Skip to content

Files

primality-certificates

Directory actions

More options

primality-certificates

Folders and files

NameName
Last commit message
Last commit date

parent directory

..

(In progess to add bases b = 17 and b = 21)

These are the Primo (http://www.ellipsa.eu/public/primo/primo.html, http://www.rieselprime.de/dl/Primo309.zip, https://t5k.org/bios/page.php?id=46, https://www.rieselprime.de/ziki/Primo, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/primo-433-lx64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/Primo309) (an elliptic curve primality proving (https://t5k.org/prove/prove4_2.html, https://en.wikipedia.org/wiki/Elliptic_curve_primality, https://t5k.org/glossary/xpage/ECPP.html, https://mathworld.wolfram.com/EllipticCurvePrimalityProving.html, http://irvinemclean.com/maths/pfaq7.htm, https://t5k.org/top20/page.php?id=27, https://t5k.org/primes/search.php?Comment=ECPP&OnList=all&Number=1000000&Style=HTML, http://www.ellipsa.eu/public/primo/records.html, http://www.lix.polytechnique.fr/~morain/Prgms/ecpp.english.html, https://www.multiprecision.org/cm/ecpp.html, https://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1199989-X/S0025-5718-1993-1199989-X.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_256.pdf)) implementation) primality certificates (https://en.wikipedia.org/wiki/Primality_certificate, https://t5k.org/glossary/xpage/Certificate.html, https://mathworld.wolfram.com/PrimalityCertificate.html, http://www.ellipsa.eu/public/primo/records.html, http://www.lix.polytechnique.fr/Labo/Francois.Morain/Primes/myprimes.html, https://stdkmd.net/nrr/cert/, https://alfredreichlg.de/10w7/certifiedprimes.html, http://xenon.stanford.edu/~tjw/pp/index.html, http://factordb.com/certoverview.php) for the minimal primes > 10299 and < 1025000 (primes < 10299 are automatically proven primes in factordb, and primes < 10299 can be verified in a few seconds (for primes ≤ the 50000000th prime (i.e. 982451653), we check the online list of the first 50000000 primes in https://t5k.org/lists/small/millions/ (i.e. we simply use table lookup), and for the primes > the 50000000th prime (i.e. 982451653) and < 1016, we simply use the sieve of Eratosthenes (https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes, https://t5k.org/glossary/xpage/SieveOfEratosthenes.html, https://www.rieselprime.de/ziki/Sieve_of_Eratosthenes, https://mathworld.wolfram.com/SieveofEratosthenes.html, https://oeis.org/A083221, https://oeis.org/A083140, https://oeis.org/A145583, https://oeis.org/A145540, https://oeis.org/A145538, https://oeis.org/A145539, https://oeis.org/A227155, https://oeis.org/A227797, https://oeis.org/A227798, https://oeis.org/A227799, https://oeis.org/A145584, https://oeis.org/A145585, https://oeis.org/A145586, https://oeis.org/A145587, https://oeis.org/A145588, https://oeis.org/A145589, https://oeis.org/A145590, https://oeis.org/A145591, https://oeis.org/A145592, https://oeis.org/A145532, https://oeis.org/A145533, https://oeis.org/A145534, https://oeis.org/A145535, https://oeis.org/A145536, https://oeis.org/A145537) (in fact, we use trial division (https://en.wikipedia.org/wiki/Trial_division, https://t5k.org/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial, https://www.mersenne.ca/tf1G/, https://www.mersenne.ca/tfmissed.php, https://oeis.org/A189172) with all 11-rough numbers (https://en.wikipedia.org/wiki/Rough_number, https://mathworld.wolfram.com/RoughNumber.html, https://oeis.org/A007310, https://oeis.org/A007775, https://oeis.org/A008364, https://oeis.org/A008365, https://oeis.org/A008366, https://oeis.org/A166061, https://oeis.org/A166063) > 1 and ≤ sqrt(p) (the square root (https://en.wikipedia.org/wiki/Square_root, https://www.rieselprime.de/ziki/Square_root, https://mathworld.wolfram.com/SquareRoot.html) of the prime), i.e. we use the wheel factorization (https://en.wikipedia.org/wiki/Wheel_factorization, https://t5k.org/glossary/xpage/WheelFactorization.html) with modulo 210 = 2×3×5×7 (the primorial (https://en.wikipedia.org/wiki/Primorial, https://t5k.org/glossary/xpage/Primorial.html, https://mathworld.wolfram.com/Primorial.html, https://www.numbersaplenty.com/set/primorial/, https://oeis.org/A002110) of the prime 7), to save time), see https://t5k.org/prove/prove2_1.html, and for the primes > 1016 and < 10299, we use the Adleman–Pomerance–Rumely primality test (https://en.wikipedia.org/wiki/Adleman%E2%80%93Pomerance%E2%80%93Rumely_primality_test, https://www.rieselprime.de/ziki/Adleman%E2%80%93Pomerance%E2%80%93Rumely_primality_test, https://mathworld.wolfram.com/Adleman-Pomerance-RumelyPrimalityTest.html, https://t5k.org/prove/prove4_1.html), this primality test can verify the primes with such size in less than one second, see https://t5k.org/prove/prove2_1.html, and no need to use elliptic curve primality proving for the primes with such size), proof of their primality is not included here, in order to save space, larger primes can take from hours to months to prove, unless their N−1 (https://t5k.org/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=1) or/and N+1 (https://t5k.org/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=2) can be ≥ 1/4 factored (i.e. the product of the known prime factors of N−1 or/and N+1 is ≥ the fourth root of it)) in bases b = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 28, 30, 36 (the "easy" bases (bases b with ≤ 150 minimal primes > 10299 (base b = 26 has 82 known minimal (probable) primes > 10299 and 4 unsolved families, base b = 36 has 75 known minimal (probable) primes > 10299 and 4 unsolved families, base b = 17 has 99 known minimal (probable) primes > 10299 and 18 unsolved families, base b = 21 has 80 known minimal (probable) primes > 10299 and 12 unsolved families, base b = 19 has 201 known minimal (probable) primes > 10299 and 23 unsolved families))).

