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Abstract

In this article we proved so-called strong reflection principles corresponding
to formal theories 7/ which has omega-models or nonstandard model with
standard part. A possible generalization of Lob’s theorem is considered. Main
results are: 1) —Con(ZFC+3IM[) , 2) —Con(ZF+(V=L)) , 3)

—|C0n(NF +3aAMm ) ,4) —Con(ZFC,), 5) let kbe inaccessible cardinal then
—Con(ZFC +3k).
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1. Introduction

Main Results

Let us remind that accordingly to naive set theory, any definable collection is a
set. Let R be the set of all sets that are not members of themselves. If R qualifies
as a member of itself, it would contradict its own definition as a set containing
all sets that are not members of themselves. On the other hand, if such a set is
not a member of itself, it would qualify as a member of itself by the same defini-
tion. This contradiction is Russell’s paradox. In 1908, two ways of avoiding the
paradox were proposed, Russell’s type theory and Zermelo set theory, the first
constructed axiomatic set theory. Zermelo’s axioms went well beyond Frege’s
axioms of extensionality and unlimited set abstraction, and evolved into the
now-canonical Zermelo-Fraenkel set theory ZFC. “But how do we know that

ZFC is a consistent theory, free of contradictions? The short answer is that we

DOI: 10.4236/apm.2019.99034 Sep. 16, 2019 685 Advances in Pure Mathematics


https://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2019.99034
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/apm.2019.99034
http://creativecommons.org/licenses/by/4.0/

J. Foukzon, E. Men’kova

don’t; it Is a matter of faith (or of skepticism)”—E. Nelson wrote in his paper [1].
However, it is deemed unlikely that even ZFC, which is significantly stronger
than ZFC harbors an unsuspected contradiction; it is widely believed that if ZFC
and ZFC, were consistent, that fact would have been uncovered by now. This
much is certain—ZFCand ZFC, are immune to the classic paradoxes of naive set
theory: Russell’s paradox, the Burali-Forti paradox, and Cantor’s paradox.

Remark 1.1.1. The inconsistency of the second-order set theory ZFC2082
originally have been uncovered in [2] and officially announced in [3], see also
ref. [4] [5] [6].

Remark 1.1.2. In order to derive a contradiction in second-order set theory
ZFC, with the Henkin semantics [7], we remind the definition given in P. Cohen
handbook [8] (see [8] Ch. IIL, sec. 1, p. 87). P. Cohen wrote: “A set which can be
obtained as the result of a transfinite sequence of predicative definitions Godel
called ‘constructible’”. His result then is that the constructible sets are a model
for ZF and that in this model GCH and AC hold. The notion of a predicative
construction must be made more precise, of course, but there is essentially only
one way to proceed. Another way to explain constructibility is to remark that the
constructible sets are those sets which just occur in any model in which one ad-
mits all ordinals. The definition we now give is the one used in [9].

Definition 1.1.1. [8]. Let X be a set. The set X' is defined as the union of X
and the set Y of all sets yfor which there is a formula A(z,tl TN A ) in ZF such
that if 4, denotes A with all bound variables restricted to X, then for some
L=l k,in X

y:{zeX|AX(z,t_l,-~~,t_k)}. (1)

Observe X’gP(x)UX, X'=X if X is infinite (and we assume AQ). It
should be clear to the reader that the definition of X', as we have given it, can
be done entirely within ZFand that Y = X' is a single formula A(X,Y) in ZF.
In general, one’s intuition is that all normal definitions can be expressed in ZF
except possibly those which involve discussing the truth or falsity of an infinite
sequence of statements. Since this is a very important point we shall give a ri-
gorous proof in a later section that the construction of X' is expressible in
ZF>

Remark 1.1.3. We will say that a set y is definable by the formula
A(z,t,,---,1,) relative to a given set X.

Remark 1.1.4. Note that a simple generalisation of the notion of the defina-
bility which has been by Definition 1.1.1 immediately gives Russell’s paradox in
second order set theory ZFC, with the Henkin semantics [7].

Definition 1.1.2. [6]. i) We will say that a set yis definable relative to a given
set X iff there is a formula A(z4f,---,t,) in ZFC then for some
I e X,i=1,--,k,in Xthere exists a set zsuch that the condition A(z,%,---,7 )

is satisfied and y =z or symbolically

EIz[A(z,t_l,---,t_k)/\y:z]. (2)
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It should be clear to the reader that the definition of X', as we have given it,
can be done entirely within second order set theory ZFC, with the Henkin se-
mantics [7] denoted by ZFC," and that ¥ =X’ is a single formula A(X,Y)
in ZFCJ" .

ii) We will denote the set Y of all sets y definable relative to a given set X by

&,

Definition 1.1.3. Let %" be a set of the all sets definable relative to a given
set Xby the first order 1-place open wff’s and such that

Vx(xeSf‘)[xeiRT <:>xe£x]. (3)

Remark 1.1.5. (a) Note that R)" € 37" since R]" is a set definable by the
first order 1-place open wiff ‘P(Z,st ) :

(2,3 )2 Vx(xe 3 )[xeZ < xex], (4)

Theorem 1.1.1. [6]. Set theory ZFC)" is inconsistent.

Proof. From (3) and Remark 1.1.2 one obtains
R e R o R & R (5)
From (5) one obtains a contradiction

(R e R )A (R 2 RE). (6)

Remark 1.1.6. Note that in paper [6] we dealing by using following definabil-
ity condition: a set yis definable if there is a formula A(z) in ZFCsuch that

Eiz[A(z)/\y:Z]. (7)

Obviously in this case a set ¥ =R} isa countable set.
Definition 1.1.4. Let R} be the countable set of the all sets definable by the

first order 1-place open wif’s and such that

Vx(xeﬁf“')[xei}?f“' @x%x]. (8)

Remark 1.1.7. (a) Note that R}" € 3" since R]" is a set definable by the
first order 1-place open wif ¥ (Z,Sf") :

(2,3 )2 Vx(xe 3 )[xeZ < xex], 9)

one obtains a contradiction (*Rfs e Ry ) A (‘Rfs e Ry’ )

In this paper we dealing by using following definability condition.

Definition 1.1.5. i) Let M, = M2 be a standard model of ZFC. We will
say that a set y is definable relative to a given standard model M, of ZFC if
there is a formula A(z,#,---,t,) in ZFC such that if 4, denotes A with all
0> l Lok, in M,

then for some 7 eM, ,i=
there exists a set z such that the condition AM” (z,ﬂ,---,ﬁ) is satisfied and

bound variables restricted to M

y =z or symbolically
HZ[AM‘” (z,z,---,t_k)/\yzz:l. (10)

It should be clear to the reader that the definition of A/, as we have given it,

can be done entirely within second order set theory ZFC, with the Henkin se-
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mantics.

ii) In this paper we assume for simplicity but without loss of generality that
Ay (2.8,.5)= 4, (2). (11)

Remark 1.1.8. Note that in this paper we view i) the first order set theory ZFC
under the canonical first order semantics ii) the second order set theory ZFC,
under the Henkin semantics [7] and iii) the second order set theory ZFC, under
the full second-order semantics [8] [9] [10] [11] [12] but also with a proof theory
based on formal Urlogic [13].

Remark 1.1.9. Second-order logic essentially differs from the usual first-order
predicate calculus in that it has variables and quantifiers not only for individuals
but also for subsets of the universe and variables for n-ary relations as well
[7]-[13]. The deductive calculus DED, of second order logic is based on rules
and axioms which guarantee that the quantifiers range at least over definable
subsets [7]. As to the semantics, there are two types of models: i) Suppose U is
an ordinary first-order structure and S is a set of subsets of the domain A of

U . The main idea is that the set-variables range over S, ie.

(U.S)FIXD(X) < 3S(SeS)[(U.S)Fa(S)].

We call (U,S) a Henkin model, if (U,S) satisfies the axioms of DED,
and truth in <U,S> is preserved by the rules of DED,. We call this semantics
of second-order logic the Henkin semantics and second-order logic with the
Henkin semantics the Henkin second-order logic. There is a special class of
Henkin models, namely those <U, S) where S is the set of all subsets of A.

We call these full models. We call this semantics of second-order logic the full
semantics and second-order logic with the full semantics the full second-order
logic.

Remark 1.1.10. We emphasize that the following facts are the main features
of second-order logic:

1) The Completeness Theorem: A sentence is provable in DED, if and
only if it holds in all Henkin models [7]-[13].

2) The Léwenheim-Skolem Theorem: A sentence with an infinite Henkin
model has a countable Henkin model.

3) The Compactness Theorem: A set of sentences, every finite subset of
which has a Henkin model, has itself a Henkin model.

4) The Incompleteness Theorem: Neither DED, nor any other effectively
given deductive calculus is complete for full models, that is, there are always
sentences which are true in all full models but which are unprovable.

5) Failure of the Compactness Theorem for full models.

6) Failure of the Lowenheim-Skolem Theorem for full models.

7) There is a finite second-order axiom system Z, such that the semiring
N of natural numbers is the only full model of Z, up to isomorphism.

8) There is a finite second-order axiom system RCF, such that the field R of

the real numbers is the only full model of RCF, up to isomorphism.

DOI: 10.4236/apm.2019.99034

688 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2019.99034

J. Foukzon, E. Men’kova

Remark 1.1.11. For let second-order ZFC be, as usual, the theory that results
obtained from ZFC when the axiom schema of replacement is replaced by its

second-order universal closure, ie.

‘V’X[Func(X): Vu3 er[r eve Els(s cun(s,r)e X)]], (12)

where X is a second-order variable, and where Func(X) abbreviates “X is a
functional relation”, see [12].

Thus we interpret the wif’s of ZFC, language with the full second-order se-
mantics as required in [12] [13] but also with a proof theory based on formal
urlogic [13].

Designation 1.1.1. We will denote: i) by ZFCJ* set theory ZFC, with the
Henkin semantics,

ii) by ZFCJ® settheory ZFC, with the full second-order semantics,

iii) by ZFC! settheory ZFC!* +3aM*" and

iv) by ZFC, set theory ZFC+3M’“, where M!' is a standard model of
the theory 77.

Remark 1.1.12. There is no completeness theorem for second-order logic
with the full second-order semantics. Nor do the axioms of ZFCJ* imply a
reflection principle which ensures that if a sentence Z of second-order set theory
7 of ZRCH [11).

Let Zbe the conjunction of all the axioms of ZFCJ*. We assume now that: Z

is true, ie. Con(ZFC{“). It is known that the existence of a model for Z re-

is true, then it is true in some model M

quires the existence of strongly inaccessible cardinals, 7.e. under ZFC it can be
shown that x is a strongly inaccessible if and only if (H,,e) is a model of
ZFCJ* . Thus

—Con(ZFC{" ) = —Con(ZFC +3x). (13)

In this paper we prove that:

i) ZFC, 2 ZFC+3aMZXC ii) ZFC'™ & zFC! +aMZ " and iii) ZFC is
inconsistent, where M is a standard model of the theory 7h.

Axiom 3IM“C [8]. There is a set M“C and a binary relation
e M7 x M# which makes M “C 2 model for ZFC.

Remark 1.1.13. i) We emphasize that it is well known that axiom 3IM*C a
single statement in ZFC see [8], Ch. II, Section 7. We denote this statement
thought all this paper by symbol Con(ZF C; M C). The completeness theorem
says that IM 7 < Con(ZFC).

ii) Obviously there exists a single statement in ZFC,” such that
M7 & Con(ZFCS").

We denote this statement through all this paper by symbol
Con (ZFCZHS;M - CZHS) and there exists a single statement IM” in Z. We
denote this statement through all this paper by symbol Con (sz M7 ) .

Axiom 3IM [8]. Thereisaset M ™ such thatif Ris
{(x,y)\xey/\xe MZ Aye MSZth} then M is a model for ZFC under
the relation R.
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Definition 1.1.6. [8]. The model M7 is called a standard model since the
relation € used is merely the standard € -relation.

Remark 1.1.14. Note that axiom 3IM* doesn’t imply axiom 3IMZC, see
ref. [8].

Remark 1.1.15. We remind that in Henkin semantics, each sort of second-order
variable has a particular domain of its own to range over, which may be a proper
subset of all sets or functions of that sort. Leon Henkin (1950) defined these se-
mantics and proved that Godel’s completeness theorem and compactness theorem,
which hold for first-order logic, carry over to second-order logic with Henkin se-
mantics. This is because Henkin semantics are almost identical to many-sorted
first-order semantics, where additional sorts of variables are added to simulate
the new variables of second-order logic. Second-order logic with Henkin seman-
tics is not more expressive than first-order logic. Henkin semantics are com-
monly used in the study of second-order arithmetic. Vddndnen [13] argued that
the choice between Henkin models and full models for second-order logic is
analogous to the choice between ZFCand V (V is von Neumann universe),
as a basis for set theory: “As with second-order logic, we cannot really choose
whether we axiomatize mathematics using V or ZFC. The result is the same in
both cases, as ZFC'is the best attempt so far to use V as an axiomatization of
mathematics”.

Remark 1.1.16. Note that in order to deduce: i) ~ Con(ZFCZH“') from
Con(ZFCZH S),

ii) ~Con(ZFC) from Con(ZFC), by using Godel encoding, one needs
something more than the consistency of ZFC)", e.g., that ZFC}® has an
omega-model M*“" or an standard model M7 je, a model in which
the integers are the standard integers and the all witf of ZFC)"®, ZFC, etc.
represented by standard objects. To put it another way, why should we believe a
statement just because there’s a ZFC," -proof of it? It’s clear that if ZFC," is
inconsistent, then we won’t believe ZFC." -proofs. What’s slightly more subtle
is that the mere consistency of ZFC, isn’t quite enough to get us to believe
arithmetical theorems of ZFC." ; we must also believe that these arithmetical
theorems are asserting something about the standard naturals. It is “conceivable”
that ZFCJ® might be consistent but that the only nonstandard models
M7 it has are those in which the integers are nonstandard, in which case we
might not “believe” an arithmetical statement such as “ ZFC," is inconsistent”
even if thereisa ZFC," -proof of it.

Remark 1.1.17. Note that assumption IM " is not necessary if nonstan-
dard model MZ" is a transitive or has a standard part M7*" < M7, see
[14] [15].

Remark 1.1.18. Remind that if A/ is a transitive model, then @" is the
standard @ . This implies that the natural numbers, integers, and rational
numbers of the model are also the same as their standard counterparts. Each

real number in a transitive model is a standard real number, although not all
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standard reals need be included in a particular transitive model. Note that in
any nonstandard model M72" of the second-order arithmetic Z!* the terms
0,80 =1,880 =2,--- comprise the initial segment isomorphic to M?*" < M7’ .
This initial segment is called the standard cut of the A ﬁftl . The order type of
any nonstandard model of Mﬁg is equal to N+ AxZ, see ref. [16], for some
linear order A.

Thus one can choose Gédel encoding inside the standard model 77"

Remark 1.1.19. However there is no any problem as mentioned above in
second order set theory ZFC, with the full second-order semantics because
corresponding second order arithmetic ZJ* is categorical.

Remark 1.1.20. Note if we view second-order arithmetic Z, as a theory in
first-order predicate calculus. Thus a model M of the language of second-order
arithmetic Z, consists of a set M (which forms the range of individual variables)
together with a constant 0 (an element of M), a function § from M to M, two bi-
nary operations + and x on A4 a binary relation < on A4 and a collection D of
subsets of A, which is the range of the set variables. When D is the full power set
of M, the model M* is called a full model. The use of full second-order seman-
tics is equivalent to limiting the models of second-order arithmetic to the full
models. In fact, the axioms of second-order arithmetic have only one full model.
This follows from the fact that the axioms of Peano arithmetic with the
second-order induction axiom have only one model under second-order seman-
tics, i.e. Z,, with the full semantics, is categorical by Dedekind’s argument, so
has only one model up to isomorphism. When A is the usual set of natural
numbers with its usual operations, M” is called an w-model. In this case we
may identify the model with D, its collection of sets of naturals, because this set
is enough to completely determine an w-model. The unique full omega-model
szf , which is the usual set of natural numbers with its usual structure and
all its subsets, is called the intended or standard model of second-order arith-

metic.

