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I. Introduction

A sequence of rational integers

(1) «O, «1,  «2,  •   •   ■

is defined in terms of an initial set u0, «i, • • • , Uk-i by the recurrence relation

(2) u„+k + aiUn+k-x + ■ ■ ■ + aku„ = a,  »^0,

where a, ai, a2> ■ ■ ■ , a* are given rational integers. The purpose of this

paper is to investigate the periodicity of such sequences with respect to a

rational integral modulus m. Carmichaelî has studied the period for a

modulus m whose prime divisors exceed k and are prime to ak. In this paper,

I give a solution to the problem without restriction on m. If m is prime to ak

the sequence (1) is periodic from the start; otherwise, it is periodic after a

definite number of initial terms.

Definition 1. We say that w is a general period of the recurrence (2) for

the modulus m if every sequence of rational integers satisfying (2) has the

period -rr (mod m).

Theorem 1.   The minimum period p (mod m) of a sequence (1) satisfying

(2) is a divisor of any general period it (mod m) of (2).

For, since (1) has the period w, ir^p. Suppose p does not divide ir, that

is, 7T = c7p+p, where 0<p<p. Then w¿+í(1+<)=w¿ (mod m), that is, wi+p=w¿

(mod m) and (1) has the period p, which is contradictory.

The algebraic equation

(3) F(x) = x* + aix"'1 +-h ak = 0

is said to be associated with the recurrence (2). We obtain general periods

(mod m) of (2) in terms of the decompositions

(4) F(x) m 4>i(xy*p2(x).<pr(x)" (mod p)

* Presented to the Society, September 11, 1930; received by the editors in August, 1930.
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for the prime divisors p of m, where the #,(x) are prime functions (mod p)

whose degrees we denote by ki.

For the case of periodicity (mod p) it is shown in Section II that we may

choose a polynomial/(x) =F{x) (mod p) so that p is not a divisor of the index*

of/(x) and hence, by the theorem of Dedekind, (4) implies a corresponding

prime ideal decomposition of p in the field generated by a root of /(x) = 0.

General periods of (2) (mod p) are obtained directly from the general solution

of (2) by use of the theorem of Fermât in an algebraic field.

The results for the prime power modulus P" are obtained directly from

those (mod p) by the theorem of Section IV. In Section V the solution for a

composite modulus m is expressed in terms of the solutions for the prime

divisors of m.

The theorems obtained include those given by Carmichael for primes

greater than k. The methods may be readily extended to the study of peri-

odicity for an ideal modulus of algebraic sequences defined by linear recur-

rence relations.

II. Periodicity (mod p)

2.1. It is seen that any change of F{x) (mod p) such that the new poly-

nomial is of degree k with leading coefficient unity does not change the

associated sequences (mod />).  We prove the following lemma:

Lemma 1. We may choose a polynomial f{x)= F{x) (mod p) with the

following properties:

(i) f{x) is irreducible of degree k with leading coefficient unity.

(ii) p does not divide the index off{x).

(hi) If 9 is a root off{x) = 0 and p contains precisely the ath power of a prime

ideal p in K{9), then f {9) contains precisely p"-l+p where p = l or 0 according

as a is or is not divisible by p.

(iv) 1 — 0^0 (mod p2) for any prime ideal divisor $of p in K{9).

If, in (4), e<>l, we write

(5) }i(x) = <j>i(x)« + p(l -M<(x)).

If Cj = 1 we write

(6) Mx) = *,(*) 4- p.

The discriminant of the product

* If 6 is any root of the irreducible equation/(*) — 0, d the discriminant of the field K{6), and D

the discriminant of f(x), then D=*?d, where k is a rational integer which is called the index of 6

or of/(*).
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F(«) = n/i(«)
i=l

is not zero. For the discriminant of each/¿(x) is not zero since the/<(x) are

algebraically irreducible* and the resultant of f{(x) and/,(x) is not zero for

iVy. Suppose the discriminant of P(x) contains precisely p*. We set

(7) /(*) = P(x) + p*+2R(x),

where R(x) is a polynomial of degree k — 1 chosen so that f(x) satisfies the

Eisenstein irreducibility criterion for another prime q. Then/(x) is irreducible

and of degree k with leading coefficient unity.