The large minimal primes in base b are of the form (a×bn+c)/gcd(a+c,b−1) for some a, b, c, n such that a ≥ 1, b ≥ 2 (b is the base), c ≠ 0, gcd(a,c) = 1, gcd(b,c) = 1 (i.e. they are the near-Cunningham numbers (http://factordb.com/tables.php?open=4, https://oeis.org/wiki/OEIS_sequences_needing_factors#Near_powers.2C_factorials.2C_and_primorials (sections "near-powers with b = 2" and "near-powers with b = 3" and "near-powers with b = 5" and "near-powers with b = 6" and "near-powers with b = 7" and "near-powers with b = 10" and "near-powers with b > 10")), the large numbers (i.e. the numbers with large n, say n > 1000) can be easily proven primes using N−1 test (https://t5k.org/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=1) or N+1 test (https://t5k.org/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=2) if and only if c = ±1 and gcd(a+c,b−1) = 1 (if this large minimal prime in base b is xynz (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) in base b, then c = 1 and gcd(a+c,b−1) = 1 if and only if the digit y is 0 and the string z is 1, and c = −1 and gcd(a+c,b−1) = 1 if and only if the digit y is b−1 and the string z is 𝜆 (the empty string (https://en.wikipedia.org/wiki/Empty_string)), if we reduce these families by removing all trailing digits y from x, and removing all leading digits y from z, to make the families be easier, e.g. family 12333{3}33345 in base b is reduced to family 12{3}45 in base b, since they are in fact the same family), except this special case (https://en.wikipedia.org/wiki/Special_case) of c = ±1 and gcd(a+c,b−1) = 1, such numbers need primality certificates to be proven primes (otherwise, they will only be probable primes (https://en.wikipedia.org/wiki/Probable_prime, https://t5k.org/glossary/xpage/PRP.html, https://www.rieselprime.de/ziki/Probable_prime, https://mathworld.wolfram.com/ProbablePrime.html, http://www.primenumbers.net/prptop/prptop.php, https://stdkmd.net/nrr/records.htm#probableprimenumbers, https://stdkmd.net/nrr/repunit/prpfactors.htm, https://www.alfredreichlg.de/10w7/prp.html, http://factordb.com/listtype.php?t=1)), and elliptic curve primality proving are used for these numbers.

There are also other versions of the N−1 and N+1 tests, using primitive roots (https://en.wikipedia.org/wiki/Primitive_root_modulo_n, https://mathworld.wolfram.com/PrimitiveRoot.html, http://www.bluetulip.org/2014/programs/primitive.html, http://www.numbertheory.org/php/lprimroot.html, http://www.numbertheory.org/php/lprimrootneg.html, http://www.numbertheory.org/php/lprimroot_generator.html, http://www.numbertheory.org/php/lprimrootneg_generator.html, https://oeis.org/A046147, https://oeis.org/A060749, https://oeis.org/A046144, https://oeis.org/A008330, https://oeis.org/A046145, https://oeis.org/A001918, https://oeis.org/A046146, https://oeis.org/A071894, https://oeis.org/A002199, https://oeis.org/A033948, https://oeis.org/A033949), see https://www.mathpages.com/home/kmath473/kmath473.htm for the N−1 test and see https://bln.curtisbright.com/2013/11/23/a-variant-n1-primality-test/ for the N+1 test.