2. Generalized Lob’s Theorem. Remarks on the Tarski’s
Undefinability Theorem

2.1. Remarks on the Tarski’s Undefinability Theorem
Remark 2.1.1. In paper [2] under the following assumption

Con(ZFC+3M ™) (14)
it has been proved that there exists countable Russell’s set 9}, such that the
following statement is satisfied:

ZFC+3IMC F3R,, (R, e M) A(card (R,) =N,

(15)
/\[|=M§FC Vx(xeR, ox¢ x)}

From (15) it immediately follows a contradiction
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':MgFC (m’” € inU)/\(“Rm & mn))' (16)

From (16) and (14) by reductio and absurdum it follows
—Con(ZFC+3M ") (17)

Theorem 2.1.1. [17] [18] [19]. (Tarski’s undefinability theorem). Let Th.,
be first order theory with formal language <, which includes negation and has
a Godel numbering g(o) such that for every  -formula A(x) there is a
formula B such that B « A( g(B)) holds. Assume that Th , has a standard
model M ;" and Con(Th, ,) where

Th, ,=Th, +3M" . (18)

7 st

Let 7" be the set of Gédel numbers of  -sentences true in M "~ . Then
thereisno * -formula True(n) (truth predicate) which defines 7. That is,

thereisno  -formula True(n) such that for every  -formula 4,
True(g(4)) < [4],n. (19)
where the abbreviation [ A]MTh _ means that 4 holds in standard model M STt" 2R

ie [A],mn. -, m A Therefore Con(Th , ) implies that
—.EITrue(x)(True(g(A)) = [A]Msrth/ ) (20)

Thus Tarski’s undefinability theorem reads

Con(Th., )= ~3True(x)(True(g(4)) < [4],n. )- 1)

Remark 2.1.2. i) By the other hand the Theorem 2.1.1 says that given some re-

ally consistent formal theory Th
of truth in that formal theory Th

that contains formal arithmetic, the concept

st
.« is not definable using the expressive means
that that arithmetic affords. This implies a major limitation on the scope of
“self-representation”. It is possible to define a formula True(n), but only by
drawing on a metalanguage whose expressive power goes beyond that of < . To
define a truth predicate for the metalanguage would require a still higher meta-
metalanguage, and so on.

ii) However if formal theory Th ,  is inconsistent this is not surprising if

st
we define a formula True(n):True(n;Th . ’S,) by drawing only on a lan-
guage .

iii) Note that if under assumption Con(Th . ,S,) we define a formula

True(n; Th , M) by drawing only on a language < by reductio ad absurdum

it follows

—~Con(Th , ). (22)

Remark 2.1.3. i) Let ZFC, be a theory ZFC, = ZFC+3M . In this pa-
per under assumption Con(ZFC,) we define a formula True(n;ZFC,) by
drawing only on a language /.. by using Generalized L6b’s theorem [4] [5].

Thus by reductio ad absurdum it follows
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—Con(ZFC+3M™ ). (23)

ii) However note that in this case we obtain —Con(ZFC, ) by using ap-
proach that completely different in comparison with approach based on deriva-

tion of the countable Russell’s set 9}, with conditions (15).

2.2. Generalized Lob’s Theorem

Definition 2.2.1. Let Th®, be first order theory and Con(Th#). A theory
Th*

/

is complete if, for every formula A4 in the theory’s language <, that
formula A or its negation —A4 is provable in Th® , ie, for any wff 4, always
Th”, -4 or Th" +—4.

Definition 2.2.2. Let Th , be first order theory and Con(Th , ). We will
say that a theory Th” is completion of the theory Th , ifi) Th, K —Th’ ,
i) a theory Th” is complete.

Theorem 2.2.1. [4] [5]. Assume that: Con(ZFC,,), where
ZFC, 2 ZFC+3M” . Then there exists completion ZFC! of the theory

ZFC,, such that the following conditions hold:
i) For every formula A in the language of ZFC'that formula [A]MM or formula

[—4],,zc is provable in ZFC! e, for any wif A, always ZFC’ - [4],,zc or
ZFC} b [—A], e -

ii) zrc} =], _,Th, , where for any m a theory Th,,, is finite extension
of the theory Th, .

iii) Let Pr) (y,x) be recursive relation such that: y is a Godel number of a
proof of the wif of the theory Th, and xis a Godel number of this wff. Then
the relation Pr) (y,x) is expressible in the theory Th, by canonical Godel

m+l1

encoding and really asserts provability in Th,, .
iv) Let Pr’

wif of the theory ZFC? and xis a Godel number of this wff. Then the relation
Pr’ ( », x) is expressible in the theory ZFC! by the following formula

( y,x) be relation such that: yis a Godel number of a proof of the

Pt (y,x) < Im(m e N)Pr (y,x) (24)

v) The predicate Pr’ ( y,x) really asserts provability in the set theory ZFC? .

Remark 2.2.1. Note that the relation Pr) ( y,x) is expressible in the theory
Th,, since a theory Th, is a finite extension of the recursively axiomatizable
theory ZFC and therefore the predicate Pr’ ( y,x) exists since any theory Th,,
is recursively axiomatizable.

Remark 2.2.2. Note that a theory ZFC’! obviously is not recursively axi-
omatizable nevertheless G6del encoding holds by Remark 2.2.1.

Theorem 2.2.2. Assume that: Con(ZFC, ), where ZFC, 2 ZFC+3M7“.
Then truth predicate True(n) is expressible by using only first order language

by the following formula
True(g(A))@Hy(yeN)Hm(meN)Pr:(y,g(A)). (25)

Proof. Assume that:
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ZFC}, & [A], e - (26)

It follows from (26) there exists m" =m"(g(4)) such that Th . +[4] s

and therefore by (24) we obtain
Pr/ (y,g(A))@ Pr:li (y,g(A)). 27)

From (24) immediately by definitions one obtains (25).
Remark 2.2.3. Note that Theorem 2.1.1 in this case reads

Con(ZFC,) = —3True(x)(True(g (4)) <[], e )- (28)

Theorem 2.2.3. —Con(ZFC,,).

Proof. Assume that: Con(ZFCﬁ). From (25) and (28) one obtains a contra-
diction Con(ZFC, )n—Con(ZFC,) (see Remark 2.1.3) and therefore by re-
ductio ad absurdum it follows —Con(ZFC,,).

Theorem 2.2.4. [4] [5]. Let M- be a nonstandard model of ZFC and let
M!" beastandard model of PA.

We assume now that M/ « M and denote such nonstandard model of
the set theory ZFC by MC =MIC [PA] . Let ZFC,, be the theory
ZFCy, = ZFC+ My, [ PA]. Assume that: Con(ZFC,, ), where
ZFC, 2 ZFC+3M[‘ . Then there exists completion ZFC}, of the theory

Nst
ZFC,,, such that the following conditions hold:
i) For every formula A in the language of ZFC'that formula [A]Mm or formula

[—A4],,zc is provable in ZFCy, ie, for any wff A, always ZFCj, +[A], e
Nst : Nst

or ZFC, [—4],, zec -

i) zFCy, =J _ Th, , where for any ma theory Th,, is finite extension
of the theory Th .

iii) Let Pr" ( y,x) be recursive relation such that: y is a Godel number of a
proof of the wif of the theory Th, and xis a Gédel number of this wff. Then
the relation Pr”

m

encoding and really asserts provability in Th,, .

( y,x) is expressible in the theory Th,,6 by canonical Gédel

iv) Let Prj, ( y,x) be relation such that: yis a Gédel number of a proof of
the wif of the theory ZFCj},, and xis a G3del number of this wif. Then the re-
lation Prj, ( ¥, x) is expressible in the theory ZFC},, by the following formula

Prl, (y,x) = Elm(m eM? )Pr,flv“" (y,x) (29)

v) The predicate Prj, ( y,x) really asserts provability in the set theory
ZFC,

Nst *

Remark 2.2.4. Note that the relation Pr'™

m

( y,x) is expressible in the theory
Th,, since a theory Th, is a finite extension of the recursively axiomatizable
theory ZFC and therefore the predicate Pr” ( y,x) exists since any theory
Th,, is recursively axiomatizable.

Remark 2.2.5. Note that a theory ZFC}, obviously is not recursively axi-

omatizable nevertheless Godel encoding holds by Remark 2.2.1.
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Theorem 2.2.5. Assume that: Con(ZFC,, ), where ZFC,, £ ZFC+3M ",
MM e MEC.

Then truth predicate True(n) is expressible by using first order language by
the following formula

True(g(4)) < y(y e M) Im(me M )P} (y,2(4)). (30)

Proof. Assume that:

ZFCyy, [ A], g - (31)
It follows from (29) there exists m* =m" (g(A)) such that Th ., [A]MZFC
m Nst

and therefore by (31) we obtain
Prf,x,(y,g(A))@Prjﬁ“(y,g(A)). (32)

From (32) immediately by definitions one obtains (30).
Remark 2.2.6. Note that Theorem 2.1.1 in this case reads

Con(ZFC,,) = —3True(x)(True(g(4)) < [4], uc ) (33)

Theorem 2.2.6. —Con(ZFC\,,,).

Proof. Assume that: Con(ZF CNY,) . From (30) and (33) one obtains a contra-
diction Con(ZFC\, )A—Con(ZFC,,
it follows —Con(ZFC,, ).

Theorem 2.2.7. Assume that: Con (% w ) , where
ZFC! 2 ZFC!™ +3M7 " | Then there exists completion ZFC™ of the
theory %f‘ such that the following conditions hold:

i) For every first order wff formula A (wff; A) in the language of ZFC," that

) and therefore by reductio ad absurdum

formula [A4] s or formula [—A] sy is provablein ZFC % je., for any
wif; A, always ZFC )™ [ A], zrefs or ZFCJ™ b [—A], zeele .

i) zrCcy =, _,
of the theory Th,,.

iii) Let Pr)(y,x) be recursive relation such that: yis a Godel number of a
proof of the wff, of the theory Th, and xis a Godel number of this wff,. Then

Th,, , where for any m a theory Th,,, is finite extension

the relation Pr) ( y,x) is expressible in the theory Th, by canonical Gédel
encoding and really asserts provability in Th,, .
iv) Let Pr’

wif of the set theory ZFC!*" and xis a Godel number of this wff,. Then the re-
lation Pr/ ( y,x) is expressible in the set theory ZFCZ* by the following for-

( y,x) be relation such that: yis a Godel number of a proof of the

mula
P’ (y,x) < Im(m e N)Pr (y,x) (34)

v) The predicate Pr’ ( y,x) really asserts provability in the set theory
Remark 2.2.7. Note that the relation Pr ( y,x) is expressible in the theory
Th,, since atheory Th,, isa finite extension of the finite axiomatizable theory
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ZFC!™ and therefore the predicate Pr'”(y,x) exists since any theory Th,
is recursively axiomatizable.

Remark 2.2.8. Note that a theory ZFC}, obviously is not recursively axi-
omatizable nevertheless Godel encoding holds by Remark 2.2.1.

Theorem 2.2.8. Assume that: Con (% w ) , where

ZFC!™ 2 ZFCIs +3MZ"

Then truth predicate True(n) is expressible by using first order language by
the following formula

True(g(A))@Ely(yeN)EIm(meN)Pr,‘;’ (y,g(A)), (35)

where A is wff].

Proof. Assume that:

ZFC P [ A], zrese . (36)

It follows from (34) there exists m* =m" ( g(A)) such that Th . - [4] e

and therefore by (36) we obtain
Pt (1,g(4)) = Pr’ (v,2(4)). (37)

From (37) immediately by definitions one obtains (35).
Remark 2.2.9. Note that in considered case Tarski’s undefinability theorem
(2.1.1) reads

Con (ﬁf‘v# ) = —EITrue(x)(True(g (A)) =N [A]Mch{” ), (38)

where A is wff,.

Theorem 2.2.9. —Con (%fs#).

Proof. Assume that: Con (%g"# . From (35) and (38) one obtains a con-
tradiction Con(ﬁf‘ v#)/\ﬂCon(%f‘#) and therefore by reductio ad ab-

surdum it follows —Con (ZF c ) .

3. Derivation of the Inconsistent Provably Definable Set in
Set Theory ZFCi*, ZFC, and ZFC,,

3.1. Derivation of the Inconsistent Provably Definable Set in Set
Theory ZFC3"

Definition 3.1.1. i) Let ® be a wff of ZFC*. We will say that @ is a first
order n-place open wiff if ® contains free occurrences of the first order indi-
vidual variables X|,---,X, and quantifiers only over any first order individual
variables Y,,---,Y .

ii) Let 3 be the countable set of the all first order provable definable sets X,
Le. sets such that qu F EI!X‘I’(X) , where ‘I—’(X) =¥, (X) is a first or-
der 1-place open wif that contains only first order variables (we will denote such
wif for short by wff,), with all bound variables restricted to standard model

_ agzZFCis -
M,=M_",le
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w{y €3 o ZFCI F3Y,, (X)[([‘PMW (X)] el I~y

(39)
A3, (X)AY = Xm}
or in a short notation
vr{y e S e ZFCE F 3w (X[ ([¥(X)]e T/ ~)
(40)

A [ () =x]]]}

Notation 3.1.1. In this subsection we often write for short W(X), Fy", T’y
instead W, (X),F", .I'{,, butthisshould notlead to a confusion.

Assumption 3.1.1. We assume now for simplicity but without loss of general-
ity that

nHoeM, (41)

X.Mg,

and therefore by definition of model A, = M**" one obtains '}, &M i
Let X¢ Y beapredicatesuchthat X¢ Y& ZFC' - X ¢Y . Let
ZFCy* ZFcy”

ZFC2

R be the countable set of the all sets such that

VX(XG%?Y)[XE‘J?T oXe X}. (42)

ZFC?"
From (42) one obtains

R e R o R N R (43)
ZFCY

But obviously (43) immediately gives a contradiction
(R & i) (sﬁf‘ e, W j (44)
2

Remark 3.1.1. Note that a contradiction (44) in fact is a contradiction inside

ZFC for the reason that predicate X ¢ Y is expressible by first order

77k
language as predicate of %;’S (see subsection 1.2, Theorem 1.2.8 (ii)-(iii))
and therefore countable sets 32 and %I are sets in the sense of the set
theory ZFCI.

Remark 3.1.2. Note that by using Godel encoding the above stated contradic-
tion can be shipped in special completion ZFC* of ZFC*, see subsection
1.2, Theorem 1.2.8.

Remark 3.1.3. i) Note that Tarski’s undefinability theorem cannot block the
equivalence (43) since this theorem is no longer holds by Proposition 2.2.1.
(Generalized Lobs Theorem).

ii) In additional note that: since Tarski’s undefinability theorem has been

proved under the same assumption IM/7" " by reductio ad absurdum it fol-

lows again —Con(ZFC,,, ), see Theorem 1.2.10.

Remark 3.1.4. More formally we can to explain the gist of the contradictions
derived in this paper (see Section 4) as follows.

Let M be Henkin model of ZFCJ*. Let R be the set of the all sets of M
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provably definable in ZFC1*, and let )" ={xe3}" :O(x ¢ x)} where 04
means “sentence A derivable in ZFCI"”, or some appropriate modification

thereof. We replace now formula (39) by the following formula
Wy {y e 5 o 3 (X[ ([ (X)] eI/~ ) ATB [P (X) A = x]]}.(45)
and we replace formula (42) by the following formula
VX (X eS| XeR! o D(XeX)]. (46)
Definition 3.1.2. We rewrite now (45) in the following equivalent form
VY{Y 5 =¥ (¥)| ([P (X)], T/~ )a(r = X)J}, (47)
where the countable set T'}/*/ ~, is defined by the following formula
vw(x){[w(x)] ey~ o |([¥(X)], €T/~ )A DEI!X‘P(X)J} (48)
Definition 3.1.3. Let R”" be the countable set of the all sets such that
VX(Xe3 )| XeR «0xex|. (49)

Remark 3.1.5. Note that %" € 3 since I is a set definable by the first
order 1-place open wif;:

(2R )EVX (X e )X ez D(X e X)] (50)

From (49) and Remark 3.1.4 one obtains

R e R e O(RE @ RI). (51)

But (51) immediately gives a contradiction
ZFCY (R e R )A (R e RY"). (52)
Remark 3.1.6. Note that contradiction (52) is a contradiction inside ZFCZ®
for the reason that the countable set I is a set in the sense of the set theory

In order to obtain a contradiction inside ZFC* without any reference to
Assumption 3.1.1 we introduce the following definitions.
Definition 3.1.4. We define now the countable set T';”*/~ by the follow-

ing formula

[y]HS e/~ < ([y]HS er’®/ ~V)/\ﬁ’f“'(y,v)/\[DEl!X‘Py’v (X)} (53)

Definition 3.1.5. We choose now [A in the following form

A
D2 Bew__, (#A)A| Bew _ (#4)= 4], (54)
Here Bew__.,, (#4) is a canonical Gédel formula which says to us that there
2

exists proof in  ZFC™  of the formula A with Godel number #4 .

