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Abstract 
In this article we proved so-called strong reflection principles corresponding 
to formal theories Th which has omega-models or nonstandard model with 
standard part. A possible generalization of Löb’s theorem is considered. Main 
results are: 1) ( )ZFC

stCon ZFC M¬ +∃ , 2) ( )( )Con ZF V L¬ + = , 3) 

( )NF
stCon NF M¬ +∃ , 4) ( )2Con ZFC¬ , 5) let k be inaccessible cardinal then 

( )Con ZFC κ¬ + ∃ . 
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1. Introduction 
Main Results 

Let us remind that accordingly to naive set theory, any definable collection is a 
set. Let R be the set of all sets that are not members of themselves. If R qualifies 
as a member of itself, it would contradict its own definition as a set containing 
all sets that are not members of themselves. On the other hand, if such a set is 
not a member of itself, it would qualify as a member of itself by the same defini-
tion. This contradiction is Russell’s paradox. In 1908, two ways of avoiding the 
paradox were proposed, Russell’s type theory and Zermelo set theory, the first 
constructed axiomatic set theory. Zermelo’s axioms went well beyond Frege’s 
axioms of extensionality and unlimited set abstraction, and evolved into the 
now-canonical Zermelo-Fraenkel set theory ZFC. “But how do we know that 
ZFC is a consistent theory, free of contradictions? The short answer is that we 
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don’t; it is a matter of faith (or of skepticism)”—E. Nelson wrote in his paper [1]. 
However, it is deemed unlikely that even ZFC2 which is significantly stronger 
than ZFC harbors an unsuspected contradiction; it is widely believed that if ZFC 
and ZFC2 were consistent, that fact would have been uncovered by now. This 
much is certain—ZFC and ZFC2 are immune to the classic paradoxes of naive set 
theory: Russell’s paradox, the Burali-Forti paradox, and Cantor’s paradox.  

Remark 1.1.1. The inconsistency of the second-order set theory ZFC2082 
originally have been uncovered in [2] and officially announced in [3], see also 
ref. [4] [5] [6]. 

Remark 1.1.2. In order to derive a contradiction in second-order set theory 
ZFC2 with the Henkin semantics [7], we remind the definition given in P. Cohen 
handbook [8] (see [8] Ch. III, sec. 1, p. 87). P. Cohen wrote: “A set which can be 
obtained as the result of a transfinite sequence of predicative definitions Godel 
called ‘constructible’”. His result then is that the constructible sets are a model 
for ZF and that in this model GCH and AC hold. The notion of a predicative 
construction must be made more precise, of course, but there is essentially only 
one way to proceed. Another way to explain constructibility is to remark that the 
constructible sets are those sets which just occur in any model in which one ad-
mits all ordinals. The definition we now give is the one used in [9]. 

Definition 1.1.1. [8]. Let X be a set. The set X ′  is defined as the union of X 
and the set Y of all sets y for which there is a formula ( )1, , , kA z t t  in ZF such 
that if XA  denotes A with all bound variables restricted to X, then for some 

, 1, ,it i k=  , in X,  

( ){ }1| , , , .X ky z X A z t t= ∈ 
                    (1) 

Observe ( )X P x X′
 , X X′ =  if X is infinite (and we assume AC). It 

should be clear to the reader that the definition of X ′ , as we have given it, can 
be done entirely within ZF and that Y X ′=  is a single formula ( ),A X Y  in ZF. 
In general, one’s intuition is that all normal definitions can be expressed in ZF, 
except possibly those which involve discussing the truth or falsity of an infinite 
sequence of statements. Since this is a very important point we shall give a ri-
gorous proof in a later section that the construction of X ′  is expressible in 
ZF.” 

Remark 1.1.3. We will say that a set y is definable by the formula 
( )1, , , kA z t t  relative to a given set X. 
Remark 1.1.4. Note that a simple generalisation of the notion of the defina-

bility which has been by Definition 1.1.1 immediately gives Russell’s paradox in 
second order set theory ZFC2 with the Henkin semantics [7]. 

Definition 1.1.2. [6]. i) We will say that a set y is definable relative to a given 
set X iff there is a formula ( )1, , , kA z t t  in ZFC then for some 

, 1, ,it X i k∈ =  , in X there exists a set z such that the condition ( )1, , , kA z t t  
is satisfied and y z=  or symbolically  

( )1, , , .kz A z t t y z ∃ ∧ = 
                     (2) 
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It should be clear to the reader that the definition of X ′ , as we have given it, 
can be done entirely within second order set theory ZFC2 with the Henkin se-
mantics [7] denoted by 2

HsZFC  and that Y X ′=  is a single formula ( ),A X Y  
in 2

HsZFC . 
ii) We will denote the set Y of all sets y definable relative to a given set X by 

2
HsY ℑ . 

Definition 1.1.3. Let 2
Hsℜ  be a set of the all sets definable relative to a given 

set X by the first order 1-place open wff’s and such that  

( )2 2 .Hs Hsx x x x x ∀ ∈ℑ ∈ℜ ⇔ ∉                     (3) 

Remark 1.1.5. (a) Note that 2 2
Hs Hsℜ ∈ℑ  since 2

Hsℜ  is a set definable by the 
first order 1-place open wff ( )2, HsZΨ ℑ :  

( ) ( )[ ]2 2, ,Hs HsZ x x x Z x xΨ ℑ ∀ ∈ℑ ∈ ⇔ ∉
             (4) 

Theorem 1.1.1. [6]. Set theory 2
HsZFC  is inconsistent. 

Proof. From (3) and Remark 1.1.2 one obtains  

2 2 2 2 .Hs Hs Hs Hsℜ ∈ℜ ⇔ℜ ∉ℜ                        (5) 

From (5) one obtains a contradiction  

( ) ( )2 2 2 2 .Hs Hs Hs Hsℜ ∈ℜ ∧ ℜ ∉ℜ                      (6) 

Remark 1.1.6. Note that in paper [6] we dealing by using following definabil-
ity condition: a set y is definable if there is a formula ( )A z  in ZFC such that 

( ) .z A z y z∃ ∧ =                            (7) 

Obviously in this case a set 2
HsY = ℜ  is a countable set. 

Definition 1.1.4. Let 2
Hsℜ  be the countable set of the all sets definable by the 

first order 1-place open wff’s and such that  

( )2 2 .Hs Hsx x x x x ∀ ∈ℑ ∈ℜ ⇔ ∉                    (8) 

Remark 1.1.7. (a) Note that 2 2
Hs Hsℜ ∈ℑ  since 2

Hsℜ  is a set definable by the 
first order 1-place open wff ( )2, HsZΨ ℑ :  

( ) ( )[ ]2 2, ,Hs HsZ x x x Z x xΨ ℑ ∀ ∈ℑ ∈ ⇔ ∉
              (9) 

one obtains a contradiction ( ) ( )2 2 2 2
Hs Hs Hs Hsℜ ∈ℜ ∧ ℜ ∉ℜ . 

In this paper we dealing by using following definability condition. 
Definition 1.1.5. i) Let ZFC

st stM M=  be a standard model of ZFC. We will 
say that a set y is definable relative to a given standard model stM  of ZFC if 
there is a formula ( )1, , , kA z t t  in ZFC such that if 

stMA  denotes A with all 
bound variables restricted to stM , then for some , 1, ,i stt M i k∈ =  , in stM  
there exists a set z such that the condition ( )1, , ,

stM kA z t t  is satisfied and 
y z=  or symbolically  

( )1, , , .
stM kz A z t t y z ∃ ∧ = 

                     (10) 

It should be clear to the reader that the definition of stM ′ , as we have given it, 
can be done entirely within second order set theory ZFC2 with the Henkin se-
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mantics. 
ii) In this paper we assume for simplicity but without loss of generality that  

( ) ( )1, , , .
st stM k MA z t t A z=                    (11) 

Remark 1.1.8. Note that in this paper we view i) the first order set theory ZFC 
under the canonical first order semantics ii) the second order set theory ZFC2 
under the Henkin semantics [7] and iii) the second order set theory ZFC2 under 
the full second-order semantics [8] [9] [10] [11] [12] but also with a proof theory 
based on formal Urlogic [13]. 

Remark 1.1.9. Second-order logic essentially differs from the usual first-order 
predicate calculus in that it has variables and quantifiers not only for individuals 
but also for subsets of the universe and variables for n-ary relations as well 
[7]-[13]. The deductive calculus 2DED  of second order logic is based on rules 
and axioms which guarantee that the quantifiers range at least over definable 
subsets [7]. As to the semantics, there are two types of models: i) Suppose U  is 
an ordinary first-order structure and S  is a set of subsets of the domain A of 
U . The main idea is that the set-variables range over S , i.e.  

( ) ( ) ( ), ,X X S S S∃ Φ ⇔ ∃ ∈  Φ   U S S U S . 

We call ,U S  a Henkin model, if ,U S  satisfies the axioms of 2DED  
and truth in ,U S  is preserved by the rules of 2DED . We call this semantics 
of second-order logic the Henkin semantics and second-order logic with the 
Henkin semantics the Henkin second-order logic. There is a special class of 
Henkin models, namely those ,U S  where S  is the set of all subsets of A. 

We call these full models. We call this semantics of second-order logic the full 
semantics and second-order logic with the full semantics the full second-order 
logic. 

Remark 1.1.10. We emphasize that the following facts are the main features 
of second-order logic: 

1) The Completeness Theorem: A sentence is provable in 2DED  if and 
only if it holds in all Henkin models [7]-[13]. 

2) The Löwenheim-Skolem Theorem: A sentence with an infinite Henkin 
model has a countable Henkin model. 

3) The Compactness Theorem: A set of sentences, every finite subset of 
which has a Henkin model, has itself a Henkin model. 

4) The Incompleteness Theorem: Neither 2DED  nor any other effectively 
given deductive calculus is complete for full models, that is, there are always 
sentences which are true in all full models but which are unprovable. 

5) Failure of the Compactness Theorem for full models. 
6) Failure of the Löwenheim-Skolem Theorem for full models. 
7) There is a finite second-order axiom system 2  such that the semiring 

  of natural numbers is the only full model of 2  up to isomorphism. 
8) There is a finite second-order axiom system RCF2 such that the field   of 

the real numbers is the only full model of RCF2 up to isomorphism. 
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Remark 1.1.11. For let second-order ZFC be, as usual, the theory that results 
obtained from ZFC when the axiom schema of replacement is replaced by its 
second-order universal closure, i.e. 

( ) ( )( ), ,X Func X u r r s s u s r Xν ν  ∀ ⇒∀ ∃ ∀ ∈ ⇔ ∃ ∈ ∧ ∈        (12) 

where X is a second-order variable, and where ( )Func X  abbreviates “X is a 
functional relation”, see [12]. 

Thus we interpret the wff’s of ZFC2 language with the full second-order se-
mantics as required in [12] [13] but also with a proof theory based on formal 
urlogic [13]. 

Designation 1.1.1. We will denote: i) by 2
HsZFC  set theory 2ZFC  with the 

Henkin semantics, 
ii) by 2

fssZFC  set theory 2ZFC  with the full second-order semantics, 
iii) by 2

HsZFC  set theory 2
2

HsZFCHs
stZFC M+ ∃  and 

iv) by stZFC  set theory ZFC
stZFC M+ ∃ , where Th

stM  is a standard model of 
the theory Th . 

Remark 1.1.12. There is no completeness theorem for second-order logic 
with the full second-order semantics. Nor do the axioms of 2

fssZFC  imply a 
reflection principle which ensures that if a sentence Z of second-order set theory 
is true, then it is true in some model 2

fssZFCM  of 2
fssZFC  [11]. 

Let Z be the conjunction of all the axioms of 2
fssZFC . We assume now that: Z 

is true, i.e. ( )2
fssCon ZFC . It is known that the existence of a model for Z re-

quires the existence of strongly inaccessible cardinals, i.e. under ZFC it can be 
shown that κ  is a strongly inaccessible if and only if ( ),Hκ ∈  is a model of 

2
fssZFC . Thus  

( ) ( )2 .fssCon ZFC Con ZFC κ¬ ⇒ ¬ +∃                  (13) 

In this paper we prove that: 
i) ZFC

st stZFC ZFC M+ ∃  ii) 2
2 2

HsZFCHs Hs
stZFC ZFC M+ ∃

 and iii) 2
fssZFC  is 

inconsistent, where Th
stM  is a standard model of the theory Th . 

Axiom ZFCM∃  [8]. There is a set ZFCM  and a binary relation 
ZFC ZFCM Mε ⊆ ×  which makes ZFCM  a model for ZFC. 

Remark 1.1.13. i) We emphasize that it is well known that axiom ZFCM∃  a 
single statement in ZFC see [8], Ch. II, Section 7. We denote this statement 
thought all this paper by symbol ( ); ZFCCon ZFC M . The completeness theorem 
says that ( )ZFCM Con ZFC∃ ⇔ . 

ii) Obviously there exists a single statement in 2
HsZFC  such that  

( )2
2

HsZFC HsM Con ZFC∃ ⇔ . 
We denote this statement through all this paper by symbol  

( )2
2 ;

HsZFCHsCon ZFC M  and there exists a single statement 2
HsZM∃  in 2

HsZ . We 
denote this statement through all this paper by symbol ( )2

2 ;
HsZHsCon Z M . 

Axiom ZFC
stM∃  [8]. There is a set ZFC

stM  such that if R is  

{ }, | ZFC ZFC
st stx y x y x M y M∈ ∧ ∈ ∧ ∈  then ZFC

stM  is a model for ZFC under 
the relation R. 
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Definition 1.1.6. [8]. The model ZFC
stM  is called a standard model since the 

relation ∈  used is merely the standard ∈-relation. 
Remark 1.1.14. Note that axiom ZFCM∃  doesn’t imply axiom ZFC

stM∃ , see 
ref. [8]. 

Remark 1.1.15. We remind that in Henkin semantics, each sort of second-order 
variable has a particular domain of its own to range over, which may be a proper 
subset of all sets or functions of that sort. Leon Henkin (1950) defined these se-
mantics and proved that Gödel’s completeness theorem and compactness theorem, 
which hold for first-order logic, carry over to second-order logic with Henkin se-
mantics. This is because Henkin semantics are almost identical to many-sorted 
first-order semantics, where additional sorts of variables are added to simulate 
the new variables of second-order logic. Second-order logic with Henkin seman-
tics is not more expressive than first-order logic. Henkin semantics are com-
monly used in the study of second-order arithmetic. Väänänen [13] argued that 
the choice between Henkin models and full models for second-order logic is 
analogous to the choice between ZFC and V  ( V  is von Neumann universe), 
as a basis for set theory: “As with second-order logic, we cannot really choose 
whether we axiomatize mathematics using V  or ZFC. The result is the same in 
both cases, as ZFC is the best attempt so far to use V  as an axiomatization of 
mathematics”. 

Remark 1.1.16. Note that in order to deduce: i) ( )2~ HsCon ZFC  from 

( )2
HsCon ZFC , 

ii) ( )~ Con ZFC  from ( )Con ZFC , by using Gödel encoding, one needs 
something more than the consistency of 2

HsZFC , e.g., that 2
HsZFC  has an 

omega-model 2
HsZFCMω  or an standard model 2

HsZFC
stM  i.e., a model in which 

the integers are the standard integers and the all wff of 2
HsZFC , ZFC, etc. 

represented by standard objects. To put it another way, why should we believe a 
statement just because there’s a 2

HsZFC -proof of it? It’s clear that if 2
HsZFC  is 

inconsistent, then we won’t believe 2
HsZFC -proofs. What’s slightly more subtle 

is that the mere consistency of 2ZFC  isn’t quite enough to get us to believe 
arithmetical theorems of 2

HsZFC ; we must also believe that these arithmetical 
theorems are asserting something about the standard naturals. It is “conceivable” 
that 2

HsZFC  might be consistent but that the only nonstandard models 
2
HsZFC

NstM  it has are those in which the integers are nonstandard, in which case we 
might not “believe” an arithmetical statement such as “ 2

HsZFC  is inconsistent” 
even if there is a 2

HsZFC -proof of it. 
Remark 1.1.17. Note that assumption 2

HsZFC
stM∃  is not necessary if nonstan-

dard model 2
HsZFC

NstM  is a transitive or has a standard part 2 2
Hs HsZ Z

st NstM M⊂ , see 
[14] [15]. 

Remark 1.1.18. Remind that if M is a transitive model, then Mω  is the 
standard ω . This implies that the natural numbers, integers, and rational 
numbers of the model are also the same as their standard counterparts. Each 
real number in a transitive model is a standard real number, although not all 
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standard reals need be included in a particular transitive model. Note that in 
any nonstandard model 2

HsZ
NstM  of the second-order arithmetic 2

HsZ  the terms 
0, 0 1, 0 2,= = S SS  comprise the initial segment isomorphic to 2 2

Hs HsZ Z
st NstM M⊂ . 

This initial segment is called the standard cut of the 2
HsZ

NstM . The order type of 
any nonstandard model of 2

HsZ
NstM  is equal to A+ ×  , see ref. [16], for some 

linear order A. 
Thus one can choose Gödel encoding inside the standard model 2

HsZ
stM . 

Remark 1.1.19. However there is no any problem as mentioned above in 
second order set theory 2ZFC  with the full second-order semantics because 
corresponding second order arithmetic 2

fssZ  is categorical. 
Remark 1.1.20. Note if we view second-order arithmetic 2Z  as a theory in 

first-order predicate calculus. Thus a model 2ZM  of the language of second-order 
arithmetic 2Z  consists of a set M (which forms the range of individual variables) 
together with a constant 0 (an element of M), a function S from M to M, two bi-
nary operations + and × on M, a binary relation < on M, and a collection D of 
subsets of M, which is the range of the set variables. When D is the full power set 
of M, the model 2ZM  is called a full model. The use of full second-order seman-
tics is equivalent to limiting the models of second-order arithmetic to the full 
models. In fact, the axioms of second-order arithmetic have only one full model. 
This follows from the fact that the axioms of Peano arithmetic with the 
second-order induction axiom have only one model under second-order seman-
tics, i.e. 2Z , with the full semantics, is categorical by Dedekind’s argument, so 
has only one model up to isomorphism. When M is the usual set of natural 
numbers with its usual operations, 2ZM  is called an ω-model. In this case we 
may identify the model with D, its collection of sets of naturals, because this set 
is enough to completely determine an ω-model. The unique full omega-model 

2
fssZMω , which is the usual set of natural numbers with its usual structure and 

all its subsets, is called the intended or standard model of second-order arith-
metic. 

2. Generalized Löb’s Theorem. Remarks on the Tarski’s  
Undefinability Theorem  

2.1. Remarks on the Tarski’s Undefinability Theorem   

Remark 2.1.1. In paper [2] under the following assumption  

( )ZFC
stCon ZFC M+ ∃                         (14) 

it has been proved that there exists countable Russell’s set ωℜ  such that the 
following statement is satisfied:  

( ) ( )( )

( )

0

.

ZFC ZFC
st st

ZFCMst

ZFC M M card

x x x x

ω ω ω

ω

+ ∃ ∃ℜ ℜ ∈ ∧ ℜ =ℵ

 ∧ ∀ ∈ℜ ⇔ ∉  




         (15) 

From (15) it immediately follows a contradiction  
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( ) ( ).ZFC
stM ω ω ω ωℜ ∈ℜ ∧ ℜ ∉ℜ                   (16) 

From (16) and (14) by reductio and absurdum it follows 

( )ZFC
stCon ZFC M¬ +∃                        (17) 

Theorem 2.1.1. [17] [18] [19]. (Tarski’s undefinability theorem). Let ThL  
be first order theory with formal language L , which includes negation and has 
a Gödel numbering ( )g   such that for every L -formula ( )A x  there is a 
formula B such that ( )( )B A g B↔  holds. Assume that ThL  has a standard 
model stM ThL  and ( ),stCon ThL  where  

, .st stM+ ∃

ThTh Th L
L L                       (18) 

Let T ∗  be the set of Gödel numbers of L -sentences true in stM ThL . Then 
there is no L -formula ( )nTrue  (truth predicate) which defines T ∗ . That is, 
there is no L -formula ( )nTrue  such that for every L -formula A,  

( )( ) [ ] ,
stMg A A⇔ ThTrue L                      (19) 

where the abbreviation [ ]
stMA ThL  means that A holds in standard model stM ThL , 

i.e. [ ]
st stM M

A A⇔ Th ThL L
. Therefore ( ),stCon ThL  implies that 

( ) ( )( ) [ ]( )
stMx g A A¬∃ ⇔ ThTrue True L                (20) 

Thus Tarski’s undefinability theorem reads  

( ) ( ) ( )( ) [ ]( ), .
stst MCon x g A A⇒¬∃ ⇔ ThTh True True LL         (21) 

Remark 2.1.2. i) By the other hand the Theorem 2.1.1 says that given some re-
ally consistent formal theory ,stThL  that contains formal arithmetic, the concept 
of truth in that formal theory ,stThL  is not definable using the expressive means 
that that arithmetic affords. This implies a major limitation on the scope of 
“self-representation”. It is possible to define a formula ( )nTrue , but only by 
drawing on a metalanguage whose expressive power goes beyond that of L . To 
define a truth predicate for the metalanguage would require a still higher meta-
metalanguage, and so on. 

ii) However if formal theory ,stThL  is inconsistent this is not surprising if 
we define a formula ( ) ( ),; stn n=True True ThL  by drawing only on a lan-
guage L . 

iii) Note that if under assumption ( ),stCon ThL  we define a formula 

( ),; stnTrue ThL  by drawing only on a language L  by reductio ad absurdum 
it follows   

( ), .stCon¬ ThL                            (22) 

Remark 2.1.3. i) Let stZFC  be a theory ZFC
st stZFC ZFC M+ ∃ . In this pa-

per under assumption ( )stCon ZFC  we define a formula ( ); stn ZFCTrue  by 
drawing only on a language 

stZFCL  by using Generalized Löb’s theorem [4] [5]. 
Thus by reductio ad absurdum it follows  
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( ).ZFC
stCon ZFC M¬ +∃                        (23) 

ii) However note that in this case we obtain ( )stCon ZFC¬  by using ap-
proach that completely different in comparison with approach based on deriva-
tion of the countable Russell’s set ωℜ  with conditions (15). 

2.2. Generalized Löb’s Theorem   

Definition 2.2.1. Let #ThL  be first order theory and ( )#Con Th . A theory 
#ThL  is complete if, for every formula A in the theory’s language L , that 

formula A or its negation A¬  is provable in #ThL , i.e., for any wff A, always 
# AThL  or # A¬ThL . 

Definition 2.2.2. Let ThL  be first order theory and ( )Con ThL . We will 
say that a theory #ThL  is completion of the theory ThL  if i) #⊂Th ThL L , 
ii) a theory #ThL  is complete. 

