
ar
X

iv
:1

50
3.

06
36

5v
1

 [
cs

.F
L

]
 2

1
M

ar
 2

01
5

Factorization in Formal Languages

Paul Bell1, Daniel Reidenbach1, and Jeffrey Shallit2

1 Department of Computer Science, Loughborough University, Loughborough,
Leicestershire, LE11 3TU, United Kingdom

P.Bell@lboro.ac.uk

D.Reidenbach@lboro.ac.uk

2 School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1,
Canada

shallit@cs.uwaterloo.ca

Abstract. We consider several novel aspects of unique factorization in
formal languages. We reprove the familiar fact that the set uf(L) of words
having unique factorization into elements of L is regular if L is regular,
and from this deduce an quadratic upper and lower bound on the length
of the shortest word not in uf(L). We observe that uf(L) need not be
context-free if L is context-free.

Next, we consider variations on unique factorization. We define a notion
of “semi-unique” factorization, where every factorization has the same
number of terms, and show that, if L is regular or even finite, the set
of words having such a factorization need not be context-free. Finally,
we consider additional variations, such as unique factorization “up to
permutation” and “up to subset”.

1 Introduction

Let L be a formal language. We say x ∈ L∗ has unique factorization if whenever

x = y1y2 · · · ym = z1z2 · · · zn

for y1, y2, . . . , ym, z1, z2, . . . , zn ∈ L then m = n and yi = zi for 1 ≤ i ≤ m. If
every element of L∗ has unique factorization into elements of L, then L is called
a code.

Although codes have been studied extensively (see, for example, [1]), in this
paper we look at some novel aspects of unique factorization.

2 Unique factorizations

Given L, we define uf(L) to be the set of all elements of L∗ having unique
factorization into elements of L. We recall the following familiar fact:

Proposition 1. If L is regular, then so is uf(L).

http://arxiv.org/abs/1503.06365v1

II Paul Bell, Daniel Reidenbach, and Jeffrey Shallit

Proof. If L contains the empty word ǫ then no elements of L∗ have unique
factorization, and so uf(L) = ∅. So, without loss of generality we can assume
ǫ 6∈ L.

To prove the result, we show that the relative complement L∗ − uf(L) is
regular. Let L be accepted by a DFA M . On input x ∈ L∗, we build an NFA
M ′ to guess two different factorizations of x and verify they are different. The
machine M ′ maintains the single state of the DFA M for L as it scans the
elements of x, until M ′ reaches a final state q. At this point M ′ moves, via
an ǫ-transition, to a new kind of state that records pairs. Transitions on these
“doubled” states still follow M ’s transition function in both coordinates, with
the exception that if either state is in F , we allow a “reset” implicitly to q0.
Each implicit return to q0 marks, in a factorization, the end of a term. The final
states of M ′ are the “doubled” states with both elements in F .

More precisely, assume M = (Q,Σ, δ, q0, F). Since ǫ 6∈ L(M), we know q0 6∈
F . We create the machine M ′ = (Q′, Σ, δ′, q0, F

′) as follows:

δ′(q, a) =

{

{δ(q, a)}, if q 6∈ F ;

{δ(q0, a), [δ(q0, a), δ(q, a)]}, if q ∈ F .

Writing r = δ(p, a), s = δ(q, a), t = δ(q0, a), we also set

δ′([p, q], a) =

{[r, s]}, if p 6∈ F , q 6∈ F ;

{[r, s], [t, s]}, if p ∈ F , q 6∈ F ;

{[r, s], [r, t]}, if p 6∈ F , q ∈ F ;

{[r, s], [t, s], [r, t], [t, t]}, if p ∈ F , q ∈ F .

Finally, we set F ′ = F × F . To see that the construction works, suppose that
x ∈ L∗ has two different factorizations

x = y1y2 · · · yjyj+1 · · · yk = y1y2 · · · yjzj+1 · · · zℓ

with yj+1 a proper prefix of zj+1. Then an accepting path starts with singleton
sets until the end of yj . The next transition goes to a pair having first element
δ(q0, a) with a the first letter of yj+1. Subsequent transitions eventually lead to
a pair in F × F .

