filter, interleaved analog-to-digital converter, and self-calibration techniques.

先端波動情報特論 本島教授

Advanced Engineering on Electromagnetic Wave and Information

最先端の情報伝達法を理解するために,最新の電磁波解析方法について講義する。具体的には,有限 差分時間領域法(FDTD法)を中心にして,等価定理を用いた遠方電磁界算出法,空間伝達関数算出法, スペクトル解析法などの概要を講述する。

The aim of this lecture is to understand information transmission method for advanced engineering. The topics in this course are finite difference time domain method for advanced numerical analysis, equivalent theorem for near to far field transformation, calculation of space transfer function and

電子通信工学特論 高井准教授

Telecommunication System Engineering, Advanced Course

通信経路上の多くの信号の中から情報を取り出すために必要なフィルタ理論について講義する。

バターワース,チェビシェフ,ベッセルフィルタの伝達関数の数学的な解析を学んだ後,具体的にそ れぞれのフィルタを設計する手法を講義する。

最後に設計したフィルタを実際の回路として構成するための回路設計法を構築する。

The aim of this lecture is to understand analog filter theory which is very important theory to select a desired signal from the communication line.

At first, mathematical analyses of the Butterworth, Chebyshev, and Bessel filter are given, and design methods of these filters are lectured.

Finally, circuit designs of these filters are discussed.

計算知能特論 伊藤(直)准教授

Computational Intelligence, Advanced Course

知的な情報処理の基盤をなすパターン認識について,その基礎理論(ベイズ決定理論,最尤推定,ベ イズ推定)を原理から系統的に学習し,音声認識や光学的文字認識,ジェスチャー認識などへの応用に 関する例題も交えて,様々な目的や用途に応用するための知識を習得する。

Pattern recognition forms the technical ground of intelligent information processing. The aim of this course is to learn systematically the basis theories of pattern recognition. This lecture will deal with Bayesian decision theory, maximum likelihood estimation method, Bayesian estimation and their applications in various fields.

応用物理学特論 後藤教授·鈴木(真)准教授

Applied Physics, Advanced Course

エレクトロニクスや光エレクトロニクスで用いられる材料の物理について講義する。 講義の内容に は、電子構造、格子ダイナミクス、光学特性および電子材料の解析手法が含まれる。

This course introduces the physics of materials used in electronics and optoelectronics. The content of the lecture includes electronic structure, lattice dynamics, optical properties and techniques for analyzing electronic materials.

固体物理学特論高橋(学)教授·長尾教授

Theoretical Solid State Physics, Advanced Course

光と磁性体の相互作用に起因する現象を,物質の電子構造という観点から理解することを目標とする。 そのため,はじめに多電子系の電子状態を量子力学的に扱う手段を解説した後,光やX線の分光分析に 関連した応用例を紹介する。(オムニバス方式) Our goal is to understand the phenomena due to the interaction between light and magnetic materials from the view point of the electronic structure of the materials. To this end, after introducing quantum mechanical treatment of the electronic states of many-electron system, several applications to the light and x-ray spectroscopy are explained. (omnibus style)

数 理 物 理 学 特 論 守田准教授·引原准教授

Mathematical Physics, Advanced Course

量子多体系の状態を記述する理論について学習し、そのために必要な数学の基礎を修得する。

Focusing on topics of quantum many-body physics, we shall discuss theories to study quantum many-body states and basics of mathematical methods used in the theories.

情報数理工学特論 加藤(毅)准教授

Information and Mathematical Engineering, Advanced Course

近年の情報通信技術の目覚ましい発展とともに,関連する数学理論の重要性はいや増すばかりである。 本講義では,非線形計画を支える凸解析理論を解説する。

Recent advances of information and communication technology have increased the importance of related mathematical theories. In this class, the theories of the convex analysis supporting the nonlinear programming are explained.

離散システム工学特論 中野教授

Discrete Systems, Advanced Course

グラフ理論の最近の話題について講義する。

This course covers several advanced topics on graph theory.

経 営 工 学 特 論 関教授

Management Science, Advanced Course

データに基づき意思決定を行うための基礎理論として統計的決定理論と、その具体的な意思決定問題 への応用を講義する。まず、ゲーム理論について零和ゲームのミニマックス定理を解説した上で、統計 的決定理論の理論的フレームワークを講義する。その上で、ペイズ理論、モデル選択基準などからテー マを選んで応用例を交えて講義する。

This course provides the statistical decision theory and its applications. The statistical decision theory is a basic theory in order to make decisions on the basis of the data. First, we introduce the minimax theorem of the zero-sum game in the game theory. Next we provide theoretical framework of the statistical decision theory. Finally, we explain some topics chosen from Bayes theory, criteria for statistical model selection and so on.

計算理論特論 山崎教授

Theory of Computing, Advanced Course

アルゴリズムの設計,解析およびそれらの計算量について学ぶ。NP困難性,近似アルゴリズム,確 率的アルゴリズム,固定パラメータ計算量,確率的手法等を題材として講義が行われる。

This course provides an introduction to the design and analysis of algorithms and their complexities. Topics include : NP-hardness; Approximation algorithm; Randomized algorithm; Fixed parameterized complexity; Probabilistic methods.

プログラミング言語特論 藤田准教授

Programming Language, Advanced Course

計算理論と記号論理学およびそれらの関係に関する最近の話題を講義する。

An introduction to parts of proof theory of intuitionistic logic and classical propositional logic and related aspects of lambda-calculi for the Curry-Howard isomorphism.

離散 最適化理論特論 荒木 (徹) 准教授

Discrete Organization, Advanced Course

グラフ理論や組合せ最適化理論の話題について議論する。効率的なグラフアルゴリズムの設計や ヒューリスティックな手法について議論する。

This course provides an introduction to graph theory and combinatorial optimization. Topics include efficient graph algorithms and heuristics for optimization.

情報システム工学特論 河西准教授

Information Systems, Advanced Course

サービスサイエンスを工学的かつ数理的な視点で分析する手法を習得するため,待ち行列理論を学ぶ。 M/M/1 システムや M/M/m システムなど出生死滅過程として記述できる待ち行列システムを学ぶ。本 講義はセミナー形式とする。

This course gives an introduction of queueing theory with emphasis on service science. To understand the analytical methods in queueing theory, the topics in this course include the queueing systems described by the birth-and-death processes such as M/M/1 and M/M/m systems. This course is seminar style.