Theorem 2.2.1. [4] [5]. Assume that: ( )stCon ZFC , where  
ZFC

st stZFC ZFC M+ ∃ . Then there exists completion #
stZFC  of the theory 

stZFC  such that the following conditions hold: 
i) For every formula A in the language of ZFC that formula [ ] ZFC

stMA  or formula 

[ ] ZFC
stMA¬  is provable in #

stZFC  i.e., for any wff A, always [ ]#
ZFC
stst MZFC A  or 

[ ]#
ZFC
stst MZFC A¬ . 

ii) #
st mm

ZFC
∈

=
 Th , where for any m a theory 1m+Th  is finite extension 

of the theory mTh . 
iii) Let ( )Pr ,st

m y x  be recursive relation such that: y is a Gödel number of a 
proof of the wff of the theory mTh  and x is a Gödel number of this wff. Then 
the relation ( )Pr ,st

m y x  is expressible in the theory mTh  by canonical Gödel 
encoding and really asserts provability in mTh . 

iv) Let ( )#Pr ,st y x  be relation such that: y is a Gödel number of a proof of the 
wff of the theory #

stZFC  and x is a Gödel number of this wff. Then the relation 
( )#Pr ,st y x  is expressible in the theory #

stZFC  by the following formula  

( ) ( ) ( )#Pr , Pr ,st
st my x m m y x⇔ ∃ ∈                 (24) 

v) The predicate ( )#Pr ,st y x  really asserts provability in the set theory #
stZFC . 

Remark 2.2.1. Note that the relation ( )Pr ,st
m y x  is expressible in the theory 

mTh  since a theory mTh  is a finite extension of the recursively axiomatizable 
theory ZFC and therefore the predicate ( )Pr ,st

m y x  exists since any theory mTh  
is recursively axiomatizable. 

Remark 2.2.2. Note that a theory #
stZFC  obviously is not recursively axi-

omatizable nevertheless Gödel encoding holds by Remark 2.2.1. 
Theorem 2.2.2. Assume that: ( )stCon ZFC , where ZFC

st stZFC ZFC M+ ∃ . 
Then truth predicate ( )nTrue  is expressible by using only first order language 
by the following formula  

( )( ) ( ) ( ) ( )( )Pr , .st
mg A y y m m y g A⇔ ∃ ∈ ∃ ∈ True         (25) 

Proof. Assume that:   
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[ ]# .ZFC
stst MZFC A                           (26) 

It follows from (26) there exists ( )( )m m g A∗ ∗=  such that [ ] ZFC
stMm

A∗ Th  

and therefore by (24) we obtain 

( )( ) ( )( )#Pr , Pr , .st
st m

y g A y g A∗⇔                    (27) 

From (24) immediately by definitions one obtains (25). 
Remark 2.2.3. Note that Theorem 2.1.1 in this case reads  

( ) ( ) ( )( ) [ ]( ).
stst MCon ZFC x g A A⇒¬∃ ⇔ ZFCTrue True        (28) 

Theorem 2.2.3. ( )stCon ZFC¬ . 
Proof. Assume that: ( )stCon ZFC . From (25) and (28) one obtains a contra-

diction ( ) ( )st stCon ZFC Con ZFC∧¬  (see Remark 2.1.3) and therefore by re-
ductio ad absurdum it follows ( )stCon ZFC¬ . 

Theorem 2.2.4. [4] [5]. Let ZFC
NstM  be a nonstandard model of ZFC and let 

PA
stM  be a standard model of PA. 
We assume now that PA ZFC

st NstM M⊂  and denote such nonstandard model of 
the set theory ZFC by [ ]ZFC ZFC

Nst NstM M PA= . Let NstZFC  be the theory 
[ ]ZFC

Nst NstZFC ZFC M PA= + . Assume that: ( )NstCon ZFC , where  
ZFC

st NstZFC ZFC M+ ∃ . Then there exists completion #
NstZFC  of the theory 

NstZFC  such that the following conditions hold: 
i) For every formula A in the language of ZFC that formula [ ] ZFC

NstMA  or formula 

[ ] ZFC
NstMA¬  is provable in #

NstZFC  i.e., for any wff A, always [ ]#
ZFC
NstNst MZFC A  

or [ ]#
ZFC
NstNst MZFC A¬ .  

ii) #
Nst mm

ZFC
∈

=
 Th , where for any m a theory 1m+Th  is finite extension 

of the theory mTh . 
iii) Let ( )Pr ,Nst

m y x  be recursive relation such that: y is a Gödel number of a 
proof of the wff of the theory mTh  and x is a Gödel number of this wff. Then 
the relation ( )Pr ,Nst

m y x  is expressible in the theory mTh  by canonical Gödel 
encoding and really asserts provability in mTh . 

iv) Let ( )#Pr ,Nst y x  be relation such that: y is a Gödel number of a proof of 
the wff of the theory #

NstZFC  and x is a Gödel number of this wff. Then the re-
lation ( )#Pr ,Nst y x  is expressible in the theory #

NstZFC  by the following formula  

( ) ( ) ( )#Pr , Pr ,PA Nst
Nst st my x m m M y x⇔ ∃ ∈                (29) 

v) The predicate ( )#Pr ,Nst y x  really asserts provability in the set theory 
#
NstZFC . 

Remark 2.2.4. Note that the relation ( )Pr ,Nst
m y x  is expressible in the theory 

mTh  since a theory mTh  is a finite extension of the recursively axiomatizable 
theory ZFC and therefore the predicate ( )Pr ,Nst

m y x  exists since any theory 

mTh  is recursively axiomatizable. 
Remark 2.2.5. Note that a theory #

NstZFC  obviously is not recursively axi-
omatizable nevertheless Gödel encoding holds by Remark 2.2.1. 

https://doi.org/10.4236/apm.2019.99034


J. Foukzon, E. Men’kova 
 

 

DOI: 10.4236/apm.2019.99034 695 Advances in Pure Mathematics 
 

Theorem 2.2.5. Assume that: ( )NstCon ZFC , where ZFC
Nst NstZFC ZFC M+ ∃ , 

PA ZFC
st NstM M⊂ . 
Then truth predicate ( )nTrue  is expressible by using first order language by 

the following formula  

( )( ) ( ) ( ) ( )( )Pr , .PA PA Nst
st st mg A y y M m m M y g A⇔ ∃ ∈ ∃ ∈True       (30) 

Proof. Assume that:   

[ ]# .ZFC
NstNst MZFC A                           (31) 

It follows from (29) there exists ( )( )m m g A∗ ∗=  such that [ ] ZFC
NstMm

A∗ Th  

and therefore by (31) we obtain 

( )( ) ( )( )#Pr , Pr , .Nst
Nst m

y g A y g A∗⇔                    (32) 

From (32) immediately by definitions one obtains (30). 
Remark 2.2.6. Note that Theorem 2.1.1 in this case reads  

( ) ( ) ( )( ) [ ]( ).
NstNst MCon ZFC x g A A⇒¬∃ ⇔ ZFCTrue True       (33) 

Theorem 2.2.6. ( )NstCon ZFC¬ . 
Proof. Assume that: ( )NstCon ZFC . From (30) and (33) one obtains a contra-

diction ( ) ( )Nst NstCon ZFC Con ZFC∧¬  and therefore by reductio ad absurdum 
it follows ( )NstCon ZFC¬ . 

Theorem 2.2.7. Assume that: ( )2
HsCon ZFC , where  

2
2 2

HsZFCHs Hs
stZFC ZFC M+ ∃

. Then there exists completion #
2
HsZFC  of the 

theory 2
HsZFC  such that the following conditions hold: 

i) For every first order wff formula A (wff1 A) in the language of 2
HsZFC  that 

formula [ ] 2
HsZFC

stMA  or formula [ ] 2
HsZFC

stMA¬  is provable in #
2
HsZFC  i.e., for any 

wff1 A, always [ ] 2
#

2
HsZFC

st

Hs
MZFC A  or [ ] 2

#
2

HsZFC
st

Hs
MZFC A¬ . 

ii) #
2
Hs

mm
ZFC

∈
=
 Th , where for any m a theory 1m+Th  is finite extension 

of the theory mTh . 
iii) Let ( )Pr ,st

m y x  be recursive relation such that: y is a Gödel number of a 
proof of the wff1 of the theory mTh  and x is a Gödel number of this wff1. Then 
the relation ( )Pr ,st

m y x  is expressible in the theory mTh  by canonical Gödel 
encoding and really asserts provability in mTh . 

iv) Let ( )#Pr ,st y x  be relation such that: y is a Gödel number of a proof of the 
wff of the set theory #

2
HsZFC  and x is a Gödel number of this wff1. Then the re-

lation ( )#Pr ,st y x  is expressible in the set theory #
2
HsZFC  by the following for-

mula   

( ) ( ) ( )#Pr , Pr ,st
st my x m m y x⇔ ∃ ∈                   (34) 

v) The predicate ( )#Pr ,st y x  really asserts provability in the set theory 
#

2
HsZFC . 

Remark 2.2.7. Note that the relation ( )Pr ,st
m y x  is expressible in the theory 

mTh  since a theory mTh  is a finite extension of the finite axiomatizable theory 
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2
HsZFC  and therefore the predicate ( )Pr ,Nst

m y x  exists since any theory mTh  
is recursively axiomatizable. 

Remark 2.2.8. Note that a theory #
NstZFC  obviously is not recursively axi-

omatizable nevertheless Gödel encoding holds by Remark 2.2.1. 
Theorem 2.2.8. Assume that: ( )2

HsCon ZFC , where  

2
2 2

HsZFCHs Hs
stZFC ZFC M+ ∃

. 

Then truth predicate ( )nTrue  is expressible by using first order language by 
the following formula  

( )( ) ( ) ( ) ( )( )Pr , ,st
mg A y y m m y g A⇔ ∃ ∈ ∃ ∈ True          (35) 

where A is wff1. 
Proof. Assume that:  

[ ] 2
#

2 .HsZFC
st

Hs
MZFC A                          (36) 

It follows from (34) there exists ( )( )m m g A∗ ∗=  such that [ ] 2
HsZFC

stMm
A∗ Th  

and therefore by (36) we obtain 

( )( ) ( )( )#Pr , Pr , .st
st m

y g A y g A∗⇔                    (37) 

From (37) immediately by definitions one obtains (35). 
Remark 2.2.9. Note that in considered case Tarski’s undefinability theorem 

(2.1.1) reads  

( ) ( ) ( )( ) [ ]( )2
#

2 ,HsZFC
st

Hs
MCon ZFC x g A A⇒¬∃ ⇔True True       (38) 

where A is wff1. 
Theorem 2.2.9. ( )#

2
HsCon ZFC¬ . 

Proof. Assume that: ( )#
2
HsCon ZFC . From (35) and (38) one obtains a con-

tradiction ( ) ( )# #
2 2
Hs HsCon ZFC Con ZFC∧¬  and therefore by reductio ad ab-

surdum it follows ( )#
2
HsCon ZFC¬ .  

3. Derivation of the Inconsistent Provably Definable Set in  
Set Theory HsZFC 2 , stZFC  and NstZFC   

3.1. Derivation of the Inconsistent Provably Definable Set in Set  
Theory HsZFC 2    

Definition 3.1.1. i) Let Φ  be a wff of 2
HsZFC . We will say that Φ  is a first 

order n-place open wff if Φ  contains free occurrences of the first order indi-
vidual variables 1, , nX X  and quantifiers only over any first order individual 
variables 1, , mY Y . 

ii) Let 2
Hsℑ  be the countable set of the all first order provable definable sets X, 

i.e. sets such that ( )2 !HsZFC X X∃ Ψ , where ( ) ( )
stMX XΨ = Ψ  is a first or-

der 1-place open wff that contains only first order variables (we will denote such 
wff for short by wff1), with all bound variables restricted to standard model 

2
HsZFC

st stM M= , i.e. 
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( ) ( )( ){
( ) }

2 2 , /

! ,

st st st

st

Hs Hs Hs
M M X M X

M

Y Y ZFC X X

X X Y X

  ∀ ∈ℑ ⇔ ∃Ψ Ψ ∈Γ ∼ 

  ∧ ∃ Ψ ∧ =  

 
    (39) 

or in a short notation  

( ) ( )( ){
( ) }

2 2 /

! .

Hs Hs Hs
X XY Y ZFC X X

X X Y X

∀ ∈ℑ ⇔ ∃Ψ Ψ ∈Γ ∼  

 ∧ ∃ Ψ ∧ =   

 
       (40) 

Notation 3.1.1. In this subsection we often write for short ( ) , ,Hs Hs
X XXΨ ΓF  

instead ( ) , ,, ,
st st st

Hs Hs
M X M X MXΨ ΓF  but this should not lead to a confusion. 

Assumption 3.1.1. We assume now for simplicity but without loss of general-
ity that  

, st

Hs
X M stM∈F                           (41) 

and therefore by definition of model 2
HsZFC

st stM M=  one obtains 2
,

Hs

st

ZFCHs
X M stMΓ ∈ . 

Let 
2
HsZFC

X Y∉  be a predicate such that 
2

2HsZFC

HsX Y ZFC X Y∉ ↔ ∉  . Let 

2
Hsℜ  be the countable set of the all sets such that  

( )
2

2 2 .
HsZFC

Hs HsX X X X X ∀ ∈ℑ ∈ℜ ↔ ∉  
 

             (42) 

From (42) one obtains 

2
2 2 2 2 .

HsZFC

Hs Hs Hs Hsℜ ∈ℜ ↔ℜ ∉ ℜ   

                  (43) 

But obviously (43) immediately gives a contradiction  

( )
2

2 2 2 2 .
HsZFC

Hs Hs Hs Hs ℜ ∈ℜ ∧ ℜ ∉ ℜ 
 

   

                (44) 

Remark 3.1.1. Note that a contradiction (44) in fact is a contradiction inside 

2
HsZFC  for the reason that predicate 

2
HsZFC

X Y∉  is expressible by first order  

language as predicate of 2
HsZFC  (see subsection 1.2, Theorem 1.2.8 (ii)-(iii)) 

and therefore countable sets 2
Hsℑ  and 2

Hsℜ  are sets in the sense of the set 
theory 2

HsZFC . 
Remark 3.1.2. Note that by using Gödel encoding the above stated contradic-

tion can be shipped in special completion #
2
HsZFC  of 2

HsZFC , see subsection 
1.2, Theorem 1.2.8.  

Remark 3.1.3. i) Note that Tarski’s undefinability theorem cannot block the 
equivalence (43) since this theorem is no longer holds by Proposition 2.2.1. 
(Generalized Löbs Theorem). 

ii) In additional note that: since Tarski’s undefinability theorem has been 
proved under the same assumption 2

HsZFC
stM∃  by reductio ad absurdum it fol-

lows again ( )NstCon ZFC¬ , see Theorem 1.2.10.  
Remark 3.1.4. More formally we can to explain the gist of the contradictions 

derived in this paper (see Section 4) as follows. 
Let M be Henkin model of 2

HsZFC . Let 2
Hsℜ  be the set of the all sets of M 
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provably definable in 2
HsZFC , and let ( ){ }2 2 :Hs Hsx x xℜ = ∈ℑ ∉ 



 where A  
means “sentence A derivable in 2

HsZFC ”, or some appropriate modification 
thereof. We replace now formula (39) by the following formula 

( ) ( )( ) ( ){ }2 / ! .Hs Hs
X XY Y X X X X Y X ∀ ∈ℑ ↔ ∃Ψ Ψ ∈Γ ∼ ∧ ∃ Ψ ∧ =       




(45) 

and we replace formula (42) by the following formula  

( ) ( )2 2 .Hs HsX X X X X ∀ ∈ℑ ∈ℜ ⇔ ∉ 
 



                (46) 

Definition 3.1.2. We rewrite now (45) in the following equivalent form  

( ) ( )( ) ( ){ }2 / ,Hs Hs
X XHs

Y Y X X Y X ∀ ∈ℑ ⇔ ∃Ψ Ψ ∈Γ ∼ ∧ =   


     (47) 

where the countable set /Hs
X XΓ ∼  is defined by the following formula  

( ) ( ) ( )( ) ( ){ }/ / !Hs Hs
X X X XHs

X X X X X ∀Ψ Ψ ∈Γ ∼ ⇔ Ψ ∈Γ ∼ ∧ ∃ Ψ       


 (48) 

Definition 3.1.3. Let 2
Hsℜ  be the countable set of the all sets such that  

( )2 2 .Hs HsX X X X X ∀ ∈ℑ ∈ℜ ⇔ ∉ 
 



               (49) 

Remark 3.1.5. Note that 2 2
Hs Hsℜ ∈ℑ   since 2

Hsℜ  is a set definable by the first 
order 1-place open wff1:  

( ) ( ) ( )2 2, .Hs HsZ X X X Z X XΨ ℜ ∀ ∈ℑ ∈ ⇔ ∉   

 
        (50) 

From (49) and Remark 3.1.4 one obtains 

( )2 2 2 2 .Hs Hs Hs Hsℜ ∈ℜ ⇔ ℜ ∉ℜ   



                  (51) 

But (51) immediately gives a contradiction 

( ) ( )2 2 2 2 2 .Hs Hs Hs Hs HsZFC ℜ ∈ℜ ∧ ℜ ∉ℜ                  (52) 

Remark 3.1.6. Note that contradiction (52) is a contradiction inside 2
HsZFC  

for the reason that the countable set 2
Hsℑ  is a set in the sense of the set theory 

2
HsZFC . 

In order to obtain a contradiction inside 2
HsZFC  without any reference to 

Assumption 3.1.1 we introduce the following definitions.  
Definition 3.1.4. We define now the countable set /Hs

ν νΓ   by the follow-
ing formula  

[ ] [ ]( )  ( ) ( )2 ,/ / , !Hs Hs Hs
yHs Hsy y y v X Xν ν ν ν ν ∈Γ ∼ ⇔ ∈Γ ∼ ∧ ∧ ∃ Ψ 

 Fr 
 (53) 

Definition 3.1.5. We choose now A  in the following form  

( ) ( )
2 2

# # .Hs HsZFC ZFC
A Bew A Bew A A ∧ ⇒  
               (54) 

Here ( )
2

#HsZFC
Bew A  is a canonical Gödel formula which says to us that there 

exists proof in 2
HsZFC  of the formula A with Gödel number #A . 

Remark 3.1.7. Note that the Definition 3.1.5 holds as definition of predicate 
really asserting provability of the first order sentence A in 2

HsZFC . 
Definition 3.1.6. Using Definition 3.1.5, we replace now formula (48) by the 

https://doi.org/10.4236/apm.2019.99034


J. Foukzon, E. Men’kova 
 

 

DOI: 10.4236/apm.2019.99034 699 Advances in Pure Mathematics 
 

following formula  

( ) ( ) ( ) ( )( ){
( )( )( )
( )( )( ) ( ) }

2

2

/ /

# !

# ! ! .

Hs

Hs

Hs Hs
X X X X

ZFC

ZFC

X X X X

Bew X X Y X

Bew X X Y X X X Y X

∀Ψ Ψ ∈Γ ∼ ⇔ ∃Ψ Ψ ∈Γ ∼      

 ∧ ∃ Ψ ∧ =    

 ∧ ∃ Ψ ∧ = ⇒ ∃ Ψ ∧ =        



   (55) 

Definition 3.1.7. Using Definition 3.1.5, we replace now formula (49) by the 
following formula   

( ) ( )( )

( )( )
2

2

2 2 #

# .

Hs

Hs

Hs Hs

ZFC

ZFC

X X X Bew X X

Bew X X X X

  ∀ ∈ℑ ∈ℜ ⇔ ∉   
 ∧ ∉ ⇒ ∉  

 

           (56) 

Definition 3.1.8. Using Proposition 2.1.1 and Remark 2.1.10 [6], we replace 
now formula (53) by the following formula   

 

[ ] [ ]( ){
 ( ) ( )( )

( )( ) ( ) }
2

2

2 ,

, ,

/ /

, # !

# ! ! .

Hs

Hs

Hs Hs
Hs Hs

Hs
yZFC

y yZFC

y y y

y v Bew X X Y X

Bew X X Y X X X Y X

ν ν ν ν

ν

ν ν

∀ ∈Γ ∼ ⇔ ∈Γ ∼

  ∧ ∧ ∃ Ψ ∧ =   

    ∧ ∃ Ψ ∧ = ⇒ ∃ Ψ ∧ =     



Fr   (57) 

Definition 3.1.9. Using Definitions 3.1.4-3.1.6, we define now the countable 
set 2

Hsℑ   by formula 

[ ]( ) ( )( ){ }2
2 / .Hs

Hs Hs

ZFC
Y Y y y g Xν ν ν ∀ ∈ℑ ⇔ ∃ ∈Γ ∼ ∧ =  



         (58) 

Remark 3.1.8. Note that from the second order axiom schema of replacement 
(12) it follows directly that 2

Hsℑ   is a set in the sense of the set theory 2
HsZFC . 

Definition 3.1.10. Using Definition 3.1.8 we replace now formula (56) by the 
following formula   

( ) ( )( )

( )( )
2

2

2 2 #

# .

Hs

Hs

Hs Hs

ZFC

ZFC

X X X Bew X X

Bew X X X X

  ∀ ∈ℑ ∈ℜ ⇔ ∉   
 ∧ ∉ ⇒ ∉  

 

 

         (59) 

Remark 3.1.9. Notice that the expression (60)  

( )( ) ( )( )
2 2

# #Hs HsZFC ZFC
Bew X X Bew X X X X   ∉ ∧ ∉ ⇒ ∉      

      (60) 

obviously is a well formed formula of 2
HsZFC  and therefore a set 2

Hsℜ   is a set 
in the sense of 2

HsZFC . 
Remark 3.1.10. Note that 2 2

Hs Hsℜ ∈ℑ 

   since 2
Hsℜ   is a set definable by 

1-place open wff  

( ) ( ) ( )( )

( )( )
2

2

2 2, #

# .

Hs

Hs

Hs Hs

ZFC

ZFC

Z X X X Z Bew X X

Bew X X X X

  Ψ ℜ ∀ ∈ℑ ∈ ⇔ ∉   
 ∧ ∉ ⇒ ∉  

 





    (61) 

Theorem 3.1.1. Set theory 2
2 2

HsZFCHs Hs
stZFC ZFC M+ ∃

 is inconsistent. 
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Proof. From (59) we obtain  

( )( )
( )( )

2

2

2 2 2 2

2 2 2 2

#

# .

Hs

Hs

Hs Hs Hs Hs

ZFC

Hs Hs Hs Hs

ZFC

Bew

Bew

 ℜ ∈ℜ ⇔ ℜ ∉ℜ  
 ∧ ℜ ∉ℜ ⇒ℜ ∉ℜ  

   

   

   

   
             (62) 

a) Assume now that:  

2 2 .Hs Hsℜ ∈ℜ 

                              (63) 

Then from (62) we obtain ( )( )
2 2

2 2#Hs Hs
Hs Hs

ZFC ZFC
Bew ℜ ∉ℜ 

   and  

( )( )
2 2

2 2 2 2#Hs Hs
Hs Hs Hs Hs

ZFC ZFC
Bew ℜ ∉ℜ ⇒ℜ ∉ℜ   

    , 

therefore 
2

2 2Hs
Hs Hs

ZFC
ℜ ∉ℜ 

   and so 

2
2 2 2 2 .Hs

Hs Hs Hs Hs

ZFC
ℜ ∈ℜ ⇒ℜ ∉ℜ   

                    (64) 

From (63)-(64) we obtain  

2 2 2 2 2 2 2 2,Hs Hs Hs Hs Hs Hs Hs Hsℜ ∈ℜ ℜ ∈ℜ ⇒ℜ ∉ℜ ℜ ∉ℜ       

         

and thus ( ) ( )
2

2 2 2 2Hs
Hs Hs Hs Hs

ZFC
ℜ ∈ℜ ∧ ℜ ∉ℜ    . 

b) Assume now that   

( )( ) ( )( )
2 2

2 2 2 2 2 2# # .Hs Hs
Hs Hs Hs Hs Hs Hs

ZFC ZFC
Bew Bew   ℜ ∉ℜ ∧ ℜ ∉ℜ ⇒ℜ ∉ℜ      

     

      (65) 

Then from (65) we obtain 2 2
Hs Hsℜ ∉ℜ 

  . From (65) and (62) we obtain 

2
2 2Hs

Hs Hs

ZFC
ℜ ∈ℜ 

  , so 
2

2 2Hs
Hs Hs

ZFC
ℜ ∉ℜ 

  , 2 2
Hs Hsℜ ∈ℜ 

   which immediately 

gives us a contradiction ( ) ( )
2

2 2 2 2Hs
Hs Hs Hs Hs

ZFC
ℜ ∈ℜ ∧ ℜ ∉ℜ   

    . 