On the other hand, if x is accepted, then two different factorizations are
traced out by the accepting computation in each coordinate. The factorizations
are guaranteed to be different because of the transition to [δ(q0, a), δ(q, a)]. ⊓⊔

Remark 2. There is a shorter and more transparent proof of this result, as fol-
lows. Given a DFA for L, create an NFA A for L∗ by adding ǫ-transitions from
every final state back to the initial state, and then removing the ǫ-transitions
using the familiar method (e.g., [2, Theorem 2.2]). Next, using the Boolean ma-
trix interpretation of finite automata (e.g., [5] and [4, §3.8]), we can associate an
adjacency matrix Ma with the transitions of A on the letter a. Then, on input
x = a1a2 · · · ai, a DFA can compute the matrix Mx = Ma1

Ma2
· · ·Mai

using

Factorization in Formal Languages III

ordinary integer matrix multiplication, with the proviso that any entry that is
2 or more is changed to 2 after each matrix multiplication. This can be done by
a DFA since the number of such matrices is at most 3n

2

where n is the number
of states of M . Then, accepting if and only if the entry in the row and column
corresponding to the initial state of A is 1, we get a DFA accepting exactly those
x having unique factorization into elements of L. While this proof is much sim-
pler, the state bound it provides is quite extravagant compared to our previous
proof.

Corollary 3. Suppose L is accepted by a DFA with n states. If L is not a code,

then there exists a word x ∈ L∗ with at least two distinct factorizations into

elements of L, with |x| < n2 + n.

Proof. Our construction in the proof of Proposition 1 gives an NFAM ′ accepting
all words with at least two different factorizations, and it has n2 + n states. If
M ′ accepts anything at all, it accepts a word of length at most n2 + n− 1. ⊓⊔

Proposition 4. For all n ≥ 2, there exists an O(n)-state DFA accepting a

language L that is not a code, such that the shortest word in L∗ having two

factorizations into elements of L is of length Ω(n2).

Proof. Consider the language Ln = b(an)∗ ∪ (an+1)∗b. It is easy to see that
Ln can be accepted by a DFA with 2n+ 5 states, but the shortest word in L∗

n

having two distinct factorizations into elements of Ln is b an(n+1) b, of length
n2 + n+ 2. ⊓⊔

In fact, there are even examples of finite languages with the same property.

Proposition 5. For all n ≥ 2, there exists an O(n)-state DFA accepting a

finite language L that is not a code, such that the shortest word in L∗ having

two factorizations is of length Ω(n2).

Proof. Let Σ = {b, a1, a2, . . . , an} be an alphabet of size n + 1, and let Ln be
the language of 2n words

{a1, an} ∪ {biai+1 : 1 ≤ i < n} ∪ {aib
i : 1 ≤ i < n}

defined over Σ.
Then it is easy to see that Ln can be accepted with a DFA of 2n+ 2 states,

while the shortest word having two distinct factorizations is

a1ba2b
2a3b

3 · · · an−1b
n−1an,

which is of length n(n+ 1)/2. ⊓⊔

Remark 6. The previous example can be recoded over a three-letter alphabet by
mapping each ai to the base-2 representation of i, padded, if necessary, to make
it of length ℓ, where ℓ = ⌈log2 n⌉. With some reasonably obvious reuse of states
this can still be accepted by a DFA using O(n) states, and the shortest word
with two distinct factorizations is still of length Ω(n2).

IV Paul Bell, Daniel Reidenbach, and Jeffrey Shallit

Theorem 7. If L is a CFL, then uf(L) need not be a CFL.

Proof. Let L = PALSTAR, the set of all strings over the alphabet Σ = {0, 1} that
are the concatenation of one or more even-length palindromes. Clearly L is a
CFL. Then uf(L) = PRIMEPALSTAR, which was proven in [3] to be non-context-
free. (Here PRIMEPALSTAR is the set of all elements of PALSTAR that cannot be
written as the product of two or more elements of PALSTAR.) ⊓⊔

3 Semi-unique factorizations

We now consider a variation on unique factorization. We say that x ∈ L∗ has
semi-unique factorization if all factorizations of x into elements of L consist of
the same number of factors. More precisely, x has semi-unique factorization if
whenever

x = y1y2 · · · ym = z1z2 · · · zn

for y1, y2, . . . , ym, z1, z2, . . . , zn ∈ L, then m = n.
Given a language L, we define su(L) to be the set of all elements of L∗ having

semi-unique factorization over L.