画 像 情 報 工 学 特 論 太田教授

Image Information Processing, Advanced Course

画像情報の処理技術を述べる。特に画像からの立体復元,物体の認識,シーンの理解など,コンピュー タビジョンの分野で中心的なテーマに関して,最近のトピックスを含め講義する。

This lecture deals with theories and techniques regarding image information processing. Especially, we discuss typical themes in Computer Vision field, including 3D shape reconstruction from images,

object recognition, and scene understanding, with up-to-date technologies.

知識情報工学特論 天野(一幸)教授

Knowledge Engineering, Advanced Course

理論計算機科学,特に計算の理論に関する先端的技術について学ぶ。計算量理論やアルゴリズム理論 に関する重要論文をベースに,BDD等の知識表現形式や,巨大データからの知識抽出アルゴリズムの 理論的側面等を重点的に学ぶ。

This course studies the recent advanced topics in theoretical computer science, especially in theory of computation. For example, we study the notion of binary decision diagrams for knowledge representations or various algorithms for mining useful knowledge from massive data sets based on recent important papers on the topics.

機 械 学 習 理 論 加藤 (毅) 准教授

Machine Learning Theory

確率論と最適化理論に基づき機械学習のための最新理論を学ぶ。

The aim of this course is to study recent machine learning theories based on statistics and optimization.

動 的 映 像 制 御 特 論 奥 (寛) 教授

Dynamic Image Control, Advanced Course

近年,光学デバイス技術と画像処理技術の進化により,これらを融合した新たな映像利用技術の枠組 みが創出されつつある。本講義では最先端の論文に基づいてこの新たな枠組みを概説するとともに,そ れらが可能にする次世代の映像技術について議論する。

Recent progress of optical devices and image processing methods has produced new techniques, such as computational photography, in the field of imaging instruments. This lecture reviews these emerging cutting-edge technologies based on recent papers, and discuss their prospects.

パワーエレクトロニクス回路工学特論

田中教授(客員)·小関教授(客員)· 三谷准教授(客員)

Power Electronics Circuit, Advance Course

パワーエレクトロニクスの先端技術を習得することを学習目標として,パワー系化合物およびシリコ ン半導体の材料・プロセス・デバイス・回路およびそのアプリケーション,将来技術の講義を行う。

The aim of this lecture is to understand power devices, materials and processes as well as their applications and future trends.

システム集積回路工学特論

三木教授(客員)·伊藤講師(非常勤)· 岩渕講師(非常勤)

System Integrated Circuit, Advanced Course

システム LSI 内に用いられているアナログ回路の設計・解析ができることを学習目標として,アナ ログデジタル変換回路,デジタルアナログ変換回路の設計技術の講義を行う。それに加えて人工知能の 概論の講義を行う。

The aim of this lecture is to understand the advanced analog circuit technology, such as analog-todigital converters, digital-to-analog converters as well as artificial intelligence technologies.

次世代集積回路工学特論 松田教授(客員)・元澤講師(非常勤)

Advanced Integrated Circuit Design Technology

マイクロエレクトロニクスの先端技術を習得することを学習目標として、半導体デバイス、半導体プロセス、半導体デバイスモデリング技術、アナログデジタル変換回路、アナログフィルタ回路、高周波回路、LSIの信頼性について講義する。

The aim of this lecture is to understand the advanced micro-electronics technology, such as semiconductor devices, semiconductor processes, MOS and Bipolar transistor modeling, analog-todigital converter, analog filter, high-frequency circuit, and LSI reliability.

医工連携先端荷電ビーム特論 曾根教授

Advanced Engineering on Charged Beam for Cooperation of Medicine and Engineering, Advanced Course

荷電ビームの散乱現象,理化学機器および応用について講述する。散乱モデルでは原子との相互作用 およびエネルギ蓄積について,理化学機器では電子顕微鏡の原理と高分解能化,イオン散乱分光装置, 集束イオンビーム装置の基礎について,応用では超微細加工,高分解能観察,高感度バイオセンサにつ いて詳述する。

Basic scattering for charge particles, their typical equipments, and their applications are lectured. In particular, the collisions of ion or electron with atoms and their energy deposition, electron microscope, ion scattering spectroscopy and focused ion beam (FIB) system, and nano-fabrication and evaluations using scanning electron microscope (SEM), probe microscope and high-sensitive biosensor application are described.

医工連携放射線制御・計測特論 櫻井教授・加田准教授

Radiation Control and Measurement for Cooperation of Medicine and Engineering, Advanced Course

X線・粒子線を利用した電子材料評価・計測手法について講述する。基礎理論から,加速器を利用した評価技術までのべる。①電子材料の基礎と応用②物質とX線,放射線の相互作用③X線・粒子線を利用した電子材料評価・計測の最前線

Measuring methods for characterization of electronic materials using X-rays and particle beam are lectured from the view of basic theory and accelerator application. ① Electronic materials and their applications. ② Interactions between materials and X-rays or particle beam ③ Research frontier of measuring methods for characterization of electronic materials using X-rays and particle beam.

医工連携先進イオンビーム応用工学特論 花泉教授・三浦准教授

Advanced Engineering on Ion Beam Application for Cooperation of Medicine and Engineering, Advanced Course

イオンビームを応用した最新の光デバイス工学技術について講述する。基礎理論からデバイス応用技 術までの広い範囲,すなわち,①デバイス工学におけるイオン注入技術,②光導波路理論,③光機能デ バイス(光スイッチ,光変調器,フィルタなど),④先端光デバイス工学(フォトニック結晶など)に ついて解説する。

Photonic device engineering using ion beam technologies are lectured. Broad area from fundamental theories to application technologies such as ion implantation technologies for device engineering, optical waveguide theories, functional devices (switches, modulators, and filters), and advanced photonics (photonic crystals) are included.

先端電子計測工学特論 浅見教授(客員)·石田教授(客員)

Advanced Electronic Measurement Technology Course

電子計測器および半導体試験装置関係の先端的な電子計測技術,電子回路システム,信号処理・計測 アルゴリズムについて国際会議発表や産業界での研究開発事例をもとに講義を行う。

This course provides wide and deep knowledge of advanced electronic measurement technologies and electronic circuits & systems as well as signal processing & measurement algorithms related to electronic measurement instruments & automatic test equipment, based on recent international conference publications and industry trends.