Definition 3.1.11. We choose now A  in the following form  

( )
2

# ,HsZFC
A Bew A                          (66) 

or in the following equivalent form 

( ) ( )
2 2

# #Hs HsZFC ZFC
A Bew A Bew A A ∧ ⇒  
               (67) 

similar to (46). Here ( )
2

#HsZFC
Bew A  is a Gödel formula which really asserts 

provability in 2
HsZFC  of the formula A with Gödel number #A . 

Remark 3.1.11. Notice that the Definition 3.1.12 with formula (66) holds as 
definition of predicate really asserting provability in 2

HsZFC . 
Definition 3.1.12. Using Definition 3.1.11 with formula (66), we replace now 

formula (48) by the following formula  

( ) ( ) ( ) ( )( ){
( )( )( ) }

2

/ /

# ! .Hs

Hs Hs
X X X X

ZFC

X X X X

Bew X X Y X

∀Ψ Ψ ∈Γ ∼ ⇔ ∃Ψ Ψ ∈Γ ∼      

 ∧ ∃ Ψ ∧ =    



     (68) 

Definition 3.1.13. Using Definition 3.1.11 with formula (66), we replace now 
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formula (49) by the following formula   

( ) ( )( )
2

2 2 #Hs
Hs Hs

ZFC
X X X Bew X X  ∀ ∈ℑ ∈ℜ ⇔ ∉    

             (69) 

Definition 3.1.14. Using Definition 3.1.11 with formula (66), we replace now 
formula (53) by the following formula  

[ ] [ ]( )  ( ){
( )( ) }

2

2

,

/ / ,

# ! .Hs

Hs Hs Hs
Hs Hs

yZFC

y y y y v

Bew X X Y X

ν ν ν ν

ν

∀ ∈Γ ∼ ⇔ ∈Γ ∼ ∧

  ∧ ∃ Ψ ∧ =   

 Fr
          (70) 

Definition 3.1.15. Using Definitions 3.1.12-3.1.16, we define now the counta-
ble set 2

Hsℑ   by formula 

[ ]( ) ( )( ){ }2
2 / .Hs

Hs Hs

ZFC
Y Y y y g Xν ν ν ∀ ∈ℑ ⇔ ∃ ∈Γ ∼ ∧ =  



         (71) 

Remark 3.1.12. Note that from the axiom schema of replacement (12) it fol-
lows directly that 2

Hsℑ   is a set in the sense of the set theory 2
HsZFC . 

Definition 3.1.16. Using Definition 3.1.15 we replace now formula (69) by 
the following formula  

( ) ( )( )
2

2 2 # .Hs
Hs Hs

ZFC
X X X Bew X X  ∀ ∈ℑ ∈ℜ ⇔ ∉    

 

          (72) 

Remark 3.1.13. Notice that the expressions (73)  

( )( )

( )( ) ( )( )
2

2 2

# and

# #

Hs

Hs Hs

ZFC

ZFC ZFC

Bew X X

Bew X X Bew X X X X

 ∉  
   ∉ ∧ ∉ ⇒ ∉      

      (73) 

obviously are a well formed formula of 2
HsZFC  and therefore collection 2

Hsℜ   
is a set in the sense of 2

HsZFC . 
Remark 3.1.14. Note that 2 2

Hs Hsℜ ∈ℑ 

   since 2
Hsℜ   is a set definable by 

1-place open wff1  

( ) ( ) ( )( )
2

2 2, # .Hs
Hs Hs

ZFC
Z X X X Z Bew X X Ψ ℜ ∀ ∈ℑ ∈ ⇔ ∉  
 



     (74) 

Theorem 3.1.2. Set theory 2
2 2

HsZFCHs Hs
stZFC ZFC M+ ∃

 is inconsistent. 
Proof. From (72) we obtain  

( )( )
2

2 2 2 2# .Hs
Hs Hs Hs Hs

ZFC
Bew ℜ ∈ℜ ⇔ ℜ ∉ℜ  

   

                (75) 

a) Assume now that:  

2 2 .Hs Hsℜ ∈ℜ 

                            (76) 

Then from (75) we obtain ( )( )
2 2

2 2#Hs Hs
Hs Hs

ZFC ZFC
Bew ℜ ∉ℜ 

   and therefore 

2
2 2Hs

Hs Hs

ZFC
ℜ ∉ℜ 

  , thus we obtain  

2
2 2 2 2 .Hs

Hs Hs Hs Hs

ZFC
ℜ ∈ℜ ⇒ℜ ∉ℜ   

                    (77) 

From (76)-(77) we obtain 2 2
Hs Hsℜ ∈ℜ 

   and 2 2 2 2
Hs Hs Hs Hsℜ ∈ℜ ⇒ℜ ∉ℜ   

    , thus 

2
2 2Hs

Hs Hs

ZFC
ℜ ∉ℜ 

   and finally we obtain ( ) ( )
2

2 2 2 2Hs
Hs Hs Hs Hs

ZFC
ℜ ∈ℜ ∧ ℜ ∉ℜ    . 
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b) Assume now that   

( )( )
2

2 2# .Hs
Hs Hs

ZFC
Bew ℜ ∉ℜ  

 

                   (78) 

Then from (78) we obtain 
2

2 2Hs
Hs Hs

ZFC
ℜ ∉ℜ 

  . From (78) and (75) we obtain 

2
2 2Hs

Hs Hs

ZFC
ℜ ∈ℜ 

  , thus 
2

2 2Hs
Hs Hs

ZFC
ℜ ∉ℜ 

   and 
2

2 2Hs
Hs Hs

ZFC
ℜ ∈ℜ 

   which 

immediately gives us a contradiction ( ) ( )
2

2 2 2 2Hs
Hs Hs Hs Hs

ZFC
ℜ ∈ℜ ∧ ℜ ∉ℜ   

    . 

3.2. Derivation of the Inconsistent Provably Definable Set in Set  
Theory ZFCst   

Let stℑ  be the countable set of all sets X such that ( )!stZFC X X∃ Ψ , where 
( )XΨ  is a 1-place open wff of ZFC i.e.,  

( ) ( )( ){
( ) }

/

! .

st
st st X XY Y ZFC X X

X X Y X

∀ ∈ℑ ⇔ ∃Ψ Ψ ∈Γ ∼  

∧∃ Ψ ∧ =  


         (79) 

Let 
ZFCst

X Y∉  be a predicate such that 
ZFCst stX Y ZFC X Y∉ ⇔ ∉  . Let 

ℜ  be the countable set of the all sets such that  

( ) ( ) .
ZFCstst stX X X X X ∀ ∈ℜ ⇔ ∈ℑ ∧ ∉                 (80) 

From (80) one obtains 

.
ZFCstst st st stℜ ∈ℜ ⇔ℜ ∉ ℜ                     (81) 

But (81) immediately gives a contradiction  

( ) ( ).st st st stℜ ∈ℜ ∧ ℜ ∉ℜ                      (82) 

Remark 3.2.1. Note that a contradiction (82) is a contradiction inside stZFC   
for the reason that predicate 

ZFCst
X Y∉  is expressible by using first order  

language as predicate of stZFC  (see subsection 4.1) and therefore countable 
sets stℑ  and stℜ  are sets in the sense of the set theory stZFC . 

Remark 3.2.2. Note that by using Gödel encoding the above stated contradic-
tion can be shipped in special completion #

stZFC  of stZFC , see subsection 1.2, 
Theorem 1.2.2 (i). 

Designation 3.2.1. i) Let ZFC
stM  be a standard model of ZFC and 

ii) let stZFC  be the theory ZFC
st stZFC ZFC M= + ∃ , 

iii) let stℑ  be the set of the all sets of ZFC
stM  provably definable in stZFC , 

and let ( ){ }:st st stX X Xℜ = ∈ℑ ∉
, where st A  means: “sentence A deriva-

ble in stZFC ”, or some appropriate modification thereof. 
We replace now (79) by formula 

( ) ( ){ }! ,st stY Y X X Y X ∀ ∈ℑ ↔ ∃Ψ ⋅ ∃ Ψ ∧ =              (83) 

and we replace (80) by formula 

( ) ( ) .st st stX X X X X ∀ ∈ℜ ↔ ∈ℑ ∧ ∉ 

              (84) 
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Assume that st st stZFC ℜ ∈ℑ . Then, we have that: st stℜ ∈ℜ  iff 
( )st st stℜ ∉ℜ , which immediately gives us st stℜ ∈ℜ  iff st stℜ ∉ℜ . But this is 

a contradiction, i.e., ( ) ( )st st st st stZFC ℜ ∈ℜ ∧ ℜ ∉ℜ . We choose now st A  
in the following form  

( ) ( )# # .
st stst ZFC ZFCA Bew A Bew A A ∧ ⇒ 

              (85) 

Here ( )#
stZFCBew A  is a canonical Gödel formula which says to us that there 

exists proof in stZFC  of the formula A with Gödel number # PA
stA M∈ . 

Remark 3.2.3. Notice that Definition 3.2.6 holds as definition of predicate re-
ally asserting provability in stZFC . 

Definition 3.2.1. We rewrite now (83) in the following equivalent form  

( ) ( )( ) ( ){ }/ ,st
st X Xst

Y Y X X Y X ∀ ∈ℑ ⇔ ∃Ψ Ψ ∈Γ ∼ ∧ =   


       (86) 

where the countable collection /Hs
X XΓ ∼  is defined by the following formula  

( ) ( ) ( )( ) ( ){ }/ / !st st
X X X X stst st

X X X X X ∀Ψ Ψ ∈Γ ∼ ⇔ Ψ ∈Γ ∼ ∧ ∃ Ψ       


 (87) 

Definition 3.2.2. Let stℜ  be the countable collection of the all sets such that  

( ) ( ) .st st stX X X X X ∀ ∈ℑ ∈ℜ ⇔ ∉ 
 



               (88) 

Remark 3.2.4. Note that 2 2
Hs Hsℜ ∈ℑ   since 2

Hsℜ  is a collection definable by 
1-place open wff  

( ) ( ) ( ), .st st stZ X X X Z X XΨ ℜ ∀ ∈ℑ ∈ ⇔ ∉   

 

          (89) 

Definition 3.2.3. By using formula (85) we rewrite now (86) in the following 
equivalent form  

( ) ( )( ) ( ){ }/ ,st
st X Xst

Y Y X X Y X ∀ ∈ℑ ⇔ ∃Ψ Ψ ∈Γ ∼ ∧ =   


     (90) 

where the countable collection /Hs
X XΓ ∼  is defined by the following formula  

( ) ( ){
( )( ) ( )( )

( )( ) ( ) }

/

/ # !

# ! !

st

st

st
X Xst

st
X X ZFCst

ZFC

X X

X Bew X X

Bew X X X X

∀Ψ Ψ ∈Γ ∼ ⇔  

 Ψ ∈Γ ∼ ∧ ∃ Ψ   

 ∧ ∃ Ψ ⇒ ∃ Ψ 



         (91) 

Definition 3.2.4. Using formula (85), we replace now formula (88) by the 
following formula   

( ) ( )( ) ( )( )# # .
st stst st ZFC ZFCX X X Bew X X Bew X X    ∀ ∈ℑ ∈ℜ ⇔ ∉ ∧ ∉   

  (92) 

Definition 3.2.5. Using Proposition 2.1.1 and Remark 2.2.2 [6], we replace 
now formula (89) by the following formula  

[ ] [ ]( )  ( ){
( )( )
( )( ) ( ) }

,

, ,

/ / ,

# !

# ! ! .

st

st

st st
stst st

ZFC y

ZFC y y

y y y y v

Bew X X Y X

Bew X X Y X X X Y X

ν ν ν ν

ν

ν ν

∀ ∈Γ ∼ ⇔ ∈Γ ∼ ∧

  ∧ ∃ Ψ ∧ =  

    ∧ ∃ Ψ ∧ = ⇒ ∃ Ψ ∧ =    

 Fr

 (93) 
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Definition 3.2.6. Using Definitions 3.2.3-3.2.5, we define now the countable 
set stℑ   by formula 

[ ]( ) ( )( ){ }/ .st
st ZFCst st

Y Y y y g Xν ν ν ∀ ∈ℑ ⇔ ∃ ∈Γ ∼ ∧ = 


         (94) 

Remark 3.2.5. Note that from the axiom schema of replacement it follows di-
rectly that stℑ   is a set in the sense of the set theory stZFC . 

Definition 3.2.7. Using Definition 3.2.6 we replace now formula (92) by the 
following formula   

( ) ( )( )
( )( )

#

# .

st

st

st st ZFC

ZFC

X X X Bew X X

Bew X X X X

  ∀ ∈ℑ ∈ℜ ⇔ ∉ 
 ∧ ∉ ⇒ ∉ 

 

 

          (95) 

Remark 3.2.6. Notice that the expression (96)  

( )( ) ( )( )# #
st stZFC ZFCBew X X Bew X X X X   ∉ ∧ ∉ ⇒ ∉          (96) 

obviously is a well formed formula of stZFC  and therefore collection stℜ   is a 
set in the sense of 2

HsZFC . 
Remark 3.2.7. Note that st stℜ ∈ℑ 

   since stℜ   is a collection definable by 
1-place open wff  

( ) ( ) ( )( )
( )( )

, #

# .

st

st

st st ZFC

ZFC

Z X X X Z Bew X X

Bew X X X X

  Ψ ℜ ∀ ∈ℑ ∈ ⇔ ∉ 
 ∧ ∉ ⇒ ∉ 

 



 

   (97) 

Theorem 3.2.1. Set theory ZFC
st stZFC ZFC M+ ∃  is inconsistent. 

Proof. From (95) we obtain  

( )( )
( )( )

#

# .

st

st

st st ZFC st st

ZFC st st st st

Bew

Bew

 ℜ ∈ℜ ⇔ ℜ ∉ℜ 
 ∧ ℜ ∉ℜ ⇒ℜ ∉ℜ 

   

   

   

   
              (98) 

a) Assume now that:  

.st stℜ ∈ℜ 

                              (99) 

Then from (98) we obtain ( )( )#
stZFC st stBew ℜ ∉ℜ 

   and  

( )( )#
stZFC st st st stBew ℜ ∉ℜ ⇒ℜ ∉ℜ   

    , therefore st stℜ ∉ℜ 

   and so  

.
stZFC st st st stℜ ∈ℜ ⇒ℜ ∉ℜ   

                       (100) 

From (99)-(100) we obtain ,st st st st st st st stℜ ∈ℜ ℜ ∈ℜ ⇒ℜ ∉ℜ ℜ ∉ℜ       

         and 
therefore ( ) ( )stZFC st st st stℜ ∈ℜ ∧ ℜ ∉ℜ   

    . 
b) Assume now that   

( )( ) ( )( )# # .
st stZFC st st ZFC st st st stBew Bew   ℜ ∉ℜ ∧ ℜ ∉ℜ ⇒ℜ ∉ℜ   

     

       (101) 

Then from (101) we obtain 2 2
Hs Hsℜ ∉ℜ 

  . From (101) and (98) we obtain 

2
2 2Hs

Hs Hs

ZFC
ℜ ∈ℜ 

  , so 
2

2 2 2 2,Hs
Hs Hs Hs Hs

ZFC
ℜ ∉ℜ ℜ ∈ℜ   

     which immediately 

gives us a contradiction ( ) ( )
2

2 2 2 2Hs
Hs Hs Hs Hs

ZFC
ℜ ∈ℜ ∧ ℜ ∉ℜ   

    . 
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3.3. Derivation of the Inconsistent Provably Definable Set in ZFCNst  

Designation 3.3.1. i) Let PA  be a first order theory which contain usual post-
ulates of Peano arithmetic [8] and recursive defining equations for every primi-
tive recursive function as desired. 

ii) Let ZFC
NstM  be a nonstandard model of ZFC and let PA

stM  be a standard 
model of PA . We assume now that PA ZFC

st NstM M⊂  and denote such nonstan-
dard model of ZFC by ZFC

NstM PA   . 
iii) Let NstZFC  be the theory ZFC

Nst NstZFC ZFC M PA = +   . 
iv) Let Nstℑ  be the set of the all sets of ZFC

stM PA    provably definable in 

NstZFC , and let ( ){ }:Nst Nst NstX X Xℜ = ∈ℑ ∉

 where Nst A  means “sen-
tence A derivable in NstZFC ”, or some appropriate modification thereof. We 
replace now (45) by formula  

( ) ( ){ }! ,Nst NstY Y X X Y X ∀ ∈ℑ ↔ ∃Ψ ⋅ ∃ Ψ ∧ =             (102) 

and we replace (46) by formula 

( ) ( ) .Nst Nst NstX X X X X ∀ ∈ℜ ↔ ∈ℑ ∧ ∉ 

           (103) 

Assume that Nst Nst NstZFC ℜ ∈ℑ . Then, we have that: Nst Nstℜ ∈ℜ  iff 
( )Nst Nst Nstℜ ∉ℜ , which immediately gives us Nst Nstℜ ∈ℜ  iff Nst Nstℜ ∉ℜ . But 

this is a contradiction, i.e., ( ) ( )Nst Nst Nst Nst NstZFC ℜ ∈ℜ ∧ ℜ ∉ℜ . We choose 
now Nst A  in the following form  

( ) ( )# # .
Nst NstNst ZFC ZFCA Bew A Bew A A ∧  

          (104) 

Here ( )#
NstZFCBew A  is a canonical Gödel formula which says to us that there 

exists proof in NstZFC  of the formula A with Gödel number # PA
stA M∈ . 

Remark 3.3.1. Notice that definition (104) holds as definition of predicate re-
ally asserting provability in NstZFC . 

Designation 3.3.2. i) Let ( )
NstZFCg u  be a Gödel number of given an expres-

sion u of NstZFC .  
ii) Let ( ),Nst y vFr  be the relation: y is the Gödel number of a wff of NstZFC  

that contains free occurrences of the variable with Gödel number v [6] [10]. 
iii) Let ( )1, ,Nst y v ν℘  be a Gödel number of the following wff: 

( )!X X Y X∃ Ψ ∧ =   , where ( )( )NstZFCg X yΨ = , ( )
NstZFCg X ν= , 

( ) 1NstZFCg Y ν= . 
iv) Let ( )Pr

NstZFC z  be a predicate asserting provability in NstZFC . 
Remark 3.3.2. Let Nstℑ  be the countable collection of all sets X such that 

( )!NstZFC X X∃ Ψ , where ( )XΨ  is a 1-place open wff i.e.,  

( ) ( ){ }! .Nst NstY Y ZFC X X X Y X∀ ∈ℑ ⇔ ∃Ψ ∃ Ψ ∧ =         (105) 

We rewrite now (105) in the following form  

( )( )  ( ){
( )( ) ( )( )

( )( ) ( ) }

1

1

1

,

Pr , ,

Pr , , !

Nst

Nst Nst

Nst

Nst ZFC Nst

ZFC ZFC Nst

ZFC Nst

Y Y g Y y y v

g X y v

y v X X Y X

ν

ν ν

ν

∀ ∈ℑ ⇔ = ∧∃

∧ = ∧ ℘

 ∧ ℘ ⇒ ∃ Ψ ∧ =   

 Fr

        (106) 
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Designation 3.3.3. Let ( )Nst z℘  be a Gödel number of the following wff: 
Z Z∉ , where ( )

NstZFCg Z z= . 
Remark 3.3.3. Let Nstℜ  above by formula (103), i.e.,  

( ) ( ) .Nst Nst NstZ Z Z Z Z ∀ ∈ℜ ↔ ∈ℑ ∧ ∉ 

            (107) 

We rewrite now (107) in the following form 

( ) ( ) ( )( )
( )( )

Pr

Pr .

Nst Nst

Nst

Nst Nst ZFC ZFC Nst

ZFC Nst

Z Z Z g Z z z

z Z Z

 ∀ ∈ℜ ↔ ∈ℑ ∧ = ∧ ℘ 
 ∧ ℘ ⇒ ∉ 

 

   (108) 

Theorem 3.3.1. Nst Nst Nst Nst NstZFC ℜ ∈ℜ ∧ℜ ∉ℜ    . 

3.4. Generalized Tarski’s Undefinability Lemma  

Remark 3.4.1. Remind that: i) if Th  is a theory, let TTh  be the set of Godel 
numbers of theorems of Th  [10], ii) the property x T∈ Th  is said to be is ex-
pressible in Th  by wff ( )1xTrue  if the following properties are satisfied [10]: 

a) if n T∈ Th  then ( )nTh True , b) if n T∉ Th  then ( )n¬Th True . 
Remark 3.4.2. Notice it follows from (a) ∧  (b) that  

( )( ) ( )( )n n ¬ ∧ ¬  Th True Th True . 

Theorem 3.4.1. (Tarski’s undefinability Lemma) [10]. Let Th  be a consis-
tent theory with equality in the language L  in which the diagonal function D 
is representable and let ( )g uTh  be a Gödel number of given an expression u of 
Th . Then the property x T∈ Th  is not expressible in Th . 

