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Abstract

This paper describes a class of sequences that are in many ways similar to Fibonacci
sequences: given n, sum the previous two terms and divide them by the largest possible
power of n. The behavior of such sequences depends on n. We analyze these sequences
for small n: 2, 3, 4, and 5. Surprisingly these behaviors are very different. We also
talk about any n. Many statements about these sequences are difficult or impossible to
prove, but they can be supported by probabilistic arguments, we have plenty of those
in this paper.

We also introduce ten new sequences. Most of the new sequences are also related
to Fibonacci numbers proper, not just free Fibonacci numbers.

1 Introduction

John Horton Conway likes playing with the Fibonacci sequence. Instead of summing the
two previous terms, he sums them up and then adds a twist: some additional operation.
John Conway discussed these sequences with the second author and this is how we got
interested in them. The second author already wrote about one class of such sequences
called subprime Fibonacci sequences jointly with Richard Guy and Julian Salazar [3]. Here
we discuss another variation called n-free Fibonacci sequences.

An n-free Fibonacci sequence starts with any two integers: a; and a,. After that it is
defined by the recurrence aj, = (ar_1 + ap_2)/n, where n' is the largest power of n that is a
factor of aj_; + aj_s.

It appears that many other people like twisting Fibonacci sequences. After we started
working on this paper and made our calculations we checked, as everyone should, the On-
Line Encyclopedia of Integer Sequences (OEIS [1]) and discovered that some n-free Fibonacci
sequences were already submitted by three other people. Surprisingly, the first sequence
submitted was the sequence of 7-free Fibonacci numbers (A078414) entered by Yasutoshi
Kohmoto in Dec 2002. After that the sequence of 5-free Fibonacci numbers (A214684) was
submitted by John W. Layman in Jul 2012. It followed by the sequence of 4-free Fibonacci
numbers (A224382) submitted by Vladimir Shevelev in Apr 2013. As the reader will see
very soon 2-free and 3-free Fibonacci numbers do not constitute new sequences. We filled
the gap and submitted 6-free Fibonacci numbers (A232666) in Nov 2013.
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In Section ] we introduce useful facts about Fibonacci numbers. In Section [B] we show
that all 2-free sequences end in a cycle of length 1. The 3-free Fibonacci sequences are
much more complicated and we study them in Sectiond All our computational experiments
ended in a cycle of length 3. On the other hand, we show that 3-free sequences may contain
arbitrary long increasing substrings. We prove this in Section [l Nevertheless, we give a
probabilistic argument that a 3-free sequence should end in a cycle in Section [l

The 4-free Fibonacci sequences are vastly different from 2-free and 3-free sequences (Sec-
tion[6). We did not find a sequence that ends in a cycle: all of them grow in our experiments.
The proof that all of them grow seems intractable, but we supply a probabilistic argument
that this is the case. Yet 5-free sequence bring something new (see Section [7]). They contain
sequences that are never divided by 5 and provably grow indefinitely. At the same time
5-free sequences contain cycles too.

We continue with Section [§] where we find other numbers n that provide examples of
sequences that never need to be divided by n. Now we wonder where the cycles disappeared
to and discuss there potential properties in Section @

We finish with a discussion of our computational results. Section [I0 explains why the
average growth for some n-free sequences is close to the golden ratio and Section [LT] explains
the growth behavior for other values of n.

2 Fibonacci Numbers and n-free Fibonacci Sequences

Let us denote Fibonacci numbers by Fj. We assume that Fy = 0 and I} = 1. The sequence
is defined by the Fibonacci recurrence: F, 1 = F,, + F,_1 (See A000045). We call an integer
sequence a, Fibonacci-like if it satisfies the Fibonacci recurrence: a, = ap_1 + ax_2. A
Fibonacci-like sequence is similar to the Fibonacci sequence, except it starts with any two
integers. The second-famous Fibonacci-like sequence is the sequence of Lucas numbers L;
that starts with Lo =2 and L; = 1: 2,1, 3,4, 7, 11, ... (See A000032).

An n-free Fibonacci sequence starts with any two integers: a; and ao and is defined by
the recurrence aj, = (ax_1 + ar_2)/n’, where n’ is the largest power of n that is a factor of
ap_1+ ap_s. To continue the tradition we call numbers in the n-free Fibonacci sequence that
starts with ap = 0 and a; = 1 n-free Fibonacci numbers.

In the future we will consider only sequences starting with two non-negative integers. It is
not that we do not care about other starting pairs, but positive sequences cover all essential
cases. Indeed, if we start with two negative numbers we can multiply the sequence by —1
and get an all-positive sequence. If we start with numbers of different signs, the sequence
eventually will become the same-sign sequence.

If we start with two zeros, we get an all-zero sequence. So we will consider only sequences
that do not have two zeros at the beginning. Note, that a non-negative sequence can have a
zero only in one of the two starting positions, never later.

The n-free Fibonacci sequence coincides with the Fibonacci-like sequence with the same
beginning until the first occurrence of a multiple of n in the Fibonacci-like sequence.

Given a positive integer m > 1, the smallest positive index k for which n divides the k-th
Fibonacci number Fj, is called the entry point of m and is denoted by Z(m) (see sequence
A001177 of Fibonacci entry points). For example, Z(10) = 15 and the 10-free Fibonacci



numbers coincide with the Fibonacci numbers for indices < 15.
Now that all the preparation is done, let us take a closer look at the simplest n-free
Fibonacci sequences: 2-free Fibonacci sequences.