理工学専攻リサーチプロポーザル 全教員

Advanced Research Proposal

理工学分野の先端研究開発について幅広い知識を持たせること,理工学分野全体を見渡せる能力を持 たせること,および理工学分野に共通な課題抽出能力,課題設定能力,課題解決能力,を身につけさせ ることを目的として,自分の研究専門分野以外の分野に関係する課題を設定してリサーチプロポーザル を行わせる。くわえて,発表会を開催し,そこでの発表と討議を経験させる。社会人コースの学生は免 除することができる。

国際インターンシップ 全教員

International Internship

海外の技術者・研究者との英語による研究討論の能力を養うために、国際会議あるいはこれに準じる 場所において、英語による研究発表、海外の研究者との討論・交流等を行い、英語でコミュニケーショ ンする能力の実践的訓練を行う。訓練終了後成果報告書を作成させることで訓練の成果をより確かなも のにする。留学生と社会人は免除することができるが、単位の取得は可能である。

上級長期インターンシップ 全教員

Long-term Internship

修得した学問を企業において実践的に活用する能力を培うために,事前教育を含めて3ヶ月程度の長 期間の企業におけるインターンシップを行う。事前教育としては,企業におけるマナー,知的財産,安 全管理について教育する。加えて,派遣先の企業およびそこでの職務に応じた周辺分野の教育も行う。 派遣先企業の担当者と協議を基に経過報告書を作成することを義務づけ,最終的な報告書を提出させ, 最後に発表会を開催しそこでの発表・討論を経験させる。

研	究	人	材	就	業	カ	養	成	基	礎	伊藤(正実)教授・鈴木講師(非常勤)・
											佐藤講師 (非常勤) · 小野講師 (非常勤) ·
											田沼講師 (非常勤)・田浦講師 (非常勤)

Basic training for being corporate researchers

企業人講師を中心に,社会人としての基礎力と,産業界における研究開発者として活躍するために必要な知識・スキルを,ロールプレイング形式を多用し修得する。価値創造に必要な,企画・研究開発・ 生産・販売に至る一連の企業活動を概観する。さらに,企業においての価値創造を行う際の思考法を身 につける。加えて,協業する際のビジネスマナーの基礎も学ぶ。これらの多くは,体験学習形式を通し て行われる。

Businessman and researchers who belong to companies give lectures on basic skills for being corporate researchers. This course will be mainly performed by means of active learning method as so to master the basic skills. In the course, a series of activities in corporates: planning, R & D, production, and sale will be introduced. You will also learn way of thinking to creative value in

corporates. In addition, they will learn basic business manners that are important in collaboration. All classes will be given in Japanese.

実 践 研 究 リ ー ダ ー シ ッ プ 特 論

杉本講師(非常勤)・石黒講師(非常勤)・ 科部講師(非常勤)

Leadership development course

マーケティングから企画・研究開発・生産・販売に至る一連の企業活動を概観する。多くの人々の連 携による企業活動を指揮するための組織経営論と技術経営論(MOT)を学ぶ。組織経営論においては, 研究開発の成果をより高めるためのマネジメント力の一つであるヒューマンスキルを中心に,ファシリ テーションやコーチングの基本を修得する。MOT においては,求められる商品や技術のテーマ設定に 必要なコンセプチュアルスキルを学ぶ。これらを活用し,研究リーダーとしての計画立案と管理のポイ ントを修得する。

You will learn organization theory and management of technology to develop leadership as researchers in corporates. This course will be delivered lectures on facilitation, coaching, and conceptual skills. By using these skills, you can propose and advance projects. All classes will be given in Japanese.

実践アントレプレナーシップ特論伊藤(大輔)講師(非常勤)

Entrepreneurial Training course

起業を考えている,あるいは企業内での新規事業担当者を目指す者を主な対象として,新たな価値を 市場に提供するために必要な基礎知識を修得することを目的として,事業化に必要なマーケティングや デザインシンキング的思考など市場経済に即した計画立案や意思決定の方法論を学ぶ。また,企業運営 に必要な経営戦略等について,基礎的な考え方を修得する。

This course targets students that are trying to be an entrepreneur, or a person in charge of new projects in a corporate. In the course, you can learn marketing that is needed to be commercialized technology. In addition, you can also learn corporate strategy. All classes will be given in Japanese.

実践 グローバル研究特論 針ヶ谷講師(非常勤)・飯尾講師(非常勤)

Basic training for being global corporate researchers

海外勤務を想定した実践的な英会話をロールプレイング形式で身につける。また,海外で働くために 必要な種々の文化的背景を理解できるようになる。また,実際に海外で就職するための活動手段につい て事例を交えて講述する。実践英会話以外の講義はすべて日本語で行われる。

You learn practical English conversation by role-playing method. The course will also make you understand multicultural background. Additionally, global job hunting method will be introduced. All classes except for practical English conversation will be given in Japanese.

日本語中級I 大和講師(国際センター)

Intermediate Japanese I

中級レベルの文章を読みこなす能力を育成する。あわせて,中級レベルの文法項目を用いて正確な文 章を算出できるようにする。日本語による資料の読解能力を高め,コミュニケーション能力を育成する ことにより,大学において学習や研究活動を支障なく行える日本語能力を涵養する。これにより円滑な 学位取得を可能とすることを目指す。

The aim of this course is to cultivate the ability to read Japanese intermediate level sentences. In addition, practice to make accurate sentences using intermediate level grammar items. Students will improve Japanese reading skills and acquire high communication skills.

日本語中級Ⅱ 舩橋講師(国際センター)

Intermediate Japanese II

中級レベルの文章を読みこなす能力を育成する。あわせて,中級レベルの文法項目を用いて正確な文 章を算出できるようにする。日本語による資料の読解能力を高め,コミュニケーション能力を育成する ことにより,大学において学習や研究活動を支障なく行える日本語能力を涵養する。これにより円滑な 学位取得を可能とすることを目指す。

The aim of this course is to cultivate the ability to read Japanese intermediate level sentences. In addition, practice to make accurate sentences using intermediate level grammar items. Students will improve Japanese reading skills and acquire high communication skills.

日本語上級I 大和講師(国際センター)

Advanced Japanese I

上級レベルの学習者を対象に,専門的な学習に必要な日本語の技能をさらに伸ばします。また,将来 の進路に視野をおき,日本企業への就職に必要となる高度な日本語能力の育成を図ります。できるだけ, 日本語上級Ⅱと合わせて通年で履修してください。

This course is for advanced learners of Japanese language wishing to brush up their skills necessary for the latter half of university study and life. Students are advised to take classes in full year together with Advanced Japanese II.