Proof. By the diagonalization lemma applied to ( )1x¬True  there is a sen-
tence F  such that: c) ( )q⇔¬Th TrueF , where q is the Godel number of 
F , i.e. ( )g q=Th F . 

Case 1. Suppose that Th F , then q T∈ Th . By (a), ( )qTh True . But, 
from Th F  and (c), by biconditional elimination, one obtains 

( )q¬Th True . Hence Th  is inconsistent, contradicting our hypothesis. 
Case 2. Suppose that Th F , then q T∉ Th . By (b), ( )q¬Th True . 

Hence, by (c) and biconditional elimination, Th F . Thus, in either case a 
contradiction is reached. 

Definition 3.4.1. If Th  is a theory, let TTh  be the set of Godel numbers of 
theorems of Th  and let ( )g uTh  be a Gödel number of given an expression u 
of Th . The property x T∈ Th  is said to be is a strongly expressible in Th  by 
wff ( )1x∗True  if the following properties are satisfied: 

a) if n T∈ Th  then ( ) ( ) ( )( )1n n g n∗ ∗ −∧ ⇒ ThTh True True , 
b) if n T∉ Th  then ( )n∗¬Th True . 
Theorem 3.4.2. (Generalized Tarski’s undefinability Lemma). Let Th  be a 

consistent theory with equality in the language L  in which the diagonal func-
tion D is representable and let ( )g uTh  be a Gödel number of given an expres-
sion u of Th . Then the property x T∈ Th  is not strongly expressible in Th . 

Proof. By the diagonalization lemma applied to ( )1x∗¬True  there is a sen-
tence ∗F  such that: c) ( )q∗ ∗⇔ ¬Th TrueF , where q is the Godel number 
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of ∗F , i.e. ( )g q∗ =Th F . 
Case 1. Suppose that ∗Th F , then q T∈ Th . By (a), ( )q∗Th True . But, 

from ∗Th F  and (c), by biconditional elimination, one obtains 
( )q∗¬Th True . Hence Th  is inconsistent, contradicting our hypothesis. 

Case 2. Suppose that ∗Th F , then q T∉ Th . By (b), ( )q∗¬Th True . 
Hence, by (c) and biconditional elimination, ∗Th F . Thus, in either case a 
contradiction is reached. 

Remark 3.4.3. Notice that Tarski’s undefinability theorem cannot blocking 
the biconditionals  

, ,
,

st st st st

Nst Nst Nst Nst

ℜ∈ℜ⇔ℜ∉ℜ ℜ ∈ℜ ⇔ℜ ∉ℜ

ℜ ∈ℜ ⇔ℜ ∉ℜ
             (109) 

see Subsection 2.2. 

3.5. Generalized Tarski’s Undefinability Theorem  

Remark 3.5.1. I) Let #
1Th  be the theory #

1 2
HsZFCTh . 

In addition under assumption  ( )#
1Con Th , we establish a countable sequence 

of the consistent extensions of the theory #
1Th  such that: 

i) # # # #
1 1i i+ ∞     Th Th Th Th , where 

ii) #
1i+Th  is a finite consistent extension of #

iTh , 
iii) # #

ii∞ ∈
=
 Th Th , 

iv) #
∞Th  proves the all sentences of #

1Th , which is valid in M, i.e., 
#M A A∞⇒ Th , see see Subsection 4.1, Proposition 4.1.1. 

II) Let #
1,stTh  be #

1,st stZFCTh . 
In addition under assumption  ( )#

1,stCon Th , we establish a countable se-
quence of the consistent extensions of the theory #

1Th  such that: 
i) # # # #

1, , 1, ,st i st i st st+ ∞     Th Th Th Th , where 
ii) #

1,i st+Th  is a finite consistent extension of #
,i stTh , 

iii) # #
, ,st i sti∞ ∈
=
 Th Th , 

iv) #
,st∞Th  proves the all sentences of #

1,stTh , which valid in ZFC
stM , i.e., 

#
,

ZFC
st stM A A∞⇒ Th , see Subsection 4.1, Proposition 4.1.1. 
III) Let #

1,NstTh  be #
1,Nst NstZFCTh . 

In addition under assumption  ( )#
1,NstCon Th , we establish a countable se-

quence of the consistent extensions of the theory #
1Th  such that: 

i) # # # #
1, , 1, ,Nst i Nst i st Nst+ ∞     Th Th Th Th , where 

ii) #
1,i Nst+Th  is a finite consistent extension of #

,i NstTh , 
iii) # #

, ,st i sti∞ ∈
=
 Th Th  

iv) #
,st∞Th  proves the all sentences of #

1,stTh , which valid in [ ]ZFC
NstM PA , i.e., 

[ ] #
,

ZFC
Nst NstM PA A A∞⇒ Th , see Subsection 4.1, Proposition 4.1.1. 
Remark 3.5.2. I) Let , 1, 2,i iℑ =   be the set of the all sets of M provably de-

finable in #
iTh ,  

( ) ( ){ }! .i iY Y X X Y X∀ ∈ℑ ↔ ∃Ψ ⋅ ∃ Ψ ∧ =              (110) 

and let ( ){ }:i i ix x xℜ = ∈ℑ ∉
 where i A  means sentence A derivable in 
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#
iTh . Then we have that i iℜ ∈ℜ  iff ( )i i iℜ ∉ℜ , which immediately gives us 

i iℜ ∈ℜ  iff i iℜ ∉ℜ . We choose now , 1, 2,i A i =   in the following form  

( ) ( )# # .i i iA Bew A Bew A A∧   

                (111) 

Here ( )# , 1,2,iBew A i =   is a canonical Gödel formulae which says to us 
that there exists proof in # , 1, 2,i i = Th  of the formula A with Gödel number 
#A . 

II) Let , , 1, 2,i st iℑ =   be the set of the all sets of ZFC
stM  provably definable 

in #
,i stTh ,  

( ) ( ){ }, , ! .i st i stY Y X X Y X∀ ∈ℑ ↔ ∃Ψ ⋅ ∃ Ψ ∧ =            (112) 

and let ( ){ }, , ,:i st i st i stx x xℜ = ∈ℑ ∉

 where ,i st A  means sentence A deriva-
ble in #

,i stTh . 
Then we have that , ,i st i stℜ ∈ℜ  iff ( ), , ,i st i st i stℜ ∉ℜ

, which immediately 
gives us , ,i st i stℜ ∈ℜ  iff , ,i st i stℜ ∉ℜ . We choose now , , 1, 2,i st A i =   in the 
following form  

( ) ( ), , ,# # .i st i st i stA Bew A Bew A A ∧ ⇒ 
            (113) 

Here ( ), # , 1, 2,i stBew A i =   is a canonical Gödel formulae which says to us 
that there exists proof in #

, , 1, 2,i st i = Th  of the formula A with Gödel number 
#A . 

III) Let , , 1, 2,i Nst iℑ =   be the set of the all sets of [ ]ZFC
NstM PA  provably de-

finable in #
,i NstTh ,  

( ) ( ){ }, , ! .i Nst i NstY Y X X Y X∀ ∈ℑ ↔ ∃Ψ ⋅ ∃ Ψ ∧ =           (114) 

and let ( ){ }, , ,:i Nst i Nst i Nstx x xℜ = ∈ℑ ∉

 where ,i Nst A  means sentence A de-
rivable in #

,i NstTh . Then we have that , ,i Nst i Nstℜ ∈ℜ  iff ( ), , ,i Nst i Nst i Nstℜ ∉ℜ

, 
which immediately gives us , ,i Nst i Nstℜ ∈ℜ  iff , ,i Nst i Nstℜ ∉ℜ . 

We choose now , , 1, 2,i Nst A i =   in the following form  

( ) ( ), , ,# # .i Nst i Nst i NstA Bew A Bew A A ∧ ⇒ 

           (115) 

Here ( ), # , 1, 2,i NstBew A i =   is a canonical Gödel formulae which says to us 
that there exists proof in #

, , 1, 2,i Nst i = Th  of the formula A with Gödel num-
ber #A . 

Remark 3.5.3. Notice that definitions (111), (113) and (115) hold as definitions 
of predicates really asserting provability in # #

,,i i stTh Th  and #
, , 1, 2,i Nst i = Th  

correspondingly. 
Remark 3.5.4. Of course the all theories # # #

, ,, , , 1, 2,i i st i Nst i = Th Th Th  are 
inconsistent, see subsection 4.1. 

Remark 3.5.5. I) Let ∞ℑ  be the set of the all sets of M provably definable in 
#
∞Th ,  

( ) ( ){ }! .Y Y X X Y X∞ ∞∀ ∈ℑ ↔ ∃Ψ ⋅ ∃ Ψ ∧ =               (116) 

and let ( ){ }:x x x∞ ∞ ∞ℜ = ∈ℑ ∉

, where A∞  means “sentence A derivable 
in #

∞Th ”. Then, we have that ∞ ∞ℜ ∈ℜ  iff ( )∞ ∞ ∞ℜ ∉ℜ , which immediately 
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gives us ∞ ∞ℜ ∈ℜ  iff ∞ ∞ℜ ∉ℜ . We choose now , 1, 2,A i∞ =   in the fol-
lowing form 

( ) ( )# # .i iA i Bew A Bew A A∞  ∃ ∧ ⇒   

              (117) 

II) Let ,st∞ℑ  be the set of the all sets of ZFC
stM  provably definable in #

,st∞Th ,  

( ) ( ){ }, , ! .st stY Y X X Y X∞ ∞∀ ∈ℑ ↔ ∃Ψ ⋅ ∃ Ψ ∧ =            (118) 

and let ,st∞ℜ  be the set ( ){ }, , ,:st st stx x x∞ ∞ ∞ℜ = ∈ℑ ∉
, where ,st A∞  means 

“sentence A derivable in #
,st∞Th ”. Then, we have that , ,st st∞ ∞ℜ ∈ℜ  iff 

( ), , ,st st st∞ ∞ ∞ℜ ∉ℜ
, which immediately gives us , ,st st∞ ∞ℜ ∈ℜ  iff , ,st st∞ ∞ℜ ∉ℜ . 

We choose now , , 1, 2,st A i∞ =   in the following form 

( ) ( ), , ,# # .st i st i stA i Bew A Bew A A∞   ∃ ∧ ⇒              (119) 

III) Let ,Nst∞ℑ  be the set of the all sets of [ ]ZFC
NstM PA  provably definable in 

#
,Nst∞Th ,  

( ) ( ){ }, , ! .Nst NstY Y X X Y X∞ ∞∀ ∈ℑ ↔ ∃Ψ ⋅ ∃ Ψ ∧ =           (120) 

and let ,Nst∞ℜ  be the set ( ){ }, , ,:Nst Nst Nstx x x∞ ∞ ∞ℜ = ∈ℑ ∉
 where ,Nst A∞  

means “sentence A derivable in #
,Nst∞Th ”. Then, we have that , ,Nst Nst∞ ∞ℜ ∈ℜ  iff 

( ), , ,Nst Nst Nst∞ ∞ ∞ℜ ∉ℜ
, which immediately gives us , ,Nst Nst∞ ∞ℜ ∈ℜ  iff 

, ,Nst Nst∞ ∞ℜ ∉ℜ . We choose now , , 1, 2,Nst A i∞ =   in the following form 

( ) ( ), , ,# # .Nst i Nst i NstA i Bew A Bew A A∞   ∃ ∧ ⇒             (121) 

Remark 3.5.6. Notice that definitions (117), (119) and (121) hold as defini-
tions of a predicate really asserting provability in # #

,, st∞ ∞Th Th  and #
,Nst∞Th  

correspondingly. 
Remark 3.5.7. Of course all the theories # #

,, st∞ ∞Th Th  and #
,Nst∞Th  are in-

consistent, see subsection 4.1. 
Remark 3.5.8. Notice that under naive consideration the set ∞ℑ  and ∞ℜ  

can be defined directly using a truth predicate, which of course is not available in 
the language of 2

HsZFC  (but iff 2
HsZFC  is consistent) by well-known Tarski’s 

undefinability theorem [10]. 
Theorem 3.5.1. Tarski’s undefinability theorem: I) Let ThL  be first order 

theory with formal language L , which includes negation and has a Gödel 
numbering ( )g   such that for every L -formula ( )A x  there is a formula B 
such that ( )( )B A g B↔  holds. Assume that ThL  has a standard model 

stM ThL  and ( ),stCon ThL  where  

, .st stM+ ∃

ThTh Th L
L L                     (122) 

Let T ∗  be the set of Gödel numbers of L -sentences true in stM ThL . Then 
there is no L -formula ( )nTrue  (truth predicate) which defines T ∗ . That is, 
there is no L -formula ( )nTrue  such that for every L -formula A,  

( )( )g A A⇔True                        (123) 

holds. 

https://doi.org/10.4236/apm.2019.99034


J. Foukzon, E. Men’kova 
 

 

DOI: 10.4236/apm.2019.99034 710 Advances in Pure Mathematics 
 

II) Let HsTh  be second order theory with Henkin semantics and formal 
language L , which includes negation and has a Gödel numbering ( )g   such 
that for every L -formula ( )A x  there is a formula B such that ( )( )B A g B↔  
holds. 

Assume that HsTh  has a standard model Hs

stM ThL  and ( ),
Hs

stCon ThL , where  

,

HsHs Hs
st stM+ ∃

ThTh Th L                     (124) 

Let T ∗  be the set of Gödel numbers of the all L -sentences true in M. Then 
there is no L -formula ( )nTrue  (truth predicate) which defines T ∗ . That is, 
there is no L -formula ( )nTrue  such that for every L -formula A,  

( )( )g A A⇔True                      (125) 

holds. 
Remark 3.5.9. Notice that the proof of Tarski’s undefinability theorem in this 

form is again by simple reductio ad absurdum. Suppose that an L -formula 
True(n) defines T ∗ . In particular, if A is a sentence of ThL  then 

( )( )g ATrue  holds in   iff A is true in stM ThL . Hence for all A, the Tarski 
T-sentence ( )( )g A A⇔True  is true in stM ThL . But the diagonal lemma 
yields a counterexample to this equivalence, by giving a “Liar” sentence S such 
that ( )( )S g S⇔¬True  holds in stM ThL . Thus no L -formula ( )nTrue  
can define T ∗ . 

Remark 3.5.10. Notice that the formal machinery of this proof is wholly ele-
mentary except for the diagonalization that the diagonal lemma requires. The 
proof of the diagonal lemma is likewise surprisingly simple; for example, it does 
not invoke recursive functions in any way. The proof does assume that every 
L -formula has a Gödel number, but the specifics of a coding method are not 
required. 

Remark 3.5.11. The undefinability theorem does not prevent truth in one 
consistent theory from being defined in a stronger theory. For example, the set 
of (codes for) formulas of first-order Peano arithmetic that are true in   is de-
finable by a formula in second order arithmetic. Similarly, the set of true formu-
las of the standard model of second order arithmetic (or n-th order arithmetic 
for any n) can be defined by a formula in first-order ZFC. 

Remark1.3.5.12. Notice that Tarski’s undefinability theorem cannot blocking 
the biconditionals  

, ,
, etc.,

i i i i i

∞ ∞ ∞ ∞

ℜ ∈ℜ ⇔ℜ ∉ℜ ∈

ℜ ∈ℜ ⇔ℜ ∉ℜ


                     (126) 

see Remark 3.5.14 below. 
Remark 3.5.13. I) We define again the set ∞ℑ  but now by using generalized 

truth predicate ( )( )# ,g A A∞True  such that  

( )( ) ( ) ( )
( )( ) ( )( )
( )( ) ( )

# , # #

,

# .

i i

i

g A A i Bew A Bew A A

g A g A A A

g A iBew A

∞

∞ ∞

∞

 ⇔ ∃ ∧ ⇒ ⇔   
 ∧ ⇒ ⇔ 

⇔ ∃

True

True True

True

      (127) 
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holds. 
II) We define the set ,st∞ℑ  using generalized truth predicate 

( )( )#
, ,st g A A∞True  such that 

( )( ) ( ) ( )

( )( ) ( )( )
( )( ) ( )

#
, , ,

, ,

, ,

, # #

,

#

st i st i st

st st

st i st

g A A i Bew A Bew A A

g A g A A A

g A iBew A

∞

∞ ∞

∞

  ⇔ ∃ ∧ ⇒ ⇔  
 ∧ ⇒ ⇔ 

⇔ ∃

True

True True

True

  (128) 

holds. Thus in contrast with naive definition of the sets ∞ℑ  and ∞ℜ  there is 
no any problem which arises from Tarski’s undefinability theorem. 

III) We define a set ,Nst∞ℑ  using generalized truth predicate 
( )( )#

, ,Nst g A A∞True  such that     

( )( ) ( ) ( )

( )( ) ( )( )
( )( ) ( )

#
, , ,

, ,

, ,

, # #

,

# .

Nst i Nst i Nst

Nst Nst

Nst i Nst

g A A i Bew A Bew A A

g A g A A A

g A iBew A

∞

∞ ∞

∞

  ⇔ ∃ ∧ ⇒ ⇔  
 ∧ ⇒ ⇔ 

⇔ ∃

True

True True

True

 (129) 

holds. Thus in contrast with naive definition of the sets ,Nst∞ℑ  and ,Nst∞ℜ  
there is no any problem which arises from Tarski’s undefinability theorem. 

Remark 3.5.14. In order to prove that set theory 2
2

HsZFCHsZFC M+ ∃  is in-
consistent without any reference to the set ∞ℑ , notice that by the properties of 
the extension #

∞Th  it follows that definition given by formula (127) is correct, 
i.e., for every 2

HsZFC -formula Φ  such that 2
HsZFCM Φ  the following equi-

valence ( )( ),g∞Φ ⇔ Φ ΦTrue  holds. 
Theorem 3.5.2. (Generalized Tarski’s undefinability theorem) (see subsec-

tion 4.2, Proposition 4.2.1). Let ThL  be a first order theory or the second or-
der theory with Henkin semantics and with formal language L , which in-
cludes negation and has a Gödel encoding ( )g ⋅  such that for every L

-formula ( )A x  there is a formula B such that the equivalence ( )( )B A g B⇔  
holds. Assume that ThL  has a standard Model stM Th . Then there is no L

-formula ( ) ,n n∈True , such that for every L -formula A such that M A , 
the following equivalence holds   

( )( ), .A g A A⇔ True                       (130) 

Theorem 3.5.3. i) Set theory 2#
1 2

HsZFCHsZFC M= + ∃Th  is inconsistent; 
ii) Set theory #

1,
ZFC

st stZFC M= + ∃Th  is inconsistent; iii) Set theory 
#
1,

ZFC
Nst NstZFC M= + ∃Th  is inconsistent; (see subsection 4.2, Proposition 4.2.2). 

Proof. i) Notice that by the properties of the extension #
∞Th  of the theory 

2 #
2 1

HsZFCHsZFC M+ ∃ = Th  it follows that  

2 # .
HsZFCM ∞Φ ⇒ Φ Th                       (131) 

Therefore formula (127) gives generalized “truth predicate” for the set theory 
#
1Th . By Theorem 3.5.2 one obtains a contradiction. 

ii) Notice that by the properties of the extension #
,Nst∞Th  of the theory

#
1,

ZFC
st stZFC M+ ∃ = Th  it follows that  
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#
, .ZFC

st stM ∞Φ ⇒ Φ Th                      (132) 

Therefore formula (128) gives generalized “truth predicate” for the set theory 
#
1,stTh . By Theorem 3.5.2 one obtains a contradiction. 

iii) Notice that by the properties of the extension #
,Nst∞Th  of the theory 

#
1,

ZFC
Nst stZFC M+ ∃ = Th  it follows that  

#
, .ZFC

Nst NstM ∞Φ ⇒ Φ Th                    (133) 

Therefore (129) gives generalized “truth predicate” for the set theory #
1,NstTh . 

By Theorem 3.5.2 one obtains a contradiction. 

3.6. Avoiding the Contradictions from Set Theory HsZFC 2 , stZFC   
and Set Theory NstZFC  Using Quinean Approach    

In order to avoid difficulties mentioned above we use well known Quinean ap-
proach [19]. 

3.6.1. Quinean Set Theory NF     
Remind that the primitive predicates of Russellian unramified typed set theory 
(TST), a streamlined version of the theory of types, are equality = and member-
ship ∈ . TST has a linear hierarchy of types: type 0 consists of individuals oth-
erwise undescribed. For each (meta-) natural number n, type 1n +  objects are 
sets of type n objects; sets of type n have members of type 1n − . Objects con-
nected by identity must have the same type. The following two atomic formulas 
succinctly describe the typing rules: n nx y=  and 1n nx y +∈ . 

The axioms of TST are: 
Extensionality: sets of the same (positive) type with the same members are 

equal; 
Axiom schema of comprehension: 
If ( )nxΦ  is a formula, then the set ( ){ } 1

|
nn nx x
+

Φ  exists i.e., given any 
formula ( )nxΦ , the formula 

( )1 1n n n n nA x x A x+ + ∃ ∀ ∈ ↔ Φ                   (134) 

is an axiom where 1nA +  represents the set ( ){ } 1
|

nn nx x
+

Φ  and is not free in 

( )nxΦ . 
Quinean set theory. (New Foundations) seeks to eliminate the need for such 

superscripts. 
New Foundations has a universal set, so it is a non-well founded set theory. 

That is to say, it is a logical theory that allows infinite descending chains of 
membership such as 1 3 2 1n nx x x x x−∈ ∈ ∈ ∈ ∈ . It avoids Russell’s paradox by 
only allowing stratifiable formulas in the axiom of comprehension. For instance 
x y∈  is a stratifiable formula, but x x∈  is not (for details of how this works 

see below). 
Definition 3.6.1. In New Foundations (NF) and related set theories, a formu-

la Φ  in the language of first-order logic with equality and membership is said 
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to be stratified iff there is a function 3c3 which sends each variable appearing in 
Φ  [considered as an item of syntax] to a natural number (this works equally 
well if all integers are used) in such a way that any atomic formula x y∈  ap-
pearing in Φ  satisfies ( ) ( )1x yσ σ+ =  and any atomic formula x y=  ap-
pearing in Φ  satisfies ( ) ( )x yσ σ= . 

Quinean Set Theory NF 
Axioms and stratification are: 
The well-formed formulas of New Foundations (NF) are the same as the 

well-formed formulas of TST, but with the type annotations erased. The axioms 
of NF are [19]. 

Extensionality: Two objects with the same elements are the same object. 
A comprehension schema: All instances of TST Comprehension but with type 

indices dropped (and without introducing new identifications between variables). 
By convention, NF’s Comprehension schema is stated using the concept of 

stratified formula and making no direct reference to types. Comprehension then 
becomes. 

