
NUMBER THEORY AND FORMAL LANGUAGES

JEFFREY SHALLIT

�

Abstract. I survey some of the connections between formal languages and number

theory. Topics discussed include applications of representation in base k, representation

by sums of Fibonacci numbers, automatic sequences, transcendence in �nite characteris-

tic, automatic real numbers, �xed points of homomorphisms, automaticity, and k-regular

sequences.

Key words. �nite automata, automatic sequences, transcendence, automaticity

AMS(MOS) subject classi�cations. Primary 11B85, Secondary 11A63 11A55

11J81

1. Introduction. In this paper, I survey some interesting connections

between number theory and the theory of formal languages. This is a very

large and rapidly growing area, and I focus on a few areas that interest me,

rather than attempting to be comprehensive. (An earlier survey of this

area, written in French, is [1].) I also give a number of open questions.

Number theory deals with the properties of integers, and formal lan-

guage theory deals with the properties of strings. At the intersection lies

(a) the study of the properties of integers based on their representation

in some manner | for example, representation in base k; and

(b) the study of the properties of strings of digits based on the integers

they represent.

An example of a theorem of type (a) | perhaps the �rst signi�cant one

| is the famous theorem of Kummer [60, pp. 115{116], which states that

the exponent of the highest power of a prime p which divides the binomial

coe�cient

�

n

m

�

is equal to the number of \carries" when m is added to

n �m in base p.

For type (b) I do not know a theorem as fundamental as Kummer's.

But here is a little problem that some may �nd amusing. Call a set of

strings sparse if, as n ! 1, it contains a vanishingly small fraction of all

possible strings of length n. Then can one �nd a sparse set S of strings

of 0's and 1's such that every string of 0's and 1's can be written as the

concatenation of two strings from S? One solution is to let S be the set of all

strings of 0's and 1's such that the number of 1's is a sum of two squares.

Then by a famous theorem in number theory | Lagrange's theorem |

every number n is the sum of four squares, so every string of 0's and 1's is

a concatenation of two strings chosen from S. The sparseness of S follows

�
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from an estimate in sieve theory [38]. Further examples of theorems of type

(b) can be found in Section 8.1.

It may be objected that studying the formal language aspects of num-

ber theory is somewhat arti�cial, in the sense that it depends on choosing

one particular representation | such as representation in base 2 | and

that there is no reason to choose base 2 over any other base. For example,

recall the famous objection of Hardy to certain kinds of digital problems

1

:

These are odd facts, very suitable for puzzle columns and

likely to amuse amateurs, but there is nothing in them

which appeals much to a mathematician. The proofs are

neither di�cult nor interesting | merely a little tiresome.

The theorems are not serious; and it is plain that one

reason (though perhaps not the most important) is the

extreme speciality of both the enunciations and the proofs,

which are not capable of signi�cant generalization. [46, p.

105]

I o�er four answers to Hardy's objection. First, we attempt to make

our theorems as general as possible. For example, we can try to prove

theorems for all bases k rather than just a single base. Second, sometimes

some bases do occur naturally in problems, and base 2 is one of them; see

Section 4. Third, the area has proved to have many applications; perhaps

the most dramatic examples are the recent simple proofs of transcendence

in �nite characteristic by Allouche and others; see Section 5. Finally, the

area is \natural", and I submit as evidence the fact that many good mathe-

maticians throughout history have worked in it, including Kummer, Lucas,

and Carlitz.

2. Notation. I begin with some notation for formal languages, for

which a good reference is the book of Hopcroft and Ullman [49].

Let � be a �nite list of symbols, or alphabet, and let �

�

denote the free

monoid over �, that is, the set of all �nite strings of symbols chosen from

�, with concatenation as the monoid operation. Thus, if � = f0; 1g, then

�

�

= f�; 0; 1; 00;01;10;11;000; : : :g;

where � is the notation for the empty string. A formal language, or just

language, is de�ned to be any subset of �

�

.

Let L;L

1

; L

2

be languages. We de�ne the concatenation of languages

as follows:

L

1

L

2

= fx

1

x

2

: x

1

2 L

1

; x

2

2 L

2

g:

1

The two problems he cited as examples were (a) show that 8712 and 9801 are the

only four-digit numbers which are nontrivial integral multiples of their reversals and (b)

show that 153, 370, 371, and 407 are the only integers> 1 which are equal to the sum of

the cubes of their decimal digits. Today, digital problems continue to attract attention

and criticism; see, for example, [35].
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De�ne L

0

= f�g, and L

i

= LL

i�1

for i � 1. We de�ne the Kleene closure

of a language by

L

�

=

[

i�0

L

i

:

A regular expression over an alphabet � is a way to denote certain lan-

guages | a �nite expression using the symbols in � together with + (to

denote union), � (to denote Kleene closure), � (to denote the empty string),

; (to denote the empty set), and parentheses for grouping. For example,

the regular expression (� + 1)(0 + 01)

�

denotes the set of all strings over

f0; 1g containing no two consecutive 1's. If a language can be represented

by a regular expression, it is said to be regular.