日本語上級Ⅱ 舩橋講師(国際センター)

Advanced Japanese II

上級レベルの学習者を対象に,専門的な学習に必要な日本語の技能をさらに伸ばす。また,将来の進路に視野をおき,日本企業への就職に必要となる高度な日本語能力の育成を図る。できるだけ,日本語 上級 I と合わせて通年で履修することが望ましい。

The aim of this class is to impart Japanese language skills that are required for professional learning by learners at advanced levels. Moreover, this class will focus on the future careers of learners and foster advanced Japanese language skills that are essential for finding employment in Japanese companies. Those at Advanced Japanese I level should also participate as much as possible.

理工学研究特別演習 全教員

Seminar in Specialized Topics

[物質・生命理工学]

物質科学,生物科学,計測科学に関する最先端の研究成果を学び博士論文作成のために必要な知識を 習得するために,指導教員の研究指導領域から研究課題を選択して,これに関連した文献調査・講読な どの演習を行う。

[知能機械創製理工学]

エネルギーシステム,マテリアルシステム,メカトロニクス,インテリジェントシステムに関する最 先端の研究成果を学び博士論文作成のために必要な知識を習得するために,指導教員の研究指導領域か ら研究課題を選択して,これに関連した文献調査・講読などの演習を行う。

[環境創生理工学]

環境分析,機能性材料,エネルギー有効利用,エネルギー変換デバイス,エネルギーシステム,分離・ 回収・除去,物質循環,社会基盤工学,環境工学,安全・防災に関する最先端の研究成果を学び博士論 文作成のために必要な知識を習得するために,指導教員の研究指導領域から研究課題を選択して,これ に関連した文献調査・講読などの演習を行う。

[電子情報·数理]

電子デバイス,計測・制御・エネルギー,情報通信システム,計算機科学,数理科学,物理学に関す る最先端の研究成果を学び博士論文作成のために必要な知識を習得するために,指導教員の研究指導領 域から研究課題を選択して,これに関連した文献調査・講読などの演習を行う。

理工学研究特別実験 全教員

Experimental Research in Specialized Topics [物質・生命理工学]

物質科学,生物科学,計測科学に関する最先端の研究手法を実践的に学ぶために,指導教員の研究指 導領域から研究課題を選択して,理論研究・実験・数値解析などの研究をおこない,博士論文の作成指 導を受ける。

[知能機械創製理工学]

エネルギーシステム,マテリアルシステム,メカトロニクス,インテリジェントシステムに関する最 先端の研究手法を実践的に学ぶために,指導教員の研究指導領域から研究課題を選択して,理論研究・ 実験・数値解析などの研究をおこない,博士論文の作成指導を受ける。

[環境創生理工学]

微量分析,機能性材料,エネルギー有効利用,エネルギー変換デバイス,エネルギーシステム,分離・ 回収・除去,物質循環,社会基盤工学,土木工学,安全・防災に関する最先端の研究手法を実践的に学 ぶために,指導教員の研究指導領域から研究課題を選択して,理論研究・実験・数値解析などの研究を おこない,博士論文の作成指導を受ける。

[電子情報·数理]

電子デバイス,計測・制御・エネルギー,情報通信システム,計算機科学,数理科学,物理学に関す る最先端の研究手法を実践的に学ぶために,指導教員の研究指導領域から研究課題を選択して,理論研 究・実験・数値解析などの研究をおこない,博士論文の作成指導を受ける。

医工連携先端荷電ビーム特論 **営根教授**

Advanced Engineering on Charged Beam for Cooperation of Medicine and Engineering, Advanced Course

荷電ビームの散乱現象,理化学機器および応用について講述する。散乱モデルでは原子との相互作用 およびエネルギ蓄積について,理化学機器では電子顕微鏡の原理と高分解能化,イオン散乱分光装置, 集束イオンビーム装置の基礎について,応用では超微細加工,高分解能観察,高感度バイオセンサにつ いて詳述する。

Basic scattering for charge particles, their typical equipments, and their applications are lectured. In particular, the collisions of ion or electron with atoms and their energy deposition, electron microscope, ion scattering spectroscopy and focused ion beam (FIB) system, and nano-fabrication and evaluations using scanning electron microscope (SEM), probe microscope and high-sensitive biosensor application are described.

医工連携放射線制御・計測特論櫻井教授・加田准教授

Radiation Control and Measurement for Cooperation of Medicine and Engineering, Advanced Course

X線・粒子線を利用した電子材料評価・計測手法について講述する。基礎理論から,加速器を利用した評価技術までのべる。①電子材料の基礎と応用②物質とX線,放射線の相互作用③X線・粒子線を利用した電子材料評価・計測の最前線

Measuring methods for characterization of electronic materials using X-rays and particle beam are lectured from the view of basic theory and accelerator application. ① Electronic materials and their applications. ② Interactions between materials and X-rays or particle beam ③ Research frontier of measuring methods for characterization of electronic materials using X-rays and particle beam.

医工連携先進イオンビーム応用工学特論 花泉教授・三浦准教授

Advanced Engineering on Ion Beam Application for Cooperation of Medicine and Engineering, Advanced Course

イオンビームを応用した最新の光デバイス工学技術について講述する。基礎理論からデバイス応用技 術までの広い範囲,すなわち,①デバイス工学におけるイオン注入技術,②光導波路理論,③光機能デ バイス(光スイッチ,光変調器,フィルタなど),④先端光デバイス工学(フォトニック結晶など)に ついて解説する。

Photonic device engineering using ion beam technologies are lectured. Broad area from fundamental theories to application technologies such as ion implantation technologies for device engineering, optical waveguide theories, functional devices (switches, modulators, and filters), and advanced photonics (photonic crystals) are included.

医工連携システムと制御工学特論 山田(功)教授

Advanced Engineering on System and Control for Cooperation of Medicine and Engineering, Advanced Course

システム工学,システムの制御工学について講述する。基礎理論を中心に述べ。①システムの安全性, ②プロパー安定有理関数行列を用いた制御系設計法,③不確かなシステムに対する制御について解説す る。

This lecture gives an over view of system engineering and control engineering. Broad area from fundamental theory to applications of these engineering are included. Especially, we introduce ① safety of the system ② design methods of control systems using proper stable rational function matrices ③ controller design for uncertain systems.

医用画像基礎原理特論 花屋教授·山延教授·太田教授

Scientific Basics of Medical Imaging

医療画像をより深く理解し,生命機能画像化技術を開発するための基盤形成を目的として,MRIの 基礎となる核磁気共鳴の原理,核磁気共鳴を利用したイメージングの原理,画像情報処理,さらに,光 プローブ技術を理解するための光物理化学の基礎とその応用について解説する。

This course provides basic principles of a nuclear magnetic resonance as the basis of MRI, a digital image processing, and optical imaging probe techniques from the scientific point of view for the development of Medical Imaging.

