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The Fibonacci sequence F = 0, 1, 1, 2, 3, 5, 8, . . . has intrigued mathematicians for
centuries, as it seems there is no end to its many surprising properties. Of particular
interest to us are its properties when reduced under a modulus. It is well known, for
example, that F (mod m) is periodic, that the zeros are equally spaced, and that each
period of F (mod m) contains exactly 1, 2, or 4 zeros. We’ll denote the period of
F (mod m) by π(m). Formulas are known for computing π(m) based on the prime
factorization of m, but if p is prime, there is no formula for π(p). However, certain
divisibility relations hold: π(p) | p − 1 if p ≡ ±1 (mod 10), and π(p) | 2(p + 1) if
p ≡ ±3 (mod 10).

This paper arose from the realization that many of the modulo m properties of the
Fibonacci sequence are also properties of a much larger class of sequences. Further,
matrix methods offer elementary proofs for the general case that are no more difficult
than for the Fibonacci sequence itself.

For integers a and b, we define the (a, b)-Fibonacci sequence F as the sequence
with initial conditions F0 = 0, F1 = 1, that satisfies the general second-order linear re-
currence relation Fn = aFn−1 + bFn−2. So, for example, the (1, 1)-Fibonacci sequence
is the classic case F = 0, 1, 1, 2, 3, 5, . . . , and the (3,−2)-Fibonacci sequence begins
0, 1, 3, 7, 15, 31, . . . . In general, F = 0, 1, a, a2

+ b, a3
+ 2ab, . . . . In this article, we

examine the behavior of the (a, b)-Fibonacci sequence under a modulus.
When reducing the (a, b)-Fibonacci sequence modulo m, we’ll assume m is chosen

so that gcd(b,m) = 1. That way, the sequence is uniquely determined backward as
well as forward. For instance, we can compute F−1 ≡ b−1 (mod m). Modulo m, any
pair of residues completely determines the sequence F , and there are finitely many
pairs of residues, so F is periodic. We denote the period of F (mod m) by π(m).

The rank of apparition, or simply rank, of F (mod m) is the least positive r such
that Fr ≡ 0 (mod m), and we denote the rank of F (mod m) by α(m). If Fα(m)+1 ≡ s
(mod m), observe that the terms of F starting with index α(m), namely 0, s, as, (a2

+

b)s, . . . , are exactly the initial terms of F multiplied by a factor of s.
Finally, we consider the order of F (mod m), denoted byω(m), and definedω(m) =

π(m)/α(m). We shall see soon that ω(m) is always an integer, and that ω(m) =
ordm(Fα(m)+1), the multiplicative order of Fα(m)+1 modulo m. Other authors have not
named this function, but its close connection with the multiplicative order of Fα(m)+1

makes the name “order” seem reasonable.
Lucas studied the (a, b)-Fibonacci sequence extensively and in 1878 established

foundational results on the rank [9, section XXV]. He assigned 1 = a2
+ 4b and de-

duced that if 1 is a quadratic residue (that is, a nonzero perfect square) mod p, then
α(p) | p − 1. Also, if 1 is a quadratic nonresidue (a residue that is not a perfect
square), then α(p) | p + 1. Finally, if p | 1, then α(p) = p. These results were all
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obtained using the identity

2n−1 Fn =

(
n

1

)
an−1
+

(
n

3

)
an−31+

(
n

5

)
an−512

+ · · ·

Other authors followed by generalizing these results, or providing alternate proofs.
See, e.g., [1, 3, 6, 17].

In 1960, Wall [16] produced results on the period of the (1, 1)-Fibonacci sequence
and on the period of any integer sequence G satisfying Gn = Gn−1 + Gn−2. Wall’s
paper seems to have renewed interest in the subject. In 1963, Vinson [15] and Robin-
son [12] both extended Wall’s work; Vinson studied the order of the (1, 1)-Fibonacci
sequence, and Robinson reproduced many results of Wall and Vinson, but with proofs
greatly simplified by use of matrix methods. 1963 was also the year the Fibonacci
Quarterly was established, and throughout the years many papers on the Fibonacci
sequence modulo m have appeared there.

The study of generalized Fibonacci sequences under a modulus has continued in
more recent years, and articles on the topic appear occasionally in this MAGAZINE.
See, e.g., [5, 8, 13, 14]. See also [7] for a non-modular treatment of the (a, b)-
Fibonacci sequence.