Stratified Axiom schema of comprehension: 

{ }| sx Φ  exists for each stratified formula sΦ . 
Even the indirect reference to types implicit in the notion of stratification can be 

eliminated. Theodore Hailperin showed in 1944 that Comprehension is equivalent 
to a finite conjunction of its instances, so that NF can be finitely axiomatized 
without any reference to the notion of type [20]. Comprehension may seem to 
run afoul of problems similar to those in naive set theory, but this is not the case. 
For example, the existence of the impossible Russell class { }|x x x∉  is not an 
axiom of NF, because x x∉  cannot be stratified. 

3.6.2. SET Theory 2
HsZFC , stZFC  and Set Theory NstZFC  with  

Stratified Axiom Schema of Replacement      
The stratified axiom schema of replacement asserts that the image of a set under 
any function definable by stratified formula of the theory stZFC  will also fall 
inside a set. 

Stratified Axiom schema of replacement: 
Let ( )1 2, , , , ,s

nx y w w wΦ   be any stratified formula in the language of 

stZFC  whose free variables are among 1 2, , , , , , nx y A w w w , so that in particu-
lar B is not free in sΦ . Then  

( )( )
( )( )( )

1 2 1 2

1 2

! , , , , ,

, , , , , ,

s
n n

s
n

A w w w x x A y x y w w w

B x x A y y B x y w w w

∀ ∀ ∀ ∀ ∀ ∈ ⇒ ∃ Φ
⇒ ∃ ∀ ∈ ⇒ ∃ ∈ ∧Φ 

 



     (135) 

i.e., if the relation ( ), ,s x yΦ   represents a definable function f, A represents 
its domain, and ( )f x  is a set for every x A∈ , then the range of f is a subset of 
some set B. 

Stratified Axiom schema of separation: 
Let ( )1 2, , , ,s

nx w w wΦ   be any stratified formula in the language of stZFC  
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whose free variables are among 1 2, , , , , nx A w w w , so that in particular B is not 
free in sΦ . Then  

( )( )1 2 1 2, , , , ,s
n nw w w A B x x B x A x w w w ∀ ∀ ∀ ∀ ∃ ∀ ∈ ⇔ ∈ ∧Φ     (136) 

Remark 3.6.1. Notice that the stratified axiom schema of separation follows 
from the stratified axiom schema of replacement together with the axiom of 
empty set. 

Remark 3.6.2. Notice that the stratified axiom schema of replacement (sepa-
ration) obviously violated any contradictions (82), (126), etc. mentioned above. 
The existence of the countable Russell sets 2 ,Hs

st
∗ ∗ℜ ℜ  and Nst

∗ℜ  is impossible, 
because x x∉  cannot be stratified. 

4. Generalized Löbs Theorem  
4.1. Generalized Löbs Theorem. Second-Order Theories with  

Henkin Semantics   

Remark 4.1.1. In this section we use second-order arithmetic 2
HsZ  with Hen-

kin semantics. Notice that any standard model 2
HsZ

stM  of second-order arithmetic 

2
HsZ  consisting of a set   of unusual natural numbers (which forms the range 

of individual variables) together with a constant 0 (an element of  ), a function 
S from   to  , two binary operations + and ⋅  on  , a binary relation < on 
 , and a collection 2D ⊆   of subsets of  , which is the range of the set va-
riables. Omitting D produces a model of the first order Peano arithmetic.    

When 2D =   is the full power set of  , the model 2Z
stM  is called a full 

model. The use of full second-order semantics is equivalent to limiting the models 
of second-order arithmetic to the full models. In fact, the axioms of second-order 
arithmetic 2

fssZ  have only one full model. This follows from the fact that the 
axioms of Peano arithmetic with the second-order induction axiom have only 
one model under second-order semantics, see Section 3. 

Let Th  be some fixed, but unspecified, consistent formal theory. For later 
convenience, we assume that the encoding is done in some fixed formal second 
order theory S  and that Th  contains S . We assume throughout this paper 
that formal second order theory S  has an ω-model Mω

S . The sense in which 
S  is contained in Th  is better exemplified than explained: if S  is a formal 
system of a second order arithmetic 2

HsZ  and Th  is, say, 2
HsZFC , then Th  

contains S  in the sense that there is a well-known embedding, or interpreta-
tion, of S in Th . Since encoding is to take place in Mω

S , it will have to have a 
large supply of constants and closed terms to be used as codes (e.g. in formal 
arithmetic, one has 0, 1, ). S  will also have certain function symbols to be 
described shortly. To each formula, Φ , of the language of Th  is assigned a 
closed term, [ ]cΦ , called the code of Φ  [19]. We note that if ( )xΦ  is a for-
mula with free variable x, then ( ) c

xΦ    is a closed term encoding the formula 
( )xΦ  with x viewed as a syntactic object and not as a parameter. Correspond-

ing to the logical connectives and quantifiers are the function symbols, ( )neg ⋅ , 
( )imp ⋅ , etc., such that for all first order formulae [ ]( ) [ ], : c cnegΦ Ψ Φ = ¬ΦS , 
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[ ] [ ]( ) [ ],c c cimp Φ Ψ = Φ →ΨS  etc. Of particular importance is the substitu-
tion operator, represented by the function symbol ( ),sub ⋅ ⋅ . For formulae 
( )xΦ , terms t with codes [ ]ct :     

( ) [ ]( ) ( ), .
c ccsub x t tΦ = Φ      S                 (137) 

It well known that one can also encode derivations and have a binary relation 
( ),x yThProv  (read “x proves y” or “x is a proof of y”) such that for closed 

( )1 2 1 2, : ,t t t t ThS Prov  iff 1t  is the code of a derivation in Th  of the formu-
la with code 2t . It follows that  

[ ]( )iff , ctΦ ΦThTh S Prov                  (138) 

for some closed term t. Thus we can define    

( ) ( ), ,y x x y↔ ∃Th ThPr Prov                  (139) 

and therefore we obtain a predicate asserting provability. 
Remark 4.1.2. I) We note that it is not always the case that: 

[ ]( )iff ,cΦ ΦThTh S Pr                    (140) 

unless S  is fairly sound, e.g. this is the case when S  and Th  replaced by 
Mω ω=  ThS S  and Mω ω=  ThTh Th  correspondingly (see Designation 4.1.1 

below). 
II) Notice that it is always the case that: 

[ ]( )iff ,c

ωω ω ω ωΦ ΦThTh S Pr                (141) 

i.e. that is the case when predicate ( ) ,y y M
ω ω∈ Th

ThPr : 

( ) ( ) ( ),y x x M x y
ω ωω↔ ∃ ∈ Th

Th ThPr Prov           (142) 

really asserting provability.   
It well known that the above encoding can be carried out in such a way that 

the following important conditions 1, 2D D  and 3D  are meeting for all sentences:  

[ ]( )
[ ]( ) [ ]( )
[ ]( ) [ ]( ) [ ]( )

1. implies ,

2. ,

3. .

c

cc c

c c c

Φ Φ

  Φ → Φ    

Φ ∧ Φ →Ψ → Ψ

Th

Th Th Th

Th Th Th

D Th S Th Pr

D S Pr Pr Pr

D S Pr Pr Pr

  





       (143) 

Conditions 1, 2D D  and 3D  are called the Derivability Conditions. 
Remark 4.1.3. From (141)-(142) it follows that  

[ ]( )
[ ]( ) [ ]( )
[ ]( ) [ ]( ) [ ]( )

4. iff ,

5. ,

6. .

c

cc c

c c c

ω

ω ω ω

ω ω ω

ω ω ω

ω ω ω

ω ω ω ω

Φ Φ

  Φ ↔ Φ    

Φ ∧ Φ →Ψ → Ψ

 





Th

Th Th Th

Th Th Th

D Th S Pr

D S Pr Pr Pr

D S Pr Pr Pr

   (144) 

Conditions 4, 5D D  and 6D  are called a Strong Derivability Conditions. 
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Definition 4.1.1. Let Φ  be well formed formula (wff) of Th . Then wff Φ  
is called Th -sentence iff it has no free variables. 

Designation 4.1.1 i) Assume that a theory Th  has an ω-model Mω
Th  and Φ   

is a Th -sentence, then: 
M

M
ω

ωΦ Φ Th
Th  (we will write ωΦ  instead 

Mω
Φ Th )  

is a Th -sentence Φ  with all quantifiers relativized to ω-model Mω
Th  [11] 

and Mω ω  ThTh Th  is a theory Th  relativized to model Mω
Th , i.e., any 

ωTh -sentence has the form ωΦ  for some Th -sentence Φ . 
ii) Assume that a theory Th  has a standard model stM Th  and Φ  is a Th

-sentence, then: 

st
stM

MΦ Φ Th
Th  (we will write stΦ  instead 

stM
Φ Th ) is a Th -sentence with  

all quantifiers relativized to a standard model stM Th , and st stM  ThTh Th  is a 
theory Th  relativized to model stM Th , i.e., any stTh -sentence has a form stΦ  
for some Th -sentence Φ .  

iii) Assume that a theory Th  has a non-standard model NstM Th  and Φ  is a 
Th -sentence, then: 

Nst
NstM

MΦ Φ Th
Th  (we will write NstΦ  instead 

NstM
Φ Th ) is a Th -sentence with  

all quantifiers relativized to non-standard model NstM Th , and Nst NstM  ThTh Th  is 
a theory Th  relativized to model NstM Th , i.e., any NstTh -sentence has a form 

NstΦ  for some Th -sentence Φ .  
iv) Assume that a theory Th  has a model M M= Th  and Φ  is a Th

-sentence, then: 
M

Φ Th  is a Th -sentence with all quantifiers relativized to 
model M Th , and MTh  is a theory Th  relativized to model M Th , i.e. any 

MTh -sentence has a form MΦ  for some Th -sentence Φ .   
Designation 4.1.2. i) Assume that a theory Th  with a language L  has an 

ω-model Mω
Th  and there exists Th -sentence SL  such that: a) SL  expres-

sible by language L  and 
b) SL  asserts that Th  has a model Mω

Th ; we denote such Th -sentence 
SL  by ( );Con Mω

ThTh . 
ii) Assume that a theory Th  with a language L  has a non-standard mod-

el NstM Th  and there exists Th -sentence SL  such that: a) SL  expressible by 
language L  and 

b) SL  asserts that Th  has a non-standard model NstM Th ; we denote such 
Th -sentence SL  by ( ); NstCon M ThTh . 

iii) Assume that a theory Th  with a language L  has an model M Th  and 
there exists Th -sentence SL  such that: a) SL  expressible by language L  
and 

b) SL  asserts that Th  has a model M Th ; we denote such Th -sentence 
SL  by ( );Con M ThTh . 

Remark 4.1.4. We emphasize that: i) it is well known that there exists a 
ZFC-sentence ( ); ZFCCon ZFC M  [8], 

ii) obviously there exists a 2
HsZFC -sentence ( )2

2 ;
HsZFCHsCon ZFC M  and there 

exists a 2
HsZ -sentence ( )2

2 ;
HsZHsCon Z M . 
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Designation 4.1.3. Assume that ( );Con M ThTh . Let  ( );Con M ThTh  be the 
formula: 

 ( ) ( ) ( ) ( )
( ) [ ]( ) [ ]( )( )

[ ] [ ]( )
 ( ) ( ) ( )

[ ]( ) [ ]( )( )

1 1 1 1 2 2

2 2 1 2

1 2

1 1 2 2

1 2

;

, , ,

where ,

or ;

, ,

c c

c c

c c

Con M t t M t t M t t M

t t M t t neg

t t neg

Con M t t M t t M

t t neg

ω ω ω

ω

ω ω ω

′ ′∀ ∈ ∀ ∈ ∀ ∈

 ′ ′∀ ∈ ¬ Φ ∧ Φ  

′ ′= Φ = Φ

∀Φ∀ ∈ ∀ ∈

 ¬ Φ ∧ Φ  





Th Th Th Th

Th
Th Th

Th Th Th

Th Th

Th

Prov Prov

Th

Prov Prov

    (145) 

and where 1 1 2 2, , ,t t t t′ ′  is a closed term. 
Lemma 4.1.1. I) Assume that: i) a theory Th  is recursively axiomatizable. 
ii) ( );Con M ThTh , 
iii)  ( );M Con MTh ThTh  and 
iv) [ ]( )cΦ ThTh Pr , where Φ  is a closed formula. 
Then [ ]( )c¬Φ ThTh Pr . 
II) Assume that: i) a theory Th  is recursively axiomatizable. 
ii) ( );Con Mω

ThTh  
iii)  ( );M Con Mω Th ThTh  and 
iv) [ ]( )c

ωω ωΦ ThTh Pr , where ωΦ  is a closed formula. 
Then [ ]( )c

ωω ω¬Φ ThTh Pr . 
Proof. I) Let  ( );Con MΦ Th

Th  be the formula:  
 ( ) ( ) ( )

[ ]( ) [ ]( )( )
( ) ( )

[ ]( ) [ ]( )( )
( ) ( ) [ ]( ) [ ]( )( ){ }

1 1 2 2

1 2

1 1 2 2

1 2

1 1 2 2 1 2

;

, , ,

i.e.

, ,

, , .

c c

c c

c c

Con M t t M t t M

t t neg

t t M t t M

t t neg

t t M t t M t t neg

Φ ∀ ∈ ∀ ∈

 ¬ Φ ∧ Φ  

∀ ∈ ∀ ∈

 ¬ Φ ∧ Φ ↔  

 ¬∃ ∈ ¬∃ ∈ Φ ∧ Φ  



Th Th Th

Th Th

Th Th

Th Th

Th Th
Th Th

Prov Prov

Prov Prov

Prov Prov

(146) 

where 1 2,t t  is a closed term. From (i)-(ii) it follows that theory  
 ( );Con M+ ThTh Th  is consistent. We note that  
 ( )  ( ); ;Con M Con M+ ΦTh Th

ThTh Th  for any closed Φ . Suppose that 
[ ]( )c¬Φ ThTh Pr , then (iii) gives 

[ ]( ) [ ]( ).c cΦ ∧ ¬Φ Th ThTh Pr Pr                 (147) 

From (139) and (147) we obtain  

[ ]( ) [ ]( )( )1 2 1 2, , .c ct t t t neg ∃ ∃ Φ ∧ Φ  Th ThProv Prov          (148) 

But the formula (146) contradicts the formula (148). Therefore  
[ ]( )c¬Φ ThTh Pr . 

Remark 4.1.5. In additional note that under the following conditions: 
i) a theory Th  is recursively axiomatizable, 
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ii) ( ); stCon M ThTh , and 
iii)  ( );st stM Con MTh ThTh  predicate [ ]( )cΨThPr  really asserts provability, 

one obtains   

Φ∧¬ΦTh                            (149) 

and therefore by reductio ad absurdum again one obtains [ ]( )c¬Φ ThTh Pr . 
II) Let  ( );Con MωΦ Th

Th  be the formula: 
 ( ) ( ) ( )

[ ]( ) [ ]( )( )
( ) ( )

[ ]( ) [ ]( )( )
( ) ( ) [ ]( ) [ ]( )( ){ }

1 1 2 2

1 2

1 1 2 2

1 2

1 1 2 2 1 2

;

, , ,

, ,

, , .

c c

c c

c c

Con M t t M t t M

t t neg

i.e. t t M t t M

t t neg

t t M t t M t t neg

ω ω ω

ω ω

ω ω

Φ ∀ ∈ ∀ ∈

 ¬ Φ ∧ Φ  

∀ ∈ ∀ ∈

 ¬ Φ ∧ Φ ↔  

 ¬∃ ∈ ¬∃ ∈ Φ ∧ Φ  

Th Th Th
Th

Th Th

Th Th

Th Th

Th Th
Th Th

Prov Prov

Prov Prov

Prov Prov



 (150) 

This case is trivial because formula [ ]( )c

ω
¬ΦThPr  by the Strong Derivability 

Condition 4D , see formulae (144), really asserts provability of the ωTh
-sentence ω¬Φ . But this is a contradiction. 

Lemma 4.1.2. I) Assume that: i) a theory Th  is recursively axiomatizable. 
ii) ( );Con M ThTh , 
iii)  ( )M ConTh Th  and 
iv) [ ]( )c¬Φ ThTh Pr , where Φ  is a closed formula. Then  

[ ]( )cΦ ThTh Pr , 
II) Assume that: i) a theory Th  is recursively axiomatizable. 
ii) ( );Con Mω

ThTh  
iii)  ( )M Conω Th Th  and 
iv) [ ]( )c

ωω ω¬Φ ThTh Pr , 
where ωΦ  is a closed formula. Then [ ]( )c

ωω ωΦ ThTh Pr . 
Proof. Similarly as Lemma 4.1.1 above. 
Example 4.1.1. i) Let =Th PA  be Peano arithmetic and 0 1Φ ⇔ = . 
Assume that: i) ( );Con M PAPA  
ii)  ( );M Con MPA PAPA  where M PA  is a model of PA . 
Then obviously ( )0 1≠ PAPA Pr  since 0 1≠PA  and therefore by 

Lemma 4.1.1 ( )0 1= PAPA Pr . 
ii) Let ( )  ( ); , ;Con M M Con M¬PA PA PAPA PA  and let ♣PA  be a theory 

 ( );Con M♣ = +¬ PAPA PA PA  and 0 1Φ ⇔ = . Then obviously  

( ) ( )0 1 0 1 .♣ ≠ ∧ =      PA PAPA Pr Pr               (151) 

and therefore  

( )0 1 ,♣ ≠PAPA Pr                      (152) 

and 

( )0 1 .♣ =PAPA Pr                      (153) 

However by Löbs theorem   
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0 1.♣ =PA                         (154) 

iii) Let ( )  ( ); , ;Con M M Con M
♣ ♣ ♣♣ ♣PA PA PAPA PA  and 0 1Φ ⇔ = . Then 

obviously ( )0 1♣
♣ ≠

PA
PA Pr  since 0 1♣ ≠PA  and therefore by Lemma 

4.1.1 we obtain. ( )0 1♣
♣ =

PA
PA Pr . 

Remark 4.1.6. Notice that there is no standard model of ♣PA .  
Assumption 4.1.1. Let Th  be a second order theory with Henkin semantics. 

We assume now that: 
i) the language of Th  consists of: 
numerals 0, 1,  
countable set of the numerical variables: { }0 1, ,v v   
countable set 1F  of the first order variables, i.e. 
a set of variables: { }1 , , , , , , , ,x y z X Y Z= ℑ ℜF  
countable set 2F  of the first order variables, i.e. 
a set of variables: { }2 0 0 1 1, , , ,n n n nf R f R= F  
countable set of the n-ary function symbols: 0 1, ,n nf f   
countable set of the n-ary relation symbols: 0 1, ,n nR R   
connectives: ,¬ →  
quantifier: ∀ . 
ii) A theory Th  is recursively axiomatizable. 
iii) Th  contains 2

HsZFC  or ZFC or NF and ( );Con M ThTh  is expressible 
in Th  by a single statement of Th ; 

iv) Th  has an ω-model Mω
Th  and  ( );M Con Mω ωTh ThTh ; or 

v) Th  has an nonstandard model [ ]Nst Nst stM M PA M= ⊃Th Th PA  and  
 ( );Nst NstM Con MTh ThTh . 

Definition 4.1.2. A Th -wff Φ  (well-formed formula Φ ) is closed, i.e. Φ  
is a sentence, i.e. if it has no free variables; a wff is open if it has free variables. 
We’ll use the slang “k-place open wff” to mean a wff with k distinct free va-
riables. 

Definition 4.1.3. We will say that #
∞Th  is a nice theory or a nice extension 

of the Th  iff the following properties holds: 
i) #

∞Th  contains Th ; 
ii) Let Φ  be any first order closed formula of Th , then [ ]( )cΦ ThTh Pr  

implies #
∞ ΦTh ; 

iii) Let ∞Φ  be any first order closed formula of #
∞Th , then Mω ∞ΦTh  im-

plies #
∞ ∞ΦTh , i.e. ( );Con Mω∞+Φ ThTh  implies #

∞ ∞ΦTh . 
iv) Let ∞Φ  be any first order closed formula of #

∞Th , then formulas 

( );Con Mω∞+Φ ThTh  and  ( )# ;Con Mω∞ ∞+Φ ThTh  are expressible in #
∞Th . 

Definition 4.1.4. Let L be a classical propositional logic L. Recall that a set ∆  
of L-wff’s is said to be L-consistent, or consistent for short, if ∆ ⊥  and there 
are other equivalent formulations of consistency: 1) ∆  is consistent, 2) 

( ) { }: |A A∆ = ∆ Ded  is not the set of all wff’s, 3) there is a formula such that 
A∆  , (4) there are no formula A such that A∆   and A∆ ¬ . 

Definition 4.1.5. We will say that, #
∞Th  is a maximally nice theory or a 
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maximally nice extension of the Th  iff #
∞Th  is consistent and for any consis-

tent nice extension #
∞
′Th  of the ( ) ( )# #: ∞ ∞

′Th Ded Th Ded Th  implies 

( ) ( )# #
∞ ∞

′=Ded Th Ded Th .  
Remark 4.1.7. We note that a theory #

∞Th  depend on model Mω
Th  or 

NstM Th , i.e. # # Mω∞ ∞  =  
ThTh Th  or # #

NstM∞ ∞  =  
ThTh Th  correspondingly. We will 

consider now the case # # Mω∞ ∞   

ThTh Th  without loss of generality. 
Remark 4.1.8. Notice that in order to prove the statements: i)  

( )2 ;HsCon NF Mω¬ Th , ii) ( );Con NF Mω¬ Th  the following Proposition 4.1.1 is 
necessary. 

Proposition 4.1.1. (Generalized Löbs Theorem).  
I) Assume that: 
i) A theory Th  is recursively axiomatizable. 
ii) Th  is a second order theory with Henkin semantics. 
iii) Th  contains 2

HsZFC . 
iv) Th  has an ω-model Mω

Th , and 
v) the statement Mω∃ Th  is expressible by language of Th  as a single sen-

tence of Th . 
vi)  ( );M Con Mω ωTh ThTh , where predicate  ( );Con Mω

ThTh  is defined by 
formula 4.1.9. 

Then theory Th  can be extended to a maximally consistent nice theory 
# #

, ,st st Mω∞ ∞  =  
ThTh Th . Below we write for short # # #

,st Mω∞ ∞ ∞  =  

ThTh Th Th . 
Remark 4.1.9. We emphasize that (v) is valid for ZFC despite the fact that the 

axioms of ZFC are infinite, see [8] Chapter II, Section 7, p. 78. 
II) Assume that: 
i) A theory Th  is recursively axiomatizable. 
ii) Th  is a first order theory. 
iii) Th  contains ZFC. 
iv) Th  has an ω-model Mω

Th  and 
v) the statement Mω∃ Th  is expressible by language of Th  as a single sen-

tence of Th . 
vi)  ( );M Con Mω ωTh ThTh , where predicate  ( );Con Mω

ThTh  defined by 
formula 4.1.9. 