Remark 3.1.7. Note that the Definition 3.1.5 holds as definition of predicate
really asserting provability of the first order sentence 4in ZFC

Definition 3.1.6. Using Definition 3.1.5, we replace now formula (48) by the
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following formula
v (X){[¥(x)]ery/ ~ o3¢ (X)([¥(X)]eTF ~y)
A[Bewﬁék (#(H!X[\P(X)/\YZX])” (55)

A[Bewﬁgj (#EX [P (X)AY =X]))= X [P(X)AY = Xﬂ}

Definition 3.1.7. Using Definition 3.1.5, we replace now formula (49) by the

following formula

VX (X eS) )[X e R o [Bewmm (#(Xex ))}
’ (56)

A Bew__y (#(X 2 X))= X e x|,

Definition 3.1.8. Using Proposition 2.1.1 and Remark 2.1.10 [6], we replace
now formula (53) by the following formula

w5{o], e (0], € ~)

AFr® (y,v)/\[Be - (B[, (X)AY = X])J (57)

W.
ZFC

A Bew__ (X[, (X)AY =X ])= 3 [, (X)AY = Xﬂ}

Definition 3.1.9. Using Definitions 3.1.4-3.1.6, we define now the countable

set 33 by formula

VY{Y e3™" o3y [([y] er;™/ ~V)A(gm£k (X)= vﬂ} (58)

Remark 3.1.8. Note that from the second order axiom schema of replacement
(12) it follows directly that 3™ is a set in the sense of the set theory ZFCZ" .
Definition 3.1.10. Using Definition 3.1.8 we replace now formula (56) by the

following formula

VX (X eF" )[X e o [BewZFCHA, (#(X e X))}
2

(59)
/\|:BewZFC§,S (#(X & X)) =>X¢ Xﬂ
Remark 3.1.9. Notice that the expression (60)
[BewZFcé,; (#(X e X))] A [Bewm;,s (B(Xex))=xe X} (60)

obviously is a well formed formula of ZFC!* and therefore a set R;™ isa set
in the sense of ZFC".
Remark 3.1.10. Note that 0™ e 33 since ;™ is a set definable by

1-place open wif

¥(Z. 9" )2 vx (X e3P )[X cZ o [Be w (H(X ¢ X))]

17%
ZFC>

A Bew_ (#(X & X)) = ¥ e Xﬂ (61)

Theorem 3.1.1. Set theory ZFC* 2 ZFC! +3M**" is inconsistent.
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Proof. From (59) we obtain

R e R o [BeWZchS (#(@EHS 3 ‘fm’;H‘))]

(62)
Ty Hs Ty x Hs 3% Hs Ty % Hs
/\[Bewﬁé,s (#(‘Rz ERUN )):> R eN; }
a) Assume now that:
fﬁ;m IS *JN”{;HX. (63)
. G xHs 3« Hs
Then from (62) we obtain '_zpcé* BewZFC?S (#(R2 zR; )) and
5 x Hs Ty« Hs T * Hs T+ Hs
F o Bew_ (#(R" R )) = R e Ry
therefore +__, R3™ ¢ R:™ and so
ZFCy
e S5 €T = R G (64)

From (63)-(64) we obtain
{}“{;H,s ESR;HS,S.)N?;HS EEREHS :gﬁ;]‘]s Eéﬁ;Hs FER;HA‘ E‘JN?;HS
T Hs T Hs T Hs 1 Hs
and thus I—%ék (‘Rf e R )/\(in g R, )

b) Assume now that

[Bewzpcgs (#(tﬁ;f’s e Ry ))] A [Bew " (#(Ef%;”s e R )) =R g Eﬁgﬂs} (65)

ZFC)

Then from (65) we obtain F R;™ ¢ %™ . From (65) and (62) we obtain

l_chH" Ry e Ry™, so I_ZFCH” Ry* 2R, R eR™ which immediately
2 2

: P T2 * Hs T * Hs T2 * Hs T2 * Hs
gives us a contradiction (‘R; e Y)/\(ERZ AU Y).
ZFC>

Definition 3.1.11. We choose now [J4 in the following form

04 = BeWZFCT(#A), (66)
or in the following equivalent form
— S
02 Bew__, (#A)A| Bew__, (#4)= 4| (67)

similar to (46). Here Bewﬁm(#/l) is a Godel formula which really asserts
2

provability in ZFCZ"® of the formula A with Godel number #4 .
Remark 3.1.11. Notice that the Definition 3.1.12 with formula (66) holds as

definition of predicate really asserting provability in ZFCZ" .
Definition 3.1.12. Using Definition 3.1.11 with formula (66), we replace now

formula (48) by the following formula

v () {[W(X)] T/ ~ o 39 (X)([(X)]eTF/ ~)
_ (68)
A[Bewﬁé,s(#(ﬂ!X[‘P(X)/\ Y= XJ))}}

Definition 3.1.13. Using Definition 3.1.11 with formula (66), we replace now
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formula (49) by the following formula
X (X e 5l )[X eR o | Bew_, (#(X e X))ﬂ (69)

Definition 3.1.14. Using Definition 3.1.11 with formula (66), we replace now

formula (53) by the following formula

Vy{[y]Hs e/~ & ([¥], €T/ ~, ) AFr(y,v)
A{@%?(#aw[ww (X)AY = X])]}

Definition 3.1.15. Using Definitions 3.1.12-3.1.16, we define now the counta-

(70)

ble set 33 by formula

VY{YE RISIPIN Eiy|:<[y]eF:Hs/ ~V)/\(gZF

L (X)= vﬂ} (71)

Remark 3.1.12. Note that from the axiom schema of replacement (12) it fol-
lows directly that 33 is a set in the sense of the set theory ZFC .
Definition 3.1.16. Using Definition 3.1.15 we replace now formula (69) by

the following formula

VX (X e )[X eR” o [@ZFCHS(#(X ¢ X))ﬂ. (72)
2
Remark 3.1.13. Notice that the expressions (73)
[Ezpcéﬂ(#()( ¢ X))J and
_ _ (73)
| Bew__(#(X & X)) |A| Bew__ (#(X £ X))= X e x|

obviously are a well formed formula of FC?Y and therefore collection R};™
is a set in the sense of ZFC .

Remark 3.1.14. Note that ;™ e 33" since %R;™ is a set definable by
1-place open wif;

\P(z,ﬁ%;”f ) 2 VX(X e 35t )[X € Z < Bew é,s(#(X ¢ X))] (74)

ZFC

Theorem 3.1.2. Set theory ZFC* 2 ZFC! +3M7" is inconsistent.
Proof. From (72) we obtain

9};% e ﬁ“{;Hs PN [Bewﬁgs(#(‘j{;lfs & ‘.}}EH‘ )):| (75)

a) Assume now that:

9};’% € ‘.)N?;Hs. (76)
: Yy x Hs W+ Hs
Then from (75) we obtain FZchs BewZFCg,‘\,(#(ER2 ¢ R, )) and therefore
F . 3™ e R thus we obtain
ZFC>
T * Hs Ty Hs Ty Hs T+ Hs
I—ﬁ? RYPeR)” =>RI7T ¢RY”. (77)

From (76)-(77) we obtain R;™ € B3 and R;™ e 3™ = K™ & K™, thus
. R™ e R and finally we obtain -, (if%;k € iﬁf‘)/\(‘ﬁ? 2 9};&) .
ZFC»

ZFC)
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b) Assume now that

[BewZFcé,; (#(9%;”“‘ g R ))J (78)

Then from (78) we obtain I—ﬁ,,s ifi;HY ¢ iﬁ;HY From (78) and (75) we obtain
2

. R eR™, thus

Ty * Hs Ty % Hs
R 2R and
ZFCH: 2 2

G\ * Hs 3+ Hs :
5 R eR;™® which

- -
ZFC ZFC

immediately gives us a contradiction __,, (*ﬁ;”s e Ry ) A (iﬁ;Hs ERTI ) .
ZFC)
3.2. Derivation of the Inconsistent Provably Definable Set in Set

Theory ZFCy;

Let 3, be the countable set of all sets X such that ZFC, +3IX¥(X), where
¥ (X) isal-place open wff of ZFC e,

VY{Y €3, & ZFC, F 3% (X)[([¥(X)]eTi/ ~,)
(79)
AW (x)nY =x]]}.

Let X ¢ Y be a predicate such that X ¢ Y S ZFC FX¢Y. Let
Fzrcy Fzrcy, st

R be the countable set of the all sets such that

VX[X e, & (XeT,)A(Xe,, X)} (80)

From (80) one obtains

R, eR, &N, e, R,. (81)
But (81) immediately gives a contradiction
(R, eR,)A(R, 2R,,). (82)

Remark 3.2.1. Note that a contradiction (82) is a contradiction inside ZFC,,
for the reason that predicate X ¢ Y is expressible by using first order

language as predicate of ZFC,, (see subsection 4.1) and therefore countable

~

sets 3, and R, aresetsin the sense of the set theory ZFC,,.

Remark 3.2.2. Note that by using Godel encoding the above stated contradic-
tion can be shipped in special completion ZFC! of ZFC,, see subsection 1.2,
Theorem 1.2.2 (i).

Designation 3.2.1. i) Let M7 be a standard model of ZFCand

ii) let ZFC, be the theory ZFC, =ZFC+3M,

iii) let 3, be the set of the all sets of M provably definable in ZFC,,,
andlet R, = {X €3, :0,(XeXx )} , where [0, 4 means: “sentence A deriva-
blein ZFC,”, or some appropriate modification thereof.

We replace now (79) by formula
vr{ves, o0,[3¢()3[¥(X)ar=x]]}, (83)

and we replace (80) by formula

VX[XeR, & (X eI, )a0,(Xex)] (84)
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Assume that ZFC,F9R,6 €3, . Then, we have that: R, eR,6 iff
0O,(R, R, ), which immediately givesus R, e R, iff R, R, . But this is
a contradiction, Ze, ZFC, (R, eR, )A(R, €R,,). We choose now [, 4

in the following form

O, A2 Bew,, (#A) A Bewype, (#4) = 4]. (85)

Here Bew (#A) is a canonical Godel formula which says to us that there
exists proofin ZFC,, of the formula A with Godel number #4e M.

Remark 3.2.3. Notice that Definition 3.2.6 holds as definition of predicate re-
ally asserting provability in ZFC,, .

Definition 3.2.1. We rewrite now (83) in the following equivalent form
VY{Y e, <3 (X)|([¥(X)], e/~ )A(r = X)J}, (86)

* Hs

where the countable collection T’}

/ ~, is defined by the following formula

V\P(X){[\P(X)lt c F}Sf/ ~ S [([W(X)]S[ S F’}/ ~x ) A DstE”XlP(X):“ (87)

Definition 3.2.2. Let 9, be the countable collection of the all sets such that
vX(Xel,)[XeR, o0,(Xex)]. (88)

Remark 3.2.4. Note that R2* e 3 since R/ is a collection definable by
1-place open wif
Y(Z,R,)EVX(XeS, )[XezeO,(XeX)] (89)

Definition 3.2.3. By using formula (85) we rewrite now (86) in the following

equivalent form
VY{Y €3, = 3\}!(){)[([\?(){)}” Ty~ )a(Y = X)}}, (90)

* Hs
X

Ve (X){[¥(X)], el ~ o

where the countable collection T';™/~, is defined by the following formula

[([‘P(X)L €T/~ ) A Bew,e, (#31XF (X))J (91)
A Bewse, (#0P (X)) = 3w (x) ]}

Definition 3.2.4. Using formula (85), we replace now formula (88) by the

following formula

vx(xe3, )[X e R, o[ Bewye, (#(X & X)) | A Bew,e, (#(X € X)) ] (92)

Definition 3.2.5. Using Proposition 2.1.1 and Remark 2.2.2 [6], we replace

now formula (89) by the following formula
Vy{[y]st el ~ < ([y]st e/ ~, ) A ﬁ‘st(y,v)
A Bewsee, (#3UX[,,, (X)AY = XT)] (93)

A Bewsee, (#IX[,, (X)AY = X )= 3X[ ¥, (X)AY = Xﬂ}
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Definition 3.2.6. Using Definitions 3.2.3-3.2.5, we define now the countable

set 3% by formula
VY{Y € 5; o Ely[([y]” er:/ NV)/\(gZFCS[ (X) _ V)J} (94)

Remark 3.2.5. Note that from the axiom schema of replacement it follows di-

rectly that 37 is a set in the sense of the set theory ZFC,,.

st

Definition 3.2.7. Using Definition 3.2.6 we replace now formula (92) by the

following formula

VX (X €5, )| X e, o[ Bewse, (#(X 2 X))]

(95)
A Bengze, (#H(X € X)) = X e X ||.
Remark 3.2.6. Notice that the expression (96)
[ Bew,e, (#(X & X)) | A Bewye, (#(X € X)) = X & X | (96)

obviously is a well formed formula of ZFC, and therefore collection R’ isa
set in the sense of ZFC* .

Remark 3.2.7. Note that R’ €3’ since R’ is a collection definable by
1-place open wif

W(Z9,)2VX (X €5, )| X eZ o[ Bewye, (#(X 2 X))]

(97)
/\[BeWqu,, (#(X 3 X)) =>Xe¢ X:H
Theorem 3.2.1. Set theory ZFC,, £ ZFC +3M " is inconsistent.
Proof. From (95) we obtain
R, e R | Bewge, (#(%R e 9;)) |
' (98)
A| Bewse, (#(% e )= R e 1 .
a) Assume now that:
R eR’,. (99)
Then from (98) we obtain - Bew, (#(if{; e R, )) and
= Bewe (#(‘51; e N )) = RN’ ¢ N, therefore R’ ¢ R, and so
Fore, Ro e R, =R, e R, (100)

From (99)-(100) we obtain R} € R},

therefore . (9?{; e R, ) A (‘j{; z N, ) .
b) Assume now that

[BewZFCSZ (#(9}?, g R ))} /\[B@WZFCSZ (#(if’{:, g N )) =R, R, J (101)

R, €9y, = R, e R, R 2R, and

Then from (101) we obtain F 9R;™ ¢ R . From (101) and (98) we obtain

T+ Hs T3+ Hs W+ Hs NrHs xHs _ (JyxHs : : :
I—iéﬂ_ R*® eRy”, so i RIT R, R eRI® which immediately

l_
ZFC ZFC:

gives us a contradiction F__, (*.R;HS e Ry ) /\(ER;HS g Ry ) :
2
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3.3. Derivation of the Inconsistent Provably Definable Set in ZFCys.

Designation 3.3.1. i) Let PA be a first order theory which contain usual post-
ulates of Peano arithmetic [8] and recursive defining equations for every primi-
tive recursive function as desired.

ii) Let M7 be a nonstandard model of ZFC and let M’ be a standard
model of PA. We assume now that MSI,TA c M and denote such nonstan-
dard model of ZFCby M ¢ [ﬁ] .

Nst
iii) Let ZFC,, be the theory ZFC,, =ZFC+M¢ PA} .
iv) Let J,, be the set of the all sets of M [ﬁ
ZFCy,, and let ®, ={Xxe3,, :0,(XeX)} where [, 4 means “sen-

Nst *
tence A derivable in ZFC,,,”, or some appropriate modification thereof. We

provably definable in

Nst

replace now (45) by formula

vr{res,, o0,[3¥()3u[¥(x)rr=x]], (102)

and we replace (46) by formula
VX[ X eRy, o (X eTy, a0, (Xex)] (103)

Assume that ZFC,, FR,, €3,, . Then, we have that: R, eR,, iff
O (Ryy Ry, )» which immediately gives us R, e R, iff R, R, . But
this is a contradiction, Ze, ZFC,, (R, € Ry, )A(Ry, &Ry, ). We choose

Nst
now [, A in the following form

Oy 42 Bew,pe (HA) N[ Bew,y (#4) 4]. (104)

Here Bewy., (#A) is a canonical Godel formula which says to us that there
exists proofin ZFC,,, of the formula A with Godel number #4e M.

Remark 3.3.1. Notice that definition (104) holds as definition of predicate re-
ally asserting provability in ZFC,,.

Designation 3.3.2. i) Let gqc, (u) be a Godel number of given an expres-
sion uof ZFC,,.

ii) Let Fry, (y,v) be the relation: yis the Godel number of a wff of ZFC,,
that contains free occurrences of the variable with G6del number v [6] [10].

iii) Let g@,,(»vv,) be a Godel number of the following wiff:
IX[Y(X)AY=X] , where g, (¥(X))=y »  &ue, (X)=v
8zrcy, (Y)=v.

iv) Let Prj (z) be a predicate asserting provability in ZFC,, .

Remark 3.3.2. Let 3J,, be the countable collection of all sets X such that

ZFCy, F31XY(X), where W(X) isa l-place open wff Le,
VY{Y €3y, < ZFCy, F3P(X)IX[W(X)AY =X ||. (105)

We rewrite now (105) in the following form
VY{Y €3\ © (gZFCM., (Y) =V ) A ByﬁNst(y’v)
/\(gZFCNS, (X) = V) N [PrZFCNS, (XOst (y’ v,V )) (106)

A[Pricy, (93 (o)) = X[ ¥ (X) a7 = X]]])
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Designation 3.3.3. Let @, (z) be a Godel number of the following wif:
Z ¢ Z ,where gypc (Z)=z.
Remark 3.3.3. Let R,

VZ[ZeRy, ©(Ze3y)r0w(Z222)] (107)

above by formula (103), Ze,

We rewrite now (107) in the following form
vZ [Z eRy, © (Z €3\, ) A 8zrey, (Z)=zn Pryec,, (SONst (z))}
AP, (9 (2)) = Z 2 Z ).

Theorem 3.3.1. ZFC, R}, € Ry, ARy, Ry -

(108)

3.4. Generalized Tarski’s Undefinability Lemma

Remark 3.4.1. Remind that: i) if Th is a theory, let 7, be the set of Godel

numbers of theorems of Th [10], ii) the property x e T}, is said to be is ex-

pressiblein Th by wff True(x,) if the following properties are satisfied [10]:
a)if neTly, then Tht True(n),b)if n¢Ty, then Tht —True(n).
Remark 3.4.2. Notice it follows from (a) A (b) that

—[(Th ¥ True(77)) A(Th ¥ —~True(m))].

Theorem 3.4.1. (Tarski’s undefinability Lemma) [10]. Let Th be a consis-
tent theory with equality in the language < in which the diagonal function D
is representable and let g, (1) be a Godel number of given an expression u of
Th. Then the property x T, isnotexpressiblein Th.

Proof. By the diagonalization lemma applied to —True(x,) there is a sen-
tence F such that: ) Thi F < —True(7), where gis the Godel number of
Fie gTh(j:):q'

Case 1. Suppose that Th+ F, then geT, . By (a), Tht True(g). But,
from ThFF and (c), by biconditional elimination, one obtains
Th+ —True(g).Hence Th is inconsistent, contradicting our hypothesis.

Case 2. Suppose that Th ¥ ¥, then ge¢Ty, . By (b), Thi—True(g).
Hence, by (c) and biconditional elimination, Th+ F . Thus, in either case a
contradiction is reached.

