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ABSTRACT

Current closed-form IIR methods for approximating an analogue prototype filter in the discrete-domain do not
match frequency response phase. The frequency sampling method can match phase, but requires extremely
long filter lengths (and corresponding latency) to perform well at low frequencies. We propose a method for
discretising an analogue prototype that does not succumb to these issues. Contrary to the IIR methods, it accurately
approximates the phase, as well as the magnitude response. The proposed method exhibits good low frequency
resolution using much smaller filter lengths than design by frequency sampling.

1 Introduction.

Creating a discrete-time digital filter that approximates
a continuous-time analogue prototype is a common
filter design problem. Some applications require an
approximation that is highly accurate. For example,
professional audio engineers value many analogue fil-
ters for their aesthetic sound quality [1], [2]. Fields
of audio work such as mixing, mastering and foren-
sics have produced commercial digital tools that are
extremely accurate models of analogue designs. Else-
where, telecommunications builds on continuous-time
signal theory, where many problems are already solved
by analogue filters [3]. Creating a discrete-time filter
that approximates a continuous-time filter to the re-
quired degree avoids designing directly in the digital
domain, an area where research is still relatively young

[4].

Traditional design methods for continuous-time
matched discrete-time filters include the bilinear trans-

form, frequency sampling, impulse invariance and di-
rect frequency domain methods [5]. These methods
are not without drawbacks. The bilinear transform
suffers poor magnitude response at high frequencies.
Frequency sampling requires very long filter lengths to
capture low frequency curves. The impulse invariance
method exhibits aliasing in the frequency domain. Di-
rect frequency domain methods do not guarantee filter
stability and can be computationally complex compared
to simpler methods [6]. These methods can perform
well for static filter designs. However, in applications
where parameters are controllable in realtime, guaran-
teed stability is a requirement for all possible parameter
settings.

In Section 2, we discuss strengths and weaknesses of
these methods, particularly frequency sampling and
the bilinear transform. In Section 3, we introduce our
method for analogue-matched digital filter design. Sec-
tion 4 gives two examples of the method in use, a
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Low frequency problem.
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. 1: Long filter lengths are required to capture low
frequency curves when frequency sampling.
The example analogue prototype has cutoff
fo=20Hz, Q =2, fs =44100Hz. To match
the prototype here requires an extreme filter
length of 65536 samples (latency is 743ms).

variable-Q lowpass filter and an elliptic filter. Section
5 discusses why the method works in more detail and
Section 6 summarises the work, suggesting situations
where it might be preferred over existing methods.

2 Current methods and motivation.

The frequency sampling method [5], [6] begins with
the uniform sampling of a desired frequency response.
An inverse discrete Fourier transform (IDFT) of these
samples calculates the filter coefficients. The technique
is simple to perform and can match both magnitude and
phase response to a high degree of accuracy by choos-
ing longer filter lengths. However, due to the uniform
spacing of the DFT, extremely long filter lengths are
required if the continuous-time curve extends into low
frequencies. Figure 1 shows a low frequency case that
requires a filter length of 65536 to adequately approxi-
mate the continuous-time prototype.

Extremely long filters add computational complexity
and operational latency. Either of these factors may be
unacceptable in practice. For example, if the phase is
non-minimum, the latency of the third filter in Figure 1
would be N/2 = 32768 samples, which is unacceptable
for many applications.

The impulse invariance method [5] preserves the im-
pulse response of the continuous-time filter. However,

since discrete-time sampling is inherently periodic,
aliasing in the frequency domain occurs. If the pass-
band of the continuous-time prototype extends into
high frequencies the aliasing will be non-negligible.
This distorts the frequency response of the discrete-
time filter and limits the applicability of impulse invari-
ance as a general solution. Likewise, direct frequency
domain methods are also limited as general solutions,
since they do not necessarily guarantee stable filters

(61, [71.

The bilinear transform [5] is an infinite impulse re-
sponse (IIR) solution that guarantees stability by map-
ping a stable continuous-time filter to a stable discrete-
time filter. The solution is elegant and computationally
simple. However, the continuous-time magnitude re-
sponse approximation at high frequencies is poor. It
also suffers from frequency response shape distortion
due to its nonlinear mapping. This can be part compen-
sated by “pre-warping” the continuous-time filter, but
distortions away from specified critical points remain
(See [8]’s discussion of Q/bandwidth).