[リーディング専門分野技術実習科目]

他分野研究実習 担当教員

Other Field Research Training

自分の専門分野以外の分野の研究室で,プログラム担当教員の指導の下,一定期間研究に従事することを義務付ける。複数の学問の先端にふれることで,学問を俯瞰し異分野融合による独創的性を涵養することができる。

Students have to research for a period in laboratories which are not their research fields under control of their supervisors. Students can overlook studies and cultivate originality by interdisciplinary research.

研究発表討論セミナー 担当教員

Seminar for Presentation and Discussion

各大学院生が,自ら行っている研究課題についての口頭発表を行う。各指導教員の指導のもとに,研 究成果をまとめて,学会発表形式で口演を行う。この発表により,大学院生は相互理解を深め,研究成 果活用方法について視野を広げ,新たな興味を喚起することが可能となる。

Each graduate student, perform the Oral presentation of research issues that have done themselves. Under the guidance of the supervisor, to conduct summary of the research findings, literature, positioning, to perform oral presentation at the conference presentation format. With this announcement, it is possible to graduate students to deepen mutual understanding, to expand the field of view for ways to use research results, to stimulate new interest.

6. 理工学府課程表・講義要目(大学院共通科目)

授業科目	単位数	備考
障害児の行動理解と支援	2	教育学研究科 (修士課程)
社会情報学特論	2	
情報ネットワーク特論	2	
意思決定科学特論	2	
グローカル地域創生特論	2	-
先端応用情報学特講C (環境保全と防災)	1	-
先端応用情報学特講D(国連 SDGs における地域 環境保全)	1	-
先端応用情報学特講 E (院生のための「まちづくり とグローカル・コミュニケーション」)	1	
先端応用情報学特講 F(院生のための「グローカ ル地域創生と企業」)	1	
先端応用情報学特講G(院生のための「ビジネス 日本語」)	1	
先端応用情報学特講H(院生のための「グローカ ル・インターンシップ・プログラム」I)	1	
先端応用情報学特講 I (企業がおこなう環境保全 活動)	1	
先端応用情報学特講 J (地域環境に対するダムの 影響と緩和対策)	1	
先端応用情報学特講L(院生のための「グローカ ル・インターンシップ・プログラム」Ⅱ)	1	
研究倫理(講義)	1	医学系研究科 (修士課程,博士課程)
研究倫理(Eラーニング)	1	保健学研究科(博士前期課程,博士後期課程)
放射線生物学	1	_
放射線基礎物理学	2	_
放射線計測学講義	2	│ ──医学系研究科(修士課程)
情報処理学・画像工学	2	
医学物理実習	1	_
医学物理演習	1	
MOT特論	2	
経営工学特論	2	
ものづくりビジネス	2	│ ─ 理工学府(博士前期課程)
アントレプレナーシップ特論	2	→ 埋上子府(傳上則劮誅性)
医工連携特論	1	
医理工連携重粒子線治療の物理と医学特論	2	
研究人材就業力養成基礎	2	
実践アントレプレナーシップ特論	1	理工学府(博士後期課程)
実践研究リーダーシップ特論	1	
次世代モビリティ技術	2	
次世代モビリティ高度交通システム	2	→研究・産学連携推進機構次世代モビリティ社会実装 研究センター
次世代モビリティ社会の変化と可能性	2	- 研究センター
ベイズ統計学特論	2	
データサイエンス応用・Python プログラミング 演習	2	数理データ科学教育研究センター
データサイエンス応用・画像データ解析演習	2	1
食の安全特論	2	
生活習慣病と食健康科学特論	2	1
実践食品イノベーション特論	1	 食健康科学教育研究センター
食品科学特論	2	
食品生産工学特論	2	1

7. 教員名簿

理工学府長

教授博士(工学)石間経章

◎博士前期課程

物質・生命理工学教育プログラム

教		授	博士(工学)	浅	Л	直	紀	教		授	博士(理学)	住	吉	吉	英
77	11	12	理学博士	え浅	野	憲素	子	17	11	12	博士(理学)	園	ப 山	山 正	入 史
	11		博士 (工学)	網	井	秀	樹		11		博士(工学)	高	橋		~ 浩
	11		博士(理学)	上	原	宏	樹		11		工学博士	武	Ξ	茂	樹
	11		理学博士	渔	野	雅	史		11		博士(理学)	中	村	洋	介
	11		理学博士	奥	津	折	夫		11		理学博士	. 花	屋	••	実
	11		工学博士	尾	崎	広	明		11		Doctor of Science	Hos	sain,	Md. Z	Zakir
	11		博士 (工学)	粕	谷	健	<u> </u>		11		博士 (農学)	松	尾		郎
	11		理学博士	久	新	荘−	一郎		11		工学博士	山	延		健
	11		博士 (理学)	京	免		徹		11		理学博士	山	本	隆	夫
	11		工学博士	I.	藤	貴	子		11		理学博士	若	松		聲
	11		博士 (農学)	佐	藤	記	<u> </u>								
	11		博士(エネルギー科学)	白	石	壮	志								
准	教	授	博士 (医学)	井	上	裕	介	准	教	授	博士(工学)	橘		熊	野
	11		博士 (工学)	岩	本	伸	司		11		博士 (理学)	行	木	信	
	11		農学博士	榎	本		淳		11		博士 (理学)	藤	沢	潤	
	11		博士 (理学)	奥		浩	之		11		博士 (工学)	堀	内	宏	明
	11		博士 (理学)	菅	野	研一	·郎		11		博士 (工学)	村	尚	貴	子
	11		博士 (工学)	高	橋		剛		11		博士 (理学)	森	\square	朋	尚
	11		博士 (理学)	武	\mathbb{H}	亘	弘		11		理学博士	山	路		稔
			博士 (理学)	竹	\mathbb{H}	浩	之		11		博士 (工学)	山	\mathbb{H}	圭	
	11		博士 (工学)	武	野	宏	之		11		博士 (工学)	吉	原	利	忠
									11		工学博士	米	山		賢
客	員 教	授	博士(工学) ^(理化学研究所)	<u>िन</u>	部	英	世	客	員 教	授	博士(工学) (量子科学技術研究開発機	田 (構)		光	正
	11		理学博士	Ш	島	隆	幸		11		理学博士 (産業技術総合研究所)	野	♥瀬	菜種	恵子
	11		Ph.D (産業技術総合研究所)	齋	藤		剛		11		工学博士 (量子科学技術研究開発機	前 講	Л	康	成
	11		博士 (工学) (量子科学技術研究開発機		古	典	明		11		博士 (工学) (量子科学技術研究開発機	八	巻	徹	也
客員	員准教	τ授	博士 (工学) (産業技術総合研究所)	吉	Л	佳	広	客員	員准教	牧授	博士 (工学) (量子科学技術研究開発機	廣	木	章	博
	11		博士(工学) (相模中央研究所)	田	中	陵			11		博士 (工学) (量子科学技術研究開発機	山	本	洋	揮
	11		博士 (工学) (理化学研究所)	沼	\blacksquare	圭	司								
講師	師(氵	作)	医学博士	泉		哲	郎	講師	師 (夏	非)	博士(生命医学)	佐	藤	裕	公