Then theory Mω ω  ThTh Th  can be extended to a maximally consistent 
nice theory #

wTh . 
III) Assume that: 
i) A theory Th  is recursively axiomatizable. 
ii) Th  is a first order theory. 
iii) Th  contains ZFC. 
iv) Th  has a nonstandard model [ ]Nst NstM M PA=Th Th  and 
v) the statement [ ]NstM PA∃ Th  is expressible by language of Th  as a single 

sentence of Th . 
vi)  ( );Nst NstM Con MTh ThTh , where predicate  ( ); NstCon M ThTh  defined by 

formula (146). 
Then theory Th  can be extended to a maximally consistent nice theory 
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# #
, ,Nst Nst NstM∞ ∞  =  

ThTh Th . 
Remark 4.1.10. We emphasize that (v) is valid for ZFC despite the fact that 

the axioms of ZFC are infinite, see [8] Ch. II, section 7, p.78. 
Proof. I) Let 1 iΦ Φ   be an enumeration of the all first order closed wff’s 

of the theory Th  (this can be achieved if the set of propositional variables, etc. 
can be enumerated). 

Define a chain { }#
, |i st i℘= ∈Th , #

1,st =Th Th  of consistent theories induc-
tively as follows: assume that theory #

,i stTh  is defined. Notice that below we 
write for short # #

,i st iTh Th . 
i) Suppose that the following statement (155) is satisfied  

[ ]( ) [ ]( )# #
# # .

i i

c c
i i i i iMω

   Φ ∧ ¬Φ ∧ Φ      
  Th

Th Th
Th Pr Th Pr      (155) 

Note that  

[ ]( )
[ ]( )

#

#

# #

# #

,

,

i

i

c
i i i i

c
i i i i

Φ ⇔ Φ

¬Φ ⇔ ¬Φ

 

 

Th

Th

Th Pr Th

Th Pr Th
             (156) 

since predicate [ ]( )#
i

c
iΦ

Th
Pr  really asserts provability in #

iTh . Then we define 

a theory #
1i+Th  as follows 

{ }# #
1 .i i i+ Φ Th Th                     (157) 

Remark 4.1.11. Note that the predicate [ ]( )#
1i

c
i

+
Φ

Th
Pr  is expressible in 

#
1i+Th  since a theory #

1i+Th  is a finite extension of the recursively axiomatizable 
theory Th . 

We will rewrite the conditions (155)-(157) using predicate ( )#
1

#

i+
⋅

Th
Pr  sym-

bolically as follows: 

[ ]( )
[ ]( ) [ ]( ) [ ]( )

( )
[ ]( ) [ ]( ) [ ]( )

( )

#
1

# # #
1

# # #
1

# #
1

#

#

,

,

; ,

i.e.

; ,

i

i i i

i i i

c
i i

c c c
i i i i

i i

c c c
i i i

i i

M

M Con M

Con M

ω

ω ω

ω

+

+

+

+ Φ

     Φ ⇔ ¬ Φ ∧ ¬ ¬Φ ∧ Φ       

Φ ⇔ +Φ

   Φ ⇔ ¬ Φ ∧ ¬ ¬Φ      

∧ +Φ







Th

Th
Th Th Th

Th # Th
i

Th Th Th

Th

Th Pr

Pr Pr Pr

Th

Pr Pr Pr

Th

 

[ ]( ) [ ]( ) [ ]( )
[ ]( )

[ ]( )

# # #
1

#
1

#
1

#

#
1

# #
1

,

.

i i i

i

i

c c c
i i i

c
i i i

c
i i i

+

+

+

+

+

   Φ ⇔ ¬ Φ ∧ ¬ ¬Φ      

Φ ⇒ Φ

Φ ⇒Φ





Th Th Th

Th

Th

Pr Pr Pr

Pr Th

Th Pr

            (158) 

ii) Suppose that the following statement (159) is satisfied  

[ ]( ) [ ]( )# #
# # .

i i

c c
i i i i iMω

   Φ ∧ ¬Φ ∧ ¬Φ      
  Th

Th Th
Th Pr Th Pr    (159) 

Note that  
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[ ]( )
[ ]( )

#

#

# #

# #

,

,

i

i

c
i i i i

c
i i i i

Φ ⇔ Φ

¬Φ ⇔ ¬Φ

 

 

Th

Th

Th Pr Th

Th Pr Th
             (160) 

since predicate [ ]( )#
i

c
i¬Φ

Th
Pr  really asserts provability in #

iTh . Then we de-

fine a theory #
1i+Th  as follows  

{ }# #
1 .i i i+ ¬Φ Th Th                      (161) 

We will rewrite the conditions (159)-(161) using predicate ( )#
1

#

i+
⋅

Th
Pr , sym-

bolically as follows:  

[ ]( )
[ ]( ) [ ]( )

( )( )
[ ]( ) [ ]( ) ( )( )

#
1

# #
1

# #
1

# #
1

#

#

#

,

,

; ,

i.e. ; ,

i

i i

i i

c
i i

c c
i i i

i i i

c c
i i i i

M

M Con M

Con M

ω

ω ω

ω

+

+

+

+ ¬Φ

 ¬Φ ⇔ ¬ ¬Φ ∧ ¬Φ 

¬Φ ⇔ + ¬Φ

¬Φ ⇔ ¬ ¬Φ ∧ + ¬Φ







Th

Th
Th Th

Th Th

Th
Th Th

Th Pr

Pr Pr

Th

Pr Pr Th

 

[ ]( ) [ ]( )
[ ]( )

[ ]( )

# #
1 1

#
1

#
1

#

# #
1

,

,

.

i i

i

i

c c
i i

c
i i

c
i i i

+ +

+

+
+

¬Φ ⇔ ¬Φ

¬Φ ⇒¬Φ

¬Φ ⇒¬Φ

Th Th

Th

Th

Pr Pr

Pr

Th Pr

                           (162) 

iii) Suppose that the following statement (163) is satisfied   

[ ]( )#
#

i

c
i iΦ

Th
Th Pr                    (163) 

and therefore #
i i iMω   Φ ∧ Φ    ThTh . Then we define a theory #

1i+Th  as 
follows  

# #
1 .i i+ Th Th                         (164) 

Remark 4.1.12. Note that predicate [ ]( )#
1

#

i

c
i

+
Φ

Th
Pr  is expressible in #

iTh   

because #
iTh  is a finite extension of the recursive theory Th  and  

( )# #
1;i i iCon Mω ++Φ ∈ThTh Th . 

iv) Suppose that the following statement (165) is satisfied  

[ ]( )#
#

i

c
i i¬Φ

Th
Th Pr                     (165) 

and therefore #
i i iMω   ¬Φ ∧ ¬Φ    ThTh . 

Then we define theory #
1i+Th  as follows:  

# #
1 .i i+ Th Th                        (166) 

We define now a theory #
∞Th  as follows:  

# # .i
i

∞
∈






Th Th                      (167) 

1) First, notice that each #
iTh  is consistent. This is done by induction on i 

and by Lemmas 4.1.1-4.1.2. By assumption, the case is true when 1i = . Now, 
suppose #

iTh  is consistent. 
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Then its deductive closure ( )#
iDed Th  is also consistent. 

2) If statements (155)-(157) are satisfied, i.e. [ ]( )#
1

# #
1

i

c
i i

+
+ Φ

Th
Th Pr  and  

#
1i i+ ΦTh , then clearly a theory { }# #

1i i i+ Φ Th Th  is consistent since it is a 
subset of closure ( )#

1i+Ded Th . 

3) If statements (159)-(161) are satisfied, i.e. [ ]( )#
1

# #
1

i

c
i i

+
+ ¬Φ

Th
Th Pr  and  

#
1i i+ ¬ΦTh , then clearly { }# #

1i i i+ ¬Φ Th Th  is consistent since it is a subset 
of closure ( )#

1i+Ded Th . 

4) If the statement (163) is satisfied, i.e. [ ]( )#
#

i

c
i iΦ

Th
Th Pr  then clearly 

# #
1i i+ Th Th  is consistent. 

5) If the statement (165) is satisfied, i.e. [ ]( )#
#

i

c
i i¬Φ

Th
Th Pr  then clearly 

# #
1i i+ Th Th  is consistent. 

6) Next, notice ( )#
∞Ded Th  is maximally consistent nice extension of the 

( )Ded Th . ( )#
∞Ded Th  is consistent because, by the standard Lemma 4.1.3 below, 

it is the union of a chain of consistent sets. To see that ( )#
∞Ded Th  is maximal, 

pick any wff Φ . Then Φ  is some iΦ  in the enumerated list of all wff’s. There-
fore for any Φ  such that [ ]( )i

c
i Φ ThTh Pr  or [ ]( )#

#

i

c
i ¬Φ

Th
Th Pr , either 

#
∞Φ∈Th  or #

∞¬Φ∈Th . Since ( ) ( )# #
1i+ ∞Ded Th Ded Th , we have 

( )#
∞Φ∈Ded Th  or ( )#

∞¬Φ∈Ded Th , which implies that ( )#
∞Ded Th  is max-

imally consistent nice extension of the ( )Ded Th . 

Definition 4.1.6. We define now predicate [ ]( )#
c

∞
Φ

Th
Pr  really asserting 

provability in #
∞Th  by the following formula   

[ ]( ) ( ) [ ]( )# #
# # .

i

c c
ii

∞

 Φ ⇔ ∃ Φ∈ Φ  Th Th
Pr Th Pr             (168) 

Proof. (II) and (III) similarly to (I). 
Lemma 4.1.3. The union of a chain { }|i i℘= ∈G  of consistent sets iG , 

ordered by   is consistent. 
Definition 4.1.7. Let ( )xΨ = Ψ  be one-place open Th -wff such that the 

following condition: 

( )#
1 !x xΨ Ψ∃ Ψ   Th Th                     (169) 

is satisfied. 
Remark 4.1.13. We rewrite now the condition (168) using only the language 

of the theory #
1Th :  

( ){ } ( )( )
( )( ) ( ){ }

#
1

#
1

#
1 ! !

! ! .

c

c

x x x x

x x x x

Ψ Ψ Ψ Ψ

Ψ Ψ Ψ Ψ

 ∃ Ψ ⇔ ∃ Ψ       

 ∧ ∃ Ψ ⇒ ∃ Ψ       


Th

Th

Th Pr

Pr
         (170) 

Definition 4.1.8. We will say that, a set y is a #
1Th -set if there exist one-place 

open wff ( )xΨ  such that y xΨ= . We will write #
1y   Th  iff y is a #

1Th -set. 
Remark 4.1.14. Note that      
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( ) ( )( )
( )( ) ( ){ }

#
1

#
1

#
1 !

! ! .

c

c

y y x x x

x x x x

Ψ Ψ Ψ

Ψ Ψ Ψ Ψ

   ⇔ ∃Ψ = ∧ ∃ Ψ     

 ∃ Ψ ⇒ ∃ Ψ       

Th

Th

Th Pr

Pr
        (171) 

Definition 4.1.9. Let 1ℑ  be a set such that:  
#

1 1is a -set .x x x ∀ ∈ℑ ↔ Th                  (172) 

Proposition 4.1.2. 1ℑ  is a #
1Th -set. 

Proof. Let us consider a one-place open wff ( )xΨ  such that condition (169) 
is satisfied, i.e. ( )#

1 !x xΨ Ψ∃ Ψ  Th . We note that there exists countable set 

ΨF  of the one-place open wff’s ( ){ }n n
xΨ ∈

= Ψ


F  such that: i) ( )x ΨΨ ∈F  
and ii) 

( ) ( ) ( ) ( ){ }

( )( )
( )( ) ( ){ }

#
1

#
1

#
1

#
1

!

or in the equivalent form

!

! !

n

c

c

x x n n x x

x x

x x x x

Ψ Ψ Ψ Ψ

Ψ Ψ

Ψ Ψ Ψ Ψ

 ∃ Ψ ∧ ∀ ∈ Ψ ↔ Ψ       

 ∃ Ψ   

 ∧ ∃ Ψ ⇒ ∃ Ψ       








Th

Th

Th Th

Th Th Pr

Pr

 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

#
1

#
1

c

n

c

n

n

n n x x

n n x x

n n x x

Ψ Ψ

Ψ Ψ

Ψ Ψ

  ∧ ∀ ∈ Ψ ↔ Ψ     

 ∧ ∀ ∈ Ψ ↔ Ψ   

⇒ ∀ ∈ Ψ ↔ Ψ  







Th

Th

Pr

Pr                 (173) 

or in the following equivalent form 

( ) ( ) ( ) ( ){ }
( )( )

( )( ) ( ){ }
#
1

#
1

#
1 1 1 1 1 1 ,1 1

#
1 1 1

1 1 1 1

!

or !

! !

n

c

c

x x n n x x

x x

x x x x

  ∃ Ψ ∧ ∀ ∈ Ψ ↔ Ψ     

∃ Ψ  

∧ ∃ Ψ ⇒ ∃ Ψ  




Th

Th

Th

Th Pr

Pr

 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

#
1

#
1

1 1

1 1

1 1 ,

c

n

c

n

n

n n x x

n n x x

n n x x

  ∧ ∀ ∈ Ψ ↔ Ψ     

 ∧ ∀ ∈ Ψ ↔ Ψ   

⇒ ∀ ∈ Ψ ↔ Ψ  







Th

Th

Pr

Pr                (174) 

where we have set ( ) ( ) ( ) ( )1 1 1 ,1 1, n nx x x xΨ = Ψ Ψ = Ψ  and 1x xΨ = . 
We note that any set ( ){ }, , 1, 2,

k n k n
x kΨ ∈

= Ψ =


F  such as mentioned 

above, defines an unique set 
k

xΨ , i.e. 
1 2k kΨ Ψ = ∅F F  iff 

1 2k k
x xΨ Ψ≠ . We 

note that a sets , 1, 2,
k

kΨ = F  are the part of the 2
HsZFC  or ZFC, i.e. a set 

kΨF  is a set in the sense of 2
HsZFC  or ZFC. 

Note that by using Gödel numbering one can replace any set , 1, 2,
k

kΨ = F  
by a set ( )kk g ΨΘ = F  of the corresponding Gödel numbers such that     

( ) ( )( ){ }, , 1, 2, .
kk n k k n

g g x kΨ ∈
Θ = = Ψ = 


F             (175) 
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It is easy to prove that any set ( ) , 1, 2,
kk g kΨΘ = = F  is a #

1Th -set. This is 
done by Gödel encoding (175), by the statement (173) and by axiom schemata of 
separation. 

Let ( )( ), , , 1, 2,n k n k kg g x k= Ψ = 
 be a Gödel number of the wff ( ),n k kxΨ . 

Therefore ( ) { },k n k n
g g

∈
=


F , where we have set , 1, 2,

kk kΨ= = F F  and 

{ } { }1 2 1 21 2 , , .n k n k k kn n
k k g g x x

∈ ∈
 ∀ ∀ = ∅↔ ≠ 

 
          (176) 

Let { }{ },n k n k
g

∈ ∈ 
 be a family of the sets { }, , 1, 2,n k n

g k
∈

=



. By the axiom 

of choice one obtains unique set { }1 k k
g

∈
′ℑ =   such that { },k n k n

k g g
∈

 ∀ ∈ 
. 

Finally one obtains a set 1ℑ  from the set 1′ℑ  by the axiom schema of replace-
ment. 

Proposition 4.1.3. Any set ( ) , 1, 2,
kk g kΨΘ = = F  is a #

1Th -set. 
Proof. We define ( )( ) ( ), , ,

c
n k n k k n k kg g x x = Ψ = Ψ  , [ ]ck kv x= . Therefore 

( )( ) ( ), , , ,n k n k k n k kg g x g v= Ψ ↔ Fr . Let us define now predicate ( ), ,n k kg vΠ   

( ) ( )( ) [ ]( )
( ) ( )( ) ( )( )

#
1

# #
1 1

, 1, 1

1, ,

, ! !

, .

c c
n k k k k k k k

c

k k n k k

g v x x x v x

n n x g v

  Π ↔ ∃ Ψ ∧∃ =  

    ∀ ∈ Ψ ↔      


Th

Th Th

Pr

Pr Pr Fr
     (177) 

We define now a set kΘ  such that  

{ }
( ) ( ), ,

,

,
k k k

n k k n k k

g

n n g g v

′Θ = Θ
  ′∀ ∈ ∈Θ ↔Π  




               (178) 

Obviously definitions (177) and (178) are equivalent. 
Definition 4.1.10. We define now the following #

1Th -set 1 1ℜ ℑ :  

( ) [ ]( )#
1

1 1 .cx x x x x ∀ ∈ℜ ⇔ ∈ℑ ∧ ∉ ∧  Th
Pr             (179) 

Proposition 4.1.4. i) #
1 1∃ℜTh , ii) 1ℜ  is a countable #

1Th -set. 
Proof. i) Statement #

1 1∃ℜTh  follows immediately from the statement 

1∃ℑ  and the axiom schema of separation, ii) follows immediately from counta-
bility of a set 1ℑ . Notice that 1ℜ  is nonempty countable set such that 1⊂ ℜ , 
because for any n∈ : #

1 n n∉Th . 
Proposition 4.1.5. A set 1ℜ  is inconsistent. 
Proof. From formula (179) we obtain  

[ ]( )#
1

#
1 1 1 1 1 .cℜ ∈ℜ ⇔ ℜ ∉ℜ

Th
Th Pr                (180) 

From (180) we obtain  
#
1 1 1 1 1ℜ ∈ℜ ⇔ℜ ∉ℜTh                     (181) 

and therefore   

( ) ( )#
1 1 1 1 1 .ℜ ∈ℜ ∧ ℜ ∉ℜTh                   (182) 

But this is a contradiction. 
Definition 4.1.11. Let ( )xΨ = Ψ  be one-place open Th -wff such that the 
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following condition is satisfied: 

( )# !i x xΨ Ψ∃ Ψ  Th                        (183) 

Remark 4.1.15. We rewrite now the condition (183) in the following equiva-
lent form using only the language of the theory #

iTh :  

( ){ } ( )( )#
# ! !

i

c

i x x x xΨ Ψ Ψ Ψ ∃ Ψ ⇔ ∃ Ψ       
Th

Th Pr         (184) 

Definition 4.1.12. We will say that, a set y is a #
iTh -set if there exist 

one-place open wff ( )xΨ  such that y xΨ= . We will write for short #
iy   Th  

iff y is a #
iTh -set. 

Remark 4.1.16. Note that      

( ) ( )( ){ }#
# ! .

i

c

iy y x x xΨ Ψ Ψ   ⇔ ∃Ψ = ∧ ∃ Ψ     Th
Th Pr       (185) 

Definition 4.1.13. Let iℑ  be a set such that: 
#is a -set .i ix x x ∀ ∈ℑ ↔ Th                  (186) 

Proposition 4.1.6. iℑ  is a #
iTh -set. 

Proof. Let us consider a one-place open wff ( )xΨ  such that conditions (183) 
are satisfied, i.e. ( )# !i x xΨ Ψ∃ Ψ  Th . We note that there exists countable set 

ΨF  of the one-place open wff’s ( ){ }n n
xΨ ∈

= Ψ


F  such that: i) ( )x ΨΨ ∈F  
and ii)  

( ) ( ) ( ) ( ){ }

( )( )
( )( ) ( ){ }

#

#

#

#

!

or in the equivalent form

!

! !

i

i

i n

c

i

c

x x n n x x

x x

x x x x

Ψ Ψ Ψ Ψ

Ψ Ψ

Ψ Ψ Ψ Ψ

 ∃ Ψ ∧ ∀ ∈ Ψ ↔ Ψ       

 ∃ Ψ   

 ∧ ∃ Ψ ⇒ ∃ Ψ       




Th

Th

Th

Th Pr

Pr

 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

#

#

i

i

c

n

c

n

n

n n x x

n n x x

n n x x

Ψ Ψ

Ψ Ψ

Ψ Ψ

  ∧ ∀ ∈ Ψ ↔ Ψ     

 ∧ ∀ ∈ Ψ ↔ Ψ   

⇒ ∀ ∈ Ψ ↔ Ψ  







Th

Th

Pr

Pr               (187) 

or in the following equivalent form  

( ) ( ) ( ) ( ){ }
( )( ) ( )( ) ( ){ }

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

# #

#

#

#
1 1 1 1 1 ,1 1

#
1 1 1 1 1 1

1 1

1 1

1 1

!

or ! ! !

,

i i

i

i

i n

c c
i

c

n

c

n

n

x x n n x x

x x x x x x

n n x x

n n x x

n n x x

  ∃ Ψ ∧ ∀ ∈ Ψ ↔ Ψ     

∃ Ψ ∧ ∃ Ψ ⇒ ∃ Ψ      

  ∧ ∀ ∈ Ψ ↔ Ψ     

 ∧ ∀ ∈ Ψ ↔ Ψ   

⇒ ∀ ∈ Ψ ↔ Ψ  












Th Th

Th

Th

Th

Th Pr Pr

Pr

Pr

 (188) 

where we have set ( ) ( ) ( ) ( )1 1 1 ,1 1, n nx x x xΨ Ψ Ψ Ψ   and 1x xΨ  . We note  
that any set ( ){ }, , 1, 2,

k n k n
x kΨ ∈

= Ψ =


F  such as mentioned above, defines 
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an unique set 
k

xΨ , i.e. 
1 2k kΨ Ψ = ∅F F  iff 

1 2k k
x xΨ Ψ≠ . We note that a sets  

, 1, 2,
k

kΨ = F  are part of the 2
HsZFC , i.e. any set 

kΨF  is a set in the sense of 

2
HsZFC . Note that by using Gödel numbering one can to replace any set 

, 1, 2,
k

kΨ = F  by set ( )kk g ΨΘ = F  of the corresponding Gödel numbers 
such that 

( ) ( )( ){ }, , 1, 2, .
kk n k k n

g g x kΨ ∈
Θ = = Ψ =



F             (189) 

It is easy to prove that any set ( ) , 1, 2,
kk g kΨΘ = = F  is a #

iTh -set. This is 
done by Gödel encoding, by the statement (183) and by the axiom schema of se-
paration. 

Let ( )( ), , , 1, 2,n k n k kg g x k= Ψ = 
 be a Gödel number of the wff ( ),n k kxΨ . 

Therefore ( ) { },k n k n
g g

∈
=


F , where we have set , 1, 2,

kk kΨ= = F F  and 

{ } { }1 2 1 21 2 , , .n k n k k kn n
k k g g x x

∈ ∈
 ∀ ∀ = ∅↔ ≠  

         (190) 

Let { }{ },n k n k
g

∈ ∈ 
 be a family of the all sets { },n k n

g
∈

. By axiom of choice 

one obtains a unique set { }i k k
g

∈
′ℑ =   such that { },k n k n

k g g
∈

 ∀ ∈ 
. Finally 

for any i∈  one obtains a set iℑ  from the set i′ℑ  by the axiom schema of 
replacement. 