Since

(8) /(*) = 4>i(x)'«p2(xy' ■ ■ ■ 4>r(x)" + pM(x),

where M (x) ^0 (modd p, <p¿(x)), i = 1, 2, • • • , r, it follows by the criterion of

Dedekind that p is not a divisor of the index of f(x).

Hence, by the theorem of Dedekind, (4) implies the prime ideal decom-

position

(9) p = \>yt> • • • $';, N(Vi) = pk<

in the field defined by a root 8 of f(x) = 0. Furthermore,

(10) Pi = (P, <t>i(e)) (i = 1, 2, • • ■ ,r).

From (10), fj(8) is prime to p¿ for iy^j. Hence, from (7), since f(8) = 0,

fi(8)=0(modpi"is+2>),&nd

(11) f'(0) =- // (8)Q(6) (mod Pi<*«+»),

where Q(8) is prime to p;. Hence f'(8) contains the same power of p< as /,•' (8).

If ei = i,fi'(8) = <pi'(8) is prime to p,-.  If e<>l,

fl(8) = [ei<p.i(8y*-1 + p]<PÍ(8).

But since <pi(x) is a prime function (mod p), cp,-' (8) is prime to p¿. Hence

f'(8) contains p/*' or pi'*'-1 according as e< is or is not divisible by p, and (iii)

is proved.

If F(1)=0 (mod p) we choose <pi(x)=x-l. Then, from (8), /(1)^0

(mod p2). Suppose 1 — 0 = 0 (mod pi2) for some i. We have the contradiction

2V(l-0)=/(l)=O (mod/»2). Hence (iv) is proved. Furthermore, by (10), the

only prime ideal divisor of p which divides 1 — 0 is the ideal p = (p, 0 — 1).

* Cf. Ö. Ore, Zur Theorie der Irreduzibilitätskriterien, Mathematische Zeitschrift, vol. 18 (1923),

p. 287.
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2.2. We shall consider the sequence

(12) v0, vi, »2, • • •

associated with/(x) such that »< = »,-, ¿ = 0, 1, 2, • • • , k — 1. Then v{=Ui

(mod p) for all i. If 9X, 92, ■ ■ ■ , 9k are the roots of/(x) =0, the general term

of the sequence (12) is given by

(13) K - — + ßidf + ß2d? + ■ ■ ■+ ßkdk»,

where the ß,- are algebraic constants, that is, independent of ». If we set

n = 0, 1,2, • • • , k — 1 and insert the initial values v0, vx, ■ ■ ■ , vk-i, on solving

for the ßj we obtain

Lemma 2.   The general term of the sequence (12) is given by (13), where

y¡ ah;
(14) ßj = —^— +---

f'{6,)       (l-0,)f'(B,)

and y,-, S, are integers in K{9,).

2.3. We shall develop some modifications of the theorem of Fermât. Let p

have the decomposition (9) in K{9). If « is an integer of K{9) prime to p,

and Pi = pki — 1, then by the theorem of Fermât

co" = 1     (mod p<) (¿=1,2,..., r),

or
COPi  =1+1,

where nr is an integer in K{9) divisible by pf.   Taking the pth power we have

(16) upP< = 1 (mod pi'i+1) or (mod pip)

according as p>e{ or /»^e¿. Suppose pliSei<p'i+l. Taking successive ^»th

powers of (15) and writing Ei = p'i, we obtain

(17) co^=l (modp*.),

and hence, if oi is prime to p,

(18) upEipi = 1 (mod ri+Ei) or (mod p"¡)

according as ei+p'(<p'i+l or ^pu+1.