Definition 3.4.1. If Th is a theory, let T}, be the set of Godel numbers of
theorems of Th and let g, (1) bea Godel number of given an expression u
of Th. The property xeT,, is said to be is a strongly expressible in Th by
wif True’(x,) if the following properties are satisfied:

a)if neT,, then Tht True" (ﬁ)/\(True* (7) = gm (1))

b)if ngTy, then Thi—True (7).

Theorem 3.4.2. (Generalized Tarski’s undefinability Lemma). Let Th be a
consistent theory with equality in the language < in which the diagonal func-
tion D is representable and let g, (1) be a Godel number of given an expres-
sion zof Th. Then the property xeT,, isnotstrongly expressiblein Th.

Proof. By the diagonalization lemma applied to —True’ (xl) there is a sen-
tence F* suchthat:c) Thi F* < —True’ ((7) , where g is the Godel number
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of f*, ie. S (_’F*): q-

Case 1. Suppose that Thi- F*, then g €Ty, . By (a), Tht True’ (_) But,
from Th+-F* and (c), by b1cond1t10nal elimination, one obtains
Th + —True’ ( ) Hence Th isinconsistent, contradicting our hypothesis.

Case 2. Suppose that Th¥ F~, then geTy,. By (b), Th—True (7).
Hence, by (c) and biconditional elimination, Th+ F*. Thus, in either case a
contradiction is reached.

Remark 3.4.3. Notice that Tarski’s undefinability theorem cannot blocking

the biconditionals
ReRSReRR, eR, <R, R,

(109)
iRNvt € iR[\kt it ERN.VI & ERNvl"

see Subsection 2.2.

3.5. Generalized Tarski’'s Undefinability Theorem

Remark 3.5.1. 1) Let Th’ be the theory Th’ £ ZFC® .

In addition under assumption 6ovn<Thf ) , we establish a countable sequence
of the consistent extensions of the theory Th] such that:

i) Th{ C---CTh! CTh!, C---C Th , where

ii) Thfﬂ isa ﬁnlte consistent extension of Th],

iii) Th’ =(J_, Th,

iv) Th? proves the all sentences of Th], which is valid in A4 ie,
M E A= Th’ |- 4, see see Subsection 4.1, Proposition 4.1.1.

II) Let Th{, be Th{,6 £ ZFC,.

In addition under assumption Con(Th1 w) , we establish a countable se-
quence of the consistent extensions of the theory Th] such that:

i) Thi, S CTh CTh!,  C--CTh, , where

ii) Thm st

iii) Th,, =J,_,Thi, ,

iv) Th} , proves the all sentences of Thy,, which valid in MZ“, ie,
M F A= Th .« I 4, see Subsection 4.1, Proposition 4.1.1.

IIl) Let Thy,, be Th/,, =ZFC,,.

In addition under assumption Con(Th1 st)’ we establish a countable se-

#
is a finite consistent extension of Th

i,st?

quence of the consistent extensions of the theory Th! such that:
. # # # #
1) Thl Nst ¢ -G Tht Nst £ Tht+l st ¢ ' ¢ Thoo ,Nst > Where
if) Thl+1 v 1S a finite consistent extension of Thl.’ Not >
iii) Th, , ={J_,Th;,
iv) Th , proves the all sentences of Th/,, whichvalidin My, [PA], ie,
ZFC #
M3 [PA]F A= Th]

Remark 3.5.2. 1) Let J,,i=1,2,--- be the set of the all sets of A provably de-
finable in Th!,

F A, see Subsection 4.1, Proposition 4.1.1.

vY{red, o 03%()IX[¥(X)AY =X} (110)

and let R, :{xe 3, :Di(xex)} where [, 4 means sentence A derivable in
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Th! . Then we have that R, e R, iff [J(R, ¢ R,), which immediately gives us

i

R, eR, iff R, ¢NR,. Wechoosenow [, 4,i=1,2,--- in the following form
[0, 4 2 Bew, (#4) A Bew, (#4) A]. (111)

Here Bew,(#4),i=1,2,--- is a canonical Godel formulae which says to us
that there exists proof in Thf,i =1,2,--- of the formula A with G6del number
#A .

I Let 3,
in Th’

i,st?

i=1,2,--- be the set of the all sets of M provably definable

vY{re3,, o0, 3%()3X[¥(X)AY=x]}. (112)

and let R, = {x €3, 0, (xe x)} where [, 4 means sentence A deriva-
blein Th]

i,st*°

Then we have that R, e®R, , iff O (R

eR,, iff R, &N, . We choose now L[] A4,i=1,2,--- in the

following form

e‘ﬁi’ﬂ), which immediately

i,st

gives us R

i,st i,st

O, 42 Bew, , (#4) A| Bew, , (#4) = A]. (113)

i,st

Here Bew,,(#4),i=1,2,--- is a canonical Godel formulae which says to us
that there exists proof in Thﬁst,i =1,2,--- of the formula A with Godel number
#A4 .

II) Let 3, ,,.i=1,2,-- be the set of the all sets of M}, [PA] provably de-

finable in Thf, Nst >
VY{Ye3,, ©0,,3%()IX[¥(X)rr=X]}. (114)

and let %, ,, = {x €3y Him(xe x)} where [J,,, 4 means sentence A4 de-
rivable in Th?’NS,. Then we have that R, eR, ,, iff DI-,NV;(ER,-,N“ ssSRl.)Nst) ,
which immediately gives us R, eR, , iff R, R, .

We choose now U\ 4,i=1,2,--- in the following form

O, v A 2 Bew, , (#4) A Bew, y, (#4) = 4]. (115)

Here Bew,

o (#4),i=1,2,-- is a canonical Godel formulae which says to us

that there exists proof in Thi vol =1,2,--+ of the formula A with Gédel num-
ber #4.

Remark 3.5.3. Notice that definitions (111), (113) and (115) hold as definitions
of predicates really asserting provability in Thf,ThiS, and Th?,stai =1,2,--
correspondingly.

Remark 3.5.4. Of course the all theories Thf,Thﬁst,ThiNst,i =1,2,--- are
inconsistent, see subsection 4.1.

Remark 3.5.5. I) Let T be the set of the all sets of M provably definable in

Th’ ,
vY{re3, &0,3%()IX[¥(X)AY=X]}. (116)

and let R} = {x €3, 0O, (xe x)} , where [0 A4 means “sentence A derivable
in Th’ ”. Then, we have that ®_e R, iff O (R, R, ), which immediately

0
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gives us R_eR_iff R eR_. We choose now [ A4,i=1,2,--- in the fol-

lowing form
O, A 2 3i[ Bew, (#4) A[ Bew, (#4) = A4]]. (117)

#

II) Let 3, be thesetoftheallsetsof M. provably definablein Th, ,

t

vr{res,, o0,,3%()3X[¥(X)AY=x]}. (118)

and let R, betheset ®, , ={xe3J, :0,, (xex)}, where O, , 4 means

00,8t 0,5t *

”. Then, we have that R_, eR iff

00,8t

eR,, ifft R, &R, .

0,8t

“sentence A derivable in Th’

0,8t

0,.(R., 2R, ), which immediately gives us R

0,8t

We choose now [, ,A4,i=1,2,--- in the following form

00, A2 3i] Bew, , (#4) A Bew,, (#4) = 4]]. (119)

1,8t i,st

III) Let 3, ,, be the set of the all sets of M e [PA] provably definable in
Th,

oo, Nst >

VY{res, , ©0,,,39()3X[¥(X)rr=Xx]}. (120)

o, Nst

and let R, be the set %, ={xe3,,, 0, ,,(xex)} where O, ,,4

e iff
Dw)M,t(‘Rw’Nw eiRW’M,t) , which immediately gives us R, eR . iff
R ER

means “sentence A derivable in Th: v - Then, we have that R

oo, Nst oo, Nst

oo, Nst ons - We choose now [, A4,i=1,2,--- in the following form

O, v, A 2 3i] Bew, , (#4) A[ Bew, , (#4) = 4]]. (121)

0, Nst

Remark 3.5.6. Notice that definitions (117), (119) and (121) hold as defini-
tions of a predicate really asserting provability in Thi,Th:” and Thi’NS_,

correspondingly.
Remark 3.5.7. Of course all the theories Th?,Th? and Th’

0,5t oo, Nst are 1n-

consistent, see subsection 4.1.

Remark 3.5.8. Notice that under naive consideration the set J, and R
can be defined directly using a truth predicate, which of course is not available in
the language of ZFC)® (but iff ZFCJ® is consistent) by well-known Tarski’s
undefinability theorem [10].

Theorem 3.5.1. Tarski’s undefinability theorem: I) Let Th , be first order
theory with formal language , which includes negation and has a Gé&del
numbering g(o) such that for every  -formula A(x) there is a formula B
such that B <> 4(g(B)) holds. Assume that Th, has a standard model

M™  and Con(Th , ,s;) where
Th, ,£Th, +3M;" . (122)
Let 7" be the set of Gédel numbers of  -sentences true in M "~ . Then

thereisno * -formula True(n) (truth predicate) which defines 7. That is,

thereisno  -formula True(n) such that for every  -formula 4,

True(g(4)) < 4 (123)

holds.
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II) Let Th™ be second order theory with Henkin semantics and formal
language * , which includes negation and has a Gédel numbering g(c) such
that for every /' -formula A(x) there is a formula Bsuch that B «> 4(g(B))
holds.

Assume that Th™ has a standard model A7™” and Con(ThHS ) , where

st

Th'® 2 Th™ +3M ™" (124)

Let T" be the set of Godel numbers of the all ~ -sentences true in M. Then
there isno " -formula True(n) (truth predicate) which defines 7. That is,
thereisno  -formula True(n) such that for every  -formula 4,

True(g(4)) < 4 (125)

holds.

Remark 3.5.9. Notice that the proof of Tarski’s undefinability theorem in this
form is again by simple reductio ad absurdum. Suppose that an < -formula
True(n) defines 7" . In particular, if A is a sentence of Th  then
True(g(4)) holds in N iff A is true in M™™ . Hence for all 4, the Tarski
T-sentence True(g(4))<> 4 is true in MJ" . But the diagonal lemma
yields a counterexample to this equivalence, by giving a “Liar” sentence S such
that S < —True(g(S)) holds in M;" . Thus no  -formula True(n)
can define T~.

Remark 3.5.10. Notice that the formal machinery of this proof is wholly ele-
mentary except for the diagonalization that the diagonal lemma requires. The
proof of the diagonal lemma is likewise surprisingly simple; for example, it does
not invoke recursive functions in any way. The proof does assume that every

< -formula has a Godel number, but the specifics of a coding method are not
required.

Remark 3.5.11. The undefinability theorem does not prevent truth in one
consistent theory from being defined in a stronger theory. For example, the set
of (codes for) formulas of first-order Peano arithmetic that are true in N is de-
finable by a formula in second order arithmetic. Similarly, the set of true formu-
las of the standard model of second order arithmetic (or n-th order arithmetic
for any n) can be defined by a formula in first-order ZFC.

Remark1.3.5.12. Notice that Tarski’s undefinability theorem cannot blocking
the biconditionals

R eR <R eNR,ieN,

(126)
R, eR, <R, ¢R_,etc,

see Remark 3.5.14 below.
Remark 3.5.13. I) We define again the set J_ but now by using generalized
truth predicate True’ (g(4).4) such that

True!, (g(4), 4) < 3i[ Bew, (#4) A[ Bew, (#4) = A]] <
True, (g(A))/\[Truew (g(A)):A]@ A, (127)
True, (g(4)) < JiBew, (#4).
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holds.
II) We define the set 3, using generalized truth predicate
True) , (g(4),A) such that

o0, st

True!, (g(4), 4) < 3i Bew,, (#4) A Bew, , (#4) = 4| &

00,5t 1,8t

True, , (g(4))A[ True, , (g(4))= 4] < 4, (128)
True, , (g(4)) < JiBew, , (#4)

ist

holds. Thus in contrast with naive definition of the sets 3, and %R there is

no any problem which arises from Tarski’s undefinability theorem.

III) We define a set J,,, wusing generalized truth predicate

True!, ,, (g(4),4) such that
True, ,, (2(4),4) < 3i Bew, y, (#4) A[ Bew, ,, (#4) = 4] | =
True, ,, (2(4)) A True, ,, (2(4))= 4] < 4, (129)
True, ,, (g(4)) < JiBew, y, (#4).

holds. Thus in contrast with naive definition of the sets J and R

o0, Nst oo, Nst

there is no any problem which arises from Tarski’s undefinability theorem.

Remark 3.5.14. In order to prove that set theory ZFC! +3M*" is in-
consistent without any reference to the set J_, notice that by the properties of
the extension Th? it follows that definition given by formula (127) is correct,
ie, for every ZFC!™ formula @ such that M*“" E® the following equi-
valence ® <> True, (g(®).®) holds.

Theorem 3.5.2. (Generalized Tarski’s undefinability theorem) (see subsec-
tion 4.2, Proposition 4.2.1). Let Th , be a first order theory or the second or-
der theory with Henkin semantics and with formal language <, which in-
cludes negation and has a Godel encoding g(-) such that for every
-formula A(x) there is a formula B such that the equivalence B < A(g(B))
holds. Assume that Th , has a standard Model M". Then there is no
-formula True(n),n € N, such that for every  -formula 4 such that M F 4,

the following equivalence holds

A< True(g(4),4). (130)

Theorem 3.5.3. i) Set theory Th! = ZFC!* +3M*" is inconsistent;

ii) Set theory Thf’” =ZFC+3MX is inconsistent; iii) Set theory
Thﬁ v =ZFC+3MEC s inconsistent; (see subsection 4.2, Proposition 4.2.2).

Proof. i) Notice that by the properties of the extension Th? of the theory
ZFC!" +3aM* " =Th! it follows that

M7 =@ = Th? - ®. (131)

Therefore formula (127) gives generalized “truth predicate” for the set theory
Th{ . By Theorem 3.5.2 one obtains a contradiction.

ii) Notice that by the properties of the extension Thi, vy Of the theory
ZFC+3M7 =Th! , it follows that

1,st
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M7 Ed=Th . (132)

0,5t

Therefore formula (128) gives generalized “truth predicate” for the set theory
Th;

1,st°

iii) Notice that by the properties of the extension Thi,m, of the theory
ZFC+3My,  =Thy, it follows that

By Theorem 3.5.2 one obtains a contradiction.

M E®=Th. , . (133)

Therefore (129) gives generalized “truth predicate” for the set theory Thf’ Nt -

By Theorem 3.5.2 one obtains a contradiction.

3.6. Avoiding the Contradictions from Set Theory ZFC!*, ZFC,
and Set Theory ZFC,, Using Quinean Approach

In order to avoid difficulties mentioned above we use well known Quinean ap-
proach [19].

3.6.1. Quinean Set Theory NF
Remind that the primitive predicates of Russellian unramified typed set theory
(TST), a streamlined version of the theory of types, are equality = and member-
ship €. TST has a linear hierarchy of types: type 0 consists of individuals oth-
erwise undescribed. For each (meta-) natural number n, type n+1 objects are
sets of type n objects; sets of type n have members of type n—1. Objects con-
nected by identity must have the same type. The following two atomic formulas
succinctly describe the typing rules: x" =" and x" e y"".

The axioms of TST are:

Extensionality: sets of the same (positive) type with the same members are
equal;

Axiom schema of comprehension:

If (D(x”) is a formula, then the set {x” \ CD(x" )}“1 exists ie., given any

formula @ (x" ) , the formula

4y [x” ed™ ooy )] (134)

is an axiom where A"" represents the set {x" |CD(x” )}M and is not free in
o} (x" ) .

Quinean set theory. (New Foundations) seeks to eliminate the need for such
superscripts.

New Foundations has a universal set, so it is a non-well founded set theory.
That is to say, it is a logical theory that allows infinite descending chains of
membership such as x, ex, |, €:--€x; €x, € x,. It avoids Russell’s paradox by
only allowing stratifiable formulas in the axiom of comprehension. For instance
x ey Iis a stratifiable formula, but x € x is not (for details of how this works
see below).

Definition 3.6.1. In New Foundations (NF) and related set theories, a formu-

la @ in the language of first-order logic with equality and membership is said
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to be stratified iff there is a function 3c3 which sends each variable appearing in
® [considered as an item of syntax] to a natural number (this works equally
well if all integers are used) in such a way that any atomic formula xey ap-
pearing in @ satisfies o(x)+1=0(y) and any atomic formula x=y ap-
pearingin @ satisfies o(x)=0c(y).

Quinean Set Theory NF

Axioms and stratification are:

The well-formed formulas of New Foundations (NF) are the same as the
well-formed formulas of TST, but with the type annotations erased. The axioms
of NFare [19].

Extensionality: Two objects with the same elements are the same object.

A comprehension schema: All instances of TST Comprehension but with type
indices dropped (and without introducing new identifications between variables).

By convention, NF’s Comprehension schema is stated using the concept of
stratified formula and making no direct reference to types. Comprehension then
becomes.

Stratified Axiom schema of comprehension:

{x | CDS} exists for each stratified formula ©®°.