Closed-form IIR solutions [9], [10], [11], [12] follow
on from Orfanidis’ improvement on the bilinear trans-
form [13]. We will focus on the solutions put forward
by [9], [10]. These solutions approximate continuous-
time magnitude response fully up to Nyquist, whereas
the bilinear transform drops sharply to zero as shown in
Figure 2 (upper panel). While these methods have good
magnitude behaviour, Figure 2 (lower panel) shows
they do not match prototype phase response. The bi-
linear transform is a closer match in phase but the
magnitude deviation at high frequencies is often un-
acceptable.

A full discussion of current methods in the context of
audio equalisation can be found in [14]. In our brief out-
line, we have paid particular attention to the strengths
and weaknesses of the frequency sampling and closed
form IIR methods, which provide the motivation for
our solution.

3 Method outline.

The method is similar to [10] in that it begins with a
matched-z transformation of the continuous-time proto-
type. After which, the methods diverge. [10] performs
a one/two-zero curve fit to yield the final filter, whereas
we perform a more general, frequency sampling curve
approximation.
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Current methods: Strengths and weaknesses.
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Fig. 2: Current methods and the phase problem. Up-
per panel shows magnitude responses of ana-
logue prototype vs. current methods for cutoff
0.5f;/2,Q = 2. The bilinear transform (BLT)
exhibits a drop to zero in high frequency and
a visibly distorted peak shape. Lower panel
shows phase responses. The BLT matches
phase reasonably well but the [9], [10] designs
do not match the analogue prototype’s phase.

Let s,z be the continuous/discrete-time complex vari-
ables respectively, and let Q, @ be continuous/discrete-
time radian frequencies related by Q = @/T, where Ty
is the design sampling period in seconds. We are given
a general continuous-time prototype filter comprised
of P poles located at y; and Q zeros located at {,, in
the s-domain

_ Zgzoﬁmsm _

(s=C)(s=&)...(s = o)

Ha(s) 0(s—l/ll)(S—W2)---(S_WP)

RS
with frequency response H,(j2). We seek to create
a discrete-time filter Hy(z) with frequency response
H,;(e/®), that approximates the prototype’s frequency
response H,(jQ) over the approximation interval Q €
[-m/T;, m/T,], and meets the following design criteria:

1. Approximate magnitude response more closely
than mentioned methods (over [—x /Ty, /Ty]).

2. Approximate phase response more closely than
mentioned methods (over [—n /Ty, w/Ty)).

3. Increased approximation accuracy with increasing
filter length N (similar to frequency sampling).

4. Expected behaviour at low frequencies with low
orders (contrary to frequency sampling).

5. Lower filter order/operating latency than fre-
quency sampling method (for equivalent approxi-
mation accuracy).

6. Guaranteed stable, given a stable continuous-time
prototype filter.

For this method, the zeros and poles of the pro-
totype must lie in the sampling interval, that is
Im{&,}|, Im{y;}| < m/T;. Regarding criterion 6
we assume that the prototype filter is stable, that is
Re{y;} <O0.

First transform the continuous-time prototype filter
H,(s) to the discrete-time filter H,,;(z) by matched-z
[5]. Each s-domain pole s = y; gets mapped to a z-
domain pole z = ¢¥'7¢ and each s-domain zero s = {,
gets mapped to a z-domain zero z = eSnla,

Q b —m
H,.(2) = Zm%mz_l
(1—e5iTaz=1)(1 — Tz, (1 — efeluz1)
(1—e¥Taz=1)(1 —e¥2Taz=1).. (1 —e¥rTaz=1)

=Po

Due to frequency domain aliasing, it is unlikely that the
frequency response of H,,;(z) will be a good approx-
imation of the desired prototype frequency response.
To examine how different H,,;(z) is from the prototype,
find the frequency responses of H,,;(z) and of the proto-
type H,(s). Evaluating the continuous-time prototype
filter along the jQ axis we get the frequency response

(JQ—81)(Q—5)...7Q - &o)
(JQ—=y1)(jQ—vn)...(jQ—yp)

Ha(jQ) = ﬁO

Evaluating the matched-z transformed, discrete-time
filter along the unit circle ¢/?, with @ = QT, gives the
frequency response

P —e5iTaemi®) (1 —ebeTaei®)
) o ﬁ() (1 —ell’lee*jw)___(l —eWPTde*jw)

H,, (ejw

We are interested in how much the desired response
H,(jQ) differs from the matched-z transformed re-
sponse H,,;(e/?), which can be expressed as the ratio