(令和3年4月1日現在)

講師(非)	MD, Ph.D	稲	垣		毅	講師(非)	博士(医学)	柴	田		宏
ит чи (у) /	博士(医学)	奥	西	勝	<u>家</u> 秀	/ 10 / 10 / 10 /	理学博士	<u></u> 加	Ξ	出	葱
11	医学博士	北北	村村	忠	弘	"	医学博士	藤	谷	山 与	
11	博士(医学)	佐	藤	之. 幸	市	11	Technology			Grein	
11	博士(生命科学)	佐	藤	- 隆	史	11	博士 (農学)	堀	井	拓	郎
11	博士(理学)	佐	藤		却紀	11	医学博士	山	下	孝	之
11	博士 (理学)	佐	藤		健	"	博士 (農学)	羽	成	修	康
11	博士 (農学)	島	居	征	司	"					-
知能機械	創製理工学教育	プロ	グラ	<i>ъ</i> Д							
教 授	博士 (工学)	天	谷	賢	児	教 授	工学博士	魏		書	剛
11	博士 (工学)	石	間	経	章	"	博士(工学)	古	畑	朋	彦
11	工学博士	松	原	雅	昭	"	博士(工学)	半	谷	禎	彦
11	博士 (工学)	荘	司	郁	夫	"	博士(エネルギー科学)	鈴	木	孝	明
11	博士 (工学)	林		偉	民	"	博士(工学)	荒	木	幹	也
11	博士 (工学)	山	\square	誉	夫	"	博士 (情報科学)	中	沢	信	明
"	博士 (工学)	藤	井	雄	作	"	博士 (工学)	丸	山	真	
"	博士 (工学)	山	\mathbb{H}		功	"	博士 (工学)	松	浦		勉
准教授	博士 (工学)	舩	津	賢	人	准教授	博士 (工学)	小	山	真	司
11	博士 (工学)	岩	崎		篤	11	博士 (工学)	井	上	雅	博
11	博士 (工学)	安	藤	嘉	則	11	博士 (工学)	Ш	島	久	宜
11	博士 (工学)	村	上	岩	範	11	博士 (工学)	座	間	淑	夫
11	博士 (工学)	相	原	智	康	11	博士 (学術)	Md A	bdus S	Samad	Kamal
客員教授	博士(工学) (群馬県立産業技術センタ	鏑	木	哲	志	"	博士 (工学)	鈴	木	良	祐
11	博士 (工学) (富士電機株式会社)	渡	邉	裕	彦	"	博士 (工学) (日本原子力研究開発機構)	若	井	隆	純
講師(非)	博士(工学)	鈴	木	秀	和	講師(非)	博士(工学)	金	子		誠
11	博士 (工学)	安	藤	哲	也	"	工学博士	藪	野	浩	司
11	学士		形	尚	道	11	理工学修士	榎	本	秀	喜
11	工学修士	小	Ш	幸	裕	11	工学学士	江	本	聞	夫
						11	博士(工学)	市	村	智	康
						"	工学博士	志	賀	聖	
環境創生	理工学教育プロ	グラ	Д								
教 授	理学博士	板	橋	英	之	教 授	博士(工学)	金	井	昌	信
11	博士 (工学)	大	嶋	孝	之	11	博士(工学)	清	水	義	彦
11	工学博士	尾	崎	純		"	工学博士	中	川	紳	好
11	博士(工学)	小	澤洋	苘 津	雄	11	博士(工学)	若	井	明	彦
11	博士(工学)	桂		進	司	11	博士(工学)	渡	邉	智	秀
11	工学博士	黒	\square	真							
11	博士 (工学)	河	原		豊						
准教授	博士 (工学)	伊	藤		司	准 教 授	博士(工学)	佐	藤	和	好

准	教	授	博士	(工学)	鵜	﨑	賢	
	11		博士	(理学)	大	重	真	彦
	11		博士	(工学)	蔡			飛
	11		博士	(工学)	斎	藤	隆	泰
客	員 教	授		(工学)			裕	Ξ
			(電力中	央研究所エネルキ	「一技術	研究所	F)	
客員	員准孝	教授	博士	(工学)	丹	野	賢	<u> </u>
			(電力中	央研究所エネルキ	デー技術	研究所	F)	
講自	師(非)	工学†	尊士	鷹	觜	利	公
	11		理学†	尊士	八	木	浩	司
	11		博士	(理学)	佐	藤		剛

博士 (工学)	野	\boxplus	玲	治
博士 (工学)	原	野	安	土
博士 (理学)	樋	山	みや	っぴ
博士 (工学)	森	本	英	行
博士 (工学)	野	\mathbb{H}	直	希
(電力中央研究所エネルキ	「一技術	研究所	ŕ)	
博士 (工学)	滝	山	博	志
工学博士	水	野		彰
博士 (工学)	吉	澤	徳	子
博士 (工学)	秦		康	範
博士 (工学)	廣	井		悠
	博士 (工学) 博士 (工学) 博士 (工学) 博士 (工学) (電力中央研究所エネルキ 博士 (工学) 工学博士 博士 (工学) 博士 (工学) 工学博士 博士 (工学) 博士 (工学)	博士(工学) 原 博士(理学) 樋 博士(工学) 森 博士(工学) 野 (電力中央研究所エネルギー技術 博士(工学) 滝 工学博士 水 博士(工学) 吉 博士(工学) 秦	博士(工学) 原 野 博士(理学) 樋 山 博士(工学) 森 本 博士(工学) 野 田 (電力中央研究所エネルギー技術研究可 博士(工学) 滝 山 工学博士 水 野 博士(工学) 吉 澤 博士(工学) 秦	博士(工学) 原 野 安 博士(理学) 樋 山 みペ 博士(工学) 森 本 英 博士(工学) 野 田 直 (電力中央研究所エネルギー技術研究所) 博士(工学) 滝 山 博 工学博士 水 野 博士(工学) 吉 澤 徳 博士(工学) 秦 康