3 2-free Fibonacci Sequences

Consider some examples. The sequence that starts with 0, 1 continues as 1, 1, 1, .... The
only two 2-free Fibonacci numbers are 0 and 1. The sequence eventually stabilizes, or in
other words, turns into a cycle of length 1. Let us look at other starting points. The sequence
that starts as 1, 2 continues as 3, 5, 1, 3, 1, 1, and stabilizes at 1. This sequence turns into
the same cycle. The sequence that starts as 100, 220, continues as, 5, 225, 115, 85, 25, 55,
5,15, 5, 5, 5, and stabilizes at 5. It turns into a different cycle, but the length of the cycle
is again equal to 1.

Lemma 1. Every 2-free Fibonacci sequence eventually turns into a cycle of length 1: x, x,
x, ..., for an odd x.

Proof. 1t is clear that after the second term all elements of the sequence are odd. Consider
the maximum of the two consecutive terms of the sequence: my = max{ax,ar_1}. If two
consecutive terms aj_1, a, of the sequence are odd and not equal to each other, then the
maximum decreases: my1 < my. Hence, the sequence has to stabilize. O

It follows from the proof that for a sequence starting with a;, as the number of steps
until the cycle is reached is not more than max{a, as}. On the other hand, the subsequence
before the cycle can be arbitrary long. It follows from the following lemma.

Lemma 2. For any two odd numbers ay, as, a preceding odd number ag can be found so that
ag, ay, and as form a 2-free Fibonacci sequence.

Proof. Pick a positive integer k so that 2¥a, > a; and set ao to be equal to 2¥ay — a;. ]

There are many ways to build predecessors to a given 2-free Fibonacci sequence. The
minimal such sequence is built when we choose the smallest power of 2 that still allows us to
have positive members in the sequence. We explicitly build such an example starting with
a; = 3, and as = 1. Reversing the indexing direction we get: 1, 3, 1,5, 3,7, 5,9, 1, ...,
which is now sequence A233526.

Next, we want to continue with 3-free Fibonacci sequences. Are they as simple as 2-free
sequences?

4 3-free Fibonacci Sequences

Let us look at 3-free Fibonacci sequences. Consider an example of 3-free Fibonacci numbers:
0,1, 1,2, 1, 1, 2, and so on. The sequence turns into a cycle of length 3. There are only 3
different 3-free Fibonacci numbers.

We can multiply a 3-free sequence by a number not divisible by 3 to get another 3-free
sequence. Thus, in general we can get cycles of the form k, k, 2k, where k is not divisible
by 3.



Lemma 3. Any cycle of length 3 in a 3-free Fibonacci sequence is of the form k, k, 2k.

Proof. Consider the length 3 cycle a, b, c. From the definition of 3-free Fibonacci sequences,
we know the following relations:

a+b=3"
b+c=3% (1)
¢+ a=3°D. (2)

Furthermore, no term in the sequence is divisible by 3. Then, by the pigeon-hole principle,
at least two of the terms a, b, c must be congruent modulo 3. Without loss of generality, take
a = b (mod 3). Then a+0b # 0 (mod 3), so we have that = 0 and a+b = ¢. Now substitute
for ¢ and add equations () and (2)) to get that a +b = 3Y"'a + 3*~'b. Since 3 { a + b, either
y=1orz=1. Ify =1, then b = 3*7!b, hence z = 1. Similarly, 2 = 1 implies y = 1. In
either case, y = z = 1. Then we may solve for our initial variables to show that a = b and
¢ =a+b. Restated, a =k, b =k, and ¢ = 2k. O

Corollary 4. The number k in the cycle is the greatest common divisor of the sequence.

Proof. Because of the Fibonacci additive property, if any number divides two or more ele-
ments of the sequence (excluding the first two, which may be divisible by 3), it must divide
all numbers in the sequence. Thus, k£ must divide every element. The least of these elements,
then, can only be k itself, making it the greatest common divisor. O

Will it be the case that all 3-free Fibonacci sequences end in cycles of length 37 We will
build suspense by delaying this discussion, meanwhile we have a lemma about the length of
any potential cycle:

Lemma 5. Any cycle in a 3-free Fibonacci sequence is of length 3n for some integer n.

Proof. Begin with any 3-free Fibonacci sequence, and divide out the highest power of 2 in
the GCD of all its elements. The resulting sequence is a 3-free Fibonacci sequence with at
least one odd element. It is clear that dividing or multiplying any number by 3 does not
change its parity. Thus, any sequence, regardless of how many factors of 3 are divided out
from each term, will have the same underlying structure in its parity. Since we have reduced
the sequence to the point where there exists at least one odd number, we know that the
sequence reduced modulo 2 must be congruent to 1, 1, 0, 1, 1, 0. Only cycles of length 3n
are permitted in this structure, and therefore permitted in 3-free sequences. O

We checked all the starting pairs of numbers from 1 to 1000, and all these sequences end
in a 3-cycle.

The 3-free Fibonacci sequences are in many ways similar to the notorious Collatz se-
quences [5], for which it is still not known if every sequence eventually cycles. We do not
expect that it is easy to prove or disprove that ever 3-free Fibonacci sequence ends in a cycle.
On the other hand, it is possible to make probabilistic arguments to support different claims
about free Fibonacci sequences.



Here is the base of the argument. Suppose we encounter a number in a sequence that is
divisible by 3, then after removing all powers of 3, let us assume that the resulting number
has the remainder 1 modulo 3 with probability 1/2. If the sum of two consecutive terms in
a sequence is large and divisible by 3, then we also assume that this number is divisible by
3% with probability 1/3%~1,

How often do we divide by 3 in a 3-free Fibonacci sequence? The following lemma is
obvious.

Lemma 6. In a 3-free Fibonacci sequence the division happens for every term or for every
other term.

In other words, we can not have a subsequence of length 3 such that each term is the
sum of the previous two terms. We want to study two polar cases first: stretches where we
divide every term and stretches were we divide every other term.