2.4. From (4) and Lemma 1, p has the prime ideal decomposition

P = Pu'W ■ ■ ■ Pn", Npa = p"<
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in the field K{9,). Let G denote the Galois field formed by composition of the

fields K{9,),j = l, 2,--,k-l. We have

Lemma 3. The ideals Yii-ipi„ j — 1, 2, • • ■ , k, have a common ideal

divisor ty in G.

For if $ is a prime ideal divisor of p in G, then for each/ there exists an *

such that pa is divisible by 'p.

2.5. Let e denote the maximum e,- in (4) and / the least common multiple

of pki—l,t = l, 2, • • • , r. We consider first the case {ak,p) = l, a = 0 (mod/»).

Then the roots 9¡ are prime to p. If e = 1, the denominators in (14) are prime

to p by Lemma 1. Hence, by (15),

0,< = 1 (mod  ilPi}} (j = 1, 2, • • • , k),

and, by Lemma 3,

»„+, = o„ (mod $) (n = 0, 1, 2, • • ■ ).

Since the vu are rational integers and congruent (mod p) to the «¿, we have

Un+i = un (mod p) (n = 0,1,2, ■• ■ ),

and hence obtain

Theorem 2. // (a*, p) = 1, a=0 (mod /») i» (2) a«¿ e = 1 ¿« (4), /Ae» (2)

Aas the general period I, where e = max e{ in (4) and I is the least common multi-

ple of />*•-l,i = l, 2, • • - ,r.

Consider the case (a*, p) = 1, a = 0 (mod /») and c> 1. From (18) we have

(19) 0/+1< = l (modpn''+l).

Since the denominators in (14) contain at most paei we have the following

theorem:

Theorem 3. If {ak, />) = !, a = 0 (mod p), P'èe<p'+1, e^O, tóe« (2)

has the general period p,+ll.

2.6. We shall now consider the periodicity in the non-homogeneous case

a^O (mod p). If F{l)fáO (mod p) as in Lemma 1, it is seen that 1 — 0,-is

prime to p,j = 1, 2, • • • , ¿.   Hence, as above, we have the following theorem:

Theorem 4. If {ak, p) = l, af£0 (mod p) and F(l)j^0 (mod p), then if

e = l,the recurrence (2) has the periodl;ife>l,the recurrence (2) has the period

p'+H.
Suppose ap=0 (mod p) and F{1) = 0 (mod p). Let cpi(x) =x — 1 and hence

Pa = (P, Oj-l),j = l, 2, ■ ■ ■ , k.   Suppose P'ûe<Pl+l, e = max e>, e = 0.   If
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(e, /») = 1, the denominators in (14) contain at most pi,«*', ¿ = 1, 2, • • • ,f.

Hence it follows from (19) that (2) has the period p*+1l. If p divides eu then

e^l and /»<+1 = ei+2.  Hence (18) gives

tVi+1' = 1 (mod pi,«'+2)

while (19) holds for iVl. But the denominators in (14) contain at most

pi,"*' for i j¿ 1 and p,-,<1+1. Hence we have the following theorem :

Theorem 5. // (ak, p) = l, a^O (mod p) and P'^e<p,+l, then (2) has

the general period p t+1l (mod /») where e = max e, in (4) and I is the [¿east common

multiple of pki-1, * = 1, 2, • • • , r.

We state a corollary of these theorems:

Corollary. If (ak, p) = 1 and p>e then (2) has the general period I (mod p)

when e = 1 and F (1)^0 (mod p), otherwise it has the general period pi (mod/»).

The results of Carmichael for p > k are contained in Theorems 1 to 4.

2.7. We now consider the case where p divides at, that is,/(x) contains the

factor x (mod p). Suppose that/(x) contains precisely x« (mod p), that is,

a*_i=0 (mod p), i = 0, 1, • ■ • , e2 — 1 and ak-e^0 (mod p). We may write

hi=(p, 8¿), j = \, 2, ■ • • , k. Then (p,,-, 0,) = 1 for i*2. Hence 8f=8^
(mod p2,e2) for all ß>e2 while the results of §2.5 hold for the ideals pi,-, »7^2.