Even the indirect reference to types implicit in the notion of stratification can be
eliminated. Theodore Hailperin showed in 1944 that Comprehension is equivalent
to a finite conjunction of its instances, so that NF can be finitely axiomatized
without any reference to the notion of type [20]. Comprehension may seem to
run afoul of problems similar to those in naive set theory, but this is not the case.
For example, the existence of the impossible Russell class {x|x¢x} is not an

axiom of NF, because x ¢ x cannot be stratified.

3.6.2.SET Theory ZFC*, ZFC, andSetTheory ZFC,, with
Stratified Axiom Schema of Replacement

The stratified axiom schema of replacement asserts that the image of a set under

any function definable by stratified formula of the theory ZFC, will also fall

inside a set.

Stratified Axiom schema of replacement:

Let @’ (x,y,w,w,,=-,w,) be any stratified formula in the language of
ZFC, whose free variables are among x,y, 4, w,,w,,---,w,, so that in particu-
lar Bis not free in @". Then

VAYWYw, - Vw, [Vx(x e A= 3D’ (x,y, W, Wy, 5, W,)

(135)
= EIBVx(xe A= Eiy(y e BAD’ (x,y,wl,wz,---,w )))J,

ie, if the relation ®° (x, y,--~) represents a definable function £ A represents
its domain, and f'(x) isa set for every xe 4, then the range of £is a subset of
some set B.

Stratified Axiom schema of separation:

Let @° (x, W, Wy,ee, W ) be any stratified formula in the language of ZFC,

n
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whose free variables are among x, 4, w,,w,,---,w,, so that in particular B is not
freein ®°. Then

Yw, Vw, ...an‘v’AEIBVx[x eBe (x e AND* (x, W, Wy, -, W ))], (136)

n

Remark 3.6.1. Notice that the stratified axiom schema of separation follows
from the stratified axiom schema of replacement together with the axiom of
empty set.

Remark 3.6.2. Notice that the stratified axiom schema of replacement (sepa-
ration) obviously violated any contradictions (82), (126), etc. mentioned above.
The existence of the countable Russell sets R;”,R: and R}, is impossible,

because x ¢ x cannot be stratified.

4. Generalized Lobs Theorem

4.1. Generalized Lobs Theorem. Second-Order Theories with
Henkin Semantics

Remark 4.1.1. In this section we use second-order arithmetic Z,* with Hen-
kin semantics. Notice that any standard model M %" of second-order arithmetic
ZJ® consisting of a set N of unusual natural numbers (which forms the range
of individual variables) together with a constant 0 (an element of N), a function
Sfrom N to N, two binary operations + and - on N, a binary relation < on
N, and a collection D = 2" of subsets of N, which is the range of the set va-
riables. Omitting D produces a model of the first order Peano arithmetic.

When D=2" is the full power set of N, the model M7 is called a full
model. The use of full second-order semantics is equivalent to limiting the models
of second-order arithmetic to the full models. In fact, the axioms of second-order
arithmetic ZJ* have only one full model. This follows from the fact that the
axioms of Peano arithmetic with the second-order induction axiom have only
one model under second-order semantics, see Section 3.

Let Th be some fixed, but unspecified, consistent formal theory. For later
convenience, we assume that the encoding is done in some fixed formal second
order theory S and that Th contains S. We assume throughout this paper
that formal second order theory S has an w-model M3 . The sense in which
S is contained in Th is better exemplified than explained: if S is a formal
system of a second order arithmetic Z;* and Th is, say, ZFC,", then Th

contains S in the sense that there is a well-known embedding, or interpreta-

S
w?

tion, of S in Th. Since encoding is to take place in M , it will have to have a
large supply of constants and closed terms to be used as codes (e.g. in formal
arithmetic, one has 0,1,---). S will also have certain function symbols to be
described shortly. To each formula, ®, of the language of Th is assigned a
closed term, [@], called the code of ® [19]. We note that if ®(x) is a for-
mula with free variable x, then [CID()C)JC is a closed term encoding the formula
®(x) with x viewed as a syntactic object and not as a parameter. Correspond-
ing to the logical connectives and quantifiers are the function symbols, neg(-),

imp (-), etc., such that for all first order formulae ®,¥:S+ neg([d)]c ) =[-o],
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Sk imp([(D]C ,[‘P]U): [® > W] etc. Of particular importance is the substitu-
tion operator, represented by the function symbol sub(--). For formulae
®(x), terms ¢with codes [¢] :

Sk sub([@(x)] [ | =[o(1)] - (137)

It well known that one can also encode derivations and have a binary relation
Prov,, (x,y) (read “x proves y” or “x is a proof of y”) such that for closed
t,,t, :SEProvy, (7,,1,) iff £, is the code of a derivation in Th of the formu-
la with code ¢, . It follows that

Thi-®iff S I Provy, (1,[®]) (138)
for some closed term . Thus we can define
Pry, (y) & 3xProvy, (x,y), (139)

and therefore we obtain a predicate asserting provability.
Remark 4.1.2. I) We note that it is not always the case that:

Thi- @ ff S - Pry, ([ ), (140)

unless S is fairly sound, e.g. this is the case when S and Th replaced by
S,=SIM™ and Th,=Th|M" correspondingly (see Designation 4.1.1
below).

II) Notice that it is always the case that:

Th, b ®, iff S, b Pry, ([@w I). (141)

ILe. that is the case when predicate Pr,, (¥).ye M™:
Pr, (y)© Elx(x eM(Ih)ProvThw (x,») (142)

really asserting provability.
It well known that the above encoding can be carried out in such a way that

the following important conditions D1,D2 and D3 are meeting for all sentences:

DL Th - ® implies S - Th - Pry, ([@]°),
D28+ Pry, ([@] ) - Pry, [[Prﬂ, ([o] )U (143)
D3.S - Pry, ([@] ) A Pry ([@ > T ) > Py, ([9]):

Conditions D1,D2 and D3 are called the Derivability Conditions.
Remark 4.1.3. From (141)-(142) it follows that

D4.Th, - ®iff S, + Pry, ([@,]),
D5.S, b Pry, ([cpw]c) o Pry, ([Prm ([qaw]“ )” (144)
D6.S, I Pry, ([@,])APr, ([@, > W] ) > Pry, ([¥,])

Conditions D4,D5 and D6 are called a Strong Derivability Conditions.
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Definition 4.1.1. Let ® be well formed formula (wff) of Th. Then wiff ®
is called Th -sentence iff it has no free variables.
Designation 4.1.1 i) Assume that a theory Th has an @-model M'" and @

is a Th -sentence, then: (DM;E" 2D M™ (we will write @, instead CDMZ")

is a Th-sentence ® with all quantifiers relativized to w-model M [11]
and Th, =Th| M is a theory Th relativized to model M'™, ie, any
Th,, -sentence has the form @, for some Th -sentence ®.

ii) Assume that a theory Th has a standard model M!" and ® isa Th
-sentence, then:

D, 2D M (we will write @, instead ®, ) is a Th-sentence with

all quantifiers relativized to a standard model M!",and Th,=Th| M " isa
theory Th relativized to model M!", je,any Th, -sentence hasaform @,

for some Th -sentence @ .

iii) Assume that a theory Th has a non-standard model M, and ® isa
Th -sentence, then:

@, =@My (we will write @, instead ® ,, ) isa Th-sentence with
Nst Nst

STh M is

all quantifiers relativized to non-standard model A", and Th Nor

Nst
a theory Th relativized to model M ", ie, any Th,, -sentence has a form
®,,, forsome Th-sentence @.

iv) Assume that a theory Th has a model M =M™ and ® is a Th
-sentence, then: Q n isa Th -sentence with all quantifiers relativized to
model M™, and Th,, is a theory Th relativized to model M™, ie. any
Th,, -sentence has a form ®,, for some Th-sentence ®.

Designation 4.1.2. i) Assume that a theory Th with alanguage < has an
w-model M!" and there exists Th-sentence S, such that: a) S, expres-
sible by language <~ and

b) S, asserts that Th has a model M"; we denote such Th -sentence
S, by Con(Th;M]").

ii) Assume that a theory Th with a language <~ has a non-standard mod-
el M" and there exists Th -sentence S such that: a) S, expressible by
language < and

b) S, asserts that Th has a non-standard model M "; we denote such
Th -sentence S, by Con(Th;M;S':).

iii) Assume that a theory Th with a language ~ has an model M™ and
there exists Th -sentence S, such that: a) S expressible by language
and

b) S asserts that Th has a model M™; we denote such Th -sentence
S, by Con(Th;M™).

Remark 4.1.4. We emphasize that: i) it is well known that there exists a
ZFC-sentence Con (ZFC;MZFC) (8],

ii) obviously there exists a ZFC,” -sentence Con(ZF cl M ) and there
existsa Z," -sentence Con(ZZHS;MZZM )
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Designation 4.1.3. Assume that Con(Th;MTh ) Let @(Th;MT") be the

formula:
Con(Th;M™ )£t (1, e M)" )i/ (] e MJ" )Vt (1, e M)
v (15 e M ){ProvTh (6[@] ) A Prova, (tz,neg([CD]C)):l,
where 4 =[®] .1, = neg([(l)]c) (145)

or Con(Th; M )" ) £ VOVt (1, € M}" V1, (1, € M" )
—{ProvTh (tl,[tb]c ) AProv,, (tz,neg([(l)]c ))}

and where ¢,#,t,,t, isa closed term.
Lemma 4.1.1. I) Assume that: i) a theory Th is recursively axiomatizable.
ii) Con(Th;M™),
iii) M™ & Con(Th;M™ ) and
iv) Tht Pry, ([d)]c ) ,where @ isa closed formula.
Then Th ¥ Pry, ([-@]').
IT) Assume that: i) a theory Th is recursively axiomatizable.
ii) Con(Th;M")
i) M}"F Con(Th;M™) and
iv) Th, I Pry, ([(Dw]" ) ,where @ isa closed formula.
Then Th, ¥ Pry, ([-,]).
Proof. I) Let (’?c\;zTh(CD;MTh) be the formula:

Con(@;M™ )21, (t, e M™ )V, (1, e M™)
—{ProvTh (tl,[tl)]")/\ Prov,, (tZ,neg([(D]c ))},

ie. vt (t e M™) Ve, (, e M™) (146)
ﬁ[ProvTh (tl,[d)]c)/\ Prov,, (tz,neg([CD]C ))} ©
{ﬁatl (h eM™)-3,(r, e M™ )[Provn (tl,[CD]C ) AProv,, (tz,neg([cb]“ ))}}

where f,¢, isa closed term. From (i)-(ii) it follows that theory
Th + Con (Th; M™ ) is consistent. We note that
Th+ C"571<Th;MT" ) + Con Th((I);MT" ) for any closed ® . Suppose that
Th - Pr,, ([—@]C) , then (iii) gives
Th - Pry, ([@]) A Py, ([-0] ). (147)
From (139) and (147) we obtain
3t,3t, [ProvTh (tl @] ) AProv,, (tz ,neg ([CD]C ))} (148)

But the formula (146) contradicts the formula (148). Therefore
Th ¥ Pry, ([-@] ).
Remark 4.1.5. In additional note that under the following conditions:

i) atheory Th is recursively axiomatizable,
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ii) Con(Th;MSTth ) ,and
iii) M"F Con(Th;M") predicate Pry, ([‘I—’]C) really asserts provability,
one obtains
Th®A-D (149)

and therefore by reductio ad absurdum again one obtains Th ¥ Pr,, ([—&D]C) .
II) Let a;zTh(CD;M(Ih) be the formula:

Con y,(@;M ") 21, (1, € M) )V, (1, € M)

ﬁ|:ProvTh (tl J@] ) AProv,, (zz ,neg ([CD]C ))}

ie. Vi (t e M)V, (1, e M)") (150)
ﬂl:ProvTh (tl @] ) AProvy, (zz ,neg ([CD]C ))} ©

{—Elt1 (t1 eM™ )—St2 (t2 eM™ )[Prov“ (t, @] ) AProv,, (tz,neg([d)]c ))}}

This case is trivial because formula Pr,, ([—&D]C) by the Strong Derivability
Condition D4, see formulae (144), really asserts provability of the Th,
-sentence —® . But this is a contradiction.

Lemma 4.1.2. I) Assume that: i) a theory Th is recursively axiomatizable.

ii) Con (Thjil/Th ) )

iii) M"™ & Con(Th) and

iv) Tht Pr,, ([—&D]C ) ,where @ isa closed formula. Then
Th ¥ Pry, ([0] ),

IT) Assume that: i) a theory Th is recursively axiomatizable.

ii) Con(Th;M,")

iii) M," & Con(Th) and

iv) Th, - Pry, ([ﬁcbm]“),
where @, isaclosed formula. Then Th,, ¥ Pry, ([CD(D c).

Proof. Similarly as Lemma 4.1.1 above.

Example 4.1.1. i) Let Th=PA be Peano arithmeticand ® < 0=1.

Assume that: i) Con(PA;MPA)

ii) M™E @(PA;M"A) where M™ isamodel of PA .

Then obviously PAF Pr,, (0+#1) since PAFO0#1 and therefore by
Lemma 4.1.1 PA ¥ Pr,, (0=1).

i) Let Con(PA;MPA),MPA E —|6;)71(PA;MPA) and let PA* be a theory
PA* = PA+—|(/?;2(PA;MPA) and ® < 0=1. Then obviously

PA* [P, (0£1)|A[Pry, (0=1)]. (151)
and therefore
PA* - Pr,, (021), (152)
and
PA* - Pr,, (0=1). (153)

However by Lobs theorem
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PA* F0=1. (154)

iii) Let Con(PA*;M"A* ),M"A* = Con(PA*; M ) and ® <> 0=1. Then
obviously PA* - Pr, , (0#1) since PA*F0=1 and therefore by Lemma
4.1.1 we obtain. PA* ¥ Pr, , (0=1).

Remark 4.1.6. Notice that there is no standard model of PA*.

Assumption 4.1.1. Let Th be a second order theory with Henkin semantics.
We assume now that:

i) the language of Th consists of:

numerals 0,1,

countable set of the numerical variables: {v,,v,,-}

countable set f; of the first order variables, ie.

a set of variables: f; ={x,y,z,X,Y,Z,3,R,-}

countable set F, of the first order variables, Ze.

a set of variables: F, = {_ﬁ,”,Rg,ﬁ",R{’,---}

countable set of the n-ary function symbols: /", £",--

countable set of the n-ary relation symbols: R}, R/,

connectives: —,—

quantifier: V.

ii) A theory Th is recursively axiomatizable.

iii) Th contains ZFC)® or ZFC or NF and Con(Th;M T") is expressible
in Th by a single statement of Th;

iv) Th hasan w-model M;" and M]" I Con(Th;M"); or

v) Th hasan nonstandard model M," =M," [PA] SM! and
My Con(Th; M) .

Definition 4.1.2. A Th -wff ® (well-formed formula ®) is closed, 7.e. ®

is a sentence, Ze. if it has no free variables; a wff is open if it has free variables.

We'll use the slang “k-place open wif” to mean a wif with & distinct free va-
riables.

Definition 4.1.3. We will say that Th? is a nice theory or a nice extension
of the Th iff the following properties holds:

i) Th? contains Th;

ii) Let ® be any first order closed formula of Th, then Tht Pry, ([CI)]")
implies Th? - ®;

iii) Let ®_ be any first order closed formula of Th?,then M "F®_  im-

plies Th -®,,ie. Con(Th+®, ;M") implies Th’ -®,.
#

Con (Th +® s M™ ) and Con (Thi +@ ;M™ ) are expressible in Th’ .
Definition 4.1.4. Let L be a classical propositional logic L. Recall that a set A

iv) Let ®_ be any first order closed formula of Th] , then formulas

of L-wif’s is said to be Z-consistent, or consistent for short, if A L and there
are other equivalent formulations of consistency: 1) A is consistent, 2)
Ded(A):={A|AF 4} is not the set of all wff’s, 3) there is a formula such that
A ¥ A, (4) there are no formula 4 suchthat A4 and AF—4.

Definition 4.1.5. We will say that, Th? is a maximally nice theory or a
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maximally nice extension of the Th iff Th’ is consistent and for any consis-
tent nice extension Th? of the Th: Ded(Thfo ) - Ded(Thi’) implies
Ded(Th’ ) = Ded(Thi’) .

Remark 4.1.7. We note that a theory Th? depend on model M™ or
My, ie. Th’ =Th* [M,Ih} or Th! =Th [M ;H correspondingly. We will
consider now the case Th’ 2 Th? [M(I"J without loss of generality.

Remark 4.1.8. Notice that in order to prove the statements: i)
—|Con(NFZH";MaT)" ) , i) —Con(NF;M;") the following Proposition 4.1.1 is
necessary.

Proposition 4.1.1. (Generalized Lobs Theorem).

I) Assume that:

i) A theory Th is recursively axiomatizable.

ii) Th isa second order theory with Henkin semantics.

iii) Th contains ZFC," .

iv) Th hasan w-model M'",and

v) the statement IM " is expressible by language of Th as a single sen-
tence of Th.

vi) M™E @(Th;M{I“) , where predicate %(Th;M;") is defined by
formula 4.1.9.

Then theory Th can be extended to a maximally consistent nice theory
Th , =Th! , [M;hJ . Below we write for short Th! , £ Th’ =Th [MQT,"] .

Remark 4.1.9. We emphasize that (v) is valid for ZFC despite the fact that the
axioms of ZFCare infinite, see [8] Chapter II, Section 7, p. 78.