Through our study of the (a, b)-Fibonacci sequence modulo m, we hope to bring
together many of the previous results, generalizing to the (a, b) case where necessary,
and presenting them as a cohesive whole, using matrices as our main tool to supply
elementary proofs.

Preliminaries

The matrix A =
[

0 1
1 1

]
has the wonderful property that

An
=

[
Fn−1 Fn

Fn Fn+1

]
,

where F here is the usual (1, 1)-Fibonacci sequence. This fact is extremely useful
for the computation of very large Fibonacci numbers, and for finding and proving
properties of F . Many authors use the matrix

[
1 1
1 0

]
, but in this article we will follow

the notation found in [12] and [7]; see [4] for more on the use of this and other matrices.
Let F denote the general (a, b)-Fibonacci sequence, let U denote the (a, b)-

Fibonacci matrix below, and observe the form of U n , which is easily confirmed
by induction:

U =

[
0 1
b a

]
, U n

=

[
bFn−1 Fn

bFn Fn+1

]
.

Consequently, Uπ(m)
≡ I (mod m). Moreover, if Fn ≡ 0, then Fn−1 ≡ b−1 Fn+1; thus,

Uα(m)
≡ s I (mod m) for some integer s.

Observe that det U = −b. Thus, (−b)π(m) = (det U )π(m) = det Uπ(m)
≡ 1 (mod m).

So,

ordm(−b) | π(m).

This proves the well-known result for the (1, 1)-Fibonacci sequence that π(m) is even
for any m > 2.
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The exponents n for which U n
≡ I (mod m) form a simple arithmetic progression

(U 0
≡ I , and if U i

≡ U j
≡ I , then U i+ j

≡ I ). Thus,

U n
≡ I ⇐⇒ π(m) | n.

Similarly, the exponents n for which U n is congruent to a scalar multiple of I form a
simple arithmetic progression, and so

U n
≡ s I for some s ∈ Z ⇐⇒ α(m) | n.

From this we see that α(m) | π(m).
We defined the order of F (mod m) as ω(m) = π(m)/α(m), but ω(m) has another

interpretation. If Uα(m)
≡ s I , then ordm(s) is the least positive value of k such that

U kα(m)
≡ I . Consequently, ordm(s) is the least positive k such that π(m) | kα(m).

Clearly, the smallest such k is ω(m). Thus,

If Uα(m)
≡ s I , then ω(m) = ordm(s).

Computing π(m) and α(m)

Much of our work in this paper is conducted with an eye toward constructing an algo-
rithm that, given a, b, and m, will produce the period and rank of the (a, b)-Fibonacci
sequence modulo m. The first step is recognizing that it is easy to compute π(m) once
we know π(pe) for all prime power factors pe of m. The same idea holds for comput-
ing α(m).

The following theorem gives us the tool we need, and it is well known for the (1, 1)-
Fibonacci sequence; see, e.g., [15]. In fact, our statement of the theorem for the (a, b)
case is exactly the same as that for the (1, 1) case.

THEOREM 1. Let brackets denote the least common multiple operation.

(a) α([m1,m2]) = [α(m1), α(m2)]

(b) π([m1,m2]) = [π(m1), π(m2)]

Proof. Let m = [m1,m2].
Part (a). Let α = α(m), α1 = α(m1), and α2 = α(m2). Since Fα ≡ 0 (mod m), we

have Fα ≡ 0 (mod mi ) for each i = 1, 2. Thus, αi | α for each i = 1, 2 and we get
[α1, α2] | α.

Conversely, we know F[α1,α2] ≡ 0 (mod mi ) for each i = 1, 2, so F[α1,α2] ≡ 0
(mod m). Thus, α | [α1, α2].

Part (b). Let π = π(m), π1 = π(m1), and π2 = π(m2). Since Uπ
≡ I (mod m),

we have Uπ
≡ I (mod mi ) for each i = 1, 2. Thus, πi | π for each i = 1, 2 and we

get [π1, π2] | π .
Conversely, we know U [π1,π2] − I ≡ 0 (mod mi ) for each i = 1, 2, and it follows

that U [π1,π2] − I ≡ 0 (mod m). Thus, π | [π1, π2].

COROLLARY. If m1 | m2, then α(m1) | α(m2) and π(m1) | π(m2).