3. Number representations. In order to talk about numbers in

formal language theory terms, we need a way to represent numbers as

strings of symbols over a �nite alphabet. Let us begin with the integers.

A classical way to do this is the canonical representation in base k:

Theorem 3.1. Let k be an integer � 2. Then every positive integer n

can be represented uniquely in the form n =

P

0�i�r

a

i

k

i

, where the a

i

are

integers with 0 � a

i

< k, and a

r

6= 0.

By associating n with the string a

r

a

r�1

� � �a

1

a

0

, this theorem gives a

bijection between the positive integers and the set of strings given by the

regular expression (�

k

�f0g)�

�

k

, where �

k

= f0; 1; 2; : : : ; k�1g. We de�ne

(n)

k

to be the string a

r

a

r�1

� � �a

1

a

0

representing n in base k. We also de�ne

the inverse map [w]

k

to be the value of the string w when interpreted as a

base-k number. We de�ne (0)

k

= � and [�]

k

= 0.

There are many relationships between base-k representation and ele-

mentary number theory. Here is just one example. Given an integer n,

we may form s

k

(n), the sum of its base-k digits. For a prime p, let �

p

(n)

denote the exponent of the highest power of p dividing n. Then we have

the following classical theorem of Legendre [61, Vol. I, p. 10]:

Theorem 3.2. Let p be a prime number. Then for all n � 0 we have

�

p

(n!) =

n� s

p

(n)

p� 1

:

One annoyance is that the canonical representation in base k su�ers

from the \leading zeros" problem | that is, the map w ! [w]

k

is not

one-one if w 2 �

�

k

. For example, [101]

2

= [0101]

2

= [00101]

2

= 5. One way

around this di�culty is the following simple \folk theorem", whose precise

origins are unknown to me (but see [87, Note 9.1, pp. 90{91], [101, p. 24],

and [40]):

Theorem 3.3. Let k be an integer � 2. Then every non-negative

integer can be represented uniquely in the form n =

P

0�i�r

a

i

k

i

, where

the a

i

are integers with 1 � a

i

� k.
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For example, 13 = 2 � 4 + 2 � 2 + 1 � 1. This theorem gives a bijection

between N, the non-negative integers, and the regular language (1 + 2 +

� � �+ k)

�

.

There are many other ways to represent the non-negative integers. For

example, let the Fibonacci numbers be de�ned by F

0

= 0, F

1

= 1, and

F

n

= F

n�1

+ F

n�2

. The following theorem gives the so-called Zeckendorf

or Fibonacci representation [65,107]:

Theorem 3.4. Every non-negative integer can be represented uniquely

in the form

P

2�i�r

a

i

F

i

, where a

i

2 f0; 1g, and a

i

a

i+1

6= 1.

This theorem gives a bijection between N and the regular language

�+ 1(0 + 01)

�

. Notice that in all three cases we have examined, the set of

\valid" representations is a regular language. This observation raises the

question, for what numeration systems is the set of valid representations

regular? See, for example, [91,48,67].

As above, if m and n are integers, then we can uniquely write m =

2

a

1

+� � �+2

a

c

and n = 2

b

1

+� � �+2

b

d

, where a

1

< � � � < a

c

and b

1

< � � � < b

d

.

We clearly have

mn =

X

1�i�c

X

1�j�d

2

a

i

+b

j

:

Knuth [57] found a surprising generalization of this identity: if the Zeck-

endorf representation of m is F

a

1

+ F

a

2

+ � � � + F

a

c

, and the Zeckendorf

representation of n is F

b

1

+ F

b

2

+ � � �+ F

b

d

, de�ne

m � n =

X

1�i�c

X

1�j�d

F

a

i

+b

j

:

Then the � multiplication is associative! Also see [7,43].

We now turn to the representation of rational numbers. Let [a

0

; : : : ; a

n

]

be an abbreviation for the continued fraction

a

0

+

1

a

1

+

1

a

2

+ � � �+

1

a

n

:(3.1)

Theorem 3.5. Every rational number in (0; 1) can be expressed uniquely

in the form

[0; a

1

; a

2

; : : : ; a

n

]

where the a

i

are positive integers and a

n

� 2.

As an application of this theorem, we prove the following theorem,

inspired by [77]:

Theorem 3.6. There is a bijection r : N ! Q such that both r and

r

�1

are computable in polynomial time.
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Proof. It su�ces to give such a bijection between N and Q \ (0; 1).

Let f

k

: N ! (1 + 2 + � � �+ k)

�

be the map that takes a non-negative

integer to its representation in base k using digits f1; 2 : : : ; kg, as discussed

in Theorem 3.3, and let f

�1

k

be the inverse map. Let g be the map which

takes a string over (1+2+3)

�

as an argument and returns a list of strings,

where the 3's are treated as delimiters. For example, g(121313322) =

(121; 1; �; 22). Let h be the map such that

h(a

1

; a

2

; : : : ; a

k

) = (0; a

1

+ 1; : : : ; a

k�1

+ 1; a

k

+ 2):

Then we de�ne the bijection r as follows:

r(n) = [h(f

�1

2

(g(f

3

(n))))];

where the function f

�1

2

is extended in the obvious way to operate on lists

of strings.