We will call a subsequence of a 3-free Fibonacci sequence where we divide at each step
a division-rich subsequence. Conversely, we will call a subsequence of a 3-free Fibonacci
sequence where we divide at every other step a division-poor subsequence.

Lemma 7. There exist arbitrary long division-rich subsequences.

Proof. The proof is done by explicit construction. Consider the definition of a division-rich
subsequence. In this case, we divide by a power of 3 after every addition step, so that
3" - a, = ap_1 + an_o for i, > 0. Equivalently, a,_» = 3" - a,, — a,_;. Thus, by choosing
a, and a,_1, and selecting a sequence {i,,} that satisfies this relationship, the sequence can
easily be constructed backwards. Our only requirements are that every term of the sequence
is positive, and every step contains a division, so it will suffice to construct a sequence {i,,}
such that 3 - a,, — a,_; > 0 and i,, > 0 for all n. O

As an example, let us begin with a,, = 1, a,_1 = 1. At each step let us choose the smallest
possible power for ¢,,. Then i,, = 1 satisfies our inequality for the first step, and a,,_o = 2.
Continuing, 7,,_; = 1 satisfies the inequality for the next step, yielding a,_3 = 1. Next,
in_o = 1 and a,_3 = 1, followed by i,,_3 = 2 and a,,_4 = 5. Reading the sequence backwards
we get: 1, 1,2, 1,5, 4,11, 1, 32, 49, .... This is now sequence A233525 in the OEIS [I].
when read forward, this sequence is a 3-free sequence containing eight divisions in a row.
The process can be continued to arbitrarily many terms for arbitrarily many consecutive
divisions.

The growth bound for division-rich subsequences is estimated by the following lemma.

Lemma 8. For a division-rich subsequence: max{aski1, o2} < 2max{as,_1,a}/3.

Proof. We can estimate that aggy1 < (agx—1 + a2i)/3 < 2max{agy_1,as}/3 and aggie <

(aok + aspy1)/3 < bmax{agg_1, a9 }/9 < 2max{agg_1, ask}/3. O

So we can expect that with probability 1/2" there would be a subsequence of length 2n,
where the maximum of the next two terms does not exceed the maximum of the previous two
terms by 2/3. Clearly it cannot go down forever. We need to start with very large numbers
to get a long stretch of a division-rich subsequence.



Lemma 9. There exist arbitrary long division-poor subsequences.

This proof is more complicated than the previous one, so we will do it together with a
proof of a more powerful theorem in next Section [l

Lemma 10. If we index a division-poor subsequence in such a way that division happens on
the odd term, then all the even terms form an increasing subsequence: sy > Qog_o.

Proof. As every even term is the sum of the previous two terms we get: aor = ao_1+agx_o >
ak—2. ]

That means that both division-rich and division-poor subsequences can not form a cycle.
In particular, it means we can have sequences of arbitrary length without entering a cycle.

We showed that there exist 3-free Fibonacci sequences that have long increasing sub-
sequences. Still, we want to present a probabilistic argument that any 3-free Fibonacci
sequence ends in a cycle.

According to our probabilistic assumptions we divide either every term or every other
term with the same probability 1/2. So on average we divide on every 1.5 step. But for how
much we divide on average?

Lemma 11. On average we divide by 3%/2.

Probabilistic Argument. Now we want to use the fact that when we divide by a power of 3
we on average divide by more than 3. If the number is large, we divide by 3 with probability
2/3, by 9 with probability 2/9 and so on. So the average division is by

32/3.92/9 97227 .

We can say it differently. We can say that we divide by 3 with probability 1 and additionally
we divide by 3 more with probability 1/3, and by 3 more with probability 1/9, so the result
is 3 to the power

1+1/34+1/9+1/27+1/81+...=3/2.

Since the above sum is equal to 3/2, every time we divide, we on average divide by 332, [

Notice that the average number we divide by is approximately 5.2 which is more than 5.

Let us build a probabilistic sequence that capture some of the behavior of 3-free Fibonacci
sequences. We start with two numbers a; and as and flip a coin. If the coin turns heads we
add the next number a3 = (a; + as)/5 to the sequence. If the coin turns tails we add two
more terms: az = a; +ag and ay = (az+as)/5 to the sequence. Then repeat. We expect that
this sequence on average grows faster than 3-free Fibonacci sequences, because we divide by
a smaller number.

Now we want to bound the maximum of the last two terms of this probabilistic sequence
after two coin flips. Let M = max{ay, as}. We have the following cases:

e After two heads, the sequence becomes: ai, as, (a1 + a2)/5, (a1 + 6as2)/25. The last
two terms do not exceed 2M /5.



o After head, tail, the sequence becomes: ay, as, (a1 +az)/5, (a1 +6as)/5, (2a; 4+ 7as)/25.
The last two terms do not exceed 7M/5.

e After tail, head, the sequence becomes: ay, as, ay + as, (a1 + 2a2)/5, (6a; + Tas)/25.
The last two terms do not exceed 3M/5.

o After two tails the sequence becomes: ay, as, a; + ao, (a1 + 2a9)/5, (6a; + 7as)/5,
(Tay 4+ 9as)/25. The last two terms do not exceed 13M /5.

As each event happens with the same probability 1/4, the average growth after 2n coin
flips is (2 -3 -7 - 13)1/4/5, which is below 0.97. So the overall trend for this sequence is to
decrease.

Based on our computational experiments and probabilistic discussions above we conjec-
ture:

Conjecture 12. Any 3-free Fibonacci sequence ends in a cycle.

So 2-free Fibonacci sequences provably end in a cycle, 3-free sequences conjecturally
end in a cycle. Will 4-free Fibonacci sequences end in cycles too? Before discussing 4-
free Fibonacci sequences, we want to make a detour and prove the promised result that
an arbitrarily long division-poor sequence exists (See Lemma [) as a corollary to a much
stronger and a more general theorem.