Example 8. Let L = {a, ab, aab}. Then su(L) = (ab)∗a∗.

Theorem 9. If L is regular, then su(L) is a CSL and a co-CFL.

Proof. To see that L is a co-CFL, mimic the proof of Proposition 1. We use a
stack to keep track of the difference between the number of terms in the two
guessed factorizations, and another flag in the state to say which, the “top”,
or the “bottom” state, has more terms (since the stack can’t hold negative
counters). We accept if we guess two factorizations having different numbers of
terms.

To see that L is a CSL, note that su(L) is decidable in DSPACE(n). (All we
need to do is enumerate all the possible factorizations; since no factorization is
longer than the word itself, we can list them all in linear space.) ⊓⊔

Corollary 10. Given a regular language L, it is decidable if there exist elements

x ∈ L∗ lacking semi-unique factorization.

Proof. Given L, we can construct the PDA accepting L∗−su(L). We convert this
PDA to a CFG G generating the same language (e.g., [2, Theorem 5.4]). Finally,
we use well-known techniques (e.g., [2, Theorem 6.6]) to determine whether L(G)
is empty. ⊓⊔

Theorem 11. If L is regular then su(L) need not be a CFL.

Proof. Let

L = a0+b+ 1 + c(23)+ + 23d+ a+ 0 + b1+c(23)+ + a0+b1+c2 + 32 + 3d.

Consider su(L) and intersect with the regular language a0+b1+c(23)+d.

Factorization in Formal Languages V

Then there are only three possible factorizations for a given word here. They
look like (using parens to indicate factors)

(a0ib)1 · 1 · 1 · · · 1(c(23)k)(23d), which has j + 3 terms if j is the number of
1’s;

(a)0 · 0 · · · 0(b1jc(23)k)(23d), which has i+ 3 terms if i is the number of 0’s;
and

(a0ib1jc2)(32)(32) · · · (32)(3d), which has k + 2 terms, if k is the number of
(32)’s.

So if all three factorizations have the same number of terms we must have
i = j = k − 1 which gives us

{a0nb1nc(23)n−1d : n ≥ 1}

which is not a CFL. ⊓⊔

There are even examples where L is finite. For expository purposes, we give
an example over the 21-letter alphabet

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, a, b, c, d, e, f, g, h, i, j, k, l}.

Theorem 12. If L is finite, then su(L) need not be a CFL.

Proof. Define

L1 = {0ab, cd, ab, cd127, efgh, efgh3, 4ijkl, ijkl, 5, 68}

L2 = {0abc, dabc, d1, 27e, fg, he, h34ij, klij, kl568}

L3 = {0a, bcda, bcd12, 7ef, ghef, gh34i, jk, li, jkl56, 8}

and set L := L1 ∪ L2 ∪ L3.
Consider possible factorizations of words of the form

0(abcd)m127(efgh)n34(ijkl)p568

for some integers m,n, p ≥ 1. Any factorization of such a word into elements of
L must begin with either 0ab, 0abc, or 0a. There are three cases to consider:

Case 1: the first word is 0ab. Then the next word must begin with c, and there
are only two possible choices: cd and cd127. If the next word is cd then since no
word begins with 1 the only choice is to pick a word starting with a, and there
is only one: ab. After picking this, we are back in the same situation, and can
only choose between cd followed by ab, or cd127. Once cd127 is picked we must
pick a word that begins with e. However, there are only two: efgh and efgh3.
If we pick efgh we are left in the same situation. Once we pick efgh3 we must
pick a word starting with 4, but there is only one: 4ijkl. After this we can either
pick 5 and then 68, or we can pick ijkl a number of times, followed by 568.

VI Paul Bell, Daniel Reidenbach, and Jeffrey Shallit

This gives the factorization

(0ab)((cd)(ab))m−1(cd127)(efgh)n−1(efgh3)(4ijkl)(ijkl)p−1(5)(68)

having 1 + 2(m − 1) + 1 + (n − 1) + 1 + 1 + (p − 1) + 1 + 1 = 2m + n + p + 2
terms.