電子情報・数理教育プログラム

教		授	工学博士	花	泉		修	教		授	博士 (工学)	太	田	直	哉
	11		博士 (工学)	本	島	邦	行		11		工学博士	関		庸	
	11		博士 (工学)	小	林	春	夫		11		博士 (工学)	天	野		幸
	11		博士 (工学)	櫻	井		浩		11		博士 (理学)	高	橋		学
	11		博士 (工学)	中	野	眞	_		11		理学博士	渡	辺	秀	司
	11		博士 (理学)	田	沼		実		11		理学博士	天	羽	雅	昭
准	教	授	博士 (工学)	尾	崎	俊	<u> </u>		11		博士 (理学)	曾	根	逸	人
	11		博士 (工学)	Ξ	浦	健	太		11		博士 (工学)	橋	本	誠	司
	11		理学博士	佐	藤	守	彦		11		博士 (理学)	神	谷	富	裕
	11		博士 (工学)	高	橋	佳	孝		11		博士 (工学)	長	尾	辰	哉
	11		博士 (理学)	高	橋	俊	樹		11		博士 (工学)	加	藤		毅
	11		博士 (工学)	高	井	伸	和		11		博士 (工学)	後	藤	民	浩
	11		博士 (工学)	弓	仲	康	史		11		博士 (工学)	奥		寛	雅
	11		博士 (工学)	伊	藤	直	史	准	教	授	工学博士	藤	\mathbb{H}	憲	悦
	11		博士 (工学)	Ξ	輪	空	司		11		博士 (工学)	荒	木		徹
	11		博士 (理学)	名	越	弘	文		11		博士 (情報学)	河	西	憲	
	11		理学博士	古	澤	伸			11		博士 (理学)	守	\mathbb{H}	佳	史
	11		博士 (工学)	浜	名		誠		11		博士 (理学)	引	原	俊	哉
	11		博士 (工学)	栗	\boxplus	伸	幸		11		博士 (理学)	鈴	木	真粉	庄子
	11		博士 (理学)	宮	崎	隆	史		11		博士 (工学)	尹			友
	11		博士 (理学)	大	塚		岳		11		博士 (数理学)	高江	口洲	俊	光
									11		博士 (工学)	加	田		渉
									11		博士 (工学)	安	藤	崇	央
									11		博士 (理学)	鹿	野		豊
客」	員教	授	理学博士 ((株)日立製作所中央研究		橋	照	生	客員	員 教	授	工学博士	松	Ξ	順	-
	11		理学博士 ((株) 日立製作所基礎研究所	齊 、Acc	藤 Sys Teo	和 chnolog	夫 y. Inc)		11		博士(工学) ((株) アドバンテスト)	浅	見	幸	司
	11		博士(工学) ((株)日立製作所日立研究		々木	直	哉		11		博士(工学) ((株) アドバンテスト)	石	Ξ	雅	裕

客員教授	博士 (工学)	Ξ	木	隆	博
	(ルネサスエレクトロニク	ス (株	.))		
11	工学博士	原	Β	Η	研
	((国)理化学研究所)				
客員准教授	博士 (工学)	Ξ	谷	武	志
	(産業技術総合研究所)				
講 師(非)	修士 (工学)	元	澤	篤	史
11	博士 (理学)	岡	部	裕志	鄎
11	工学士	伊	藤	正.	雄
11	修士 (工学)	岩	渕	真	人
11	Ph.D.	Moh	d Abd	lur Ra	Ishid

客 員 教 授	博士 (工学)	小	関	玉	夫
"	(産業技術総合研究所) 工学博士 (産業技術総合研究所)	Ξ	中	保	宣
講 師(非)	博士 (理学)	音		賢	_

◎博士後期課程

<理工学府>

物質・生	命理工学領域												
教 授	博士 (工学)	浅	Л	直	紀	教		授	博士(エネルギー科学)	白	石	壮	志
11	理学博士	浅	野	素	子		11		博士 (理学)	住	吉	吉	英
11	博士 (工学)	網	井	秀	樹		11		博士 (理学)	袁	山	正	史
11	博士 (理学)	上	原	宏	樹		11		博士 (工学)	高	橋		浩
11	理学博士	海	野	雅	史		11		工学博士	武	田	茂	樹
11	理学博士	奥	津	哲	夫		11		博士(理学)	中	村	洋	介
11	工学博士	尾	崎	広	明		11		理学博士	花	屋		実
11	博士 (工学)	粕	谷	健			11		博士(農学)	松	尾		郎
11	理学博士	久	新	荘-	一郎		11		工学博士	山	延		健
11	博士 (理学)	京	免		徹		11		理学博士	山	本	隆	夫
11	工学博士	T	藤	貴	子		11		理学博士	若	松		馨
11	博士 (農学)	佐	藤	記		准	教	授	博士 (理学)	行	木	信	
准教授	博士 (医学)	井	上	裕	介		11		博士 (理学)	藤	沢	潤	<u> </u>
11	博士 (工学)	岩	本	伸	司		11		博士 (工学)	堀	内	宏	明
11	農学博士	榎	本		淳		11		博士 (理学)	森	\square	朋	尚
11	博士 (理学)	奥		浩	之		11		理学博士	山	路		稔
11	博士 (工学)	高	橋		剛		11		博士 (工学)	山	\mathbb{H}	圭	<u> </u>
11	博士 (理学)	武	田	亘	弘		11		博士 (工学)	吉	原	利	忠
11	博士 (工学)	橘		熊	野		11		工学博士	米	山		賢
客員教授	博士(工学) (理化学研究所)	冏	部	英	喜	客	員 教	授	博士(工学) (量子科学技術研究開発機	田 (構)		光	ΤĒ.
11	理学博士	Л	島	隆	幸		11		理学博士 (産業技術総合研究所)	野	▽瀬	菜種	恵子
11	Ph.D (産業技術総合研究所)	齋	藤		剛		11		工学博士 (量子科学技術研究開発機	前 (構)	Л	康	成
11	博士(工学) (量子科学技術研究開発機	瀬 ^(構)	古	典	明		11		博士 (工学) (量子科学技術研究開発機	八 (構)	巻	徹	也

客	員	教	授	Ph.D	Jie Wu
				(中国科学院過程工程研究所)	

- Wei Wei 11 Ph.D (中国科学院過程工程研究所)
- 客員教授 Ph.D Guanghui Ma (中国科学院過程工程研究所)
 - 11 Ph.D Songping Zhang (中国科学院過程工程研究所)
 - Ph.D Xuehai Yan 11 (中国科学院過程工程研究所)