To apply the above theorem, suppose that m = pe1
1 pe2

2 · · · p
ek
k . Then α(m) =[

α(pe1
1 ), α(p

e2
2 ), . . . , α(p

ek
k )
]

and π(m) =
[
π(pe1

1 ), π(p
e2
2 ), . . . , π(p

ek
k )
]
.

Much more generally, Theorem 1 and its proof work for recurrence relations of
any order, Sn = a1Sn−1 + a2Sn−2 + · · · + ak Sn−k . The theorem can even be used (with
slight modification) when the modulus is not relatively prime to ak (in which case the
sequence cannot be uniquely determined for negative subscripts). See [2, p. 220] for a
very general statement and interpretation of the theorem.
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We now turn our attention to computing α(pe) and π(pe), where p is a prime and
e is a positive integer.

Computing π(pe) and α(pe)

It turns out that we can express π(pe) and α(pe) in terms of π(p) and α(p). The main
result of this section, Theorem 2, shows exactly how to do that.

The proofs in this section follow those of [12], generalized to the (a, b) case. Again,
the results here for general a and b are almost exactly those one finds in the literature
for the (1, 1)-Fibonacci sequence; the slight differences are noted at the end of the
section.

We begin by seeing how α(pe) and α(pe+1) are related, and likewise for π .

PROPOSITION 1. For any prime p and for any integer e ≥ 1, α(pe+1) = α(pe) or
p · α(pe). Similarly, π(pe+1) = π(pe) or p · π(pe).

Proof. Suppose that U n
≡ s I (mod pe) for some integer s. Then U n

= s I + pe B
for some matrix B. Then U pn

= (s I + pe B)p
= s p I +

(p
1

)
s p−1 pe B + · · · , where ev-

ery term after the first is divisible by pe+1. Thus, U pn
≡ s p I (mod pe+1).

Now if n = α(pe), then the conditions in the first line of this proof are satisfied, and
we conclude that α(pe+1) | pα(pe). But of course α(pe) | α(pe+1), and we conclude
that α(pe+1) = α(pe) or pα(pe).

Similarly, if n = π(pe), then again the above conditions are satisfied (with s = 1)
and we find that π(pe+1) = π(pe) or pπ(pe).

Thus, for each unit increase in e, α(pe) either stays the same or increases by a factor
of p. In fact, the next result shows that there is more going on: α(pe)may stay constant
initially, but once it starts to increase, it must continue increasing. The same is true of
π(pe).

PROPOSITION 2. Except for the single case p = 2 and e = 1, the following holds
for any prime p and positive integer e.

(a) If α(pe) 6= α(pe+1), then α(pe+1) 6= α(pe+2).
(b) If π(pe) 6= π(pe+1), then π(pe+1) 6= π(pe+2).

Proof. Suppose that U n
≡ s I (mod pe) and that U n is not congruent to any scalar

multiple of I (mod pe+1). Then U n
= s I + pe B, where pe B is not congruent to any

scalar multiple of I (mod pe+1). Consequently, B is not congruent to any scalar mul-
tiple of I (mod p).

Now U pn
= (s I + pe B)p

= s p I +
(p

1

)
s p−1 pe B + · · · , and all terms replaced by

the ellipsis are divisible by pe+2. (This last statement is where we require any case
other than p = 2 and e = 1.)

So, U pn
≡ s p I (mod pe+1). Moreover, since pe+1 B is not congruent to any scalar

multiple of I (mod pe+2), we also know that U pn is not congruent to any scalar mul-
tiple of I (mod pe+2).

If n = α(pe) and α(pe) 6= α(pe+1), then by Proposition 1, pn = α(pe+1) and the
above argument implies α(pe+1) 6= α(pe+2).

Similarly, if n = π(pe) and π(pe) 6= π(pe+1), then pn = π(pe+1) and the above
argument implies π(pe+1) 6= π(pe+2).

The main result of this section is an immediate consequence and reformulation
of the two preceding propositions. The last point of this theorem is deduced by in-
spection: modulo 2, we must have b ≡ 1, and so F = 0, 1, 0, 1, . . . (when a ≡ 0) or
F = 0, 1, 1, 0, 1, 1, . . . (when a ≡ 1).
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THEOREM 2. Let an integer e ≥ 1 be given.
• For odd p,
α(pe) = pe−e′α(p), where 1 ≤ e′ ≤ e is maximal so that α(pe′) = α(p).
π(pe) = pe−e′π(p), where 1 ≤ e′ ≤ e is maximal so that π(pe′) = π(p).