Case 2: the first word is 0abc. Then the next word must begin with d, and there
are only two choices: dabc and d1. If we pick dabc we are back in the same
situation. If we pick d1 then the next word must begin with 2, but there is only
one such word: 27e. Then the next word must begin with f , but there is only
one: fg. Then the next word must begin with h, but there are only two: he and
h34ij. If we pick he we are back in the same situation. Otherwise we must have
a word beginning with k, but there are only two: klij and kl568. This gives the
factorization

(0abc)(dabc)m−1(d1)(27e)((fg)(he))n−1(fg)(h34ij)(klij)p−1(kl568)

having 1 + (m− 1) + 2+ 2(n− 1) + 1+ 1 + (p− 1) + 1 = m+ 2n+ p+ 2 terms.

Case 3: the first word is 0a. Then only bcda and bcd12 start with b, so we must
choose bcda over and over until we choose bcd12. Only one word starts with 7 so
we must choose 7ef . Now we must choose ghef again and again until we choose
gh34i. We now choose jk and li alternately until jkl56. Finally, we pick 8.

This gives us a factorization

(0a)(bcda)m−1(bcd12)(7ef)(ghef)n−1(gh34i)((jk)(li))p−1(jkl56)(8)

with 1 + (m− 1) + 2 + (n− 1) + 1 + 2(p− 1) + 2 = m+ n+ 2p+ 2.

So for all these three factorizations to have the same number of terms, we
must have

2m+ n+ p+ 2 = m+ 2n+ p+ 2 = m+ n+ 2p+ 2.

Eliminating variables we get that m = n = p. So when we compute su(L) and
intersect with the regular language 0(abcd)+127(efgh)+34(ijkl)+568 we get

{0(abcd)n127(efgh)n34(ijkl)n568 : n ≥ 1},

which is clearly a non-CFL. ⊓⊔

Remark 13. The previous two examples can be recoded over a binary alphabet,
by mapping the i’th letter to the string baib.

Factorization in Formal Languages VII

4 Permutationally unique factorization

In this section we consider yet another variation on unique factorization, which
are factorizations that are unique up to permutations of the factors.

Formally, given a language L we say x ∈ L∗ has permutationally unique

factorization if whenever x = y1y2 · · · ym = z1z2 · · · zn for

y1, y2, . . . , ym, z1, z2, . . . , zn ∈ L,

then m = n and there exists a permutation σ of {1, . . . , n} such that yi = zσ(i)
for 1 ≤ i ≤ n. In other words, we consider two factorizations that differ only
in the order of the factors to be the same. We define ufp(L) to be the set of x
having permutationally unique factorization.

Example 14. Consider L = {a3, a4}. Then

ufp(L) = {a3, a4, a6, a7, a8, a9, a10, a11, a13, a14, a17}.

Theorem 15. If L is finite then ufp(L) is a CSL and a co-CFL.

Proof. The claim about CSL should be clear.
We sketch the construction of a PDA accepting ufp(L). If a word is in L∗

but has two permutationally distinct factorizations, then there has to be some
factor appearing in the factorizations a different number of times. Our PDA
nondeterministically guesses two different factorizations and a factor t ∈ L that
appears a different number of times in the factorizations, then verifies the fac-
torizations and checks the number. It uses the stack to hold the absolute value
of the difference between the number of times t appears in the first factorization
and the second. It accepts if both factorizations end properly and the stack is
nonempty. ⊓⊔

Theorem 16. If L is finite then ufp(L) need not be a CFL.

Proof. Let Σ = {a, b, c}. Define L = {A,B, S1, S2, T1, T2} ⊆ Σ+ as follows:

A = aa, B = aaa, S1 = ab, S2 = ac, T1 = ba, T2 = ca.