5 Customized-division subsequences

We promised to give a proof that there exist arbitrary long division-poor sequences that are
3-free Fibonacci sequences. Now we want to prove a stronger statement. We want to allow
any n and show that we can build a customized n-free Fibonacci sequence that will have a
division by a prescribed power of n with the prescribed remainder.

Let us correspond to any n-free Fibonacci sequence the list of numbers by which we
divide at every step. We call this list a signature. For example, a 3-free sequence 5, 4, 1, 5,
2, 7, 1, has signature *, *, 9, 1, 3, 1, 9. We placed stars at the first two places, because we
do not know the preceding members of the sequence and, hence, do not know the powers.

Given an n-free Fibonacci sequence with a given signature and a given set of remainders,
we can build many other sequences with the same signature and the set of remainders.

Lemma 13. Suppose an n-free Fibonacci sequence si starts with ay and as that are not
divisible by n and the product of the numbers that we divide by while calculating the first
k terms is strictly less than n™. Consider an n-free Fibonacci sequence so that starts with
by = a1 + din™ and by = as + don™ for any integers dy and dy. The first k terms of both
sequences have the same signature and the same set of remainders modulo n.

Proof. The initial terms of both sequences have the same remainders modulo n™. Hence
their sums have the same remainders. The first time we need to divide, we divide by the
same power of n, say my, and the result will have the same remainders modulo n™~ ™. The
next time we divide, the result will have the same remainders modulo n™~™~™2 And so
on. When we complete the subsequence, all the remainders will be the same modulo n. [
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This lemma allows us to find a positive sequence with a given signature if we already
found a sequence that might not be all positive.

Corollary 14. If there exists some finite n-free Fibonacci sequence with a given signature
and a set of remainders, then there exists a sequence with the same signature and remainders
such that every term is positive.

Proof. Adjust the initial terms according to Lemma [I3] O

We say that a finite sequence of remainders r; modulo n and a finite signature of the
same length match each other, if the signature has a positive power of n in place k if and
only 7,_o + 1,_1|n. We call a sequence of remainders modulo n legal if ry_o + 151 = 1%
unless 7,5 + 7x_1|n. Non-legal sequences can not be sequences of remainders of an n-free
Fibonacci sequence.

Theorem 15. Given a legal finite sequence of remainders and a matching signature, there
exists an n-free Fibonacci sequence with the given sequence of remainders and signature.

Proof. By Lemmal[I3lit is enough to find such a sequence that does not need to have positive
terms. We can produce such a sequence by building it backwards, similar to what we did in
Lemma [7 O

Corollary 16. There exist arbitrary long division-poor 3-free Fibonacci subsequences.

Let us build an example of a division-poor 3-free sequence, where each division is by
exactly 3. Begin with a, = 1, a,—; = 1, and build a sequence that is not necessarily all-
positive. That means we will have a,_or = 3@, 212 — @n_okr1 and a,_op_1 = 3ap_oks1 —
a,_9r. Here are several terms: —8, 7, —1, 2, 1, 1. For a positive version we need to add
3% to —8, as outlined in Lemma [[3] as we had two divisions by 3. The adjusted all-positive
division-poor sequence is 19, 7, 26, 11, 37, 16.

6 4-free Fibonacci sequences

Consider the 4-free Fibonacci sequence starting with 0, 1. This sequence is A224382: 0, 1,
1,2,3,5,2,7,9,1, 10, 11, 21, 2, 23, 25, .... It seems that this sequence grows and does not
cycle.

In checking many other 4-free Fibonacci sequences, we still did not find any cycles. The
behavior of 4-free sequences is completely different from the behavior of 3-free sequences.

For 3-free sequences we expected that all of them cycle. Here it might be possible that
none of them cycles.

Before making any claims, let us see how these sequences behave modulo 4.

Lemma 17. A 4-free Fibonacci sequence contains an odd number.

Proof. Suppose there exists a 4-free Fibonacci sequence containing only even numbers. Then
ignoring the initial terms, all the elements of the sequence equal 2 modulo 2. Therefore, we
divide by a power of 4 every time. This cannot last forever. !



Lemma 18. After the first occurrence of an odd number, a 4-free Fibonacci sequence cannot
have two even numbers in a row.

Proof. Start with the first odd number. The steps that do not include division generate a
parity pattern: odd, odd, even, odd, odd, even and so on. So there are no two even numbers
in a row. That means we can get a multiple of 4 only after summing two odd numbers. We
might get an even number after the division, but the next number must be odd again. [

Let us analyze the 4-free Fibonacci sequences probabilistically, similar to what we did
for n = 3.

Lemma 19. An average division is by a factor of 4*/® ~ 6.35.

Proof. When we divide, we divide by 4 with probability 1, additionally with probability 1/4
we divide by 4 more, and so on. So the result is 4 to the power

1+1/4+1/16+...=4/3.

O

How often on average do we divide? Let us assume that we passed stretches of all even
numbers. Each time we divide after that, the previous two numbers are odd. After the
division, the remainder is 1, 2, or 3. So the following six cases describe what happens after
the division:

Lemma 20. Ifa =1 (mod ) and b = 3 (mod 4), then the following set of remainders might
happen until the next division:

o [;
e 2, 1,35
e 3 2 1,3

Ifa =3 (mod 4) and b =1 (mod /), then the following set of remainders might happen until
the next division:

o 3
e 2.3 1;
e 1,2 3 1.

Lemma 21. The average number of steps between divisions is 8/3.