• For p = 2 and e ≥ 2,
α(2e) = 2e−e′α(4), where 2 ≤ e′ ≤ e is maximal so that α(2e′) = α(4).
π(2e) = 2e−e′π(4), where 2 ≤ e′ ≤ e is maximal so that π(2e′) = π(4).

• Finally,
if a is odd, then α(2) = π(2) = 3; if a is even, then α(2) = π(2) = 2.

In the (1, 1)-Fibonacci sequence, it is an open problem whether any primes p exist
such that π(p2) = π(p). Despite extensive searching, none have been found [10].
Even if such a p is found, there must exist some maximal e′ such that π(pe′) = π(p),
since no (1, 1)-Fibonacci number (other than F0) is divisible by infinitely many powers
of p.

However, in the more general (a, b) setting, we can find examples where π(p2) =

π(p). Fix a = 76 and b = 56, and consider the behavior of F (mod 3e) as e increases:

m 3 32 33 34 35 36 37 38

π(m) 6 6 18 54 162 486 1458 4374

α(m) 3 3 3 3 3 3 9 27

We conclude that π(3e) = 3e−2
· 6 for e ≥ 2, and α(3e) = 3e−6

· 3 for e ≥ 6.
We can also find examples where α(pe) or π(pe) is constant for all e. If a = 2 and

b = −4, then F = 0, 1, 2, 0,−8, . . . . Consequently, for any odd prime p, α(pe) = 3
for all e and π(pe) = 3 · ordpe(−8). Finally, we might consider the case a = 1 and
b = −1. In this situation, F = 0, 1, 1, 0,−1,−1, 0, 1 . . . . Thus, for any odd prime p,
α(pe) = 3 and π(pe) = 6 for all positive integers e.

Computing π(p) and α(p)

Unfortunately, there are no explicit formulas for evaluating π(p) and α(p). Perhaps
this is not surprising, since π(p) is the order of a matrix modulo p, and there is no
explicit formula for computing the order of an integer modulo p. However, we do
have divisibility relations.

By Theorem 2, we have α(2) = π(2) = 3 or α(2) = π(2) = 2. For the remainder
of this section, we will assume that p is an odd prime.

The matrix U has characteristic polynomial c(x) = x2
− ax − b. This polynomial

has a root modulo p if the discriminant a2
+ 4b is a perfect square modulo p. Specifi-

cally, if δ is an integer with the property that δ2
≡ a2

+ 4b (mod p), then the roots of
c(x) (mod p), as given by the quadratic formula, are 2−1(a ± δ). The following the-
orem shows that we can gain insight into the divisibility properties of α(p) and π(p)
by considering the nature of a2

+ 4b.

THEOREM 3. Let 1 = a2
+ 4b and let p be an odd prime such that p - b. Then

modulo p,

(a) if 1 is a (nonzero) quadratic residue, then α(p) | p − 1 and π(p) | p − 1.
(b) if 1 is a quadratic nonresidue, then α(p) | p + 1 and π(p) | (p + 1)ordp(−b);

also, except in the case b ≡ −1, π(p) - p + 1.
(c) if 1 ≡ 0, then α(p) = p and π(p) = p · ordp(2−1a).
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Proof. For parts (a) and (b), we sketch the proofs found in [5].
(a) Suppose that 1 is a quadratic residue, modulo p. Then the characteristic poly-

nomial c(x) of U has two distinct roots, call them λ1 and λ2. Thus, U is diagonalizable
and can be written U ≡ P D P−1, where P is the matrix with eigenvectors as columns
and

D ≡

[
λ1 0
0 λ2

]
.

Applying Fermat’s Little Theorem, we find D p−1
≡ I . Thus, U p−1

≡ I and part (a) of
the theorem follows.

(b) Suppose that1 is a quadratic nonresidue, modulo p. In this case, we switch our
view from working with integers and congruences to working within the field Fp =

Z/pZ. The polynomial c(x) is irreducible in Fp, but we can create a field extension
Fp[γ ] where γ has the property that c(γ ) = 0. It is shown easily in [5] that γ p

6= γ

and c(γ p) = 0; thus c(x) has two distinct roots in Fp[γ ]. So U is diagonalizable in
Fp[γ ] and can be written U = P D P−1 for some matrix P and

D =

[
γ 0
0 γ p

]
.