The case c = 1 and gcd(a+c,b−1) = 1 (corresponding to generalized Proth prime (https://en.wikipedia.org/wiki/Proth_prime, https://t5k.org/glossary/xpage/ProthPrime.html, https://www.rieselprime.de/ziki/Proth_prime, https://mathworld.wolfram.com/ProthNumber.html, http://www.prothsearch.com/frequencies.html, http://www.prothsearch.com/history.html, https://www.rieselprime.de/Data/PStatistics.htm, https://www.rieselprime.de/Data/PRanges50.htm, https://www.rieselprime.de/Data/PRanges300.htm, https://www.rieselprime.de/Data/PRanges1200.htm, http://irvinemclean.com/maths/pfaq6.htm, https://www.numbersaplenty.com/set/Proth_number/, https://web.archive.org/web/20230706041914/https://pzktupel.de/Primetables/TableProthTOP10KK.php, https://pzktupel.de/Primetables/ProthK.txt, https://pzktupel.de/Primetables/TableProthTOP10KS.php, https://pzktupel.de/Primetables/ProthS.txt, https://pzktupel.de/Primetables/TableProthGen.php, https://pzktupel.de/Primetables/TableProthGen.txt, https://sites.google.com/view/proth-primes, https://t5k.org/primes/search_proth.php, https://t5k.org/top20/page.php?id=66, https://www.primegrid.com/forum_thread.php?id=2665, https://www.primegrid.com/stats_pps_llr.php, https://www.primegrid.com/stats_ppse_llr.php, https://www.primegrid.com/stats_mega_llr.php, https://www.primegrid.com/primes/primes.php?project=PPS&factors=XGF&only=ALL&announcements=ALL&sortby=size&dc=yes&search=, https://www.primegrid.com/primes/primes.php?project=PPSE&factors=XGF&only=ALL&announcements=ALL&sortby=size&dc=yes&search=, https://www.primegrid.com/primes/primes.php?project=MEG&factors=XGF&only=ALL&announcements=ALL&sortby=size&dc=yes&search=, http://boincvm.proxyma.ru:30080/test4vm/public/pps_dc_status.php, https://www.rieselprime.de/ziki/PrimeGrid_Proth_Prime_Search, https://www.rieselprime.de/ziki/PrimeGrid_Proth_Prime_Search_Extended, https://www.rieselprime.de/ziki/PrimeGrid_Proth_Mega_Prime_Search) base b: a×bn+1, they are related to generalized Sierpinski conjecture base b (http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjecture-reserves.htm, https://web.archive.org/web/20230928115832/http://www.noprimeleftbehind.net/crus/vstats_new/all_ck_sierpinski.txt, https://mersenneforum.org/attachment.php?attachmentid=17598&d=1516910519, https://web.archive.org/web/20221230035429/https://sites.google.com/site/robertgerbicz/sierpinski.txt, https://mersenneforum.org/attachment.php?attachmentid=4557&d=1263456866, https://mersenneforum.org/showthread.php?t=10910, https://mersenneforum.org/showthread.php?t=25177, https://www.utm.edu/staff/caldwell/preprints/2to100.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_3.pdf), http://www.bitman.name/math/article/1259 (in Italian))) can be easily proven prime using Pocklington N−1 method (https://t5k.org/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1), and the case c = −1 and gcd(a+c,b−1) = 1 (corresponding to generalized Riesel prime (https://www.rieselprime.de/ziki/Riesel_prime, https://www.rieselprime.de/Data/Statistics.htm, http://irvinemclean.com/maths/pfaq6.htm, https://web.archive.org/web/20230628151418/https://pzktupel.de/Primetables/TableRieselTOP10KK.php, https://pzktupel.de/Primetables/RieselK.txt, https://pzktupel.de/Primetables/TableRieselTOP10KS.php, https://pzktupel.de/Primetables/RieselS.txt, https://pzktupel.de/Primetables/TableRieselGen.php, https://pzktupel.de/Primetables/TableRieselGen.txt, https://sites.google.com/view/proth-primes, http://www.noprimeleftbehind.net/stats/index.php?content=prime_list, https://t5k.org/primes/search_proth.php, http://www.noprimeleftbehind.net:9000/all.html, http://www.noprimeleftbehind.net:2000/all.html, http://www.noprimeleftbehind.net:1468/all.html, http://www.noprimeleftbehind.net:1400/all.html, https://www.rieselprime.de/ziki/NPLB_Drive_17, https://www.rieselprime.de/ziki/NPLB_Drive_18, https://www.rieselprime.de/ziki/NPLB_Drive_19, https://www.rieselprime.de/ziki/NPLB_Drive_High-n) base b: a×bn−1, they are related to generalized Riesel conjecture base b (http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjecture-reserves.htm, https://web.archive.org/web/20230928115850/http://www.noprimeleftbehind.net/crus/vstats_new/all_ck_riesel.txt, https://mersenneforum.org/attachment.php?attachmentid=17597&d=1516910519, https://web.archive.org/web/20221230035558/https://sites.google.com/site/robertgerbicz/riesel.txt, https://mersenneforum.org/attachment.php?attachmentid=4558&d=1263456995, https://mersenneforum.org/showthread.php?t=10910, https://mersenneforum.org/showthread.php?t=25177)) can be easily proven prime using Morrison N+1 method (https://t5k.org/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=2), these primes can be proven prime using Yves Gallot's Proth.exe (https://t5k.org/programs/gallot/, https://t5k.org/bios/page.php?id=411, https://www.rieselprime.de/ziki/Proth.exe, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/proth), these primes can also be proven prime using Jean Penné's LLR (http://jpenne.free.fr/index2.html, https://t5k.org/bios/page.php?id=431, https://www.rieselprime.de/ziki/LLR, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403linux64), also you can compare the top definitely primes page (https://t5k.org/primes/lists/all.txt) and the top probable primes page (http://www.primenumbers.net/prptop/prptop.php), also see https://stdkmd.net/nrr/prime/primesize.txt and https://stdkmd.net/nrr/prime/primesize.zip (see which numbers have "-proven" or "+proven" in the "note" column), also see https://stdkmd.net/nrr/records.htm (compare the sections "Prime numbers" and "Probable prime numbers").