Probabilistic argument. We assume that during the division each remainder is generated
with probability 1/3, so the stretches of length 1, 3, and 4 between divisions are equally
probable. O



We want to build a probabilistic model that reflects some behavior of 4-free Fibonacci
sequences. Let us denote the average factor by which we divide by x. In this model, we simply
divide by x each time we need to divide. The sequence stops being an integer sequence, but
we artificially assign a remainder mod 4 to every element of the sequence to see when we
need to divide. We want to show that our model sequence grows with probability 1.

First, we want to estimate the ratio of two consecutive numbers in the model sequence.

Lemma 22. If a and b are two consecutive numbers in the model sequence, starting from

index 3, then b > a(f:;)x and a > bl%x.

Proof. Let v be the element before a. Then b > (a+v)/x > a/x. Analogously, b < a+v, and
by the previous sentence, xa > v. Therefore, b < a(1 + z), which means that /(1 + x) < v.
Plugging this back into b > (a +v)/x, we get b > a(2+ z)/(1 + x)z. O

Now we are ready to prove the theorem:
Theorem 23. In our probabilistic model, a sequence grows with probability 1.

Proof. Suppose we have two consecutive numbers in the sequence a and b whose sum is
divisible by 4. By Lemma 2] we have 1, 3, or 4 terms until the following division with the
same probability. That is, the following continuations until the next division are equally
probable:

e a, b (a+b)/x.
e a, b (a+b)/x, (a+ (x+1)b)/x, (2a+ (z + 2)b)/x.
e a b (a+b)/x, (a+ (x+1)b)/z, (2a + (x 4+ 2)b)/z, (3a + (22 + 3)b) /.

If b > a, then the maximum of the last two terms is: b, (2a+ (z+2)b)/z, and (3a+ (2z+
3)b)/x correspondingly. Adjusting for the fact that a > by~ (see LemmaR2)), the maximum
of the last two terms is at least b, b((z + 2) +2/(x 4+ 1))/x, and b((2z + 3) +3/(x + 1))/«
correspondingly. We want to estimate the ratio of the maximum of the last two terms to

max{a, b}. Counting probabilities we get the following lower bound for the ratio

13 ((x42)+2/(x+ 1) /2)Y3 (22 + 3) + 3/(x + 1)) /z)"3 = 1.51023.

If b < a, then the maximum of the last two terms is at least (a +b)/x, (2a + (z +2)b)/z,
or (3a + (2 + 3)b)/z, respectively. Using b > a-2t2— from Lemma B2, we get that the

(1+z)z
24242 2x% 46244 522410246
(1+z)z? >

maximum of the last two terms is at least a i O )z > Or @
Counting probabilities, we get that the maximum is multiplied by at least

respectively.

1/3 1/3

242 213302 4 6y + 43522 £ 102 + 6
+2x+x x° + bx + x° + 10z + — 0.453822.

(14 x)a? (14 x)a? (1+ z)x?

Notice that if we have 3 or 4 terms until the next division, then the last two terms before
the division are in the increasing order. That means the case when b < a is at least twice less
probable, so the average growth is at least the cube root of 1.510232 - 0.453822 = 1.03507,
which is greater than 1. O
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The result is greater than 1, which means that our model sequence does not cycle all the
time. Therefore, extending the argument to 4-free sequences, we can safely say that 4-free
sequences do not cycle all the time. Taking our computational experiments and our intuition
into account we are comfortable with the following conjecture:

Conjecture 24. With probability 1 a 4-free Fibonacci sequence does not cycle.

So 4-free Fibonacci sequences do not cycle. If n grows will it mean that n-free Fibonacci
sequences for n > 4 will not cycle either?

7 b5-free Fibonacci sequences

Let us look at the Lucas sequence modulo 5: 2, 1, 3, 4, 2, 1 ... and see that no term is
divisible by 5. Clearly, no term in the Lucas sequence will require that we factor out a
power of 5, and the terms will grow indefinitely. Thus, the Lucas sequence is itself a 5-free
Fibonacci sequence. This is something new. We do not need a probabilistic argument to
show that there are 5-free Fibonacci sequences that do not cycle.

On the other hand, it becomes quickly evident that the sequence of 5-free Fibonacci
numbers: 0, 1. 1, 2,3, 1,4, 1, 1, 2, ... (see A214684) cycles. Some sequences cycle, and
some clearly do not!

But how often will we come upon a sequence that grows indefinitely? To answer this
question, let us look at a couple of terms from a few sequences of Fibonacci numbers modulo
5. Begin with 1,1,.. ., to obtain the sequence

) Y Y Y )

) Y Y Y )

0
I
W = N
DN >~ W
o O O

2,24, 1,0,

and so on. We write it like this for clarity: at the end of each line, the last term is
divisible by 5. In particular, the table above shows that Z(5)—the entry point of 5—is 5.
Furthermore, since 5 is prime, we could know beforehand that each of these lines would be
the same length. We simply had to start with the line beginning 1,1, ..., and multiply each
term by 2, then 3, then 4. Clearly no term in the line could become 0 after the multiplication
(except, of course, 0 itself), since there are no two non-zero numbers that multiply to zero
in a field. Buy the way, the sequence of Fibonacci entry points for primes is A001602.

There were exactly 5 — 1 = 4 lines, and 5 elements (and therefore, 5 consecutive-element
pairs) in each line, for a total of 20 pairs. But, excluding (0, 0), there are 5> — 1 = 24
possible pairs! Thus, our 4 extra pairs must have gone into another cycle. This cycle could
not contain any multiple of 5, and therefore serves as a witness that non-cyclic sequences
exist in some 5-free Fibonacci sequence. There many books and paper about Fibonacci
numbers and Lucas numbers, we mostly used [4 [6] for reference. This argument shows what
we already know: that a Fibonacci-like sequence that does not contain multiple of 5 exists.