For example, consider the case n = 12590. Then its representation in

base 3 using digits f1; 2; 3g is 121313322. This is transformed by g into the

list (121; 1; �; 22), which is mapped by f

�1

2

into (9; 1; 0; 6). Then h maps

this to (0; 10; 2; 1; 8). Hence r(12590) = [0; 10; 2; 1; 8] = 26=269.

It remains to see that r and r

�1

can be computed in polynomial time.

That f

3

and f

�1

2

can be computed in polynomial time is easy, and is left to

the reader. For the polynomial time computability of continued fractions,

see, for example, [8, Chapter 4].

There are many other formal language aspects of continued fractions.

Some of these deal with the so-called \LR" or \Stern-Brocot" representa-

tion of rational numbers [44]. If

� = [a

0

; a

1

; a

2

; : : :];

then the LR-representation of � is the string

R

a

0

L

a

1

R

a

2

L

a

3

� � � :

Let a; b; c; d be integers with ad � bc 6= 0. Raney [83] gave a �nite-state

transducer to compute the LR-expansion of � = (a� + b)=(c� + d) from

that of �. Using Raney's theorem, one can give a purely formal-language-

theoretic proof of the fact that � has bounded partial quotients i� � does

[90].

4. The Thue-Morse sequence. Recall from the previous section

that s

2

(n) denotes the sum of the bits in the base-2 representation of n.

Now de�ne an in�nite word t = t

0

t

1

t

2

� � � over f0; 1g, as follows:

t

n

= s

2

(n) mod 2. This in�nite word is sometimes called the Thue-Morse

sequence, because both Thue [99] and Morse [75] examined its properties

near the beginning of this century. But Prouhet implicitly used the de�ni-

tion of t in an 1851 paper ([82]; also see [104]) that gave a solution to the

multigrade problem.
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The multigrade problem (or Tarry-Escott problem; see [62]) is to �nd

disjoint sets U; V that

P

u2U

u

i

=

P

v2V

v

i

for i = 0; 1; : : : ; k� 1. Prouhet

observed that one could take U = f0 � n < 2

k

: t

n

= 0g and V = f0 �

n < 2

k

: t

n

= 1g. For example, we have

0

i

+ 3

i

+ 5

i

+ 6

i

= 1

i

+ 2

i

+ 4

i

+ 7

i

for i = 0; 1; 2.

Another result of number-theoretic interest related to the Thue-Morse

sequence is the following. Woods [103] and Robbins [85] observed that

Y

n�0

�

2n+ 1

2n+ 2

�

(�1)

t

n

=

p

2

2

:(4.1)

Here is a simple proof, due to Jean-Paul Allouche: Let P =

Q

n�0

�

2n+1

2n+2

�

(�1)

t

n

and let Q =

Q

n�1

�

2n

2n+1

�

(�1)

t

n

. Clearly

PQ =

1

2

Y

n�1

�

n

n+ 1

�

(�1)

t

n

:

Now break this in�nite product into separate products over odd and even

indices; we �nd

PQ =

1

2

Y

n�0

�

2n+ 1

2n+ 2

�

(�1)

t

2n+1

Y

n�1

�

2n

2n+ 1

�

(�1)

t

n

=

1

2

P

�1

Q:

It follows that P

2

=

1

2

. (Convergence and correctness of the rearrangements

are left to the reader.)

But in fact, even more is true. Suppose one tries to express

p

2

2

as

an in�nite product of terms of the form (

2n+1

2n+2

)

�1

, where the sign for n =

0 is chosen to be +1, and then iteratively chosen according to a greedy

algorithm: if the product constructed so far is greater than

p

2

2

, choose the

sign +1, and if the product constructed so far is smaller than

p

2

2

, choose the

sign �1. Then the sequence of signs chosen is exactly (�1)

t

n

. I conjectured

this in 1983 [89], and it was proved by Allouche and Cohen in 1985 [5].

Notice that the technique used above does not let us conclude anything

about the number Q. In analogy with (4.1), one may ask the following

Open Question 1. Is the number

Q =

Y

n�1

�

2n

2n+ 1

�

(�1)

t

n

:

= 1:6281601297189
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algebraic?

No simple formula for the number Q is known, although it appears in a

somewhat disguised form in a paper of Flajolet and Martin [39, Theorem

3.A], where (using their notation) ' = 2

�1=2

e




Q

�1

.

5. Automatic sequences. The Thue-Morse sequence is a member

of a much larger class of sequences called k-automatic sequences; more

precisely, the Thue-Morse sequence is 2-automatic.

Let us recall the basics of �nite automata. A deterministic �nite au-

tomaton, or DFA, is a simple model of a computer. Formally it is a quin-

tuple, M = (Q;�; �; q

0

; F ), where

� Q is a �nite set of states;

� � is a �nite set of symbols, called the input alphabet;

� q

0

2 Q is the initial state;

� F � Q is the set of �nal states;

� � : Q� �! Q is the transition function.

