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Abstract We present details on the factorization of RSA-170 – the smallest

unfactored semiprime from the obsolete RSA Factoring Challenges.

This number is the product of two 85 digit primes and was factored

by the General Number Field Sieve in approximately six weeks. It

differs from other similar factorizations as the polynomial selection

for the Number Field Sieve was solely performed on a graphics

card.

1 Introduction

The RSA Factoring Challenge [13] was announced in 1991 and served to mea-

sure the state of progress in practical cryptanalysis. It consisted of a list of

semiprimes [12] ranging from 100 to 500 decimal digits, which were later re-

placed by numbers named after their binary length. Until 2007, when the chal-

lenges were declared inactive, eleven numbers (RSA-100 – RSA-160, RSA-576,

RSA-640 and RSA-200) had been factored; the three smallest by a variation of

the Quadratic Sieve [11] and the others by the General Number Field Sieve [3].

As of November 2009, the 563-bit number

RSA-170 = 26062623684139844921529879266674432197085925

38048640641616478519185999962854206936145028

39319145146186835121981648059198820530572229

74116478065095809832377336510711545759

remained the smallest unfactored semiprime from this list.

2 Factorization of RSA-170

2.1 Polynomial selection

During the polynomial selection of the General Number Field Sieve, one usually

seeks two polynomials f(x) and g(x) of degree d and 1, respectively. The degree

of f is usually chosen as d ∼ (3 lnn/ ln lnn)
1
3 , where n is the number one wants

to factor. For n = RSA-170, we looked for a polynomial of degree five.
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Generally, the polynomial search is distributed among several computers. How-

ever, for RSA-170, we chose a different approach and used a GPU-implementation

of Thorsten Kleinjung’s improvements [2] of the ideas presented in [5], imple-

mented in J. Papadopoulos’ msieve program [7]. This implementation makes

use of NVIDIA’s parallel computing architecture CUDA [6] and allows for a

remarkable speed-up of the first stage of the polynomial search. The second

stage, however, is still performed on the CPU.

Polynomial search was started on a GeForce GTX 295 graphics card on Novem-

ber 18th, 2009, and was run for five days. After some sieving experiments, the

following pair of polynomials was chosen:

f(x) = 13860x5

−6284825207568x4

+11930382331307760430913x3

+295417835623959053324718791063x2

−100390160832918264814530294643945094077x

+4108301095678861664549324646278030532413333841

g(x) = 1298900392606034887x− 1134621544219051919378411816882072

However, we are confident a better pair of polynomials could have been found

if more time was spent on the search.

2.2 Sieving and post-processing

Sieving was started on November 24th on the following set of computers:

• 11 notebooks: Ten of them are equipped with an Intel P8700 dual-core

CPU and one uses an Intel T6400 dual-core CPU.

• 2 desktop computers: One uses an Intel E4300 dual-core CPU and one

runs on an Intel i7-940 quad-core CPU.

We did lattice sieving [10] on the algebraic side only for most special-q ∈
[40e6, 117e6] using the software available from [1]. In order to keep track of

the available ranges, the ones currently being sieved and to avoid duplicate

work, the first author implemented a web-interface that allows exclusive reser-

vations of unsieved ranges for individual PCs. These ranges were chosen to take

between 2 and 56 hours to finish on one core of an Intel P8700 processor. Most

of the sieving was carried out at the Department of Computer Science at the

Ostfalia University. Only a small portion was done on the private computers of

the two authors.

As of December 15th, 2009, a total of 168605286 relations had been collected

of which 145922935 were unique. From this dataset, a 13484736 × 13484961

matrix with 1028735710 non-zero entries was optained. The Block Lanczos [4]

implementation of J. Papadopoulos would take about 310 hours on four cores of

an Intel i7-940 CPU to complete the iteration. Therefore, sieving was extended

to December 22nd, 2009.

At that time, 169525698 unique and 34232149 duplicate relations had been col-

lected. Storing all relations required about 21.1GB of disk space. As a result of

the oversieving effort, filtering was now able to create a much smaller matrix of

size 10462971 × 10463197 with 794960710 non-zero entries. The Block Lanczos
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iteration used about 3.7GB of RAM and finished after 182 hours at 2:45am on

December 29th, 2009. Shortly after, three square root jobs were successively

started and each required about 90 minutes to complete.

On December 29th, 2009, at 07:21 GMT, we found that RSA-170 can be written

as the product of two primes p and q:

p = 3586420730428501486799804587268520423291459

610599781611402318606339484508580405939638

q = 7267029064107019078863797763923946264136137

803856996670313708936002281582249587494493

Primality of these factors was proved by the APRCL-method as implemented

in PARI/GP [8]. The factorizations of p ± 1 as well as q ± 1 can be found in

Appendix A.

In hindsight, the entire factorization would have finished slightly (say a few

hours) earlier if we had ran Block Lanczos on the 13484736 × 13484961 matrix.

But as it is rather reasonable to run this algorithm for seven or eight days

instead of thirdteen, the authors feel confident that oversieving was the right

choice.

3 Conclusions

Due to freely available sieving- and post-processing code that is capable of han-

dling inputs such as RSA-170, general numbers with 170 (and possibly quite a

few more) decimal digits can be factored on home computers only in relatively

short time. For the post-processing, however, it seems reasonable to use a com-

puter with a quad-core CPU which are much more common today than they

were a few years ago.

The search for suitable polynomials on GPUs appears to be a good alterna-

tive to the regular approach on several CPUs. Powerful graphic cards with

CUDA-support are available for as low as $30 USD and are already an order

of magnitude faster for such jobs than modern CPUs. As even more powerful

GPUs are announced every year, we assume that graphic cards will play a major

role in the polynomial selection for future factorizations.

A Factorizations of p± 1 and q ± 1

Finally, we give the factorizations of p± 1 as well as of q± 1. The factorization

of q− 1 was found by an implementation of the Multiple Polynomial Quadratic

Sieve, written by the second author.

p− 1 = 2 · 112 · 14819920373671493747106630525902976955749833392

809827112149718432371687813462977661

p + 1 = 22 · 3 · 1297 · 230430527526889070084798547113114907690276

258099458889818827541803774637037910601

q − 1 = 22 · 11 · 17 · 13398542879421488583699281633021272027489 ·
725099705609835336143088040991339807926261
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q + 1 = 2 · 3 · 7 · 1730245015263575971158047086648558634318128048

53738015959850212761959085291656845107

These factorizations clearly indicate that none of the prime factors could have

been found by either Pollard’s p− 1 [9] or Williams’ p + 1 [14] algorithm.
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