We see that there is a strong connection between free Fibonacci sequences and proper
Fibonacci sequences. Maybe we can study entry points of Fibonacci sequences to see if the
story with 5 repeats for some other numbers.
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8 Division-Free n-Free Fibonacci Sequences

Let us call an integer n a Fibonacci omni-factor if any Fibonacci-like sequence contains a
multiple of n. We just saw that 5 is the smallest integer that is not a Fibonacci omni-factor.
If a number n is not a Fibonacci omni-factor, then there exists a Fibonacci-like sequence
that is at the same time an n-free Fibonacci sequence.
Prime omni-factors can be found with the help of the following well known lemma.

Lemma 25. A prime p is a Fibonacci omni-factor if and only if Z(p) =p+ 1.

Proof. Consider a section of the Fibonacci sequence modulo p before the entry point. Mul-
tiply this subsequence by any other remainder modulo p. A prime p is not an omni-factor if
there are fewer than p? — 1 total elements in all the lines of the Fibonacci sequences begin-
ning with £, %, ... modulo p. Then, as all lines are the same length as that beginning with
1, 1, ... (that is, the start of the Fibonacci sequence proper), it will suffice to show that
(p—1)-Z(p) <p*—1,0r Z(p) <p+ 1. O

It is clear that Z(p)(p — 1) + 1 can not be more than p?. Hence we just proved a well
known fact:

Corollary 26. For every prime p, Z(p) < p—+ 1.

Examples of primes that are not omni-factors include 5, which divides Fj, 11, which di-
vides Fip, and 13, which divides F;. The corresponding sequence is now sequence A230359.
Omni-factor primes are the primes p such that any Fibonacci-like sequences contains multi-
ples of p. This sequence is A000057. By the way it is not known whether the latter sequence
is infinite [2].

The entry points can be defined not only for primes, see sequence A001177 of Fibonacci
entry points. For a composite number n the relationship between the entry point Z(n) and
the existence of Fibonacci-like sequences not divisible by n is slightly more complicated.
But it is possible to check computationally if the sequences that start with zero and another
number contain all possible pairs of remainders. The sequence of Fibonacci omni-factors, that
is of numbers n such that any Fibonacci-like sequences contains multiples of n is A064414.
Correspondingly the numbers n such that there exist a Fibonacci-like sequence without
multiples if n is the complement of A064414. It is now sequence A230457. It starts as 5, 8,
10, 11, 12, 13, 15. The first composite number in the sequence is 8.

Lucas numbers again is a sequence that does not have multiples of 8. Lucas numbers
provide examples for many numbers, namely for the numbers that they do not divide. These
numbers are represented by the sequence A064362. Thus, Lucas numbers provide examples
for 10, 12, 13, 15 and so on in addition to 5 and 8.

The smallest number that Lucas numbers does not provide an example for is 11. For 11,
we can start with 1 and 4, to get the sequence A000285: 1, 4, 5, 9, 14, 23, 37 and so on.
This is a Fibonacci-like sequence that is never divisible by 11.

All non-omni-factors that are not factors of the Lucas numbers are: 11, 18, 19, 22, 29, 31,
38, 41, 44, 46, 47, 54, 58, 59, 62, 71, 76, 79, 82, 94 and so on. This sequence is the A230457
sequence intersecting with factors of Lucas numbers: sequence A065156. It is now sequence
A232658. Given that A064362 (Numbers n such that no Lucas number is a multiple of n)
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is the complement of A065156, the new sequence can be defined as the sequence A230457
from which the numbers from A064362 are removed.

Here we found many sequences that are Fibonacci-like and are not divisible by some
number n. They provide an example of infinitely growing n-free sequences. Moreover, the
division never happens.

Will we ever see more cycles?

9 Other Cycles

For n = 2 every sequence ends in a cycle of length 1. For n = 3 every sequence we checked
ended with a cycle of length 3. For n = 4 we did not find any cycles at all.

So far we found an example of a 5-free Fibonacci sequence that need not ever be divided
by 5. We also found a cycle: 1, 1, 2, 3, 1, 4. Are there other cycles? We know that we
can multiply a 5-free Fibonacci sequence by any number that is not divisible by 5 to get
another 5-free Fibonacci sequence. Thus, we have many other cycles among 5-free Fibonacci
sequences: 2, 2, 4,6, 2, 8, and 3, 3,6, 9, 3, 12, and so on.

In general, we can multiply an n-free sequence by a number coprime with n to get
another sequence. Also, a more subtle statement is true. if we multiply an n-free sequence
by a number not necessary coprime with n but the result does not contain multiples of n,
then the result of the multiplication is an n-free sequence.

If all the elements of an n-free sequence are divisible by a number m, we can divide the
sequence by m to get another n-free sequence. We would like to point out that m does not
need to be coprime with n. This warrants a definition. Call a cycle primitive if its terms are
coprime. As we just explained the following lemma is true.

Lemma 27. Any cycle can be divided by an integer to become a primitive cycle.

All the primitive cycles we found so far contained only numbers below n. There is no
reason why this property should hold for any cycle. For example, here is another primitive
cycle of 5-free Fibonacci sequences: 4, 3, 7, 2, 9, 11, 4, 3.

Though we did not find any more cycles, in case they exist, we can prove some of their
properties.

Take, for example, Lemma [Bl where we used parity to prove that any 3-free Fibonacci
cycle has length that is a multiple of 3. We can replace 3 by any odd number in Lemma
to get the following lemma.

Lemma 28. The length of an n-free Fibonacci cycle is divisible by 3 for odd n.

It is not surprising that all the 5-free Fibonacci cycles that we found so far has length 6.

There is no reason we should restrict ourselves with parity: remainders of Fibonacci
numbers modulo 2. The Fibonacci sequence modulo n is periodic. The period is called
Pisano period and is denoted as m(n). The sequence of Pisano periods is A001175. Pisano
periods for prime numbers are outsourced into A060305.