II) Assume that:

i) A theory Th is recursively axiomatizable.

ii) Th is a first order theory.

iii) Th contains ZFC.

iv) Th hasan w-model M " and

v) the statement IM " is expressible by language of Th as a single sen-
tence of Th.

vi) MMk C"BZ(Th;M,I“) , where predicate (To?z(Th;M(I") defined by
formula 4.1.9.

Then theory Th, =Th| M" can be extended to a maximally consistent
nice theory Th’ .

III) Assume that:

i) A theory Th is recursively axiomatizable.

ii) Th is a first order theory.

iii) Th contains ZFC.

iv) Th hasa nonstandard model M, =M [PA] and

v) the statement M, [PA] is expressible by language of Th as a single
sentence of Th.

vi) M3 E @(Th;M ;5) , where predicate @(Th;M;:‘t) defined by
formula (146).

Then theory Th can be extended to a maximally consistent nice theory
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Thi,st = Thi,Nsl [M;?J :

Remark 4.1.10. We emphasize that (v) is valid for ZFC despite the fact that
the axioms of ZFC are infinite, see [8] Ch. II, section 7, p.78.

Proof. I) Let ®,---®,--- be an enumeration of the all first order closed wif’s
of the theory Th (this can be achieved if the set of propositional variables, etc.
can be enumerated).

Define a chain o= {Th#

ist

lie N} , Thf’st =Th of consistent theories induc-
tively as follows: assume that theory Thist is defined. Notice that below we
write for short Thfm =Th!.

i) Suppose that the following statement (155) is satisfied
" c # c Th
[Thi ver (o] )} A [Thi ver (o] )} AM™ED,.  (155)

Note that

Th ¥ Pr,, ([@,]) = Th ¥ o,
(156)
Th ¥ Pr, ([0, ] ) < Th) ¥ —@,,

since predicate Pr_, ([<I> ; ]C) really asserts provability in Th/ . Then we define

atheory Th? asfollows

i+l

Th'

i+1

£ Th! U{®,}. (157)

Remark 4.1.11. Note that the predicate Pr_, ([CDZ.]C) is expressible in

i+l
#

Th,, sinceatheory Th, isa finite extension of the recursively axiomatizable

theory Th.
We will rewrite the conditions (155)-(157) using predicate Pr. , () sym-

bolically as follows:

Th!, P/, ([cD,.]c )

P, ([0.F) & [Pr (00T ) [ Pry (22T n [ R

M F @, Con(TH + 07",

ie Pr), ([0])e [ﬁPrTh? ([T )} A [ﬁPrTh? (-or )}

ACon(Th, +®; M "),

Pr. ([cD,. I ) o [ﬁPrTh? ([CDl. I )} A [ﬁPrTh? ([ﬁcbl. I )}

Pr, ([®])=Th}, Fo, (158)

#
Th;,

Th?

i+l

([o])=o.

ii) Suppose that the following statement (159) is satisfied

FPr,
Th

i+1

[Thj‘ FPr, ([cb,. I )] A [Thf FPr, ([ﬁcbt.]c )} AM™E—®,. (159

i

Note that
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Th ¥ Pr,, ([@,]) = T ¥ o,
(160)
Th ¥ Pr, ([0, ] ) < Th] ¥ —o,,

since predicate Pr_, ([—.d)[]c> really asserts provability in Th”. Then we de-

#

fine a theory Th},, as follows

Th?

i+1

£Th] U{-®,}. (161)
We will rewrite the conditions (159)-(161) using predicate Prfh,, (), sym-
i+l

bolically as follows:

Th'

i+l

#
= PrTh#

i+1

([_‘(Di]c)a

pr, ([0, )= —Pr, ([~ ) A[ M) F -0, ],

#
Thi,

Ma"l;h ':_|q)l = CO”(Thf +(—|CDI),M;I;")5

ie. Pr’, ([ﬁcbi]”) &P, ([—&Di]c)/\COH(Thi + (@, ); M),

i+1

Pl ([~ )= Pr, ([T ),

#
Thiy i+

Pr

#
Thiy

([ﬁq’i]c):> —D;, (162)

Th'

i+l

#
= PrTh#

i+1

(@] )= -,

iii) Suppose that the following statement (163) is satisfied

Th! - Pr,,, ([@]) (163)

and therefore [Thjf7£ I—CD,]/\[M,I" |=(I),.]. Then we define a theory Th!, as

follows

Th*

i+1

2 Th]. (164)
Remark 4.1.12. Note that predicate Pr, ([CI)I.]C) is expressible in Th/
i+l

because Th! is a finite extension of the recursive theory Th and
Con(Th} +®,;M")e Th,,.

iv) Suppose that the following statement (165) is satisfied
T - Pr,, ([-,]) (165)

and therefore [Thf ¥ —|CDI.] A [MQT," E —.CD,} .
Then we define theory Th’, as follows:
Th], £ Th}. (166)

i+l
We define now a theory Th? as follows:

Th’, £ JTh}. (167)

ieN
1) First, notice that each Th! is consistent. This is done by induction on 7
and by Lemmas 4.1.1-4.1.2. By assumption, the case is true when i=1. Now,

suppose Thf is consistent.
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Then its deductive closure Ded(Thf) is also consistent.

2) If statements (155)-(157) are satisfied, ie. Th? I—Pr:h_u ([q)[]C) and

i+l

Th!, - ®,, then clearly a theory Th!,, =Th’ U {CDI.} is consistent since it is a
subset of closure Ded(Thf‘+1 ) .

3) If statements (159)-(161) are satisfied, 7e. Th’ I—Prfh#

i+l
i+l

([—&Di ]‘) and

F—®,, then clearly Th/, = Thf U {—@i} is consistent since it is a subset

i+l

Th?ﬂ

of closure Ded(Thfﬂ).
4) If the statement (163) is satisfied, ie. Th] FPr_, ([(Di]t) then clearly

Th?

i+l

2 Th] is consistent.

5) If the statement (165) is satisfied, ie. Thf - PrTh# ([—.(D[]C) then clearly

i

Th?

¥, =Th! is consistent.

6) Next, notice Ded(Thi) is maximally consistent nice extension of the
Ded(Th). Ded(Thi) is consistent because, by the standard Lemma 4.1.3 below,
it is the union of a chain of consistent sets. To see that Ded(Thfo) is maximal,
pick any wff @ .Then ® issome @, in the enumerated list of all wif’s. There-
fore for any ® such that Th, - Pry, ([(I)]c) or Th] Pr . ([—@]C) , either
®eTh, or —deTh] . Since Ded(Th},)CDed(Th’) , we have
® € Ded(Th!) or —® < Ded(Th ), which implies that Ded(Th’) is max-
imally consistent nice extension of the Ded(Th).

Definition 4.1.6. We define now predicate Pr , ([(I)]C) really asserting

provability in Th? by the following formula
Pr. ([qn]" ) =3i(de Thf)[Pr;‘h? ([qn]c )} (168)

Proof. (II) and (III) similarly to (I).

Lemma 4.1.3. The union of a chain ¢ ={G, |ieN} of consistent sets G,,
ordered by C is consistent.

Definition 4.1.7. Let ¥ =¥(x) be one-place open Th -wff such that the

following condition:

Th £ Th{ = 3lx, [ ¥ (x, )] (169)

is satisfied.
Remark 4.1.13. We rewrite now the condition (168) using only the language
of the theory Th:

{Th F 3w, [¥(x, )]} < Pr,. ([El!xq, [ (x, )]])
/\{PrTh,f ([El!x\,, [ (x, )]]C ) = Ilry [ ¥ (xy )J}

Definition 4.1.8. We will say that, a set yisa Th] -set if there exist one-place
open wif W¥(x) suchthat y=ux,.We will write y[Thf‘] iff yisa Th] -set.
Remark 4.1.14. Note that

(170)
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y[Th?] = H‘I’(y =Xy ) A PrTh? ([El!x\,, [‘P (x\y )]:|c )

) (171)
{Prm ([a!xw [ (%0 )]] ) = 3, [ ¥ (xy )]}.
Definition 4.1.9. Let 3, be a set such that:
Vx[x €3, o xisa Thf —set]. (172)

~

Proposition 4.1.2. 3, isa Th/ -set.

Proof. Let us consider a one-place open wff W (x) such that condition (169)
is satisfied, Ze. Th] F3!x, [‘I’(xq, )] We note that there exists countable set
JF of the one-place open wifs F, ={¥,(x)}  such that: i) ¥(x)eF,
and ii)

Th =Th! 3!x, [[‘P(x\*, )] A {Vn(n € N)[‘I’(xq, )W, (xy )]}]

or in the equivalent form

ThTh; - Pr, . ([EI!X\P [ (x, )H)
A {Prn{* ([El!x\,, [ (x, )HL) = 3, [ (xy )]}
/\[Prn.f ([Vn(n € N)I:\P(x\{/ )P, (xy )ﬂcﬂ

APr ([Vn(n eN)[¥(xy) o ¥, (xy )]T) (173)
= Vn(ne N)[‘I’(x\P ), (xy )]

or in the following equivalent form

Th) 3y, [[‘I’l (x)]A {Vn(n € N)[‘Pl ()Y, (x )]}]

or Th - Pr,.. ([315 ()]
A{Prm ([Ellxl‘{’(xl )]”) =3 (x, )}

A[Prn.? ([V"(” eN)[¥ (x) ¥, (x)]] )}

AP ([Vn(n eN)[¥(x) e, (x )]]) (174
=Vn(neN)[¥(x) oW, (%)),

where we have set W (x)=¥,(x,),¥,(x)=¥,,(x) and x, =x.

We note that any set F, ={¥,,(x)} .k=12,- such as mentioned

neN

above, defines an unique set x, , ie. Fy, ﬂf\ykz =D iff xy, #xy, . We
1 1

note that a sets Fo k=12, are the part of the ZFC)® or ZFC, ie. a set

Fy, isasetin thesenseof ZFC," or ZFC.

Note that by using G6del numbering one can replace any set F, ,k=1,2,--
byaset ®, = g( T, ) of the corresponding Gédel numbers such that

0, =g(f~yk)={g(‘1‘,,,k (xk))} h=1,2,. (175)

neN
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It is easy to prove that any set @, = g(f.{,k ),k =1,2,--- isa Th] -set. This is
done by Goédel encoding (175), by the statement (173) and by axiom schemata of
separation.

Let g,, =g(¥,,(x)).k=12,-- bea Godel number of the wff ¥, (x,).
Therefore g(F,)= {gn,k} o where we have set f, =, ,k=12,--- and

ne

Vk Yk, [{gnykl }neN N {gnykz } =dox, #x, ] (176)

neN
Let {{g”’k}nEN}keN be a family of the sets {g”’k}nEN ,k=1,2,---. By the axiom

of choice one obtains unique set J| = {gk}keN such that Vk[gk € {gn’k }neN]

Finally one obtains a set 3, from the set J] by the axiom schema of replace-
ment.

Proposition 4.1.3. Any set ©, = g(f\,,k ),k =1,2,--- isa Th] -set.

Proof. We define g,, = g(‘I’n’k (x, )) = [‘Pn’k (x, )T s v, =[x.] . Therefore
2.0 =&(¥,. (%)) > Fr(g,,.v,) - Let us define now predicate TI(g,,.v)

H(gmk,vk ) o PrThl# ([El!xk [‘Pl,k (x, ):Hc)/\ Iy, (vk =[x, ]L)
{Vn(n € N)[Prﬁ? ([[‘Fl’k (x, )ﬂ‘) o Pr . (Fr(gn’k Yy ))ﬂ
We define now a set ®, such that

0,=0;U {gk}’
Vn(neN)[g,, €0 < 11(g,,.v)]

(177)

(178)

Obviously definitions (177) and (178) are equivalent.
Definition 4.1.10. We define now the following Th{ -set R,  J;:

Vx[xeﬂ%l @(xeSI)APrThr ([xex]c)/\] (179)

Proposition 4.1.4.1) Th] -3%R,,ii) R, isacountable Th! -set.

Proof. i) Statement Th] 3R, follows immediately from the statement
33, and the axiom schema of separation, ii) follows immediately from counta-
bility of a set J,. Notice that R, is nonempty countable set such that NcR,,
because forany neN: Th! Fnen.

Proposition 4.1.5. A set R, is inconsistent.

Proof. From formula (179) we obtain

Th - %, %, < Pr ([9, eml]”). (180)
From (180) we obtain
Th] FR, eR, &R, ¢ N, (181)
and therefore
Th{ (R, e R)A(R, £ R,). (182)

But this is a contradiction.
Definition 4.1.11. Let ¥ =¥ (x) be one-place open Th -wff such that the
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following condition is satisfied:

Th] = 3lx, [W(xy) ] (183)

Remark 4.1.15. We rewrite now the condition (183) in the following equiva-
lent form using only the language of the theory Th’ :

{0’ 3w, [ (x, )] > P (3, [ (5 )T ) (184)

Definition 4.1.12. We will say that, a set y is a Th} -set if there exist
one-place open wff W¥(x) such that y=x,. We will write for short y[Thﬂ
iff yisa Th! -set.

Remark 4.1.16. Note that

y[Th! ] EILI’{(y =xy ) APr, ([3% [ (x)]] )} (185)

Definition 4.1.13. Let 3. be a set such that:

i

‘v’x[x €3, <> xisa Th! —set]. (186)

Proposition 4.1.6. J, isa Th] -set.

Proof. Let us consider a one-place open wff ¥ (x) such that conditions (183)
are satisfied, Ze. Th] 3!x, [‘I’(xq, )] We note that there exists countable set
JF. of the one-place open wifs F, ={¥,(x)}  such that: i) ¥(x)eF,
and ii)

Th! - 3x, [[‘P(xq, )] A {Vn(n € N)[‘I’ (xq, ) ¥, (xq, )]}]

or in the equivalent form
Th} - Pr . ([Ellxq, [ (xy )]])
/\{Pl‘Th? ([Ellx\{, [ (xy )]]") = 3, [P (xy )]}
A Pry ([ M2 () 2, ()] )|
APr, ([Vn(ne N[ (v, ) 2, (5, 1) (187)
= Vn(neN)[¥(x,) ¥, (x,)]
or in the following equivalent form
Th! -3t [ [, ()] A {va(n e N)[ ¥, (x) © ¥, ()]} ]

orThfl—PrTh?([EI!xl‘P ) {Pr #([Elixl %) ):>El!xl‘P(xl)}
)

[PrTh# ([v” neN)[¥(x) o, (x)]] )} e
AP ([Vn(n eN)[¥(x)e¥,(x )]]c)
= Vn(neN)[¥(x) oW, (x)].

where we have set ¥(x)2V¥ (x).¥,(x)2¥,,(x) and x, £x,. We note

that any set F, = {‘Pn,k (x)}neN ,k=1,2,--- such as mentioned above, defines
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an unique set x, , e f\,,kl ﬂfq,kz =0 iff Xy, #Xy,_ . We note that a sets

Fo,k=1,2,--- are part of the ZFC,", ie anyset [, isa setin the sense of
ZFCJ® . Note that by using Godel numbering one can to replace any set
Fo, k=1,2,--- by set O, = g(}"\yk) of the corresponding Godel numbers
such that

0, =g(F, )={2(¥.. (%))} =12 (189)

It is easy to prove that any set ®, = g(fw ),k =1,2,--- isa Th} -set. This is
done by Godel encoding, by the statement (183) and by the axiom schema of se-

s
neN

paration.
Let g,, =g(¥,,(x)).k=12,-- bea Godel number of the wff ¥, (x,).
Therefore g(F,)={g,.} »wherewehaveset F, =, k=12, and

Vk Yk, [{gﬂ),{l }neN N {gﬂ),{2 } =D o x, # X, J (190)

neN

Let {{gn’k }”EN}keN be a family of the all sets {gn!k} .+ By axiom of choice

one obtains a unique set J; ={gk }keN such that Vk[gk e{g"»k}new]' Finally

for any ieN one obtains a set J, from the set 3, by the axiom schema of
replacement.
Proposition 4.1.7. Any collection ©, = g(j{{,k ),k =1,2,--- isa Th! -set.
Proof. We define g,, =g(¥,,(x,))= [‘I’mk (x, ):|C s v, =[x,]". Therefore
Cus = g(‘l’mk (x,)) <> Fr(g,,.v, ) Let us define now predicate I1, (g, ,.v; )

I, (gn,k,vk ) = PrTh? ([El!xk [‘I’Lk (x1 )]]C ) A3, (vk = [xk ]c)

[Vn(n € N)I:Pr“? ([[‘Plk (%, )ﬂc) S Pr . (Fr(gn,k,vk ))ﬂ
We define now aset ®, such that

{®k=®;U{gk},

(191)

, (192)
Vn(ne N)[gn)k €@, &1, (gn‘k,vk )J
Obviously definitions (191) and (192) are equivalent.
Definition 4.1.14. We define now the following Th! -set R, C 3,

Th!

Vx[xeiR, < (xe3)APr ([xex]cﬂ. (193)

Proposition 4.1.8.1) Th! -3R,,ii) R, isacountable Th}-set, ie N.

Proof. i) Statement Th’ 3R, follows immediately by using statement
33, and axiom schema of separation. ii) follows immediately from countability
ofaset J,.

Proposition 4.1.9. Any set R,,i e N is inconsistent.

Proof. From the formula (193) we obtain

Th %, e %, < Pr, ([%, 2%, ). (194)

From the formula (194) we obtain

Th] R, eR, o R, N, (195)
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and therefore
Th] (R, e R,)A (R, 2 R,). (196)
But this is a contradiction.