The transition function � is extended in the obvious way to a map from

Q ��

�

into Q.

The language accepted by M is denoted by L(M ) and is given by

fw 2 �

�

j �(q

0

; w) 2 Fg. As an example, consider the automaton in

Figure 5.1, which accepts exactly the strings over f0; 1g that are the base-2

representations of the primes between 2 and 11.

1 0 1 1

1

1

0

0, 1

00

0

0

Fig. 5.1. Automaton accepting the base-2 representations of the primes p where 2 �

p � 11

Note that the start state is at the lower left, and is indicated, as is

customary, by an unlabeled arrow with no source. Also, �nal states are

denoted by double circles.

We may also provide our automaton with output. In this case we

discard the set of �nal states from the de�nition of the DFA and add back

� (the output alphabet) and � : Q! � is the output mapping.
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Definition 5.1. We say a sequence (s

i

)

i�0

over a �nite alphabet �

is k-automatic if there exists a deterministic �nite automaton with output

(DFAO) M = (Q;�

k

;�; �; �; q

0

) (where � is a mapping taking Q to �)

such that � (�(q

0

; (n)

k

)) = s

n

for all n � 0.

These sequences are sometimes called uniform tag sequences [27] or

k-recognizable sequences [37, p. 106] in the literature.

Another characterization of automatic sequences is the following. Sup-

pose (s(n))

n�0

is a sequence over a �nite alphabet. De�ne K

k

(s), the

k-kernel of s, to be the set of subsequences

K

k

(s) = f(s(k

i

n+ a))

n�0

: i � 0; 0 � a < k

i

g:

Then (s(n))

n�0

is k-automatic i� the set K

k

(s) is �nite.

Many sequences that occur in number theory turn out to be k-automatic

for some small integer k. For example, let B be an integer � 3, and consider

the real number f(B) =

P

k�0

B

�2

k

. This is a transcendental number

2

([53,15,71,68,56]; [76, Thm. 1.1.2]) whose continued fraction has bounded

partial quotients [88,34]:

f(B) = [a

0

; a

1

; a

2

; : : :]

= [0; B � 1; B + 2; B; B; B � 2; B; B + 2; B; : : :]:

In fact, its continued fraction can be generated by the simple �nite au-

tomaton with ten states in Figure 5.2.

For example, to compute a

12

, we compute (12)

2

= 1100, and then feed

the digits into the automaton, starting at the top. The output is the label

of the last state reached, which is B � 2.

Probably the most interesting and useful number-theoretic aspect of

automatic sequences is the following theorem of Christol [23,24]:

Theorem 5.1. Let � be a nonempty �nite set, (a

i

)

i�0

be a sequence

over �, and p be a prime number. Then (a

n

)

n�0

is p-automatic i� there

exists an integer m � 1 and an injection � : � ! GF (p

m

) such that the

formal power series

P

n�0

�(a

n

)X

n

is algebraic over GF (p

m

)(X).

As an example, consider the Thue-Morse sequence (t

n

)

n�0

, which is

2-automatic. Let T (X) =

P

n�0

t

n

X

n

.

T (X) = X +X

2

+X

4

+X

7

+X

8

+X

11

+ � � �

Now

T (X) =

X

n�0

t

n

X

n

=

X

n�0

t

2n

X

2n

+

X

n�0

t

2n+1

X

2n+1

2

Sometimes called the `Fredholm number', although Fredholm apparently never

worked on it.
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00

1

B-1

B+2

0 1

B

1
00

0

1
B B-2

1

B
0

B+2

1

B-2 B

0 0

1

0 1

0 1

1

Fig. 5.2. Automaton generating the continued fraction expansion of f(B)

=

X

n�0

t

n

X

2n

+X

X

n�0

(t

n

+ 1)X

2n

= T (X

2

) +XT (X

2

) +X

1

1�X

2

:

Hence we have, over GF (2),

(1 +X)

3

T (X)

2

+ (1 +X)

2

T (X) +X = 0:

The theorem of Christol is remarkable because it relates a purely

number-theoretic fact (algebraicity in �nite characteristic) to a purely machine-

theoretic fact (generation by a �nite automaton). As a consequence, one

may obtain transcendence results in �nite characteristic by proving that no

�nite automaton can generate the sequence of coe�cients of an appropriate

formal power series. For example, Allouche [2] used this technique to give

a new proof of the transcendence of �

q

, the analogue of � in the �eld of

formal Laurent series over GF (q).

Other results along this line include those of Berth�e [11,12], who proved

that

�

q

(n)

�

n

q

is transcendental for 1 � n � q � 2, a result previously proved
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by Yu [105] for every n such that (q � 1)j=n. Here �

q

is the Carlitz zeta-

function, the formal power series analogue of the ordinary zeta-function.

Recher [84] obtained transcendence results for periods of generalized Carlitz

exponentials, i.e., of generalizations of �

q

. Berth�e [13] proved transcendence

results for the Carlitz logarithm and gave results on linear expressions in

�

q

(n)

�

n

q

for 1 � n � q � 2 [14]. Allouche [3] proved the transcendence of the

values of the Carlitz-Goss gamma function for all p-adic rational arguments

that are not natural numbers, and Mend�es France and Yao [73] extended

the result to all the values of the Carlitz-Goss gamma function at p-adic

arguments that are not natural numbers. Thakur proved [98] that the

period of the Tate elliptic curve is transcendental.