Since (x − γ )(x − γ p) = x2
− ax − b, we have γ p+1

= −b. Moreover, we observe
that (γ p)p+1

= (−b)p
= −b, with the final equality due to Fermat’s Little Theorem.

Thus, U p+1
= P D p+1 P−1

= P
[
−b 0
0 −b

]
P−1
=
[
−b 0
0 −b

]
. As a result, α(p) | p + 1,

and unless b ≡ −1 (mod p), π(p) - p + 1. It also follows that U (p+1)ordp(−b)
= I and

so π(p) | (p + 1)ordp(−b).
(c) Suppose that 1 ≡ 0 (mod p). Then c(x) has a repeated root, 2−1a (and a 6≡ 0,

otherwise p | b, a contradiction). In this case, U is not diagonalizable, but we can put
U into Jordan form: U = P J P−1 for some invertible P . Below, we see the form of J
and of J n .

J ≡

[
2−1a 1

0 2−1a

]
, J n

≡

[
(2−1a)n n(2−1a)n−1

0 (2−1a)n

]
.

Since U n
≡ P J n P−1, and since scalar multiples of I commute with any matrix, we

find U n
≡ s I for some integer s if and only if J n

≡ s I . So, considering J n above,
α(p) is the least integer n such that n(2−1a)n−1

≡ 0 (mod p). Since a 6≡ 0 (mod p),
we conclude that α(p) = p.

Working modulo p, we obtain the following.

U n
≡ I ⇐⇒ J n

≡ I

⇐⇒ (2−1a)n ≡ 1 and n(2−1a)n−1
≡ 0

⇐⇒ ordp(2
−1a) | n and p | n

⇐⇒ lcm[ordp(2
−1a), p] | n

⇐⇒ p · ordp(2
−1a) | n.

By the above, π(p) = p · ordp(2−1a).

The proof of part (a) also shows that if λ1 and λ2 are the roots of x2
− ax − b, then

π(m) = lcm[ordp(λ1), ordp(λ2)].
We’ve not seen the part (c) result that π(p) = p · ordp(2−1a) in the literature. How-

ever, the fact that α(p) = p is deduced by Lucas [9]. Our proof for (c) appears to be
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novel. It is curious that when p | 1, we have an explicit equality statement for π(p)
(albeit in terms of ordp(2−1a), which must be calculated).

For the standard a = 1, b = 1 situation, 1 = 5. Using the law of quadratic reci-
procity, we can find that 5 is a quadratic residue when p ≡ ±1 (mod 10) and 5 is a
quadratic nonresidue when p ≡ ±3 (mod 10).

Finally, we note that combining Theorem 3 with the fact that ordp(−b) | π(p) sig-
nificantly narrows the possible values of π(p), and can aid with a computer search
for π(p).

Properties of ω(m)

The previous theorem showed how π(p) and α(p) are related to the modulus, p. In this
final section, we consider the relationship between α(m) and π(m), as expressed by
the function ω(m) = π(m)/α(m). One of the most surprising things about the (1, 1)-
Fibonacci sequence modulo m is that ω(m) = 1, 2, or 4, no matter the value of m or
the size of π(m). Generally, however, for a fixed a and b, Theorem 4(a) shows us that
ω(m) can take on infinitely many values as m varies. The following theorem and proof
generalize those found in [12].

THEOREM 4.

(a) ω(m) | 2 · ordm(−b)
(b) π(m) = (1 or 2) · lcm[α(m), ordm(−b)]

Proof. Suppose Uα(m)
≡
[

s 0
0 s

]
. Comparing determinants, we get s2

≡ (−b)α(m).
Raising both sides to ordm(−b) yields s2·ordm (−b)

≡ 1. Since ords(m) = ω(m), part (a)
follows.

For part (b), we note that s2 and (−b)α(m), being congruent modulo m, have the
same multiplicative order modulo m, namely,

ordm(s)

gcd(2, ordm(s))
=

ordm(−b)

gcd(α(m), ordm(−b))
.

Substituting ω(m) for ordm(s) and cross-multiplying yields

ω(m) · gcd(α(m), ordm(−b)) = gcd(2, ω(m)) · ordm(−b).