For example Fibonacci numbers modulo 3 form a cycle of length 8: 0, 1, 1, 2, 0, 2, 2, 1.
We can generalize Lemma [B] to any prime number.
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Lemma 29. The length of an n-free Fibonacci cycle is divisible by w(p), where p is a prime
factor of n — 1.

Proof. Any cycle has the same length as a primitive cycle. Dividing by n or its power does
not change a remainder modulo p as n = 1 (mod p). All non-trivial Fibonacci cycles modulo
p are of the same length m(p). So the primitive n-free Fibonacci cycle modulo p has to be a
multiple of 7(p). O

For example, any 4-free Fibonacci cycle, if it exists, is of length 8k for some k. This is
due to the fact that 4 =1 (mod 3) and 7(3) = 8.
The following theorem immediately follows.

Theorem 30. Let p; be prime factors of n—1. Then the cycles in n-free Fibonacci sequences
are of a length divisible by ged(m(p;)).

We studied cycles, but we actually do not expect many of them, as we expect the n-free
Fibonacci sequences to grow faster for larger n.

As the number n grows, the multiples of n are more spread apart in the Fibonacci
sequence, that means the division happens more rarely. We think that the increase in the
number by which we divide is less pronounced than the fact that the divisions are more
spread apart.

In the next Section we look at computational results and make probabilistic arguments
to show that for n > 3 cycles should appear very rarely.

10 Growth in Division-Free Sequences

We ran several experiments. In our first experiment we did the following:

For each n we built 10000 random n-free Fibonacci sequences of length 500. Namely, we
picked initial terms of each sequence as two random numbers between 1 and 1000. Then we
averaged each term and found the best approximation for the exponential growth. We did
this 5 times to confirm consistency of the exponents. That is, we approximated the m-th
term of the n-free Fibonacci sequence as g(n)™, where g(n) is described by the following
sequence starting from n = 4: 1.32, 1.61, 1.42, 1.34, 1.61, 1.4, 1.61, 1.61, and so on. We did
this for n up to 50.

Our experimental results showed that for n for which division-free n-free Fibonacci se-
quences exist the growth is the same and it is about 1.61. Can we explain this? Let us take
a closer look at the smallest such n: 5.

Consider an arbitrary 5-free Fibonacci sequence. When we divide by a power of 5 at some
point we may crossover to a division-free sequence. If we ever get two consecutive remainders
as in the Lucas numbers: 2, 1, 3, 4, 2, and so on, we will never divide by a power of 5 again.
Notice that the Lucas numbers modulo 5 cycle. The cycle has length 4 and contain every
remainder exactly once.

That means if the number in the sequence before division has remainder r, then we
crossover into a division free sequence when the next number is congruent to exactly one
out of possible four remainders modulo 5: 1, 2, 3, or 4. Consider for example the sequence
starting with 1, 6. It continues to 7, 13, 4, and from here we would never divide by 5 again.
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Assume that the remainder after the division is chosen randomly with a uniform distri-
bution. In this case, there is a 25% chance of entering the cycle with no multiples of 5, and
a 75% chance of entering a sequence which will be divided by 5 again.

Unless we enter into a cycle, as the number of these randomizations increases, it becomes
more likely that the sequence will crossover into a division-free sequence.

We did not find many cycles. Moreover all primitive cycles that we found had small
numbers in it. Suppose that there are no primitive cycles with large numbers. Then, if we
start with two large coprime numbers, there would be many potential divisions on the way
to a cycle. Therefore, the probability of entering a division-free sequence will be very large.
This probabilistic argument leads us to a conjecture.

Conjecture 31. If we pick the starting integers in the range from 1 to N the probability
that we end up in a division-free 5-free Fibonacci sequence tends to 1 when N tends to co.

Let us remind you that division-free sequences are Fibonacci-like sequences. They grow
like ¢", where ¢ is the golden ratio. It is not surprising that we get 1.61 as the growth ratio:
the number close to the golden ratio, but slightly below it.

We explained why 1.61 is the exponent for n = 5. What about other numbers?

Let us start by looking at the proportion of pairs that generate sequences not containing
zeros. We submitted two new sequences to the OEIS:

e A232656 The number of pairs of numbers below n that, when generating a Fibonacci-
like sequence modulo n, contain zeros: 1, 4, 9, 16, 21, 36, 49, 40, 81, .. ..

e A232357 The number of pairs of numbers below n that, when generating a Fibonacci-
like sequence modulo n, do not contain zero: 0, 0, 0, 0, 4, 0, 0, 24, 0, .. ..

The sum of the two sequences is the sequence of squares: a(n) = n?: the total number
of possible pairs of remainders modulo n. For our argument we are interested in the ratio
A232357(n)/(n — 1)%: the proportion of pairs not containing zero that lead to division-free
sequences. This is what we get starting from n = 2:

0,0, 0.25, 0, 0, 0.49, 0, 0.20, 0.20, 0.40, 0.58, 0, 0.18, 0.53, 0.56, 0.50, 0.11, 0.18,
0.72, 0.18, 0, 0.68, 0.18, 0.54, 0, 0.40, 0.57, 0.17, 0.067, 0.52, 0.57, 0.79, 0.17,
0.74, 0.53, 0.58, 0.52, 0.50, 0.55, 0.69, 0, 0.50, 0.17, 0.52, 0.70, 0.81, 0, 0.17, 0.52,
0.52, 0.52, 0.51, 0.86, 0.67, 0.52, 0.55, 0.034, 0.46, 0.78, 0.55, 0.75

There is no clear pattern. For example, it drops significantly for n = 59. Let us not get
upset yet. If we look at the exact number A232357(59) = 116 = 2 - 58. Is it true that every
time we divide the probability of getting into a division-free sequence is the same?