6. Automatic real numbers. Given a k-automatic sequence (s

i

)

i�0

over the alphabet � = f0; 1; 2; : : : ; b � 1g, we may consider the sequence

to represent the base-b representation of a real number. The number

P

i�0

b

�2

i

is an example of such a number, discussed in the previous sec-

tion.

Or consider the Thue-Morse real number

P

i�1

t

i�1

2

�i

, whose base-2

representation is

T = :0110100110010110 � � � :

It follows from a general result of Mahler [71] that T is transcenden-

tal. Mahler's proof technique was later rediscovered by Cobham [26] and

Dekking [30].

3

It may be amusing to note that the number T appears \naturally" as

a certain probability in formal language theory. Let P be the probability

that a randomly-chosen language over f0; 1g contains at least one word of

every possible length. (Our model is to decide the membership of each

word in L uniformly at random, with probability

1

2

.) Then

P =

Y

i�0

(1� 2

�2

i

) =

X

j�0

(�1)

t

j

2

j

=

X

j�0

1� 2t

j

2

j

= 2� 4T :

This result suggests the following

Conjecture 2. Let k; b be integers � 2. If (s

i

)

i�0

is a non-ultimately-

periodic k-automatic sequence over the alphabet � = f0; 1; 2; : : :; b�1g, then

the number

P

i�0

s

i

b

�i

is transcendental.

For some time it was believed that Loxton and van der Poorten had

completely resolved this problem [69,70], but gaps in the proof have been

pointed out by Paul-Georg Becker.

Conjecture 3. No number of the form

P

i�0

s

i

b

�i

, where (s

i

)

i�0

is

a k-automatic sequence, and b is an integer � 2, is a Liouville number.

3

Michel Dekking has kindly pointed out a minor, easily-repairable 
aw in his proof.



NUMBER THEORY AND FORMAL LANGUAGES 11

Becker conjectures (personal communication, 1993) that in fact these

numbers, when transcendental, are S-numbers in Mahler's classi�cation

([72], [58, p. 63]).

Recently there have been some other interesting results on real numbers

whose base-b expansions are k-automatic. Denoting the set of such numbers

as L(k; b), we have the following theorem of Lehr [63]:

Theorem 6.1. The set L(k; b) forms a Q-vector space.

However, it can be shown that the set L(k; b) is not closed under prod-

uct; that is, L(k; b) is not a ring [64]. The structure of L(k; b) is still

somewhat mysterious, although it is known that L(k; b) is in�nite dimen-

sional over Q. In fact, for each B � 2, we have Q[f(B)] � L(2; B), where

f is the function de�ned in Section 5. Since f(B) is transcendental over

Q, we have Q[f(B)] is in�nite dimensional over Q. See [64].

It would be nice to prove that some classical real numbers are not

automatic numbers. For example, we have

Conjecture 4. The numbers �, e, and ln 2 are not in L(k; b) for any

k; b � 2.

This conjecture would follow, for example, if it were proved that these

numbers were normal.

7. Fixed points of homomorphisms. As Cobham observed [27],

the k-automatic sequences discussed in the previous section can also be

characterized as images (under a length-preserving homomorphism, or cod-

ing) of �xed points of uniform homomorphisms (i.e., homomorphisms '

with j'(a)j = k for all a 2 �). For example, the Thue-Morse word is the

unique �xed point, starting with 0, of the map which sends 0 to 01 and 1

to 10.

One can also study the �xed points of homomorphisms that are not

necessarily uniform. The depth of a homomorphism ' : �! �

�

is de�ned

to be j�j, and the width is max

a2�

j'(a)j.

Suppose that ' : � ! �

�

is a homomorphism with the property that

'(a) = ax for some letter a 2 �. (We call such a homomorphism extendable

on a.) Then

ax'(x)'

2

(x)'

3

(x) � � �

is a �xed point of ', and if x contains at least one letter which is not

ultimately sent to � by repeated applications of ', then this �xed point is

in�nite.

Open Question 5. Given a homomorphism ' extendable on a, of

depth m and width n, can one compute the ith letter of the �xed point

starting with a in time polynomial in m, n, and log i?

Note that this question is easily answerable in the a�rmative when the

homomorphism is uniform.
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A particular �xed point that has been studied extensively is the so-

called in�nite Fibonacci word

f = f

1

f

2

f

3

� � � = 0100101001001 � � � ;

which is the �xed point of the map '(0) = 01 and '(1) = 0 [9,10]. It can

be shown that

f

n

= 1� b(n + 1)�c+ bn�c;

where � = (

p

5� 1)=2.

One may generalize the concept of �xed points of homomorphisms

by considering �xed points of �nite-state transducers. The most famous

example of this type is the Kolakoski word [59]

k = 122112122122112112212112122 � � �

which is a �xed point of the transducer in Figure 7.1.