As a consequence,

ω(m) = (1 or 2)
ordm(−b)

gcd(α(m), ordm(−b))
.

Multiplying both sides of the equation by α(m) produces part (b) of the theorem.

π(m) = ω(m)α(m) = (1 or 2) · lcm[α(m), ordm(−b)].

Theorem 4(a) gives us the interesting result that if b = −1, then ω(m) is always 1
or 2. We saw in the Preliminaries section that α(m) | π(m) and ordm(−b) | π(m), so
it immediately follows that lcm[α(m), ordm(−b)] | π(m); part (b) of the above theo-
rem makes this divisibility relation much more precise. Finally, we note that part (b)
provides a very quick computation of π(m), if α(m) and ordm(−b) are known.

In the a = 1, b = 1 case, ω(pe) = ω(p) for any odd prime p [11, p. 38]. That is, π
and α move in “lock step” with each other: π(pe) = π(pe+1) ⇐⇒ α(pe) = α(pe+1).
Our final theorem shows something similar for the general a, b setting. In the general
setting, however, we find π(pe) = π(pe+1) =⇒ α(pe) = α(pe+1) but the converse
does not hold. Almost always, as e grows, ω(pe) eventually becomes constant.
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THEOREM 5.

(a) Let p be an odd prime. If there exists an e such that α(pe) = α(p), but α(pe+1) 6=

α(p), then ω(pe+i ) = ω(pe) for all i ≥ 0.
(b) If there exists an e such that α(2e) = α(4), but α(2e+1) 6= α(4), then ω(2e+1+i ) =

ω(2e+1) for all i ≥ 0.

Proof. (a) Given α(pe) = α(p) and α(pe+1) 6= α(p), we apply Proposition 1 and
Proposition 2(a) to conclude that α(pe+1) = pα(p). Assume for contradiction that
π(pe+1) = π(pe). Then, applying Proposition 2(b), we find that π(2e+1) = π(p).
Thus,

ω(pe+1) =
π(pe+1)

α(pe+1)
=

π(p)

pα(p)
=
ω(p)

p
.

Therefore, p | ω(p). But by Theorem 4(a), ω(p) | 2 · ordp(−b). Since p is odd,
p | ordp(−b). But this is clearly a contradiction since ordp(−b) | p − 1.

Thus, our assumption was wrong, π(pe+1) 6= π(pe), and so ω(pe) = ω(pe+1) =

ω(pe+2) = · · · .

The proof for part (b) is similar. Given α(2e) = α(4) and α(2e+1) 6= α(4), we con-
clude that α(2e+2) = 4α(4). Assume for contradiction that π(2e+2) = π(2e+1); then
π(2e+2) = π(4). Thus,

ω(2e+2) =
π(2e+2)

α(2e+2)
=
π(4)

4α(4)
=
ω(4)

4
=

1 or 2

4
.

The last equality above is due to inspection: Since ω(2) = 1, ω(4) = 1 or 2. But
ω(2e+2) must be an integer, so a contradiction has been found.

Thus, π(2e+2) 6= π(2e+1), and so ω(2e+1) = ω(2e+2) = ω(2e+3) = · · · .

The hypothesis in Theorem 5, that α(pe) 6= α(p) for some e, is almost always
satisfied. In fact, if α(pe) = α(p) for all e, then we must have Fα(p) = 0 (equality,
not just congruence), a very strong requirement indeed. We previously noted the case
a = 2, b = −4 in which α(pe) = 3 for all positive e, but π(pe) grows as e increases.
In this case, ω(pe) increases without bound.

For the (1, 1)-Fibonacci sequence, we noted that p odd implies ω(pe) is constant
as e grows. In the general a and b situation, more interesting behavior can be ob-
served. Consider again the example a = 76 and b = 56, and observe the behavior of
F (mod 3e) as e increases:

m 3 32 33 34 35 36 37 38

π(m) 6 6 18 54 162 486 1458 4374

α(m) 3 3 3 3 3 3 9 27

ω(m) 2 2 6 18 54 162 162 162

In the above table, we see that ω(3e) is initially constant, and then grows for a few
terms before eventually stabilizing at 162.

We admit that the behavior of ω(pe), when generalized from the (1, 1) case to
the general (a, b) case, loses some of its simple elegance. On the other hand, we are
reminded once again of the many fascinating properties these sequences hold, and our
imagination is stirred to try to understand them even better.
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