知能機械創製理工学領域

教 授	博士 (工学)	天	谷	賢	児	教		授	工学博士	魏		書	剛
11	博士 (工学)	石	間	経	章		11		博士 (工学)	古	畑	朋	彦
11	工学博士	松	原	雅	昭		11		博士 (工学)	半	谷	禎	彦
11	博士 (工学)	荘	司	郁	夫		11		博士(エネルギー科学)	鈴	木	孝	明
11	博士 (工学)	林		偉	民		11		博士 (工学)	荒	木	幹	也
11	博士 (工学)	山	\square	誉	夫		11		博士 (情報科学)	中	沢	信	明
11	博士 (工学)	藤	井	雄	作		11		博士 (工学)	丸	山	真	
11	博士 (工学)	山	\mathbb{H}		功		11		博士 (工学)	松	浦		勉
准教授	博士 (工学)	舩	津	賢	人	准	教	授	博士 (工学)	井	上	雅	博
11	博士 (工学)	岩	崎		篤		11		博士 (工学)	Л	島	久	宜
11	博士 (工学)	安	藤	嘉	則		11		博士 (工学)	座	間	淑	夫
11	博士 (工学)	村	上	岩	範		11		博士(学術)	Md Al	bdus S	amad l	Kamal
11	博士 (工学)	小	山	真	司		11		博士 (工学)	鈴	木	良	祐
客員教授	Ph.D (中国科学院過程工程研究		Vei V	Nan	g								
11	博士 (工学)	鏑	木	哲	志								

環境創生理工学領域

教		授	理学	尊士	板	橋	英	之	教		授	博士	(工学)	金	井	昌	信
	11		博士	(工学)	大	嶋	孝	之		11		博士	(工学)	清	水	義	彦
	11		工学	専士	尾	崎	純			11		工学†	尊士	中	Л	紳	好
	11		博士	(工学)	小	澤	満済	聿雄		11		博士	(工学)	若	井	明	彦
	11		博士	(工学)	桂		進	司		11		博士	(工学)	渡	邉	智	秀
	11		工学	専士	黒	\mathbb{H}	真										
	11		博士	(工学)	河	原		豊									
准	教	授	博士	(工学)	伊	藤		司	准	教	授	博士	(工学)	斎	藤	隆	泰
	11		博士	(工学)	鵜	﨑	賢			11		博士	(工学)	佐	藤	和	好
	11		博士	(理学)	大	重	真	彦		11		博士	(工学)	野	\boxplus	玲	治
	11		博士	(工学)	蔡			飛		11		博士	(理学)	樋	山	みや	らび
										11		博士	(工学)	森	本	英	行
客	員 教	授		(工学) _{央研究所エネ}	白 ルギー技術	井	裕	Ξ	客	員 教	授		(工学) _{央研究所エネル}	野 レギー技術	田研究所	直 f)	希
	11		Ph.D (中国科:	学院過程工程	Dan 研究所)	Wa	ng			11		Ph.D (中国科	学院過程工程研	开究所)	Wei	Ge	

•	-e 1														
教		授	工学博士	花	泉		修	教		授	博士 (工学)	太	田	直	哉
	11		博士(工学)	本	島	邦	行		11		工学博士	関		庸	
	11		博士 (工学)	小	林	春	夫		11		博士(工学)	天	野		幸
	11		博士 (工学)	櫻	井		浩		11		博士 (理学)	高	橋		学
	11		博士(工学)	中	野	眞			11		理学博士	渡	辺	秀	司
	11		博士 (理学)	田	沼	-	実		11		理学博士	天	羽	雅	昭
	11		博士 (工学)	奥		寛	雅		11		博士 (理学)	曾	根	逸	人
	"		博士 (工学)	加	藤		毅		11		博士 (工学)	橋	本	誠	司
									11		博士 (理学)	神	谷	富	裕
									11		博士 (工学)	長	尾	辰	哉
									11		博士 (工学)	後	藤	民	浩
准	教	授	博士 (工学)	尾	崎	俊	\exists	准	教	授	博士 (情報学)	河	西	憲	
	11		博士 (工学)	Ξ	浦	健	太		11		博士 (理学)	守	\square	佳	史
	11		博士 (工学)	高	橋	佳	孝		11		博士 (理学)	引	原	俊	哉
	11		博士 (理学)	高	橋	俊	樹		11		博士 (理学)	名	越	弘	文
	"		博士 (工学)	弓	仲	康	史		11		博士 (工学)	栗	田	伸	幸
	11		博士 (工学)	Ξ	輪	空	司		11		博士 (理学)	鈴	木	真粉	庄子
	"		理学博士	古	澤	伸			11		博士 (理学)	宮	崎	隆	史
	11		工学博士	藤	田	憲	悦		11		博士 (工学)	尹			友
	11		博士 (工学)	荒	木		徹		11		博士 (工学)	加	田		渉
									11		博士 (理学)	鹿	野		豊
客	員教	女 授	理学博士 ((株)日立製作所中:	孝 _{央研究所)}	橋	照	生	客	員教	(授	工学博士	松	Ξ	順	
	11		理学博士 ((株)日立製作所基	齊	藤	和	夫		11		博士(工学) ((株) アドバンテスト)	浅	見	幸	司
	11		博士(工学)	佐	∀木	直	哉		11		博士 (工学)	石	田	雅	裕
	11		((株) 日立製作所日: 博士(工学)	Ξ	木	隆	博		11		((株) アドバンテスト) 博士(工学)	小	関	国	夫
			(ルネサスエレクトロ		()) ()		ТI				(産業技術総合研究所)	пт	.H-1	<i>(</i>	<i>\</i> ⇒
	11		工学博士 ((国)理化学研究所)				研		11		工学博士 (產業技術総合研究所)	Ħ	中	保	宣
客員	員准教	 牧授	博士 (工学) (產業技術総合研究所	Ē)	谷	武	志								

電子情報・数理領域

理工学部教室配置図(桐生地区)

8 号館(8 N棟)1 階 3 号館 1 階

4号館1階

7 号館2 踏 3 号館1 踏 6 号館1 踏

Ň

E

2階

吹抜

Ň

₩N 8 8 N 2 1

8号館

授

理工学部教室配置図(太田地区)

理工学府要覧(非売品)

発行者 〒 376-8515 桐生市天神町一丁目5番1号
 群馬大学大学院理工学府
 担当 学務係
 (0277) 30 - 1037,1039