Let R = aa(ab)+(ac)+aa(ba)+(ca)+aaa, and consider words of the form

w := aa(ab)r(ac)saa(ba)t(ca)qaaa ∈ ufp(L) ∩R

with r, s, t, q ≥ 1 and the following two factorizations of w:

ASr
1S

s
2AT

t
1T

q
2B = aa · (ab)r · (ac)s · aa · (ba)t · (ca)q · aaa (1)

BT r
1 T

s
2S

t
1S

q
2AA = aaa · (ba)r · (ca)s · (ab)t · (ac)q · aa · aa (2)

It is not difficult to see that w must be of one of these two forms. Since w has
prefix aaab, it must start with either AS1 or BT1. If it starts with AS1 = aa ·ab,
the next factors must be Sr−1

1 to match (ab)r, so we have ASr
1 . We then see

VIII Paul Bell, Daniel Reidenbach, and Jeffrey Shallit

(ac)s, which can only match with Ss
2 . Next, we see ‘aaba’, thus we must choose

AT1 = aa · ba. We then have (ba)t−1, which can only match with T t−1
1 , and then

(ca)q, matching only with T q
2 . Finally the suffix is ‘aaa’ which can only match

with B as required.
If w starts with BT1 = aaa · ba, the next part is (ba)r−1, which only matches

with T r−1
1 . Then we see (ca)s, so we must use factors T s

2 . We then see (ab)t and
(ac)q, matching with St

1 and Sq
2 respectively. Finally we have ‘aaaa’ matching

only with AA as required.
If r = t and s = q, then the number of each factor (A,B, S1, S2, T1, T2)

in factorizations (1) and (2) is identical. Therefore, w always has more than
one factorization (of type (1) or (2)); however, that factorization is only non-
permutationally equivalent if r 6= t or s 6= q. Therefore

ufp(L) ∩R = {aa · (ab)r · (ac)s · aa · (ba)t · (ca)q · aaa | (r = t) ∧ (s = q)}

= {ASr
1S

s
2AT

r
1 T

s
2B : r, s ≥ 1},

which is not a context-free language. ⊓⊔

5 Subset-invariant factorization

In this section we consider yet another variation on unique factorization.We say a
word x ∈ L∗ has subset-invariant factorization (into elements of L) if there exists
a subset S ⊆ L with the property that every factorization of x into elements of
L uses exactly the elements of S — no more, no less — although each element
may be used a different number of times. More precisely, x has subset-invariant
factorization if there exists S = S(x) such that whenever x = y1y2 · · · ym with
y1, y2, . . . , ym ∈ L, then S = {y1, y2, . . . , ym}. We let ufs(L) denote the set of
those x ∈ L∗ having such a factorization.

Theorem 17. If L is finite then ufs(L) is regular.

Proof. The proof is similar to the proof of Theorem 15 above. On input x we
nondeterministically attempt to construct two different factorizations into ele-
ments of L, recording which elements of L we have seen so far. We accept if we
are successful in constructing two different factorizations (which will be different
if and only if some element was chosen in one factorization but not the other).
This NFA accepts L∗ − ufs(L). So if L is finite, it follows that ufs(L) is regular.

In more detail, here is the construction. States of our NFA are 6-tuples of
the form [w1, s1, v1, w2, s2, v2] where w1, w2 are the words of L we are currently
trying to match; s1, s2 are, respectively, the suffixes of w1, w2 we have yet to
see, and v1, v2 are binary characteristic vectors of length |L|, specifying which
elements of L have been seen in the factorization so far (including w1 and w2,
although technically they may not have been seen yet). Letting C(z) denote the
vector with all 0’s except a 1 in the position corresponding to the word z ∈ L,
the initial states are [w,w,C(w), x, x, C(x)] for all words w, x ∈ L. The final
states are of the form [w, ǫ, v1, x, ǫ, v2] where v1 6= v2. Transitions on a letter a

Factorization in Formal Languages IX

look like δ([w1, as1, v1, w2, as2, v2], a) = [w1, s1, v1, w2, s2, v2]. In addition there
are ǫ-transitions that update the corresponding vectors if s1 or s2 equals ǫ, and
that “reload” the new w1 and w2 we are expecting to see:

δ([w1, ǫ, v1, w2, s2, v2], ǫ) = {[w,w, v1 ∨ C(w), w2, s2, v2] : w ∈ L}

δ([w1, s1, v1, w2, ǫ, v2], ǫ) = {[w1, s1, v1, w, w, v2 ∨ C(w)] : w ∈ L}.

⊓⊔

The preceding proof also shows that the shortest word failing to have subset-
invariant factorization is bounded polynomially:

Corollary 18. Suppose |L| = n and the length of the longest word of L is m.

Then if some word of L∗ fails to have subset-invariant factorization, there is a

word with this property of length ≤ 2m2n2.