1/1
2/1 1

1/2
2/2 2

Fig. 7.1. The Kolakoski transducer

Despite much work on this sequence (e.g., [54,31,32,102,52,29,28] and

[79,20,66,25,21,33,96]), the following conjecture is still open:

Conjecture 6. The limiting frequencies of 1 and 2 in k exist, and

are equal to

1

2

.

8. Automaticity. In Section 5 we discussed languages that are ac-

cepted by �nite automata and sequences that are generated by �nite au-

tomata. However, \most" languages and sequences are not of this type.

For the rest of these languages and sequences, can we somehow evaluate

how \close" these objects are to being regular or automatic?

In this section, we introduce a measure of descriptional complexity

called automaticity. Our complexity measure is a function, and is designed

so that regular languages have O(1) automaticity, and languages \close"

to regular have \small" automaticity.

Let

�

�n

= �+ �+�

2

+ � � �+ �

n

;
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the set of all strings in �

�

of length � n. We say a language L � �

�

is an

nth order approximation to a language L

0

if L \ �

�n

= L

0

\ �

�n

. Let

DFA be the class of all deterministic �nite automata over a �nite alphabet

�. We can now informally de�ne the automaticity of a language L to be

the function which counts the number of states in the smallest DFA that

accepts some nth order approximation to L. Formally, if jM j is de�ned to

be the number of states in the DFA M , we de�ne the automaticity A

L

(n)

of a language L as follows:

A

L

(n) = minfjM j : M 2 DFA and L(M ) \ �

�n

= L \ �

�n

g:

The following basic properties of the function A

L

(n) are easy to prove:

1. A

L

(n) � A

L

(n+ 1).

2. L is regular i� A

L

(n) = O(1).

3. A

L

(n) = A

L

(n).

4. A

L

(n) � 2 + �

w2L \ �

�n
jwj.

We now make the following

Definition 8.1. Two strings w;w

0

are called n{dissimilar for L if

there exists a string v with jwvj; jw

0

vj � n and either

(i) wv 2 L, w

0

v 62 L; or

(ii) wv 62 L, w

0

v 2 L.

Then we have [36,50,94]:

Theorem 8.1. A

L

(n) = the maximum number of distinct pairwise

n{dissimilar strings for L.

As an example, consider the language

L = f0

n

1

n

: n � 0g:

This language is clearly not regular. What is its automaticity?

It can be shown that the automaticity of L is A

L

(n) = 2bn=2c+ 1 for

n � 2. To see the upper bound, note that we can accept an nth order

approximation to L (for n = 9) with DFA in Figure 8.1.

To get the lower bound for n = 9, note that we may take

f�; 0; 00; 000; 0000; 1; 01; 001; 0001g

as our set of n-dissimilar strings. This easily generalizes to larger n.

Now, let's turn to another example. Consider the set

P = f10; 11; 101;111; 1011;1101; 10001;10011; : : :g;

the set of primes expressed in base 2. A classical (1966) theorem due to

Minsky and Papert [74] shows that P is not a regular language. However,

this raises the question, how \far" from regular is P? We have the following

theorem [92]:

Theorem 8.2. The automaticity of P

R

is 
(2

n=43

).
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0

1

1

0

0

0 1

1

1

1

0,1

0

0

0,1

1

0

Fig. 8.1. Automaton acccepting 9th order approximation to L

(Here P

R

denotes the reversal of the set P , i.e., the primes expressed

with least signi�cant digit �rst.)

The basic idea is to prove the following

Lemma 8.1. Given integers r; a; b with r � 2, 1 � a; b < r with

gcd(r; a) = gcd(r; b) = 1, and a 6= b, there exists m = O(r

165=4

) such that

rm + a is prime and rm + b is composite.

The proof of this lemma is an easy consequence of a deep theorem of

Heath-Brown [47] on the distribution of primes in arithmetic progressions

(\Linnik's Theorem").

Taking r = 2

n

, the lemma implies that there are at least 2

n=43

n-

dissimilar strings for the language P

R

.

Automaticity has been examined by Trakhtenbrot [100]; Grinberg &

Korshunov [45]; Karp [51]; Breitbart [16,17,18]; Dwork and Stockmeyer

[36]; Kaneps & Freivalds [50]; Shallit & Breitbart [93,94], Pomerance, Rob-

son, & Shallit [80], Glaister & Shallit [42], and Shallit [92]. Koskas and de

Mathan (work in progress, 1996) show how to apply automaticity to obtain
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irrationality measures in �nite characteristic.

One of the nicest results in the area is Karp's theorem [51]:

Theorem 8.3. Let L � �

�

be a nonregular language. Then

A

L

(n) � (n+ 3)=2

for in�nitely many n.

It can be shown that the constants 3 and 2 in Karp's theorem are best

possible, in the sense that the theorem would be false if 2 were replaced

with any smaller number, or if 3 were replaced with any larger number [94].