Definition 4.1.15. A Th’ -wff ®_ that is: i) Th-wff ® or ii) well-formed
formula @, which contains predicate Pr_, ([@]‘) given by formula (4.1.28).
An Th! -wff ®_ (well-formed formula ®_) is closed, .e. @, is a sentence
if ®_ hasno free variables; a wff is open if it has free variables.

Definition 4.1.16. Let W =¥ (x) be one-place open Th’ -wff such that the
following condition:

Th 3, [ ¥ (xy ) ] (197)

is satisfied.
Remark 4.1.17. We rewrite now the condition (197) in the following equiva-

lent form using only the language of the theory Th :
{ThY =30, [W () |} & Pr ([El!x\y [ (xy )H) (198)

Definition 4.1.17. We will say that, a set yisa Th’ -set if there exists one-place
open wif W¥(x) suchthat y=ux,.We write y[Thi} iff yisa Th’ -set.

Definition 4.1.18. Let J_ be a set such that: ‘v’x[x €3, «<>xisaTh! —set} .

Proposition 4.1.10. Aset I isa Th’ -set.

Proof. Let us consider an one-place open wff ¥ (x) such that condition (197)
is satisfied, Ze. Th’ 3, [ ¥ (xy )| We note that there exists countable set F,
of the one-place open wif's 7, ={¥,(x)} = suchthat:i) ¥(x)e F, andii)

Th’ I 3x, [[‘I’(xq, )] A {Vn(n € N)[\P(x.}, Yo ¥, (xy )J}]

or in the equivalent form

Th! - Pr,, ([Ellx\y [ (5 )ﬂ)
A{anr; ([Ellx.{, [¥(x)]] ) = 3ty [ (x, )J}
/\|:PrThl ([W(n eN)[¥(xy) 0¥, (x)]] ﬂ

NPT ([vn(n eN)[¥(x,) ¥, (v )}]") (199)
= Vn(neN)[¥(xy) ¥, (x,)]
or in the following equivalent form
Th', 130 [ [, (0)] A {¥n(n e N)[ ¥, (x) ¥, (x)]}]
or Th' FPr, . ([H!xl‘{’(xl )]c)/\{Pl'Thz) ([H!xl‘}’(xl )]") = 3 (x, )}
/\[Pr“? ([Vn(n eN)[¥(x) oW, (x)]] )} (200)
AP ([Vn(n eN)[¥(x)o ¥, (x )]])

= Vn(neN)[¥(x)o ¥, (x)].
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where we set W(x)=V¥,(x),¥,(x)="¥,,(x) and x, =x,. We note that
any set F, ={¥,, (x)}neN,k:I,z,--- such as mentioned above defines a
unique set x, , ie Fy, ﬂf\l,kz =@ iff xy #x,_ . We note that sets
Fo, -k =1,2,--- are the part of the ZFCI* , ie. a set Fe, 1s asetin the sense
of ZFCJ® . Note that by using Gddel numbering one can replace any set
Fo, - k=1,2,--- by theset ©, = g( I, ) of the corresponding Gédel numbers
such that

O, =g(Fo, )={g(¥, (x))} =12 (201)

It is easy to prove that any set ©, = g(j:\,,k ),k =1,2,--- isa Th" -set. This is
done by Godel encoding and by axiom schema of separation. Let
S =8(W,,(x)).k =12, beaGodel number of the wff ¥, , (x, ). There-
fore g(F,)= {gn!k} > Where we have set F = Fo o k=12,--- and

ne

VkVk, |:{gn,kl }KN N {gn,k2 }

b
neN

neN

=Jox, £x, J (202)

Let {{gn’k }neN}keN be a family of the sets {gn,k}nEN ,k=1,2,---. By axiom of

choice one obtains an unique set JI'= {gk}keN such that Vk[gk € {g"’k}neN].

Finally one obtains a set 3 from the set J’ by axiom schema of replace-
ment. Thus we can define Th’, -set R, &3, :
Vx[x eR, o (xeJ,)A [PrTh# ([x gx| )ﬂ (203)
Proposition 4.1.11. Any set ©, = g(j-;k ),k =1,2,--- isa Th’ -set.
Proof. We define g,, =g(¥,,(x,))= [‘Pn)k (x, )T s v, =[x.]". Therefore
2 = g(\}fmk (x, )) > Fr(gn’k,vk) . Let us define now predicate IT (gn’,{,vk)

M, (g% ) Pr,., ([azxk (¥ (% )]])
/{Pr“:o ([El!xk [\Puf (x, )ﬂc ) = 3 ¥(x, )} Adlx, (vk = [xk ]C ) (204)

{‘v’n(n e N)[Prﬂli ([[‘Pl’k (%, )ﬂ) < Pr, (Fr(g,.v ))ﬂ

We define now aset ®, such that
0, =0, U{g,}.
Vn(ne N)[gmk €0, < TI(g, .. )J
Obviously definitions (204) and (205) are equivalent by Proposition 4.1.1.

Proposition 4.1.12.1) Th” F3R_,ii) N_ isacountable Th’ -set.
Proof. i) Statement Th? 3R follows immediately from the statement

(205)

33, and axiom schema of separation [9], ii) follows immediately from counta-
bility of the set I .

Proposition 4.1.13. Set R is inconsistent.

Proof. From the formula (203) we obtain

Th! %, e R, < Pr,, ([snw gN, ]) (206)
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From (206) one obtains
Th: FR eR, SR, R, (207)
and therefore

Th! (R, e R, )A (R, 2R,). (208)

But this is a contradiction.
Remark 4.1.18. Note that a contradictions mentioned above can be again

avoid using canonical Quinean approach, see subsection 3.6.

~Hs
4.2. Proof of the Inconsistency of the Set Theory ZFC! +3m "
Using Generalized Tarski’s Undefinability Theorem

In this section we will prove that a set theory ZFC! +3M*“" is inconsistent,
without any reference to the sets J,,J,,---,J, and corresponding inconsistent
sets R, R,,---,R

Remark 4.2.1. Note that a contradiction mentioned above is a strictly strong-

o *

er then contradictions derived in subsection 4.1, and these contradictions are
impossible to avoid by using Quinean approach, see subsection 3.6.

Proposition 4.2.1. (Generalized Tarski’s undefinability theorem). Let Th™
be second order theory with Henkin semantics and with formal language <,
which includes negation and has a Gédel encoding g(-) such that for every

o -formula A(x) there is a formula B such that B <> 4(g(B)) holds. As-
sume that Th” has a standard Model M A

Then there is no  -formula True(n) such that for every  -formula A

such that M7 " = 4, the following equivalence holds

(M7 & 4) & True(g(4)). (209)

Proof. The diagonal lemma yields a counterexample to this equivalence, by
giving a “Liar” sentence Ssuch that S < —|True( g(s )) holds.

Remark 4.2.2. Above we has been defined the set J_ (see Definition 4.1.16)
in fact using generalized truth predicate True’, ([CD]() such that

True’ ([CD]C ) o PrThz ([(D]c ) (210)

In order to prove that set theory ZFC! +3M*“" is inconsistent without

~

any reference to the set J_, notice that by the properties of the nice extension
Th? it follows that definition given by biconditional (211) is correct, ie., for
every first order ZFC! -formula ® such that M7 Ed and the follow-

ing equivalence holds

(M* Fo)epr, ([0]), 211)

where Pr, ([0] )= ®.
Th,

Proposition 4.2.2. Set theory Th* = ZFC +3M*“" is inconsistent.
Proof. Notice that by the properties of the nice extension Th? of the Th]
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it follows that

(MZFCZH s cp) & Th' - O, (212)

Therefore (210) gives generalized “truth predicate” for set theory Th’ . By
Proposition 4.2.1 one obtains a contradiction.

Remark 4.2.3. A cardinal x isinaccessible iff x has the following reflection
property: for all subsets U <V, there exists @ <k such that (V,,e,UNV,) is
an elementary substructure of (Vk,e,U ) (In fact, the set of such @ is closed
unbounded in «.)

Equivalently, x is II)-indescribable forall n>0.

Remark 4.2.4. Under ZFCit can be shown that x is inaccessible iff (¥, ,€)
is a model of second order ZFC [5].

Remark 4.2.5. By the reflection property, there exists & <k such that
(Va,e) is a standard model of (first order) ZFC. Hence, the existence of an in-
accessible cardinal is a stronger hypothesis than the existence of the standard
model of ZFCJ".

4.3. Derivation Inconsistent Countable Set in Set Theory ZFC, with
the Full Semantics

Let Th=Th™ be a second order theory with the full second order semantics.
We assume now that Th contains ZFC/*. We will write for short Th, in-
stead Th'™.

Remark 4.3.1. Notice that M is a model of ZFC/* iff it is isomorphic to a
model of the form V,,e (¥, xV,),for x astrongly inaccessible ordinal.

Remark 4.3.2. Notice that a standard model for the language of first-order set
theory is an ordered pair {D,/}. Its domain, D, is a nonempty set and its inter-
pretation function, /, assigns a set of ordered pairs to the two-place predicate
“e”. A sentence is true in {D, I} just in case it is satisfied by all assignments of
first-order variables to members of D and second-order variables to subsets of D,
a sentence is satisfiable just in case it is true in some standard model; finally, a
sentence is valid just in case it is true in all standard models.

Remark 4.3.3. Notice that:

I) The assumption that D and 7be sets is not without consequence. An imme-
diate effect of this stipulation is that no standard model provides the language of
set theory with its intended interpretation. In other words, there is no standard
model {D,I} in which D consists of all sets and 7 assigns the standard ele-
ment-set relation to “ € ”. For it is a theorem of ZFC'that there is no set of all sets
and that there is no set of ordered-pairs {x,y} for xan element of y.

II) Thus, on the standard definition of model:

1) it is not at all obvious that the validity of a sentence is a guarantee of its
truth;

2) similarly, it is far from evident that the truth of a sentence is a guarantee of

its satisfiability in some standard model;
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3) if there is a connection between satisfiability, truth, and validity, it is not
one that can be “ read oft” standard model theory.

III) Nevertheless this is not a problem in the first-order case since set theory
provides us with two reassuring results for the language of first-order set theory.
One result is the first order completeness theorem according to which first-order
sentences are provable, if true in all models. Granted the truth of the axioms of
the first-order predicate calculus and the truth preserving character of its rules of
inference, we know that a sentence of the first-order language of set theory is
true, if it is provable. Thus, since valid sentences are provable and provable sen-
tences are true, we know that valid sentences are true. The connection between
truth and satisfiability immediately follows: if ¢ is unsatisfiable, then —¢, its
negation, is true in all models and hence valid. Therefore, —¢ istrueand ¢ is
false.

Definition 4.3.1. The language of second order arithmetic Z, is a two-sorted
language: there are two kinds of terms, numeric terms and set terms.

0 is a numeric term.

1) There are innately many numeric variables, x,,x,---,x,, -+ each of which

s
is a numeric term.

2) If sis a numeric term then Ss is a numeric term.

3) If s,¢+ are numeric terms then +st and -s¢ are numeric terms (abbre-
viated s+t and s-1).

4) There are infinitely many set variables, X, X,,---,X, ,--- each of which is
a set term;

5) If tis a numeric term and Sthen €S is an atomic formula (abbreviated
tesS).

6) If sand tare numeric terms then =st and <st are atomic formulas (ab-
breviated s=¢ and s <t correspondingly).

The formulas are built from the atomic formulas in the usual way.

As the examples in the definition suggest, we use upper case letters for set va-
riables and lower case letters for numeric terms. (Note that the only set terms are
the variables.) It will be more convenient to work with functions instead of sets,
but within arithmetic, these are equivalent: one can use the pairing operation,
and say that Xrepresents a function if for each n there is exactly one m such that
the pair (n,m) belongs to X.

We have to consider what we intend the semantics of this language to be. One
possibility is the semantics of full second order logic: a model consists of a set A4,
representing the numeric objects, and interpretations of the various functions
and relations (probably with the requirement that equality be the genuine equal-
ity relation), and a statement VX®(X) is satisfied by the model if for every
possible subset of A4, the corresponding statement holds.

Remark 4.3.4. Full second order logic has no corresponding proof system. An
easy way to see this is to observe that it has no compactness theorem. For exam-
ple, the only model (up to isomorphism) of Peano arithmetic together with the
second order induction axiom: VX (0e X AVx(xe X = Sre X)= Vx(xe X))

DOI: 10.4236/apm.2019.99034

732 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2019.99034

J. Foukzon, E. Men’kova

is the standard model N. This is easily seen: any model of Peano arithmetic has
an initial segment isomorphic to N; applying the induction axiom to this set,
we see that it must be the whole of the model.

Remark 4.3.5. There is no completeness theorem for second-order logic. Nor
do the axioms of second-order ZFCimply a reflection principle which ensures that
if a sentence of second-order set theory is true, then it is true in some standard
model. Thus there may be sentences of the language of second-order set theory
that are true but unsatisfiable, or sentences that are valid, but false. To make this
possibility vivid, let Zbe the conjunction of all the axioms of second-order ZFC. Z
is “surely” true. But the existence of a model for Z requires the existence of
strongly inaccessible cardinals.

The axioms of second-order ZFC don’t entail the existence of strongly inac-
cessible cardinals, and hence the satisfiability of Zis independent of second-order
ZFC. Thus, Zis true but its unsatisfiability is consistent with second-order ZFC
[5].

Remark 4.3.6. We remind that urlogic is the aspect of mathematicians’ activ-
ity that consists of just writing down finite strings of symbols-sentences-according
to some fixed rules. Those sentences are sentences of urlogic. Whether a string
of symbols is a sentence of urlogic should be totally unproblematic. In summary,
urlogic has the following characteristics [13]:

i) Sentences of urlogic are finite strings of symbols. That a string of symbols is
a sentence of urlogic, is a non-mathematical judgement.

ii) Some sentences are accepted as axioms. That a sentence is an axiom, is a
non-mathematical judgement.

iii) Derivations are made from axioms. The derivations obey certain rules of
proof. That a derivation obeys the rules of proof, is a non-mathematical judge-
ment.

iv) Derived sentences can be asserted as facts.

If we take first-order set theory as the urlogic, the sentences of urlogic are
sentences of first-order predicate logic with identity, with the binary predicate
symbol e as the only non-logical symbol. The axioms are the usual rules of
first-order logic augmented with the Zermelo-Fraenkel axioms ZFC of set theory.
On the informal level we interpret the sentences of this urlogic as propositions
about mathematical objects construed as sets.

Remark 4.3.7. In the case of second-order logic the sentences of urlogic are
the sentences of second-order predicate logic. Depending on the context, the
non-logical vocabulary may consist of symbols for the arithmetic of natural
numbers, arithmetic of real numbers, and so forth.

Montague [21] gives second-order Peano axioms Z, for number theory, and
second-order axioms RCF, for real closed fields. For full second-order logic
there is a notion of “semantical” derivation:

We can derive ¥ from @ if every model of ® is a model of V.

Of course scanning through all models of @ is a highly mathematical act.
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Thus with respect to  ZFCJ*, this is a semantically defined system and thus it
is not standard to speak about it being contradictory if anything, one might at-
tempt to prove that it has no models, which to be what is being done in Section 3
and Section 4 for ZFCJ*.

Remark 4.3.8. Note that in order to avoid difficulties with “semantical” deri-
vation mentioned above one considers first order theory Th < ZFC/* which
contains only first order wif of ZFC;"*. Thus in order to prove that ZFCJ*
has no models or it being contradictory, one might use the same approach,
which is done in Section 3 and Section 4 for ZFC," .

Definition 4.3.2. Let ® be a wff of ZFC® . We will say that ® is a first
order n-place open wiff if @ contains free occurrences of the first order indi-
vidual variables X,,---,X, and quantifiers only over any first order individual
variables Y,,---,Y .

Definition 4.3.3. Let Th be a first order theory which contains only first
order wif of ZFC," . Using formula (141) one can define predicate Pr}, ( y)

really asserting provability of the first order sentences in Th — ZFCJ*:

Pry, (y) < Pry, (y) /\[PrTh (y) = CD:|’

Pr, (y) < Elx(x € Mf}zf” )ProvTll (x.), (213)
y=[o].

Theorem 4.3.1. [12]. (Lob’s Theorem for ZFC{” .) Let @ be any first order
closed formula with code y=[®] eM?>, then Tht Pry ([(D]C) implies
Thi-o.

Proof. Assume that

#) Thi-Pry, ([0] ).

Note that

1) Th ¥ —® . Otherwise one obtains Th Pry, ([—(D]c ) AP, ([CD]C ) , but
this is a contradiction.

2) Assume now that (2.i) Th Pr, ([(D]‘) and (2.ii) Th¥ @.

From (1) and (2.ii) it follows that

3) Th¥—-® and ThF O.

Let Th_, beatheory

4) Th_, 2 ThU{-®}. From (3) it follows that

5) Con(Th_).

From (4) and (5) it follows that

6) Th_, +Pry, _ ([ﬁqn]”).

From (4) and (#) it follows that

7) Th_, b Pry, ([(D]C).

From (6) and (7) follows that

8) Th_, FPry, ([(D]E ) APy, ([—ﬂ)]c ) , but this is a contradiction.