Suppose the term of the n-free Fibonacci sequence before division has remainder r. The
probability that we crossover to a division-free sequence is f(r)/(n — 1), where f(r) is the
number of possible remainders that follow r in division-free sequences.

Lemma 32. Ifn is prime, then f(r) is constant, for r # 0.
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Proof. Consider the Fibonacci sequence modulo n between 0 and the first entry point. Mul-
tiply this sequence by all numbers below n. Pick the set of all possible pairs we get. Every
non-zero number will be in this set of pairs the same number of times. But these are the
pairs that lead to divisions. That means that in the set of pairs that lead to division-free
sequences each remainder over zero is contained there the same number of times. As each
remainder can not be followed by the same number of times, f(r) must be constant. O

The previous lemma shows that the argument we provided for 5 works for every prime
number that is not a Fibonacci omni-factor. Each time we divide, we crossover into a
division-free sequence with the same probability.

But what about composite numbers that are not omni-factors? We know that the cycles
of Fibonacci-like sequences modulo a composite number might be different length. The
number of different cycles modulo n is A015134. Correspondingly, A015135 is the number
of different period lengths.

Let us look at the smallest possible case of a composite non omni-factor: n = 8.

Let us check all possible Fibonacci-like sequences modulo 8. There is a cycle 0, 1, 1, 2,
3, 5, 0. This cycle is of length 6. If we multiply it by 2, 3, 5, 6, or 7 we get 5 more cycles of
length 6. There is a cycle 0, 4, 4, 0 of length 3. There is a trivial cycle 0, 0 of length 1.

We also have a cycle corresponding to Lucas numbers 1, 3,4, 7, 3,2, 5,7, 4, 3,7, 2, 1,
3, ... of length 12. There is also another cycle, that is a multiple of this cycle: 1, 4, 5, 1, 6,
7,5,4,1,5 6,3, 1,4, .... These are two cycles of length 12. There is no way each of the 7
possible non-zero remainders participates in these cycles the same number of times.

Table [l shows, given a remainder, what the next remainder should be if we are inside a
division-free sequence.

1]3,4,5,6
2| 1,5
301,2,4,7
411,3,5,7
511,4,6,7
6| 3,7
712,3,4,5

(o

Table 1: Remainders in division-free pairs.

We see that numbers 1, 3, 4, 5, 7 correspond to 4 possibilities, and numbers 2 and 6 to
two possibilities.

That means the probability that we crossover to a division-free sequence depends on the
previous remainder. But the important part is that it is never zero, because each remainder
has at list two numbers that follow it.

We can assume that with each division we crossover to a division-free sequence with some
probability that is bounded from below. From this assumption we get a conjecture.

Conjecture 33. For any n such that a division-free sequence exists, if we pick the starting
integers in the range from 1 to N the probability that we eventually end up in a division-free
n-free Fibonacci sequence tends to 1 when N tends to co.
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This conjecture explains why we get 1.61 as a growth estimate for non-omni-factors in
our data. Now we want to explain other numbers in the next section.

11 Growth rates for omni-factors

Table Rlshows the exponents that are not equal to 1.61. We call them the deviated exponents
and they appear when n is an omni-factor.

n 4 6 7 9 14 23 27 43 49
growth | 1.32 142 1.34 14 149 148 1.53 1.54 1.56

Table 2: Deviated exponents.

It is not surprising that these numbers are smaller than the golden ratio. Indeed, in every
sequence we divide by a power of n an infinite number of times.

Moreover, we can extend the reasoning from Lemma [[1] and Lemma [I9 to see that each
time we divide, we divide on average by n”/™~1. The number we divide by grows with n,
but the numbers in the second row of Table Pl do not decrease. To explain this we need to
see how often we divide. If we start with a pair of remainders, what is the average number
of steps we need to make to get to zero? If we take all the pairs from the same cycle, then
the average would be about half of the length of the cycle.

The total average is the sum of squares of cycle lengths divided by the total number of
pairs and by 2. This is not an integer sequence, but we submitted the rounded number and
it is now sequence A233248. To keep the memory of the precise number we submitted the
sum of the squares of cycle lengths as sequence A233246.

We can approximate the average number of steps to the next division as Z(n)/2, but this
is not precise. For example, we saw before that for 4-free numbers the number of steps until
the next division is 1, 3, or 4. So the average is 8/3. It is easy to calculate this number when
n is prime. After the division we get a number that is not divisible by n, and the previous
number is not divisible by n. We can assume that all such pairs are equally probable and
the average number of steps is (Z(n) — 1)/2. For non-prime numbers we can calculate this
explicitly keeping in mind that before the division both numbers are coprime with n. (We
can probabilistically argue that eventually elements of a sequence become coprime.)

If a is the average number of steps until the next division, then the estimated average
division is by n?*/(»=be

We combined these numbers in Table [l The third row is the entry points, the fourth
row is the average number of steps until the next division. The fifth row is the calculated
average division per step.

The last row in the table needs a separate explanation. Suppose d is the average division
per step. We took a recurrence defined as: z,, = (x,_1 + x,_2)/d and calculated its growth,
which is the last row.

The last line, the recurrence growth and the fourth line—the average number of steps
until division—are strongly correlated with the experimental growth.
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n 4 6 7 9 14 23 27 43 49
experimental growth | 1.32 1.42 1.34 1.4 1.49 148 1.53 1.54 1.56
Z(n) 6 12 8 12 24 24 36 44 56
a 8/3 6 7/2 45/8 154/13 23/2 459/26 43/2 441/16
average division 2.00 1.43 191 1.55 1.27  1.33 1.21  1.20 1.16
recurrence growth 1 126 1.03 1.19 1.36  1.32 141 1.42 1.46

Table 3: Estimated growth.
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