Furthermore 1 — 0; is not divisible by p2, and the denominators in (14) con-

tain at most p2,e2. Hence we have the following theorem :

Theorem 6. If p divides ak and the last s coefficients of (2) are divisible by p,

ak-8^0 (mod />), the sequence (1) is periodic (mod p) except for the initial

terms u0, «i, • • • , ««_i, and (2) has the general period given by Theorems 2 to 5

inclusive.

III. Periodicity (mod p).   A second method

3.1. We consider again in this section the periodicity of (2) (mod p)

for (ak, p) = l and a = 0 and obtain an improved result for the case e = p.

Instead of the f(x) of II we consider the associate polynomial

(20) ir(x) =   LT*i(^ei-
¿-1

Let pa,j = l, 2, • • • , ki, be the roots of <pi(x) =0.  Then the general solution

of a homogeneous recurrence associated with (20) is given by

(21) vn = Y, ya   + cu {    J + ■ ■ ■ + cu   Í J Wij.
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If we set » = 0, 1, ■ ■ • , k — 1 and insert the initial terms v0, vx, ■ ■ ■ , vk-i,

it is seen that the determinant A of the coefficients of the c's is precisely a

determinant of Bonolis* whose value is

(22) A = ± [ rW1'9'«'^"] IKflrf - Pyt)'"'-',

where the second product extends over all differences of distinct roots p,-,-,

only one permutation of a given pair being included.  We prove

Lemma 4. If {ak, p) = l, then A is prime to p.

For since {ak, p) = 1, the roots p<, are all prime to p. If a^y, since the

resultant of (pa{x) and <pß{x) is prime to p, the differences paß — pys are prime

to p. If a = y the differences paß — Pai are prime to p since the discriminant of

a prime function <pa{x) is prime to p.

By the theorem of Dedekind, p is a prime ideal of degree kt in the fields

K{pij),j = l, 2, ■ ■ ■ , k.  Hence by the theorem of Fermât

(23) Pif i m 1 (mod p),

where P<=phi — 1. We obtain the following theorem directly from (2) since

the denominators of the c's are prime to p by Lemma 4.

Theorem 7. ¿//» = c and {ak, p) = 1, a = 0, then (2) has the general period I

or pi (mod p) according as e = 1 or e > 1.

The period given by Theorem 7 is less than that of II for the single case

p = e. The denominators in (21) contain, in general, a higher power of p

than those in (14). It is possible, however, that the results of II may be ob-

tained from (21) by an analysis of the minors of A.

IV. Periodicity (mod p")

A A. In this section we prove a theorem which gives a general period of

(2) (mod p") directly from the results already obtained (mod p). Let us

first consider the case {ak, p) = l.  We prove the following lemmas:

Lemma 5. If a non-homogeneous recurrence (2) has the general period ir

(mod m), then t is a period (mod m) of the corresponding homogeneous re-

currence.

For if [«i] is a sequence satisfying (2) for a^O, then [«,•] has the period ir

(mod m). If [ví] is any sequence satisfying (2) for a = 0, then [«, — !»<] is a

sequence satisfying (2) for a=^0. Hence [w¿—z»<] = [w{] has the period x

(mod m). It follows that [«<—Wi] = [v{] has the period ir (mod m).

* A. Bonolis, Sviluppi di alcuni determinanti, Giornale di Matematiche, vol. 15 (1877), p. 133.
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Lemma 6.   // the recurrence (2) has the general period ir (mod p8) then

it has the period pw (mod ^+1), ß = 1«

For, replacing n by n+ir in (2) and subtracting (2), we obtain

(24) (Un+r+k  —  Un+k)   +  ai(un+T+k~l  ~  «n+Jr-O  +  *  '  * +  a*(«n+x  ~  «»)   =0.