Proposition 4.1.7. Any collection ( ) , 1, 2,
kk g kΨΘ = = F  is a #

iTh -set. 
Proof. We define ( )( ) ( ), , ,

c
n k n k k n k kg g x x = Ψ = Ψ  , [ ]ck kv x= . Therefore 

( )( ) ( ), , , ,n k n k k n k kg g x g v= Ψ ↔ Fr . Let us define now predicate ( ), ,i n k kg vΠ   

( ) ( )( ) [ ]( )
( ) ( )( ) ( )( )

#

# #

, 1, 1

1, ,

, ! !

, .

i

i i

c c
i n k k k k k k k

c

k k n k k

g v x x x v x

n n x g v

  Π ⇔ ∃ Ψ ∧∃ =  

    ∀ ∈ Ψ ⇔      


Th

Th Th

Pr

Pr Pr Fr
      (191) 

We define now a set kΘ  such that  

{ }
( ) ( ), ,

,

, .
k k k

n k k i n k k

g

n n g g v

′Θ = Θ
  ′∀ ∈ ∈Θ ↔Π  




               (192) 

Obviously definitions (191) and (192) are equivalent. 
Definition 4.1.14. We define now the following #

iTh -set i iℜ ℑ :  

( ) [ ]( )# .
i

c
i ix x x x x ∀ ∈ℜ ⇔ ∈ℑ ∧ ∉  Th

Pr              (193) 

Proposition 4.1.8. i) #
i i∃ℜTh , ii) iℜ  is a countable #

iTh -set, i∈ . 
Proof. i) Statement #

i i∃ℜTh  follows immediately by using statement 

i∃ℑ  and axiom schema of separation. ii) follows immediately from countability 
of a set iℑ . 

Proposition 4.1.9. Any set ,i iℜ ∈  is inconsistent. 
Proof. From the formula (193) we obtain  

[ ]( )#
# .

i

c
i i i i iℜ ∈ℜ ⇔ ℜ ∉ℜ

Th
Th Pr                (194) 

From the formula (194) we obtain  
#
i i i i iℜ ∈ℜ ⇔ℜ ∉ℜTh                     (195) 
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and therefore 

( ) ( )# .i i i i iℜ ∈ℜ ∧ ℜ ∉ℜTh                    (196) 

But this is a contradiction. 
Definition 4.1.15. A #

∞Th -wff ∞Φ  that is: i) Th -wff Φ  or ii) well-formed 
formula ∞Φ  which contains predicate [ ]( )#

c

∞
Φ

Th
Pr  given by formula (4.1.28). 

An #
∞Th -wff ∞Φ  (well-formed formula ∞Φ ) is closed, i.e. ∞Φ  is a sentence 

if ∞Φ  has no free variables; a wff is open if it has free variables. 
Definition 4.1.16. Let ( )xΨ = Ψ  be one-place open #

∞Th -wff such that the 
following condition: 

( )# !x x∞ Ψ Ψ∃ Ψ  Th                        (197) 

is satisfied. 
Remark 4.1.17. We rewrite now the condition (197) in the following equiva-

lent form using only the language of the theory #
∞Th :  

( ){ } ( )( )#
# ! !

c
x x x x

∞
∞ Ψ Ψ Ψ Ψ ∃ Ψ ⇔ ∃ Ψ       Th

Th Pr        (198) 

Definition 4.1.17. We will say that, a set y is a #
∞Th -set if there exists one-place 

open wff ( )xΨ  such that y xΨ= . We write #y ∞  Th  iff y is a #
∞Th -set.   

Definition 4.1.18. Let ∞ℑ  be a set such that: #is a -setx x x∞ ∞ ∀ ∈ℑ ↔ Th . 
Proposition 4.1.10. A set ∞ℑ  is a #

∞Th -set. 
Proof. Let us consider an one-place open wff ( )xΨ  such that condition (197) 

is satisfied, i.e. ( )# !x x∞ Ψ Ψ∃ Ψ  Th . We note that there exists countable set ΨF  
of the one-place open wff’s ( ){ }n n

xΨ ∈
= Ψ


F  such that: i) ( )x ΨΨ ∈F  and ii)  

( ) ( ) ( ) ( ){ }

( )( )
( )( ) ( ){ }

#

#

#

#

!

or in the equivalent form

!

! !

n

c

c

x x n n x x

x x

x x x x

∞

∞

∞ Ψ Ψ Ψ Ψ

∞ Ψ Ψ

Ψ Ψ Ψ Ψ

 ∃ Ψ ∧ ∀ ∈ Ψ ↔ Ψ       

 ∃ Ψ   

 ∧ ∃ Ψ ⇒ ∃ Ψ       

Th

Th

Th

Th Pr

Pr



  

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

#

#

c

n

c

n

n

n n x x

n n x x

n n x x

∞

∞

Ψ Ψ

Ψ Ψ

Ψ Ψ

  ∧ ∀ ∈ Ψ ↔ Ψ     

 ∧ ∀ ∈ Ψ ↔ Ψ   

⇒ ∀ ∈ Ψ ↔ Ψ  

Th

Th

Pr

Pr







              (199)  

or in the following equivalent form  

( ) ( ) ( ) ( ){ }
( )( ) ( )( ) ( ){ }

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

# #

#

#

#
1 1 1 1 1 ,1 1

#
1 1 1 1 1 1

1 1

1 1

1 1

!

or ! ! !

.

i

i

i

n

c c

c

n

c

n

n

x x n n x x

x x x x x x

n n x x

n n x x

n n x x

∞

∞

∞

  ∃ Ψ ∧ ∀ ∈ Ψ ↔ Ψ     

∃ Ψ ∧ ∃ Ψ ⇒ ∃ Ψ      

  ∧ ∀ ∈ Ψ ↔ Ψ     

 ∧ ∀ ∈ Ψ ↔ Ψ   

⇒ ∀ ∈ Ψ ↔ Ψ  












Th Th

Th

Th

Th

Th Pr Pr

Pr

Pr

  (200) 
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where we set ( ) ( ) ( ) ( )1 1 1 ,1 1, n nx x x xΨ = Ψ Ψ = Ψ  and 1x xΨ = . We note that 
any set ( ){ }, , 1, 2,

k n k n
x kΨ ∈

= Ψ = 


F  such as mentioned above defines a 

unique set 
k

xΨ , i.e. 
1 2k kΨ Ψ = ∅F F  iff 

1 2k k
x xΨ Ψ≠ . We note that sets 

, 1, 2,
k

kΨ = F  are the part of the 2
HsZFC , i.e. a set 

kΨF  is a set in the sense 
of 2

HsZFC . Note that by using Gödel numbering one can replace any set 
, 1, 2,

k
kΨ = F  by the set ( )kk g ΨΘ = F  of the corresponding Gödel numbers 

such that   

( ) ( )( ){ }, , 1, 2, .
kk n k k n

g g x kΨ ∈
Θ = = Ψ = 


F            (201) 

It is easy to prove that any set ( ) , 1, 2,
kk g kΨΘ = = F  is a #Th -set. This is 

done by Gödel encoding and by axiom schema of separation. Let 
( )( ), , , 1, 2,n k n k kg g x k= Ψ = 

 be a Gödel number of the wff ( ),n k kxΨ . There-
fore ( ) { },k n k n

g g
∈

=


F , where we have set , 1, 2,
kk kΨ = F F  and  

{ } { }1 2 1 21 2 , , .n k n k k kn n
k k g g x x

∈ ∈
 ∀ ∀ = ∅↔ ≠ 

 
        (202) 

Let { }{ },n k n k
g

∈ ∈ 
 be a family of the sets { }, , 1, 2,n k n

g k
∈

=



. By axiom of 

choice one obtains an unique set { }k k
g

∈
′ℑ =   such that { },k n k n

k g g
∈

 ∀ ∈ 
.  

Finally one obtains a set ∞ℑ  from the set ∞′ℑ  by axiom schema of replace-
ment. Thus we can define #

∞Th -set ∞ ∞ℜ ℑ : 

( ) [ ]( )# .cx x x x x
∞

∞ ∞
  ∀ ∈ℜ ↔ ∈ℑ ∧ ∉    Th

Pr             (203) 

Proposition 4.1.11. Any set ( ) , 1, 2,
kk g kΨΘ = = F  is a #

∞Th -set. 
Proof. We define ( )( ) ( ), , ,

c
n k n k k n k kg g x x = Ψ = Ψ  , [ ]ck kv x= . Therefore 

( )( ) ( ), , , ,n k n k k n k kg g x g v= Ψ ↔ Fr . Let us define now predicate ( ), ,n k kg v∞Π   

( ) ( )( )
( )( ) ( ) [ ]( )

( ) ( )( ) ( )( )

#

#

# #

, 1, 1

1, 1 1 1

1, ,

, !

! ! !

, .

c

n k k k k

c c
k k k k k

c

k k n k k

g v x x

x x x x x v x

n n x g v

∞

∞

∞ ∞

∞   Π ⇔ ∃ Ψ  

   ∧ ∃ Ψ ⇒ ∃ Ψ ∧∃ =    
    ∀ ∈ Ψ ⇔      



Th

Th

Th Th

Pr

Pr

Pr Pr Fr

   (204) 

We define now a set kΘ  such that  

{ }
( ) ( ), ,

,

,
k k k

n k k n k k

g

n n g g v

′Θ = Θ

 ′∀ ∈ ∈Θ ⇔ Π 




              (205) 

Obviously definitions (204) and (205) are equivalent by Proposition 4.1.1. 
Proposition 4.1.12. i) #

∞ ∞∃ℜTh , ii) ∞ℜ  is a countable #
∞Th -set. 

Proof. i) Statement #
∞ ∞∃ℜTh  follows immediately from the statement 

∞∃ℑ  and axiom schema of separation [9], ii) follows immediately from counta-
bility of the set ∞ℑ . 

Proposition 4.1.13. Set ∞ℜ  is inconsistent. 
Proof. From the formula (203) we obtain  

[ ]( )#
# .c

∞
∞ ∞ ∞ ∞ ∞ℜ ∈ℜ ⇔ ℜ ∉ℜ

Th
Th Pr             (206) 
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From (206) one obtains  
#
∞ ∞ ∞ ∞ ∞ℜ ∈ℜ ⇔ℜ ∉ℜTh                  (207) 

and therefore  

( ) ( )# .∞ ∞ ∞ ∞ ∞ℜ ∈ℜ ∧ ℜ ∉ℜTh                (208) 

But this is a contradiction. 
Remark 4.1.18. Note that a contradictions mentioned above can be again 

avoid using canonical Quinean approach, see subsection 3.6. 

4.2. Proof of the Inconsistency of the Set Theory 
HsZFCHs

stZFC M 2
2 + ∃   

Using Generalized Tarski’s Undefinability Theorem   

In this section we will prove that a set theory 2
2

HsZFCHsZFC M+ ∃  is inconsistent, 
without any reference to the sets 1 2, , , ∞ℑ ℑ ℑ  and corresponding inconsistent 
sets 1 2, , , ∞ℜ ℜ ℜ . 

Remark 4.2.1. Note that a contradiction mentioned above is a strictly strong-
er then contradictions derived in subsection 4.1, and these contradictions are 
impossible to avoid by using Quinean approach, see subsection 3.6. 

Proposition 4.2.1. (Generalized Tarski’s undefinability theorem). Let HsThL  
be second order theory with Henkin semantics and with formal language L , 
which includes negation and has a Gödel encoding ( )g ⋅  such that for every 
L -formula ( )A x  there is a formula B such that ( )( )B A g B⇔  holds. As-
sume that HsThL  has a standard Model 2

HsZFCM . 
Then there is no L -formula ( )nTrue  such that for every L -formula A 

such that 2
HsZFCM A , the following equivalence holds   

( ) ( )( )2 .
HsZFCM A g A⇔ True                   (209) 

Proof. The diagonal lemma yields a counterexample to this equivalence, by 
giving a “Liar” sentence S such that ( )( )S g S⇔¬True  holds. 

Remark 4.2.2. Above we has been defined the set ∞ℑ  (see Definition 4.1.16) 
in fact using generalized truth predicate [ ]( )# c

∞ ΦTrue  such that  

[ ]( ) [ ]( )#
# .c c

∞
∞ Φ ⇔ Φ

Th
True Pr                  (210) 

In order to prove that set theory 2
2

HsZFCHsZFC M+ ∃  is inconsistent without 
any reference to the set ∞ℑ , notice that by the properties of the nice extension 

#
∞Th  it follows that definition given by biconditional (211) is correct, i.e., for 

every first order 2
HsZFC -formula Φ  such that 2

HsZFCM Φ  and the follow-
ing equivalence holds  

( ) [ ]( )2
# ,

Hs cZFCM
∞

Φ ⇔ Φ
Th

Pr                 (211) 

where [ ]( )#
c

∞
Φ ⇒ Φ

Th
Pr . 

Proposition 4.2.2. Set theory 2
2

HsZFCHsZFC M= + ∃#
1Th  is inconsistent. 

Proof. Notice that by the properties of the nice extension #
∞Th  of the #

1Th  
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it follows that 

( )2 # .
HsZFCM ∞Φ ⇔ Φ Th                  (212) 

Therefore (210) gives generalized “truth predicate” for set theory ∞
#Th . By 

Proposition 4.2.1 one obtains a contradiction. 
Remark 4.2.3. A cardinal κ  is inaccessible iff κ  has the following reflection 

property: for all subsets U Vκ⊂ , there exists α κ<  such that ( ), ,V U Vα α∈   is 
an elementary substructure of ( ), ,V Uκ ∈ . (In fact, the set of such α  is closed 
unbounded in κ .) 

Equivalently, κ  is 0
nΠ -indescribable for all 0n ≥ . 

Remark 4.2.4. Under ZFC it can be shown that κ  is inaccessible iff ( ),Vκ ∈  
is a model of second order ZFC [5]. 

Remark 4.2.5. By the reflection property, there exists α κ<  such that 
( ),Vα ∈  is a standard model of (first order) ZFC. Hence, the existence of an in-
accessible cardinal is a stronger hypothesis than the existence of the standard 
model of 2

HsZFC . 

4.3. Derivation Inconsistent Countable Set in Set Theory ZFC2 with  
the Full Semantics   

Let fss=Th Th  be a second order theory with the full second order semantics. 
We assume now that Th  contains 2

fssZFC . We will write for short Th , in-
stead fssTh . 

Remark 4.3.1. Notice that M is a model of 2
fssZFC  iff it is isomorphic to a 

model of the form ( ),V V Vκ κ κ∈ × , for κ  a strongly inaccessible ordinal.  
Remark 4.3.2. Notice that a standard model for the language of first-order set 

theory is an ordered pair { },D I . Its domain, D, is a nonempty set and its inter-
pretation function, I, assigns a set of ordered pairs to the two-place predicate 
“∈”. A sentence is true in { },D I  just in case it is satisfied by all assignments of 
first-order variables to members of D and second-order variables to subsets of D; 
a sentence is satisfiable just in case it is true in some standard model; finally, a 
sentence is valid just in case it is true in all standard models. 

Remark 4.3.3. Notice that: 
I) The assumption that D and I be sets is not without consequence. An imme-

diate effect of this stipulation is that no standard model provides the language of 
set theory with its intended interpretation. In other words, there is no standard 
model { },D I  in which D consists of all sets and I assigns the standard ele-
ment-set relation to “∈”. For it is a theorem of ZFC that there is no set of all sets 
and that there is no set of ordered-pairs { },x y  for x an element of y. 

II) Thus, on the standard definition of model: 
1) it is not at all obvious that the validity of a sentence is a guarantee of its 

truth; 
2) similarly, it is far from evident that the truth of a sentence is a guarantee of 

its satisfiability in some standard model; 
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3) if there is a connection between satisfiability, truth, and validity, it is not 
one that can be “ read off” standard model theory. 

III) Nevertheless this is not a problem in the first-order case since set theory 
provides us with two reassuring results for the language of first-order set theory. 
One result is the first order completeness theorem according to which first-order 
sentences are provable, if true in all models. Granted the truth of the axioms of 
the first-order predicate calculus and the truth preserving character of its rules of 
inference, we know that a sentence of the first-order language of set theory is 
true, if it is provable. Thus, since valid sentences are provable and provable sen-
tences are true, we know that valid sentences are true. The connection between 
truth and satisfiability immediately follows: if φ  is unsatisfiable, then φ¬ , its 
negation, is true in all models and hence valid. Therefore, φ¬  is true and φ  is 
false.  

Definition 4.3.1. The language of second order arithmetic 2Z  is a two-sorted 
language: there are two kinds of terms, numeric terms and set terms. 

0  is a numeric term. 
1) There are innately many numeric variables, 0 1, , , ,nx x x   each of which 

is a numeric term. 
2) If s is a numeric term then sS  is a numeric term. 
3) If ,s t  are numeric terms then st+  and st⋅  are numeric terms (abbre-

viated s t+  and s t⋅ ). 
4) There are infinitely many set variables, 0 1, , , ,nX X X   each of which is 

a set term; 
5) If t is a numeric term and S then tS∈  is an atomic formula (abbreviated 

t S∈ ). 
6) If s and t are numeric terms then st=  and st<  are atomic formulas (ab-

breviated s t=  and s t<  correspondingly). 
The formulas are built from the atomic formulas in the usual way. 
As the examples in the definition suggest, we use upper case letters for set va-

riables and lower case letters for numeric terms. (Note that the only set terms are 
the variables.) It will be more convenient to work with functions instead of sets, 
but within arithmetic, these are equivalent: one can use the pairing operation, 
and say that X represents a function if for each n there is exactly one m such that 
the pair ( ),n m  belongs to X. 

We have to consider what we intend the semantics of this language to be. One 
possibility is the semantics of full second order logic: a model consists of a set M, 
representing the numeric objects, and interpretations of the various functions 
and relations (probably with the requirement that equality be the genuine equal-
ity relation), and a statement ( )X X∀ Φ  is satisfied by the model if for every 
possible subset of M, the corresponding statement holds. 

Remark 4.3.4. Full second order logic has no corresponding proof system. An 
easy way to see this is to observe that it has no compactness theorem. For exam-
ple, the only model (up to isomorphism) of Peano arithmetic together with the 
second order induction axiom: ( ) ( )( )X X x x X x X x x X∀ ∈ ∧∀ ∈ ⇒ ∈ ⇒∀ ∈0 S  
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is the standard model  . This is easily seen: any model of Peano arithmetic has 
an initial segment isomorphic to  ; applying the induction axiom to this set, 
we see that it must be the whole of the model. 

Remark 4.3.5. There is no completeness theorem for second-order logic. Nor 
do the axioms of second-order ZFC imply a reflection principle which ensures that 
if a sentence of second-order set theory is true, then it is true in some standard 
model. Thus there may be sentences of the language of second-order set theory 
that are true but unsatisfiable, or sentences that are valid, but false. To make this 
possibility vivid, let Z be the conjunction of all the axioms of second-order ZFC. Z 
is “surely” true. But the existence of a model for Z requires the existence of 
strongly inaccessible cardinals. 

The axioms of second-order ZFC don’t entail the existence of strongly inac-
cessible cardinals, and hence the satisfiability of Z is independent of second-order 
ZFC. Thus, Z is true but its unsatisfiability is consistent with second-order ZFC 
[5]. 

Remark 4.3.6. We remind that urlogic is the aspect of mathematicians’ activ-
ity that consists of just writing down finite strings of symbols-sentences-according 
to some fixed rules. Those sentences are sentences of urlogic. Whether a string 
of symbols is a sentence of urlogic should be totally unproblematic. In summary, 
urlogic has the following characteristics [13]: 

i) Sentences of urlogic are finite strings of symbols. That a string of symbols is 
a sentence of urlogic, is a non-mathematical judgement. 

ii) Some sentences are accepted as axioms. That a sentence is an axiom, is a 
non-mathematical judgement. 

iii) Derivations are made from axioms. The derivations obey certain rules of 
proof. That a derivation obeys the rules of proof, is a non-mathematical judge-
ment. 

iv) Derived sentences can be asserted as facts. 
If we take first-order set theory as the urlogic, the sentences of urlogic are 

sentences of first-order predicate logic with identity, with the binary predicate 
symbol e as the only non-logical symbol. The axioms are the usual rules of 
first-order logic augmented with the Zermelo-Fraenkel axioms ZFC of set theory. 
On the informal level we interpret the sentences of this urlogic as propositions 
about mathematical objects construed as sets. 

Remark 4.3.7. In the case of second-order logic the sentences of urlogic are 
the sentences of second-order predicate logic. Depending on the context, the 
non-logical vocabulary may consist of symbols for the arithmetic of natural 
numbers, arithmetic of real numbers, and so forth. 

Montague [21] gives second-order Peano axioms 2Z  for number theory, and 
second-order axioms 2RCF  for real closed fields. For full second-order logic 
there is a notion of “semantical” derivation: 

We can derive Ψ from Φ if every model of Φ is a model of Ψ. 
Of course scanning through all models of Φ  is a highly mathematical act. 

https://doi.org/10.4236/apm.2019.99034


J. Foukzon, E. Men’kova 
 

 

DOI: 10.4236/apm.2019.99034 734 Advances in Pure Mathematics 
 

Thus with respect to 2
fssZFC , this is a semantically defined system and thus it 

is not standard to speak about it being contradictory if anything, one might at-
tempt to prove that it has no models, which to be what is being done in Section 3 
and Section 4 for 2

fssZFC . 
Remark 4.3.8. Note that in order to avoid difficulties with “semantical” deri-

vation mentioned above one considers first order theory 2
fssZFC⊂Th  which 

contains only first order wff of 2
HsZFC . Thus in order to prove that 2

fssZFC  
has no models or it being contradictory, one might use the same approach, 
which is done in Section 3 and Section 4 for 2

HsZFC .  
Definition 4.3.2. Let Φ  be a wff of 2

HsZFC . We will say that Φ  is a first 
order n-place open wff if Φ  contains free occurrences of the first order indi-
vidual variables 1, , nX X  and quantifiers only over any first order individual 
variables 1, , mY Y . 

Definition 4.3.3. Let Th  be a first order theory which contains only first 
order wff of 2

HsZFC . Using formula (141) one can define predicate ( )# yThPr  
really asserting provability of the first order sentences in 2

fssZFC⊂Th : 

( ) ( ) ( )

( ) ( ) ( )

[ ]

2

# ,

, ,

.

fssZ

c

y y y

y x x M x y

y

ω

⇔ ∧ ⇒Φ  

⇔ ∃ ∈

= Φ

Th Th Th

Th Th

Pr Pr Pr

Pr Prov                 (213) 

Theorem 4.3.1. [12]. (Löb’s Theorem for 2
fssZFC .) Let Φ  be any first order 

closed formula with code [ ] 2c Zy Mω= Φ ∈ , then [ ]( )cΦ ThTh Pr  implies 
ΦTh . 