Proof. Let u ∈ L+ be a minimal length word such that u ∈ L+−ufs(L). Consider
the states of the NFA traversed in processing u. Let S0 := [w,w,C(w), x, x, C(x)]
be the initial state and SF := [wF , ǫ, vF , xF , ǫ, v

′
F] the final state, where vF 6= v′F .

By definition, there must exist some z ∈ L such that vF and v′F differ on C(z),

i.e., vTF · C(z) + v′F
T · C(z) = 1.

Initially the characteristic vectors have a single 1, and once an element is set
to 1 in a characteristic vector in the NFA, it is never reset to 0. Thus, there
exists some 1 ≤ k ≤ |u| such that u = u1 · · ·uk−1 · uk · uk+1 · · ·u|u| where
Sk−1 = δ(S0, u1 · · ·uk−1) has a 0 in the characteristic vectors at position z, and
δ(Sk−1, uk) has a 1 in exactly one of the two characteristic vectors at position
z. We shall now prove that |u1 · · ·uk−1|, |uk+1 · · ·u|u|| ≤ m2n2, which proves the
result.

We prove the result for the word v = u1 · · ·uk−1; a similar analysis holds
for uk+1 · · ·u|u|. Let S0, S1, . . . Sk−1 be the states of the NFA visited as we pro-
cess v. We prove that there does not exist 0 ≤ i < j ≤ k − 1 such that Si =
[w1, s1, v1, w2, s2, v2] and Sj = [w1, s1, v

′
1, w2, s2, v

′
2]. We proceed by contradic-

tion. Assume such an i and j exist. Then ui+1 · · ·uj is such that δ(Si, ui+1 · · ·uj) =
Sj . However, δ(Si, uj+1 · · ·uk) and δ(Sj , uj+1 · · ·uk) can only differ in their bi-
nary characteristic vectors, since the transition function does not depend upon
the characteristic vectors when we update the words w1, s1, w2, s2. Thus, we can
remove the factor ui+1 · · ·uj from u and still reach a final state of the form
SF2

:= [wF , ǫ, vF2
, xF , ǫ, v

′
F2
], for which we still have that vF2

6= v′F2
, since they

differ on element z due to letter uk. Continuing this idea iteratively, the maximal
number of states k is bounded by m2n2. Doubling this bound gives the result.

⊓⊔

The next result shows that we can achieve a quadratic lower bound.

Proposition 19. There exist examples with |L| = 2n and longest word of length

n for which the shortest word of L∗ failing to have subset-invariant factorization

is of length n(n+ 1)/2.

X Paul Bell, Daniel Reidenbach, and Jeffrey Shallit

Proof. We just use the example of Proposition 5. ⊓⊔

Theorem 20. If L is regular then ufs(L) need not be a CFL.

Proof. We use a variation of the construction in the proof of Theorem 16. Let
L = (ab)+(ac)+aa + (ba)+(ca)+ + aa + aaa. Then (using the notation in the
proof of Theorem 16), if

w := aa(ab)r(ac)saa(ba)t(ca)qaaa ∈ ufs(L) ∩R

with r, s, t, q ≥ 1 then there are two different factorizations of w:

w = aa · (ab)r(ac)saa · (ba)t(ca)q · aaa

= aaa · (ba)r(ca)s · (ab)t(ac)qaa · aa

which are subset-invariant if and only if r = t and s = q. So

ufs(L) ∩ R = {aa(ab)r(ac)saa(ba)r(ca)saaa : r, s ≥ 1},

which is not a CFL. ⊓⊔

6 Acknowledgment

The idea of considering semi-unique factorization was inspired by a talk of Nasir
Sohail at the University of Waterloo in April 2014.

References

1. J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata. Encyclopedia of
Mathematics and Its Applications, Vol. 129. Cambridge University Press, 2010.

2. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.
3. N. Rampersad, J. Shallit, and M.-w. Wang. Inverse star, borders, and palstars. Info.

Proc. Letters 111 (2011), 420–422.
4. J. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge

University Press, 2009.
5. G.-Q. Zhang. Automata, Boolean matrices, and ultimate periodicity. Inf. Comput.

152 (1999), 138–154.

	Factorization in Formal Languages