AES 144" Convention, Milan, Italy, 2018 May 23 — 26
Page 3 of|§]



Flynn and Reiss

Improving the frequency response of analogue-matched digital filters

Hyitr(Q) = Im

From here, the problem is reduced to finding a fil-
ter Hgifr(z) that approximates the ratio of responses
Hyigr(Q). On finding Hyige(z), we create our final
discrete-time filter by series cascade: Hy(z) = Hyife(z) -
H,n;(z), which approximates prototype H,(s) in fre-
quency response. We are free to choose any filter de-
sign method to create Hyis(z). However, in the interest
of fulfilling design criterion 3 from above, we proceed
with the frequency sampling method. We can then use
an increasingly dense set of frequency sampling points
to achieve higher approximation accuracy.

Our choice of uniform frequency sampling points is
based on Rabiner/Gold’s “Type C” scheme [5]. Since
the scheme uses an odd number of points N starting
at oy = 0, it does not sample at the Nyquist frequency
oy = . This decreases the frequency response o0s-
cillation between samples, a common problem when
using frequency sampling. For our purposes we sample
Hgier(Q) at the following uniformly spaced frequencies

k=0, 1Tl N odd.

Note that we only sample the positive frequency points,
ay € [0, 7). We conjugate the positive frequency sam-
ples to get the negative frequency samples as follows

Haigr ()], o ,

Heeell] = Ty
dlff[ ] Hdiff(Q)|Q:%’ k:071>...3¥

d

k=-21 L —2,—1

The samples can be converted to a filter by the fre-
quency sampling interpolation formula [5] or, more
commonly by the z-transform of the inverse DFT
Hgife(z) = Z{IDFT{Hg[k]} }. Finally, we cascade the
two discrete-time filters in series to reach our goal

H,(z) = Hair(z) - Hpnz (2)

To summarise, we have designed a discrete-time filter
H,(z) with frequency response Hy(e/®), that approxi-
mates the prototype’s frequency response H,(jQ2) over
the approximation interval Q € [—n /Ty, 7t/ T].

4 Examples

This section demonstrates the method as performed on
two example prototype filters, a variable-Q lowpass
and an 8th order elliptic. It is useful to examine the
variable-Q lowpass as this is the prototype used by [9],
[10]. The elliptic example shows how the method can
extend to prototypes having multiple poles/zeros.

4.1 Variable-Q lowpass filter.

The first example is a variable bandwidth/Q second
order Butterworth-based filter, commonly used in audio
applications. We begin with the transfer function of
this analogue filter

1
H,(s) Qig52+ﬁs+1
with Q., 0 € R, where Q. is the cutoff frequency and
Q is the quality factor Q. This variable-Q filter is a
Butterworth filter when quality factor is fixed to Q =
1/+/2, that is, its magnitude response is maximally flat
at this Q setting.

We seek to approximate the frequency response of this
prototype with a digital discrete-time filter. In factored
form

1

Ha) = 6w

where the conjugate poles v, ¥} in terms of the pa-
rameters are given by the quadratic formula

0. 2
——+0Q. L

20 20
We perform the matched-z transformation by mapping
prototype poles s = i, to digital poles z = e¥74 to give

VLY =

1

H =
mz(z) (1_eq/|TdZ71)(l—eWTT‘1171)

For matched-z, the poles of the prototype must lie in the
sampling interval, that is |Im{y; }| < 7/T,. In our low-
pass example this constraint is always satisfied when
cutoff Q. is in the interval [0, w/T;]. The constraint is
also satisfied for some Q. > /Ty, i.e. the filter cutoff
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may be higher than Nyquist, particularly when Q is
low.

Then we evaluate the frequency responses of the proto-
type and the matched-z transformed filter.