Primes which either N−1 or N+1 is trivially (https://en.wikipedia.org/wiki/Triviality_(mathematics), https://mathworld.wolfram.com/Trivial.html) fully factored (i.e. primes of the form k×bn±1, with small k) do not need primality certificates, since they can be easily proven primes using N−1 test (https://t5k.org/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=1) or N+1 test (https://t5k.org/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=2), these primes are: (i.e. their N−1 or N+1 are smooth numbers (https://en.wikipedia.org/wiki/Smooth_number, https://mathworld.wolfram.com/SmoothNumber.html, https://oeis.org/A003586, https://oeis.org/A051037, https://oeis.org/A002473, https://oeis.org/A051038, https://oeis.org/A080197, https://oeis.org/A080681, https://oeis.org/A080682, https://oeis.org/A080683)) (i.e. the greatest prime factor (http://mathworld.wolfram.com/GreatestPrimeFactor.html, https://oeis.org/A006530) of N−1 or N+1 is small)

(these primes can be proven prime using Yves Gallot's Proth.exe (https://t5k.org/programs/gallot/, https://t5k.org/bios/page.php?id=411, https://www.rieselprime.de/ziki/Proth.exe, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/proth), these primes can also be proven prime using Jean Penné's LLR (http://jpenne.free.fr/index2.html, https://t5k.org/bios/page.php?id=431, https://www.rieselprime.de/ziki/LLR, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403linux64), see the README file for LLR (https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/llr403win64/Readme.txt, https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/llr403linux64/Readme.txt, http://jpenne.free.fr/index2.html))

Also, there are no primality certificates for these primes in factordb because although they are > 10299, but their N−1 or N+1 is fully factored (but not trivially (https://en.wikipedia.org/wiki/Triviality_(mathematics), https://mathworld.wolfram.com/Trivial.html) fully factored, however, only need trial division (https://en.wikipedia.org/wiki/Trial_division, https://t5k.org/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial, https://www.mersenne.ca/tf1G/, https://www.mersenne.ca/tfmissed.php, https://oeis.org/A189172) to 108) and the largest prime factor is < 10299 (primes < 10299 are automatically proven primes in factordb): (i.e. their N−1 or N+1 are product of a 108-smooth number (https://en.wikipedia.org/wiki/Smooth_number, https://mathworld.wolfram.com/SmoothNumber.html, https://oeis.org/A003586, https://oeis.org/A051037, https://oeis.org/A002473, https://oeis.org/A051038, https://oeis.org/A080197, https://oeis.org/A080681, https://oeis.org/A080682, https://oeis.org/A080683) and a prime < 10299) (i.e. the greatest prime factor (http://mathworld.wolfram.com/GreatestPrimeFactor.html, https://oeis.org/A006530) of N−1 or N+1 is < 10299, and the second-greatest prime factor (https://oeis.org/A087039, https://stdkmd.net/nrr/records.htm#BIGFACTOR, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Largest penultimate prime factor (ultimate factor shown also):")) of this number (N−1 or N+1) is < 108)