Hence, since -k is a period of (2) (mod pB),

(25) Ui = («i+T - m)/? (i = 1, 2, ■ • • )

is a sequence of integers satisfying (2) with a = 0. By Lemma 5, (25) has the

period ir (mod ffi). Consider the subsequence Ui+jr where i is fixed but arbi-

trary and j has the range 0, 1, 2, • • • . The first differences of this subse-

quence and hence the (p — l)th differences are divisible by pP. If Af< denotes

the 7th difference for variable j, we have

(26) &f-lU**i* = Aip«Wíí - 0 (m°d />')•

Hence
[A,^i+iT],_o = 0 (mod/»2*),

that is,
(P\

Ui+pT    —    I l«i+(p_l)T

(27)

+ (P W(p-2), + ••■ + (- l)pWi - 0 (mod/»2").

If /» is odd we may group the terms in (27) and obtain

(Ui+PT - Ui) + (      V«i+(p_i)r - ui+T) + ■ • •

(28) +( )(ui+(p+i)r/2 - «vf(p-i)r/2) = 0     (mod/»2").
\(/> + l)/2/

But the differences on the left are divisible by pß, and the binomial coefficients

are divisible by /». Hence

(29) Ui^pr - Ui = 0 (mod /»"+1).

If p = 2, (27) becomes

Ui+ir — 2ui+T + Mi = 0 (mod p2ß),

or
(m.+2t — Ui) — 2(«i+T — Ui) = 0 (mod 22").

Hence (29) follows for p = 2 and the lemma is proved.

The following theorem is obtained directly from Lemma 6 and is sufficient

to determine a period (mod p ") of (2) from the results (mod p) of II.
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Theorem 8.* If {ak, p) = 1, and the recurrence (2) has the general period

ir (mod p), then it has the general period p"-lir (mod P").

Let e = max e¿ in (4) and I the least common multiple of pk< — 1, i = l, 2,

■ ■ • , r.   We state an immediate corollary:

Corollary. If p>e, then (2) has the general period p"~H or p"l (mod P")

according as e = 1 or e > 1.

4.2. Suppose {ak, p)^l and F{x)sx'Fx{x) (mod p), where Fx{x) does not

contain x (mod />). We have shown in §2.7 that (1) is periodic (mod p) after

s terms.   We shall show by induction that (1) is periodic (mod p") after as

terms. For suppose (2) has the general period ir (mod pß) after ßs terms, ß = 1.

Then (25) defines a sequence of integers for ¿=/3s; namely, Uß„ Uß,+X, ■ ■ ■ .

This sequence has the period ir (mod p) after s terms, that is, for ¿= (84-l)s.

Hence we obtain the congruence (27) for the modulus pß+l for i^{ß+l)s

and as above
Ui+pT - Ui = 0 (mod pt»i), i â (/S + l)s.

By induction we obtain the following theorem :

Theorem.9. If the last s coefficients of (2) are divisible by p, ak-,^0

(mod p), then {1) is periodic (mod P") after as terms and a period (mod p") is

determined by Theorem 8.

V. Periodicity   (mod   m)

Fo: the general rational integral modulus m the following theorem

suffices for obtaining a general period of (2) (mod m) from the previous

results.

Theorem 10. If m=pxmp2m ■ ■ ■ p¡"' the least common multiple L of a

set of general periods X< of (2) (mod piai), i = 1, 2, ■ • • , t, is a general period of

(2) (mod m).

For «n+L=M„(mod piai), i = l, 2, ■ ■ ■ , I, and hence un+L=un (mod m).

We have obtained in this paper general periods of the recurrence (2),

that is, periods of (1) for arbitrary initial values. Whether or not there exists

a set of initial values for which the sequence has the general period obtained

has not been discussed. Furthermore, it is possible that improved results

may be obtained for sequences with special initial values such as the funda-

mental sequences of Lucas.

* For e = \, (at, p) = l, F(1)^0 (mod p), this theorem gives the period p"-H{mod. p"). The

period obtained by Carmichael for the same case with p>k is p"l.
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