1
(JQ—y1)(jQ—vy)

1
(1—e¥iTae=io) (1 —eVilig—jo)

Ha(jQ) =

Hmz(ejw) =

We form an expression of how H,;(z) deviates from the
analogue frequency response as a ratio of magnitudes

Ha(jQ)

1 _ewlrdeijw 1 _ewi‘Tdeijw
Hain(©) ( )( )

_Hmz(ejw) a (JQ—v1)(jQ—v7)
Choose filter order N and sample Hy;ir(Q) to get the
complex sequence

Hifr ()| o =, =2,—1
Hgige[k] = d

Hdiff(Q)LQ:%, kZOJ,...,%
d

Take the z-transform of the inverse DFT to create H,(z)
from Hdiff(g)

Hgigr(z) = Z{IDFT { Hgige [k] } }

Then cascade H,,;(z) and Hyig(z) in series to create the
final analogue matched digital filter

Hy(z) = Hyz(2) - Haige(2)

To increase average match accuracy further, before
performing the inverse DFT we may linearly interpo-
late the phase of the positive and negative frequency
samples closest to Nyquist. The trade-off with this ma-
nipulation is a slight increase in local maximum match
accuracy close to Nyquist. For many applications aver-
age is more important than maximum approximation
accuracy, or the frequency area close to Nyquist is non-
critical.

Now that we have designed our analogue-matched digi-
tal filter, let us compare the frequency responses against

Magnitude/phase error vs. analogue prototype.
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Fig. 3: Error against analogue prototype. Using filter
length N=63, our method outperforms [9], [10].
Particularly, the phase response is a good ap-
proximation of the analogue prototype, where
[9], [10] is not (graph traces coincide).

current closed-form IIR methods. Figure 3 shows the
method using the same example as in Figure 1. For
magnitude response, our method outperforms [9], [10]
with choice of filter order N = 63. More important is
the phase response, which is an accurate approximation
of the analogue prototype, a large improvement over
the minimum phase approach of [9], [10].

Figure 4 compares against the frequency sampling
method, which can approximate the analogue phase
response. Our solution outperforms the frequency sam-
pling method in magnitude and has similar phase perfor-
mance even with the relatively short filter order N = 63.
In particular, the order of the frequency sampling filter
is N = 65536, over 8000 times longer than our filter.

Figure 5 shows how increasing filter order N increases
prototype match accuracy. A lower order of N = 5 per-
forms similarly in magnitude response to [9], but with
good phase approximation. The previous example of
N = 63 is also shown. If extreme accuracy is required,
a modest filter order of N = 511 gives very good re-
sults, giving a magnitude and phase response error on
the order of approximately -100dB. If N = 511 seems
like a large filter order, recall that for acceptable low
frequency performance, the frequency sampling filter
would be N = 65536.
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4: Proposed method vs. frequency sampling. The
proposed method greatly outperforms fre-
quency sampling in magnitude response, and
achieves similar phase response accuracy us-
ing N=63. Filter order savings are over 8000x
compared with frequency sampling N=65536.

Increased accuracy with larger filter order N

Frequency (fs/2)

5: Effect of varying filter order N for proposed
method. Increasing filter order N increases
match accuracy.

4.2 8th order elliptic filter.

Elliptic filters are typically designed by approximation
of a desired magnitude tolerance scheme. However,
here we transform a continuous-time elliptic prototype
filter, to demonstrate that this method works for multi-
ple poles/zeros.

We begin with an 8th order continuous-time prototype
that has a unity cutoff frequency, a passband ripple
of 1dB, and a stopband attenuation of 45.75dB. De-
signed in Matlab by the approach outlined in [6] with a
continuous time transfer function of

§) = H?n:l(s_CM)
Hel$) =P )

consisting of gain fy = 0.0051583 and poles/zeros at
the following s-plane locations

¢ =43.139/,4+1.3305/,+1.0926, £1.0418
—0.28490 +0.35968 j, —0.12557 + 0.81014,,
—0.03748 +0.96087 j, —0.00763 +0.99977,
—0.28490 — 0.35968 j, —0.12557 — 0.81014,
—0.03748 — 0.96087j, —0.00763 — 0.99977

Note that the zero positions of largest magnitude are at
Q ~ ©. Transforming by matched-z to the discrete do-
main, with a design sampling period of 7; = 1 second
gives

8 _ obm—1
1 —e5z
H m=1
ez = Fo T, 1—evz!

The zeros at Q ~ 7 in the s-domain get mapped to
® ~ /" in the z-domain. A prototype zero position
of larger frequency magnitude would lead to alias-
ing, where the positive continuous frequency zeros
are mapped to negative discrete frequencies, and vice-
versa. For this example, we are just within the aliasing
limit and the matched-z transform will be valid for
our purposes. As before, create the ratio of frequency
responses Hgier(Q) = H,(jQ)/Hy,(e/®), then we fre-
quency sample Hgi(Q) to get Hyige[].