Proof. Assume that 
#) [ ]( )cΦ ThTh Pr . 
Note that 
1) ¬ΦTh . Otherwise one obtains [ ]( ) [ ]( )c c¬Φ ∧ Φ Th ThTh Pr Pr , but 

this is a contradiction. 
2) Assume now that (2.i) [ ]( )cΦ ThTh Pr  and (2.ii) ΦTh . 
From (1) and (2.ii) it follows that 
3) ¬ΦTh  and ΦTh . 
Let ¬ΦTh  be a theory 
4) { }¬Φ ¬Φ Th Th . From (3) it follows that 
5) ( )Con ¬ΦTh . 
From (4) and (5) it follows that 
6) [ ]( )c

¬Φ¬Φ ¬Φ ThTh Pr . 
From (4) and (#) it follows that 
7) [ ]( )c

¬Φ¬Φ Φ ThTh Pr . 
From (6) and (7) follows that  
8) [ ]( ) [ ]( )c c

¬Φ ¬Φ¬Φ Φ ∧ ¬Φ Th ThTh Pr Pr , but this is a contradiction. 
Definition 4.3.4. Let ( )xΨ = Ψ  be first order one-place open wff such that: 

( )! .x xΨ Ψ∃ Ψ  Th                      (214) 
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Then we will say that, a set y is a Th -set iff there is exist first order one-place 
open wff ( )xΨ  such that y xΨ= . We write [ ]y Th  iff y is a Th -set. 

Remark 4.3.9. Note that  

[ ] ( ) ( )( )!
c

y y x x xΨ Ψ Ψ
  ⇔ ∃Ψ = ∧ ∃ Ψ     ThTh Pr       (215) 

Definition 4.3.5. Let ℑ  be a collection such that: [ ]is a -setx x x∀ ∈ℑ↔ Th . 
Proposition 4.3.1. A set ℑ  is a Th -set. 
Definition 4.3.6. We define now a Th -set cℜ ℑ :  

( ) [ ]( ) .c
cx x x x x ∀ ∈ℜ ↔ ∈ℑ ∧ ∉  ThPr           (216) 

Proposition 4.3.2. i) c∃ℜTh , ii) cℜ  is a countable Th -set. 
Proof. i) Statement c∃ℜTh  follows immediately by using statement ∃ℑ  

and axiom schema of separation [4], ii) follows immediately from countability of 
a set ℑ . 

Proposition 4.3.3. A set cℜ  is inconsistent. 
Proof. From formula (216) one obtains  

[ ]( ).c
c c c cℜ ∈ℜ ⇔ ℜ ∉ℜ ThTh Pr                 (217) 

From formula (216) and definition 4.3.5 one obtains  

c c c cℜ ∈ℜ ⇔ℜ ∉ℜTh                     (218) 

and therefore 

( ) ( ).c c c cℜ ∈ℜ ∧ ℜ ∉ℜTh                   (219) 

But this is a contradiction. 
Thus finally we obtain: 
Theorem 4.3.2. [5]. ( )2

fssCon ZFC¬ . 
It well known that under ZFC it can be shown that κ  is inaccessible iff 

( ),Vκ ∈  is a model of 2ZFC  [12]. Thus finally we obtain. 
Theorem 4.3.3. [5] [6]. ( )( )ZFC ZFC

st st kCon ZFC M M H¬ +∃ = . 

5. Discussion. How Can We Safe the Set Theory ZFC
stZFC M+ ∃   

5.1. The Set Theory. wZFC  with a Weakened Axiom of Infinity  

We remind that a major part of modern mathematical analysis and related areas 
based not only on set theory ZFC but on strictly stronger set theory: ZFC

stZFC M+ ∃ . 
In order to avoid difficultness which arises from ( )ZFC

stCon ZFC M¬ +∃  in this 
subsection we introduce the set theory wZFC  with a weakened axiom of infin-
ity. Without loss of generality we consider second-order arithmetic 2  with a 
restricted induction schema. 

Second-order arithmetic 2  includes, but is significantly stronger than, its 
first-order counterpart Peano arithmetic. Unlike Peano arithmetic, second-order 
arithmetic allows quantification over sets of natural numbers as well as numbers 
themselves. Because real numbers can be represented as (infinite) sets of natural 
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numbers in well-known ways, and because second order arithmetic allows quan-
tification over such sets, it is possible to formalize the real numbers in second-order 
arithmetic. For this reason, second-order arithmetic is sometimes called “analy-
sis”. 

Induction schema of second-order arithmetic 2 . 
If ( )nϕ  is a formula of second-order arithmetic 2  with a free number va-

riable n and possible other free number or set variables (written m and X), the 
induction axiom for ϕ  is the axiom:  

( ) ( ) ( )( )( ) ( )( )0 1 .m X n n n n nϕ ϕ ϕ ϕ∀ ∀ ∧∀ → + →∀          (220) 

The (full) second-order induction scheme consists of all instances of this 
axiom, over all second-order formulas. One particularly important instance of 
the induction scheme is when ϕ  is the formula “ n X∈ ” expressing the fact 
that n is a member of X (X being a free set variable): in this case, the induction 
axiom for ϕ  is   

( )( ) ( )( )0 1 .X X n n X n X n n X∀ ∈ ∧∀ ∈ → + ∈ →∀ ∈        (221) 

This sentence is called the second-order induction axiom. 
Comprehension schema of second-order arithmetic 2 . 
If ( )nϕ  is a formula with a free variable n and possibly other free variables, 

but not the variable Z, the comprehension axiom for ϕ  is the formula   

( )( ).Z n n Z nϕ∃ ∀ ∈ ↔                      (222) 

This axiom makes it possible to form the set ( ){ }|Z n nϕ=  of natural num-
bers satisfying ( )nϕ . There is a technical restriction that the formula ϕ  may 
not contain the variable Z. 

Designation 5.1.1. Let ( )2k Wff  be a set of the all k-place open wff’s of the 
second-order arithmetic 2  and let ( )2kℜ   be a set of the all primitive re-
cursive k-place open wff’s 

k
ψℜ  of the second-order arithmetic 2 . Let ( )2k Σ  

be a set of the all k-place open wff’s 
k

ψΣ  of the second-order arithmetic 2  
such that  

( ) ( ) ( )2 2 2 .k k k kℜ ℜ     WffΣ              (223) 

Let  1, XWff  be a set of the all sets definable by 1-place open wff’s 
( ) ( )1, 2XXψ ∈ Wff , 
let 1

Σ  be a set of the all sets definable by 1-place open wff’s ( ) ( )
1 1 2Xψ ∈ Σ Σ  

and 
let 1ℜ  be a set of the all sets definable by 1-place open wff’s ( ) ( )

1 1 2Xψℜ ∈ℜ  . 
Restricted induction schema of second-order arithmetic 2

Σ . 
If ( ) ( )2k knϕΣ ∈  Σ Σ  is a formula of second-order arithmetic 2  with a 

free number variable n and possible other free number and set variables (written 
m and X), the induction axiom for ϕΣ  is the axiom:  

( ) ( ) ( ) ( )( )( ) ( )( )1 0 1 .
k k k k

m X X n n n n nϕ ϕ ϕ ϕΣ Σ Σ Σ∀ ∀ ∈ ∧∀ → + →∀Σ   (224) 
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The restricted second-order induction scheme consists of all instances of this 
axiom, over all second-order formulas. One particularly important instance of 
the induction scheme is when 

k
ϕΣ ∈Σ  is the formula ( ) ( )1n X X∈ ∧ ∈ Σ  ex-

pressing the fact that n is a member of X and 1X ∈ Σ  (X being a free set varia-
ble): in this case, the induction axiom for 

k
ϕΣ  is  

( ) ( ) ( )( )( ) ( )( )( )1 0 1 .X X X n n X n X n n X∀ ∈ ∈ ∧∀ ∈ → + ∈ →∀ ∈Σ  (225) 

Restricted comprehension schema of second-order arithmetic 2
kΣ . 

If ( )
1 1nϕΣ ∈Σ  is a formula with a free variable n and possibly other free va-

riables, but not the variable Z, the comprehension axiom for 
1

ϕΣ  is the formula  

( )( )1
.Z n n Z nϕΣ∃ ∀ ∈ ↔                       (226) 

Remark 5.1.1. Let 2
kΣ  be a theory 2 2

k k
stMΣ Σ + ∃     where 2

k
stM Σ    is 

a standard model of 2
Σ . 

We assume now that  

( )2 2 .k k
stCon MΣ Σ + ∃                         (227) 

Definition 5.1.1. Let ( ) :g x →   be any real analytic function such that: 
i) 

( )
0

, ,n
n

n
g x a x x r

∞

=

= <∑


                      (228) 

where ( )nn a∀ ∈  and where ii) the sequence { } 2n stn
a M Σ

∈
 ∈     (in partic-

ular { } 1
2n stn

a M ℜ
∈

 ∈    ) if the sequence { }n n
a

∈  is primitive recursive. 
Then we will call any function given by Equation (228)  -analytic Σ

-function and denoted such functions by ( )g xΣ
 . In particular we will call any 

function ( )1g xℜ
  constructive  -analytic function. 

Definition 5.1.2. A transcendental number z∈  is called Σ -transcendental 
number over field  , if there does not exist  -analytic Σ -function ( )g xΣ

  
such that ( ) 0g zΣ = . 

In particular a transcendental number z∈  is called #-transcendental 
number over field  , if there does not exist constructive  -analytic function 

( )1g xℜ
  such that ( ) 0g z = , i.e. for every constructive  -analytic function 
( )1g xℜ

  the inequality ( )1 0g zℜ ≠  is satisfied. 
Example 5.1.1. Number π  is transcendental but number π  is not 

#-transcendental number over field   since 
1) function sin x  is a  -analytic and  

2) sin 1
2
π  = 
 

, i.e.  

( )
( )

2 1 2 13 5 7

3 5 7 2 1

1
1 0.

2 2 3! 2 5! 2 7! 2 2 1 !

n n

n n
ππ π π π

+ +

+

−
− + − + − + + + =

+
          (229) 

Remark 5.1.2. Note that a sequence 
( )
( )

2 1

2 1

1
, 0,1, 2,

2 2 1 !

n

n na n
n

+

+

−
= =

+
  ob-

viously is primitive recursive and therefore  
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{ } 1
2 ,n stn

a M ℜ
∈

 ∈                            (230) 

since we assume ( )1 1
2 2stCon Mℜ ℜ + ∃    . 

Proposition 5.1.1. Let 0 1ν = . For each 0n >  choose a rational number nν  
inductively such that 

( ) 11 1
1 11 ! 1 .n nk n k

k n kk ke n e eν ν ν−− −

= =
− − < < −∑ ∑             (231) 

The rational number nν  exists because the rational numbers are dense in  . 
Now the power series ( ) 11 n

nnf x eν∞

=
= −∑  has the radius of convergence ∞  

and ( ) 0f e = . However any sequence { }n n
ν

∈
 obviously is not primitive re-

cursive and therefore 

{ } 1
2 .n stn

Mν ℜ
∈

 ∉                          (232) 

Theorem 5.1.1. [22] Assume that ( )1 1
2 2stCon Mℜ ℜ + ∃    . Then number e is 

#-transcendental over the field  . 
Theorem 5.1.2. [22] Number ee  is transcendental over the field  . 
Proof. Immediately from Theorem 5.1.2. 
Theorem 5.1.3. [22] Assume that ( )2 2stCon MΣ Σ + ∃    . Then number e is 

Σ -transcendental over the field  . 

5.2. The Set Theory. ZFC# with a Nonstandard Axiom of Infinity  

We remind that a major part of modern set theory involves the study of different 
models of ZF and ZFC. It is crucial for the study of such models to know which 
properties of a set are absolute to different models [8]. It is common to begin 
with a fixed model of set theory and only consider other transitive models con-
taining the same ordinals as the fixed model. 

Certain fundamental properties are absolute to all transitive models of set 
theory, including the following: i) x is the empty set, ii) x is an ordinal, iii) x is a 
finite ordinal, iv) x ω= , v) x is (the graph of) a function. Other properties, such 
as countability, 2yx =  are not absolute, see [8]. 

Remark 5.2.1. Note that for nontransitive models the properties (ii)-(v) no 
longer holds. 

Let ,M ∈  be a non standard model of ZFC. It follows from consideration 
above that any such model ,M ∈  is substantially non standard model of ZFC, 
i.e., there does not exist an standard model ,stM ∈  of ZFC such that 

stM M⊂ , where 

.st stM M∈ =∈                          (233) 

and 

, .Mω∉ ∈                           (234) 

Theorem 5.2.1. [9]. Let ,M ∈  be a non standard model of ZF. A necessary 
and sufficient condition for ,M ∈  to be isomorphic to a standard model 

,M ∈  is that there does not exist a countable sequence { }n n
x

∈
 of elements 

in M such that 1n nx x+ ∈ . 
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Definition 5.2.1. Let ,NstM M= ∈  be a non standard model of ZFC. We 
will say that: 

i) element z M∈  is a non standard relative to   and abbreviate ( )Nst z , 
if there exists a sequence { }n n

x
∈

 of elements in M such that 1n nx x+ ∈  and 

0z x= , and 
ii) element Nstz M∈  is a standard relative to   and abbreviate ( )st z  if 

there does not exist a countable sequence { }n n
x

∈
 of elements in M such that 

1n nx x+ ∈  and 0z x= , i.e., ( ) ( )st z Nst z⇔¬  . 
Remark 5.2.2. We denote by ZFC∈  set theory which is obtained from set 

theory ZFC by using wff’s of ZFC with quantifiers bounded on a non standard 
model ,M ∈ . The first-order language corresponding to set theory ZFC∈  we 
denote by ∈L . 

Let ( )ZFC∈Wff  be a set of the all wff’s of ZFC∈ . Note that  
( ) ( ) ( ),st z Nst z ZFC∈∉

  Wff , i.e., predicates ( )st z  and ( )Nst z  are not 
well defined in ZFC∈  since NstM∉ . 

Definition 5.2.2. In set theory, an ordinal number α  is an admissible or-
dinal if Lα  is an admissible set (that is, a transitive model of Kripke-Platek set 
theory); in other words, α  is admissible when α  is a limit ordinal and 

0Lα Σ -collection. 
Definition 5.2.3. Let ,M ∈  be a non standard model of ZF. Assume that 

ordinal of ,M ∈  have a largest minimal segment isomorphic to some stan-
dard ordinal Mα ∈ , which is called the standard part of ,M ∈ , see [14] [15]. 
We shall assume that Mα ∈ , and that for β α< : 

( ) ( ) ,M Mβ β∈ℜ =∈ℜ                        (235) 

where ( )M βℜ  is the set of all elements of M with M rank is less then β . 
Which standard ordinal α  can be standard part of ,M ∈ ? It well-known 

that a necessary condition is that α  is admissible ordinal. A well-known Fried-
man theorem (see [14] [15]) implies that for countable α  the admissibility is al-
so sufficient condition. Thus there is no admissible countable ordinal α  in any 
non standard model of ZFC. 

Remark 5.2.3. We introduce now in consideration a conservative extension of 
the theory ZFC∈  by adding to language ∈L  the atomic predicate ( )Nst z  
which satisfies the following condition 

( ) ( ) ( ) .z Nst z x x z Nst x ∀ ⇒ ∃ ∈ ∧                  (236) 

1) Axioms of non standardness 
a) There exists at least one non standard set 

( ) .z Nst z∃                             (237) 

b) There exists at least one non standard transitive set 

( ) ( ) ,z Nst z TR z∃ ∧                        (238) 

where: ( ) ( )TR z x x z x zα α⇔ ∀ ∈ ∧ ∈ ⇒ ∈     . 
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2) Axiom of extensionality 

( ) .x y z z x z y x y∀ ∀ ∀ ∈ ⇔ ∈ ⇒ =                   (239) 

3) Axiom of regularity 

( )( ) ( ) ( ) ( ) .x x y y x z z y z xα α α ∀ ∃ ∃ ∈ ⇒ ∃ ∈ ∧¬∃ ∈ ∧ ∈            (240) 

4) Axiom schema of specification 
Let stφ  be any formula in the language of ZFC∈  such that i) formula stφ  

free from occurrence of the atomic predicate ( )Nst z , i.e., stφ  can not contain 
the atomic predicate Nst(z) and 

ii) stφ  is a formula with all free variables among 1, , , , nx z w w  (y is not free 
in stφ ). Then: 

 ( ) ( )1 1, , , , .st
n nz w w y x x y x z x z w wφ ∀ ∀ ∀ ∃ ∀ ∈ ⇔ ∈ ∧  

 
     (241) 

4’) Axiom of empty set  

( ) .x y y x∃ ∀ ¬ ∈                           (242) 

We will denote the empty set by ∅ . 
5) Axiom of pairing  

[ ].x y z x z y z∀ ∀ ∃ ∈ ∧ ∈                       (243) 

6) Axiom of union 

( ) ( )( ) .A Y x x Y Y x A ∀ ∃ ∀ ∀ ∈ ∧ ∈ ⇒ ∈   F F            (244) 

7) Axiom schema of replacement 
The axiom schema of replacement asserts that the image of a set under any 

definable in ZFC∈  function will also fall inside a set. 
Let stφ  be any formula in the language of ZFC∈  such that i) formula stφ  

free from occurrence of the atomic predicate ( )Nst z , i.e., stφ  can not contain 
the atomic predicate Nst(z) and 

ii) stφ  is a formula whose free variables are among 1, , , , , nx y A w w , so that 
in particular B is not free in stφ . Then: 

( )( )
( )( )( )

1 1

1

! , , , , ,

, , , , , .

st
n n

st
n

A w w x x A y A w w x y

B x x A y y B A w w x y

φ

φ

∀ ∀ ∀ ∀ ∈ ⇒ ∃
⇒ ∃ ∀ ∈ ⇒ ∃ ∈ ∧ 


 

 


     (245) 

8) Axiom of infinity 
Let ( )S x∈  abbreviate { }x x∈ ∈



 , where w is some set. Then: 

( ) { }( ) .x x x∈ ∈
 ∃ ∅∈ ∧∀ ∈ ∈ 





  
I I I I               (246) 

Such a set as usually called an inductive set. 
Definition 5.2.4. We will say that x is a non standard set and abbreviate Nstx  

iff x contain at least one non standard element, i.e., 

( ) .Nstx x Nstα α α⇔ ∃ ∈ ∧                    (247) 

Remark 5.2.4. It follows from Axiom schema of specification and Axiom 
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schema of replacement (245) we cannot extract from a non standard set the 
standard and non standard elements separately, i.e. for any non standard set 

Nstx  there is no exist a set y and z such that 

,Nstx y z∈=


                         (248) 

where y contain only standard sets and z contain only standard sets! 
As it follows from Theorem 5.3.1 any inductive set is a non standard set. 
Thus Axiom of infinity can be written in the following form 
8’) Axiom of infinity 
Let ( )S x∈  abbreviate { }x x∈ ∈



 , where w is some set. Then: 

( ) { }( ) .Nst Nst Nst Nstx x x∈ ∈
 ∃ ∅∈ ∧∀ ∈ ∈ 





  
I I I I          (249) 

Such a set as usually called a non standard inductive set. 
9) Strong axiom of infinity 
Let ( )S x∈  abbreviate { }x x∈ ∈



 , where w is some set. Then: 

( ) ( ) { }( ){ }.Nst Nst Nst Nst NstTR x x x∈ ∈
  ∃ ∧ ∅∈ ∧∀ ∈ ∈   





  
I I I I I      (250) 

5.3. Extracting the Standard and Nonstandard Natural Numbers  
from the Infinite Nonstandard Set INst 

Definition 5.3.1. We will say that Nstx  is inductive if there is a formula ( )xΦ  
of ZFC∈  that says: “ Nstx  is ∈ -inductive”; i.e.  

( ) ( )( )( ).Nst Nst Nst Nstx x y y x S y x∈Φ = ∅∈ ∧∀ ∈ ⇒ ∈




             (251) 

Thus we wish to prove the existence of a unique non standard set NstW  such 
that 

( )( ) .Nst Nst Nst Nstx x W I I x I ∀ ∈ ⇔ ∀ Φ ⇒ ∈ 


               (252) 

1) For existence, we will use the Axiom of Infinity combined with the Axiom 
schema of specification. Let NstI  be an inductive (non standard) set guaranteed 
by the Axiom of Infinity. Then we use the Axiom Schema of Specification to de-
fine our set 

( )( ){ }: ,Nst Nst Nst Nst NstW x I J J x J= ∈ ∀ Φ → ∈

            (253) 

i.e. NstW  is the set of all elements of NstI  which happen also to be elements of 
every other inductive set. This clearly satisfies the hypothesis of (5.3.2), since if 

Nstx W∈ 

 , then x is in every inductive set, and if x is in every inductive set, it is in 
particular in NstI , so it must also be in NstW . 

2) For uniqueness, first note that any set which satisfies (252) is itself induc-
tive, since ∅  is in all inductive sets, and if an element x is in all inductive sets, 
then by the inductive property so is its successor. Thus if there were another set 

1
NstW  which satisfied (252) we would have that 1

Nst NstW W∈⊆ 

   since W is in-
ductive, and 1

Nst NstW W∈⊆ 

   since 1
NstW  is inductive. 

Thus 1
Nst NstW W∈=   . Let ω  denote this unique set. 
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3) For nonstandardness we assume that ω  is a standard set, i.e. there is no 
nonstandard element in ω . Then ω ∈ ∈=

 

   where ∈  is isomorphic to  , 
but this is a contradiction, since ,M∈∉ ∈



 . 
Theorem 5.3.1. There exists unique nonstandard set ω  such that (252) 

holds, i.e. 

( )( ) .Nst Nst Nstx x I I x Iω ∀ ∈ ⇔ ∀ Φ ⇒ ∈ 
               (254) 

Definition 5.3.2. We will say that a set S is ∈ -finite if every surjective ∈
-function from S onto itself is one-to-one. 

Theorem 5.3.2. There exist ∈ -finite nonstandard natural numbers in ω . 
Proof. Assuming that any nonstandard natural number is not -finite one 

obviously obtains a contradiction. 
Remark 5.3.1. Assuming that ω  is 444 standard set then this method men-

tioned above produce system which satisfy the axioms of second-order arith-
metic 2

fssZ , since the axiom of power set allows us to quantify over the power set 
of ω , as in second-order logic. Thus it completely determines isomorphic sys-
tems, and since they are isomorphic under the identity map, they must in fact be 
equal. 

6. Conclusion  

In this paper we have proved that the second-order ZFC with the full 
second-order semantic is inconsistent, i.e. ( )2

fssCon ZFC¬ . Main result is: let k 
be an inaccessible cardinal and kH  is a set of all sets having hereditary size less 
then k, then ( )( )ZFC ZFC

st st kCon ZFC M M H¬ +∃ = . This result was also obtained 
in [3] [4] [5] essentially another approach. For the first time this result has been 
declared to AMS in [23] [24]. 
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