The case of unary alphabets has only recently begun to be studied. In

this case, we have A

L

(n) � n + 1, for all L and for all n. The following

theorems can be proved [80]:

Theorem 8.4. Let L � 0

�

. Then

A

L

(n) � n+ 1� blog

2

nc

for in�nitely many n.

Theorem 8.5. Let L � 0

�

. Then for \almost all" L we have

A

L

(n) > n� 2 log

2

n� 2 log

2

log

2

n

for all su�ciently large n.

Recall that Karp proved that if L is not regular, then A

L

(n) � (n+3)=2

in�nitely often. This implies that

lim sup

n!1

A

L

(n)

n

�

1

2

for all nonregular L. However, it seems that one can do better in the unary

case. In 1994, I made the following conjecture [93,80]:

Conjecture 7. There exists a real number 
 > 1=2 such that if

L � 0

�

is not regular, then

lim sup

n!1

A

L

(n)

n

� 
:

In fact, I had conjectured that 
 = (

p

5 � 1)=2

:

= :61803. However,

recently J. Cassaigne has shown that the proper constant is


 = (60� 2

p

10)=89

:

= :60309

and this constant is best possible [22]. (Partial results had previously been

obtained by Allouche and Bousquet-M�elou [4].)

Finally, it is known that the maximumpossible automaticity for a lan-

guage L � (0 + 1)

�

is O(2

n

=n). An example of a context-free language

(CFL) with automaticity 
(2

n

=n) is not known, although there are ex-

amples with automaticity 
(2

n(1��)

) for all � > 0 [42]. This suggests the

following open problem:

Open Problem 8. Develop an e�cient algorithm for computing the

automaticity of a CFL, given its representation as a context-free grammar.
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8.1. Nondeterministic Automaticity. Let NFA be the class of all

nondeterministic �nite automata.

A nondeterministic �nite automaton (NFA) is like a deterministic one,

except now there can be 0; 1; 2; or more arrows with the same label leaving

any state. A string w is accepted by an NFA if there exists some path

labeled w from the initial state to some �nal state.

The function N

L

(n) is the nondeterministic automaticity of the lan-

guage L, where

N

L

(n) = minfjM j : M 2 NFA and L(M ) \ �

�n

= L \ �

�n

g:

Then by the classical subset construction, we have

Theorem 8.6. Suppose L � �

�

. If L is not regular, then N

L

(n) �

log

2

((n + 3)=2) for in�nitely many n.

This lower bound is best possible, up to a constant, since the Stearns-

Hartmanis-Lewis language

f2 (1)

R

2

2 (2)

R

2

2 (3)

R

2

2 (4)

R

2

2 � � � 2 (n)

R

2

: n � 1g

has nondeterministic automaticity O(logn). Here, as in Section 3, (k)

2

is

the representation of k in base 2, and w

R

denotes the reversal of the string

w.

We can use some classical estimates from number theory to produce

an example of a language with low nondeterministic automaticity [94]:

Theorem 8.7. De�ne

L = fw 2 (0 + 1)

�

: jwj

0

6= jwj

1

g:

Then L is nonregular and

N

L

(n) = O((logn)

2

=(log logn)):

Proof. We need the following fact from number theory:

Lemma 8.2. Let n � 2 and suppose 0 � i; j < n. Then i 6= j i� there

exists a prime p � 4:4 logn such that i 6� j (mod p).

Thus, to nondeterministically accept some nth order approximation to

L, we can

� guess the correct prime p � 4:4 logn;

� verify that jwj

0

6� jwj

1

(mod p).

This construction uses at most

1 +

X

p�4:4 logn

p = O((logn)

2

=(log logn))

states. The construction is illustrated in Figure 8.2.

We now turn to the question of lower bounds for nondeterministic

automaticity in the unary case [80]:
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ε
ε

ε

0, 1 0, 1 0
1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

Fig. 8.2. 30th order approximation to L

Theorem 8.8. There exists a constant c (which does not depend on

L) such that if L � 0

�

is not regular, then

N

L

(n) � c(logn)

2

=(log logn)

in�nitely often.

Pomerance has shown [80] that for all monotonically increasing func-

tions f , there exists a language L = L(f) such that

N

L

(n) = O(f(n)(log n)

2

=(log logn));

thus showing the lower bound is essentially tight. To give the 
avor of his

construction, we prove the following weaker result:

Theorem 8.9. De�ne L = f0

n

: n � 1 and the least positive integer

not dividing n is not a power of 2g. Then L is nonregular and

N

L

(n) = O((logn)

3

=(log logn)):

Proof. The construction depends on the following two facts:

Lemma 8.3. If 0

n

2 L, then there exists a prime power p

k

, p � 3,

k � 1, p

k

� 5 logn, such that n 6� 0 (mod p

k

), and n � 0 (mod 2

s

), with

2

s

< p

k

< 2

s+1

. Further, if such a prime power p

k

exists, then 0

n

2 L.

An NFA accepting an n-th order approximation to L can now be con-

structed as follows:

� guess the correct odd prime power p

k

� 5 logn;

� verify that, on input 0

r

, we have

� r 6� 0 (mod p

k

);
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� r � 0 (mod 2

s

), with 2

s

< p

k

< 2

s+1

.