We create Hgirr(z) = Z{IDFT {Hyis[k]}}, which de-
fines the second stage of the final filter series cascade
H;(z) = Hp;(2) - Haifr(z). This elliptic example was
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Fig. 6: Error in decibels showing how similar the digi-
tal filters are to the 8th order elliptic analogue
prototype of unity radian cutoff frequency. Pro-
totype magnitude response shown above.

chosen to highlight an issue. When a prototype zero
or pole approaches y;, &, = 0+ jm/T; then Hgig(Q)
approaches infinity at Q = +7/7T;. We may mitigate
this by choosing a low filter order N such as N = 3.

Figure 6 shows the decibel error against the prototype
filter, with the bilinear transform method as a compar-
ison. In this instance N = 3 performs well, particu-
larly in phase response. In magnitude response there
is a deviation approaching Nyquist, which should be
considered by the designer. In many applications this
deviation is acceptable since it occurs in the stopband.

5 Discussing Hyi ()

The method is made possible by frequency sampling
the ratio of responses Hy;sr(Q) successfully, using a low
filter order. To understand this, we can examine the
shape of Hgier(Q) in the single pole/zero case. Higher
order filters are serial cascades of the first order exam-
ple. Consider a continuous-time filter that has a single
finite, complex zero

Hmff (Q) for psi =0 +0Qj

15¢

Magnitude
-

05

Frequency (Radians)

Phase (Radians)
o

-4 2 0 2 4
Frequency (Radians)

Fig. 7: Ratio of frequency responses Hgi(Q) is
smooth in magnitude and phase for {; =0+ 0j.
The relative smoothness of this response eases
approximation by frequency sampling using a
low order N.

H,(s)=s5s—1¢

Subject to the matched-z constraint: [Im{{; }| < ©/T;.
(This example works equally well for a pole, where we
would have to obey the stability constraint Re{y;} <
0). Working through the process we transform to the
discrete-domain by matched-z and calculate the ratio
of frequency responses

The ratio of frequency responses Hyigr () is smooth in
the approximation interval Q € [—x/T,, w/T,]. We can
view an example of this by setting the design sampling
period T; = 1, setting zero §; = 0+ 0j, and plotting
the frequency response as shown in Figure 7. Plotting
at different zero locations yields different, but simi-
larly smooth responses. The relative smoothness helps
explain why Hgier(Q) can be approximated well by low-
order frequency sampling.

The smoothness in itself does not guarantee a good
approximation. However, if the frequency response of
Hyifr(€2) is smoother than the frequency response of
the prototype, it follows that we can frequency sample
Hgier(Q) using a lower order than frequency sampling
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the prototype directly. In our experiments, the order is
significantly lower than direct frequency sampling of
the prototype, especially in low frequency cases as we
have seen in Figure 1, where the order is 8192 times
lower.

6 Conclusion.

We have described a method for creating a discrete-
time filter that accurately matches the magnitude and
phase response of a continuous-time prototype. Table 1
informally summarises how the proposed method fits
into the framework of discussed methods.

Bilinear 9], [10] Proposed Fr. samp
Magnitude poor very good  variable variable
Phase good min only variable variable
Low fregs very good  very good  very good  poor
Computation | very fast fast medium slow

Table 1: Comparing proposed vs. discussed methods.

The bilinear transform is still a viable technique in
applications where high frequency response approx-
imation is not a requirement. It is computationally
simple, as are the [9], [10] methods. However, [9], [10]
are minimum phase solutions, so the phase response
does not match that of the continuous-time prototype.
If analogue phase response is not a requirement then
[9] or [10] may be chosen over the proposed method,
provided the magnitude response does not require ex-
treme accuracy, in which case the proposed method
should be preferred.

The frequency sampling method approximates low fre-
quency curves poorly as demonstrated in Figure 1.
Our method solves this problem by first performing
a matched-z transform. The designer should be aware
of the extra cost incurred by this initial matched-z trans-
form. In most applications this cost will be acceptable,
and outweighed by the order savings that occur from
frequency sampling a smoother response Hg;er(Q), as
discussed in Section 5.

To summarise, the proposed method falls between
closed-form IIR methods and design by frequency sam-
pling. Similar to the frequency sampling method, it
approximates the frequency response of the prototype
increasingly well with higher filter order N. If analogue
phase response matching is required, or if highly ac-
curate magnitude response matching is required, the

proposed method should be preferred over the men-
tioned closed-form IIR methods. In most applications,
the proposed method can replace the frequency sam-
pling method.
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