Definition 4.3.4. Let ¥ =W (x) be first order one-place open wff such that:

Th bk 3tx, [¥(x,)]. (214)
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Then we will say that, a set yisa Th -set iff there is exist first order one-place
open wff W(x) suchthat y=ux,.Wewrite y[Th] iff yisa Th-set.
Remark 4.3.9. Note that

y[Th] < 3¥ [(y =xy ) APry, ([Ellx\p [ (xe)]] )} (215)

Definition 4.3.5. Let I Dbe a collection such that: V)c[x eI xisa Th-set] .
Proposition 4.3.1. Aset 3 isa Th -set.
Definition 4.3.6. We define nowa Th-set R ; RE

c

Vx[xeiﬁc > (xe3I)APr, ([xex]c )} (216)

Proposition 4.3.2.1) ThF3IR_, ii) 930 is a countable Th -set.

Proof. i) Statement ThF 3%, follows immediately by using statement 33
and axiom schema of separation [4], ii) follows immediately from countability of
aset 3.

Proposition 4.3.3. Aset R, isinconsistent.

Proof. From formula (216) one obtains

ThF %, e R, < Pr,, ([9’1’( emc]“). (217)

From formula (216) and definition 4.3.5 one obtains

Thi-R, eR, R, R, (218)

and therefore

ThH (R, eR)A(R, 2R,). (219)

But this is a contradiction.

Thus finally we obtain:

Theorem 4.3.2. [5]. —Con(ZFC{“‘" )

It well known that under ZFC it can be shown that x is inaccessible iff
(V,,€) isamodel of ZFC, [12]. Thus finally we obtain.

Theorem 4.3.3. [5] [6]. —~Con(ZFC+3M ™ (M = H,)).
5. Discussion. How Can We Safe the Set Theory ZFC +3aMZ*F¢

st

5.1. The Set Theory. ZFC, with a Weakened Axiom of Infinity

We remind that a major part of modern mathematical analysis and related areas
based not only on set theory ZFCbut on strictly stronger set theory: ZFC +3M €.
In order to avoid difficultness which arises from —.Con(ZFC +3IM " C) in this
subsection we introduce the set theory ZFC, with a weakened axiom of infin-
ity. Without loss of generality we consider second-order arithmetic Z, with a
restricted induction schema.

Second-order arithmetic Z, includes, but is significantly stronger than, its
first-order counterpart Peano arithmetic. Unlike Peano arithmetic, second-order
arithmetic allows quantification over sets of natural numbers as well as numbers

themselves. Because real numbers can be represented as (infinite) sets of natural
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numbers in well-known ways, and because second order arithmetic allows quan-
tification over such sets, it is possible to formalize the real numbers in second-order
arithmetic. For this reason, second-order arithmetic is sometimes called “analy-
sis”.

Induction schema of second-order arithmetic Z, .

If @(n) isaformula of second-order arithmetic Z, with a free number va-
riable 1 and possible other free number or set variables (written m and X), the

induction axiom for ¢ is the axiom:
‘v’mVX((go(O)/\‘v’n(go(n)—>¢)(n+1)))—)‘v’ngo(n)). (220)

The (full) second-order induction scheme consists of all instances of this
axiom, over all second-order formulas. One particularly important instance of
the induction scheme is when ¢ is the formula “n e X ” expressing the fact
that n is a member of X (X being a free set variable): in this case, the induction

axiom for ¢ is

VX((OEX/\Vn(neX—>n+leX))—>‘v’n(neX)). (221)

This sentence is called the second-order induction axiom.
Comprehension schema of second-order arithmetic Z, .
If ¢(n) isa formula with a free variable n and possibly other free variables,

but not the variable Z, the comprehension axiom for ¢ is the formula

EIZVn(neZ(—)(p(n)). (222)

This axiom makes it possible to form the set Z = {n | q)(n)} of natural num-
bers satisfying ¢(n). There is a technical restriction that the formula ¢ may
not contain the variable Z.

Designation 5.1.1. Let Wff, (Z,) be a set of the all k-place open wff’s of the
second-order arithmetic Z, and let R, (Z,) be a set of the all primitive re-

cursive k-place open wff’s y,, of the second-order arithmetic Z,.Let £, (Z,)

R
be a set of the all k-place open wif's y; of the second-order arithmetic Z,

such that
R, 2R, (Z,)E2,(Z,) S WIE, (Z,). (223)

Let WIf .x be a set of the all sets definable by 1-place open wff’s
v (X)e Wit (Z,),

let %, be a set of the all sets definable by 1-place open wif's ¥y (X)€Z,(Z,)
and

let 9, be aset of the all sets definable by 1-place open wff’s Y, (X) eR, (Zz )

Restricted induction schema of second-order arithmetic Z; .

If o (n) €X, = %(Z,) is a formula of second-order arithmetic Z, with a
free number variable n and possible other free number and set variables (written

mand X), the induction axiom for ¢, is the axiom:

VmVX(X el )((%k (0)A Vn((ozk (n) >y, (n+ 1))) — Vng, (n)) (224)
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The restricted second-order induction scheme consists of all instances of this
axiom, over all second-order formulas. One particularly important instance of
the induction scheme is when ¢; X is the formula (ne X)/\(X € f)l) ex-
pressing the fact that nis a member of Xand X €XZ, (Xbeing a free set varia-

ble): in this case, the induction axiom for ¢, is

VX(XEEI)((OGX/\Vn((neX)—)(n+leX))>—>Vn((neX))). (225)

Restricted comprehension schema of second-order arithmetic Z3* .
If o (n) €, is a formula with a free variable  and possibly other free va-

riables, but not the variable Z the comprehension axiom for ¢; is the formula
EIZVn(n e/ & ?s, (n)) (226)
Remark 5.1.1. Let Z3* be a theory Z* +3M [Z? ] where M, [Z?k ] is

a standard model of Z: .

We assume now that

Con(Z3* +3M,,[ 23 ). (227)

Definition 5.1.1. Let g(x):R — R be any real analytic function such that:
i)

gQ (x) = Z"nxn’

n=0

x| <r, (228)

where Vn(a, € Q) and where ii) the sequence {a,} €M, [Zﬂ (in partic-
ular {a,} €M, [Z’z“l ] ) if the sequence {a,}
Then we will call any function given by Equation (228) Q -analytic X

is primitive recursive.

-function and denoted such functions by g (x). In particular we will call any
function gg' (x) constructive Q -analytic function.

Definition 5.1.2. A transcendental number z € R is called X -transcendental
number over field Q, if there does not exist Q -analytic X -function gg (x)
such that g7 (z)=0.

In particular a transcendental number zeR is called #-transcendental
number over field Q, if there does not exist constructive @Q -analytic function
go' (x) such that g, (z)=0, Le. for every constructive Q -analytic function
gy (x) the inequality g (z)#0 is satisfied.

Example 5.1.1. Number 7 is transcendental but number 7 is not
#-transcendental number over field Q since

1) function sinx isa @ -analytic and

2) sin (E) =1, ie
2

2n+1
3 5 7 2n+1
T T 7 ()™ =

2 231 2°51 2771 21 (2n+1)!

4o =0, (229)

__1 2n+1
Remark 5.1.2. Note that a sequence a, =#,n=0,1,2,--~ ob-
27 (2n+1)!

viously is primitive recursive and therefore
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{a,},..eM, 2] ], (230)

since we assume Con(Zgil +3M,, [Z?' J) .
Proposition 5.1.1. Let v, =1. For each n>0 choose a rational number v,

inductively such that
1=-Y vt —(nl) ' <v,e" <1-Y" v e (231)

The rational number v, exists because the rational numbers are dense in R.
. N o .
Now the power series f(x)=1->" v," has the radius of convergence o

and f(e)=0. However any sequence {v,}  obviously is not primitive re-

eN
cursive and therefore

Wy 2 M, [ 23], (232)

Theorem 5.1.1. [22] Assume that Con(Z?' +3M, [Zg“ ]) . Then number eis
#-transcendental over the field Q.

Theorem 5.1.2. [22] Number ¢° is transcendental over the field Q.

Proof. Immediately from Theorem 5.1.2.

Theorem 5.1.3. [22] Assume that Con(Z§ +3M, [Zg]) Then number e is
Y -transcendental over the field Q.

5.2. The Set Theory. ZFC* with a Nonstandard Axiom of Infinity

We remind that a major part of modern set theory involves the study of different
models of ZF and ZFC. It is crucial for the study of such models to know which
properties of a set are absolute to different models [8]. It is common to begin
with a fixed model of set theory and only consider other transitive models con-
taining the same ordinals as the fixed model.

Certain fundamental properties are absolute to all transitive models of set
theory, including the following: i) xis the empty set, ii) x is an ordinal, iii) xis a
finite ordinal, iv) X =, v) xis (the graph of) a function. Other properties, such
as countability, x=2" are not absolute, see [8].

Remark 5.2.1. Note that for nontransitive models the properties (ii)-(v) no
longer holds.

Let (M,&) be a non standard model of ZFC. It follows from consideration
above that any such model <M ,é> is substantially non standard model of ZFC,
Le., there does not exist an standard model (Mst,e> of ZFC such that
M, c M, where

EM,=eM,,. (233)

and

we(M,E). (234)

Theorem 5.2.1. [9]. Let <M,é> be a non standard model of ZF. A necessary
and sufficient condition for <M ,é> to be isomorphic to a standard model
<M ,e) is that there does not exist a countable sequence {xn}neN of elements
in Msuch that x,, €x,.
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Definition 5.2.1. Let M, = (M,é) be a non standard model of ZFC. We
will say that:
i) element z &M is a non standard relative to N and abbreviate Nt (z),

if there exists a sequence {xn}n of elements in M such that x , €x, and

eN
z=1Xx,,and
ii) element z &M, is a standard relative to N and abbreviate s7(z) if
there does not exist a countable sequence {x, }nEN of elements in M such that

x,., €x, andz=x,, Le, st(z)<> —Nsty(z).

Remark 5.2.2. We denote by ZFC. set theory which is obtained from set
theory ZFC by using wiff’s of ZFC with quantifiers bounded on a non standard
model (M ,é) . The first-order language corresponding to set theory ZFC. we
denoteby ..

Let WIf(ZFC.) be aset of the all wif’s of ZFC. . Note that
sty (2),Nsty (z) ¢ Wit (ZFC. ), ie., predicates st (z) and Nst,(z) are not
well defined in ZFC. since Ne¢ M, .

Definition 5.2.2. In set theory, an ordinal number « is an admissible or-
dinal if L, is an admissible set (that is, a transitive model of Kripke-Platek set
theory); in other words, & is admissible when « is a limit ordinal and
L, F X, -collection.

Definition 5.2.3. Let (M,E) be a non standard model of ZF. Assume that
ordinal of <M ,é> have a largest minimal segment isomorphic to some stan-
dard ordinal « € M , which is called the standard part of <M,é> , see [14] [15].
We shall assume that « € M , and thatfor f<a:

ERY (B)=eRY (B), (235)

where R (B) isthe set of all elements of A with M rank is less then /.

Which standard ordinal @ can be standard part of (M ,é)? It well-known
that a necessary condition is that & is admissible ordinal. A well-known Fried-
man theorem (see [14] [15]) implies that for countable & the admissibility is al-
so sufficient condition. Thus there is no admissible countable ordinal ¢ in any
non standard model of ZFC.

Remark 5.2.3. We introduce now in consideration a conservative extension of
the theory ZFC. by adding to language . the atomic predicate Nist(z)

which satisfies the following condition

Vz[Nst(z) = Eix[(x Ez)A Nst(x)]]. (236)

1) Axioms of non standardness

a) There exists at least one non standard set

3z[ Nst(z)]. (237)

b) There exists at least one non standard transitive set

Elz[Nst(z)/\TR(z):l, (238)

where: TR(z) < Vx[(xé IR Ex)>a éz].
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2) Axiom of extensionality

‘v’xVy[Vz(zéx@zéy):x:y]. (239)

3) Axiom of regularity
VxEIa[(EIa(a = x)) =3Jy(y&x) /\—Elz[(z Ey)n(ze x)ﬂ (240)

4) Axiom schema of specification
Let ¢* be any formula in the language of ZFC. such that i) formula ¢
free from occurrence of the atomic predicate Nst(z), Le., ¢ can not contain

the atomic predicate Nsf(2) and

ii) ¢* isaformula with all free variables among x,z,w,,---,w, (yisnot free
in ¢"). Then:
VzV'w, ---VW"EIny[x Eye(x&z)ng” (x,z, w00, w, )] (241)

4’) Axiom of empty set
IxVy [—|(y g x):l (242)

We will denote the empty set by & .
5) Axiom of pairing

VxVydz[xEzayEz]. (243)

6) Axiom of union

VIAAVYVx[(xEY)A(Y EF))=>x & 4] (244)

7) Axiom schema of replacement

The axiom schema of replacement asserts that the image of a set under any
definable in ZFC. function will also fall inside a set.

Let ¢ be any formula in the language of ZFC. such that i) formula ¢*
free from occurrence of the atomic predicate Nst(z), Le., ¢” can not contain

the atomic predicate Nsf(2) and

ii) ¢” isa formula whose free variables are among x,y, 4,w,,---,w,, so that

in particular Bis not free in ¢* . Then:

YVAYW, -+ Vw, [Vx(xé A= 3yg" (4, w,,w,,x,p)

(245)
= 3Bvx(xE A= F(yEBAg (A,Wl’...,wn,x,y)))]
8) Axiom of infinity
Let S.(x) abbreviate xU. {x}., where wis some set. Then:
A[(Der)avxel(xU. {x}, €1)), (246)

Such a set as usually called an inductive set.
Definition 5.2.4. We will say that xis a non standard set and abbreviate x"

iff x contain at least one non standard element, ie.,

PR Ha[a Exn Nst(a)]. (247)

Remark 5.2.4. It follows from Axiom schema of specification and Axiom
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schema of replacement (245) we cannot extract from a non standard set the
standard and non standard elements separately, Ze. for any non standard set

x™" there is no exist a set yand zsuch that

M =yU, z, (248)

where ycontain only standard sets and z contain only standard sets!
As it follows from Theorem 5.3.1 any inductive set is a non standard set.
Thus Axiom of infinity can be written in the following form
8’) Axiom of infinity
Let S.(x) abbreviate xU. {x}., where wis some set. Then:

I [(Der™)avxer™ (xU, {x}, e1™)] (249)

Such a set as usually called a non standard inductive set.
9) Strong axiom of infinity

Let S.(x) abbreviate xU. {x}., where wis some set. Then:

TR [A[(ZE1 ) Avr e 1™ (U {x], 21)]) (250)

5.3. Extracting the Standard and Nonstandard Natural Numbers
from the Infinite Nonstandard Set Vst

Definition 5.3.1. We will say that x™ is inductive if there is a formula @ (x)

of ZFC. thatsays: “x™ is &-inductive”; ie.

CD(XNS'):(Q & x N /\‘v’y(yéxNS’ =S, (y) éxM')). (251)

Thus we wish to prove the existence of a unique non standard set W™ such
that

Vx[x EWN o I (1) = xE 1™ )} (252)

1) For existence, we will use the Axiom of Infinity combined with the Axiom

schema of specification. Let ™

be an inductive (non standard) set guaranteed
by the Axiom of Infinity. Then we use the Axiom Schema of Specification to de-

fine our set

s {xelet Vs (cD(JNst) e g )}’ (253)

ie. W™ s the set of all elements of ™ which happen also to be elements of
every other inductive set. This clearly satisfies the hypothesis of (5.3.2), since if
x W™, then xis in every inductive set, and if xis in every inductive set, it is in
particular in ™, so it must also be in W™,

2) For uniqueness, first note that any set which satisfies (252) is itself induc-
tive, since & is in all inductive sets, and if an element x is in all inductive sets,
then by the inductive property so is its successor. Thus if there were another set
W™ which satisfied (252) we would have that W™ <. W™ since W is in-
ductive,and W™ <. W™ since W™ is inductive.

Thus W™ = W™ .Let @ denote this unique set.

DOI: 10.4236/apm.2019.99034

741 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2019.99034

J. Foukzon, E. Men’kova

3) For nonstandardness we assume that @ is a standard set, ie. there is no
nonstandard element in @ . Then &= N. where N, is isomorphic to N,
but this is a contradiction, since Ng_ (M,&).

Theorem 5.3.1. There exists unique nonstandard set @ such that (252)
holds, ie.

‘v’x[xéc?)@VINS’((D(IN”>:>xéIN“ )] (254)

Definition 5.3.2. We will say that a set Sis €& -finite if every surjective &
-function from Sonto itself is one-to-one.

Theorem 5.3.2. There exist € -finite nonstandard natural numbersin @ .

Proof. Assuming that any nonstandard natural number is not €& -finite one
obviously obtains a contradiction.

Remark 5.3.1. Assuming that & is 444 standard set then this method men-
tioned above produce system which satisfy the axioms of second-order arith-
metic ZJ*, since the axiom of power set allows us to quantify over the power set
of @, as in second-order logic. Thus it completely determines isomorphic sys-
tems, and since they are isomorphic under the identity map, they must in fact be

equal.

6. Conclusion

In this paper we have proved that the second-order ZFC with the full
second-order semantic is inconsistent, Ze. —Con(ZFC{“‘"). Main result is: let &
be an inaccessible cardinal and H, is a set of all sets having hereditary size less
then &, then —.Con(ZFCJrHMSZ,F ¢ (M o =H, )) . This result was also obtained
in [3] [4] [5] essentially another approach. For the first time this result has been
declared to AMS in [23] [24].
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