This construction uses at most O((logn)

3

=(log logn)) states.

Open Question 9. What is a good lower bound on the nondetermin-

istic automaticity of the set P

R

, the (reversed) representations of primes

in base 2?

9. k-regular sequences. The last topic I wish to consider in this

survey is k-regular sequences. These are generalizations of the automatic

sequences mentioned above in Section 5.

While there are many examples of automatic sequences in number the-

ory, their expressive power is somewhat limited because of the requirement

that they take only a �nite number of values. How can this be general-

ized? As we have seen above in Section 5, a sequence is k-automatic i� its

k-kernel is �nite. This suggests studying the class of sequences where the

Z-module generated by the k-kernel is �nitely generated. We call such a

sequence k-regular. The properties of such sequences and many examples

were given in [6].

Here are some examples of k-regular sequences in number theory.

Example 1. The 3-adic valuation of a sum of binomial coe�cients. Let

r(n) :=

P

0�i<n

�

2i

i

�

. Then �

3

(r(n)) is 3-regular, as it can be shown that

�

3

(r(n)) = �

3

�

n

2

�

2n

n

��

;(9.1)

see [97]. In fact, Eq. (9.1) was �rst conjectured by applying a program

which attempts to deduce the k-regularity of a given sequence. Zagier

[106] found a beautiful proof based on 3-adic analysis.

Example 2. Propp's sequence. Jim Propp [81] introduced the sequence

(s(n))

n�0

, de�ned to be the unique monotone sequence such that s(s(n)) =

3n. The table below gives the �rst few terms:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

s(n) 0 2 3 6 7 8 9 12 15 18 19 20 21 22

It is sequence M0747 in the book of Sloane and Plou�e [95]. Patruno

[78] showed that

s(n) =

�

n + 3

k

; if 3

k

� n < 2 � 3

k

;

3(n� 3

k

); if 2 � 3

k

� n < 3

k+1

.

This sequence is 3-regular, and satis�es the recurrence

s(3n) = 3s(n);

s(9n+ 1) = 6s(n) + s(3n + 1);
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s(9n + 2) = 6s(n) + s(3n+ 2);

s(9n + 4) = 2s(3n+ 1) + s(3n + 2);

s(9n + 5) = s(3n+ 1) + s(3n + 2);

s(9n + 7) = �6s(n) + 3s(3n+ 1) + 2s(3n + 2);

s(9n + 8) = �12s(n) + 6s(3n+ 1) + s(3n + 2):

Example 3. A greedy partition of the natural numbers into sets avoiding

arithmetic progressions. Suppose we consider the integers 0; 1; 2; : : : in turn,

and place each new integer i into the set of lowest index S

k

(k � 0) so that

S

k

never contains three integers in arithmetic progression. For example,

we put 0 and 1 in S

0

, but placing 2 in S

0

would create an arithmetic

progression of size 3 (namely, f0; 1; 2g), so we put 2 in S

1

, etc.

Now de�ne the sequence (a

k

)

k�0

as follows: a

k

= n if k is placed into

set S

n

. Here are the �rst few terms of this sequence:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13

a

k

0 0 1 0 0 1 1 2 2 0 0 1 0 0

This is Sloane and Plou�e's sequence M0185.

Gerver, Propp, and Simpson [41] showed that a

3k+r

= b(3a

k

+ r)=2c

for k � 0, 0 � r < 3. It follows that (a

k

)

k�0

is 3-regular.

We now give some open problems on k-regular sequences.

Conjecture 10. Suppose (A(n))

n�0

and (B(n))

n�0

are k-regular

sequences with B(n) 6= 0 for all n. If A(n)=B(n) is always an integer, then

(A(n)=B(n))

n�0

is also k-regular.

Open Question 11. Show that (b

1

2

+ log

2

nc)

n�0

is not a 2-regular

sequence.

We may also consider an extension of k-regular sequences to other

types of representation; e.g., Fibonacci representation. Let us consider,

for example, the problem of determining the number of partitions k

n

of

a number n as a sum of distinct Fibonacci numbers [55,19,86]. In other

words, we are interested in the coe�cient k

n

of X

n

in the in�nite product

(1 +X)(1 +X

2

)(1 +X

3

)(1 +X

5

)(1 +X

8

)(1 +X

13

) � � � :

Here are the �rst few terms of this sequence:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

k

n

1 1 1 2 1 2 2 1 3 2 2 3 1 3

Then it is not hard to see that

k

n

=

�

1 0 0

�

�M

w

R �

2

4

1

1

1

3

5

;(9.2)
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where w is the Fibonacci expansion of n, and

M

0

=

2

4

0 1 0

0 0 1

�1 1 1

3

5

; M

1

=

2

4

1 0 0

1 0 0

1 1 0

3

5

:(9.3)

In particular, this allows computation of k

n

in time polynomial in logn,

and gives a simple proof of Theorem 1 of [86].

10. Conclusions. Both number theory and formal language theory

have a large body of research associated with them. At their intersection,

however, is a new and growing area which promises to enrich them both.
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