  • the 2328th minimal prime in base 16, 8802467, with 300 decimal digits, N−1 is 23 × 3 × 7 × 13 × 25703261 × (289-digit prime)
  • the 25174th minimal prime in base 26, OL0214M9, with 309 decimal digits, N−1 is 22 × 52 × 7 × 223 × 42849349 × (296-digit prime)
  • the 25485th minimal prime in base 28, JN206, with 300 decimal digits, N−1 is 2 × 1061 × 1171 × 74311 × (289-digit prime)

The helper file for the 2328th minimal prime in base 16 (8802467) in factordb: http://factordb.com/helper.php?id=1100000002468140199

The helper file for the 25174th minimal prime in base 26 (OL0214M9) in factordb: http://factordb.com/helper.php?id=1100000000840631576

The helper file for the 25485th minimal prime in base 28 (JN206) in factordb: http://factordb.com/helper.php?id=1100000002611724435

Factorization of N−1 for the 2328th minimal prime in base 16 (8802467) in factordb: http://factordb.com/index.php?id=1100000002468140641&open=ecm

Factorization of N−1 for the 25174th minimal prime in base 26 (OL0214M9) in factordb: http://factordb.com/index.php?id=1100000000840631577&open=ecm

Factorization of N−1 for the 25485th minimal prime in base 28 (JN206) in factordb: http://factordb.com/index.php?id=1100000002611724440&open=ecm

Also the case where N−1 or N+1 is product of a Cunningham number (of the form bn±1, see https://en.wikipedia.org/wiki/Cunningham_number, https://mathworld.wolfram.com/CunninghamNumber.html, https://www.numbersaplenty.com/set/Cunningham_number/, https://en.wikipedia.org/wiki/Cunningham_Project, https://t5k.org/glossary/xpage/CunninghamProject.html, https://www.rieselprime.de/ziki/Cunningham_project, https://oeis.org/wiki/OEIS_sequences_needing_factors#Cunningham_numbers (sections "b = 2" and "b = 3" and "b = 10" and "other integer b"), https://homes.cerias.purdue.edu/~ssw/cun/index.html, https://maths-people.anu.edu.au/~brent/factors.html, https://web.archive.org/web/20190315214330/http://cage.ugent.be/~jdemeyer/cunningham/, http://myfactors.mooo.com/, https://doi.org/10.1090/conm/022, https://www.mersenneforum.org/attachment.php?attachmentid=7727&d=1330555980 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_7.pdf), https://homes.cerias.purdue.edu/~ssw/cun/mine.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_6.pdf), http://homes.cerias.purdue.edu/~ssw/cun1.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_71.pdf)) and a small number (either a small integer or a fraction whose numerator and denominator are both small), and this Cunningham number is ≥ 1/3 factored (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm) (i.e. the product of the known prime factors of this Cunningham number is ≥ the cube root (https://en.wikipedia.org/wiki/Cube_root, https://mathworld.wolfram.com/CubeRoot.html) of it) or this Cunningham number is ≥ 1/4 factored (i.e. the product of the known prime factors of this Cunningham number is ≥ the fourth root of it) and the number is not very large (say not > 10100000). If either N−1 or N+1 (or both) can be ≥ 1/2 factored (i.e. the product of the known prime factors of either N−1 or N+1 (or both) is ≥ the square root (https://en.wikipedia.org/wiki/Square_root, https://www.rieselprime.de/ziki/Square_root, https://mathworld.wolfram.com/SquareRoot.html) of it), then we can use the Pocklington N−1 primality test (https://t5k.org/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1) (the N−1 case) or the Morrison N+1 primality test (https://t5k.org/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=2) (the N+1 case); if either N−1 or N+1 (or both) can be ≥ 1/3 factored (i.e. the product of the known prime factors of either N−1 or N+1 (or both) is ≥ the cube root (https://en.wikipedia.org/wiki/Cube_root, https://mathworld.wolfram.com/CubeRoot.html) of it), then we can use the Brillhart-Lehmer-Selfridge primality test (https://www.ams.org/journals/mcom/1975-29-130/S0025-5718-1975-0384673-1/S0025-5718-1975-0384673-1.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_23.pdf), https://en.wikipedia.org/wiki/Pocklington_primality_test#Extensions_and_variants); if either N−1 or N+1 (or both) can be ≥ 1/4 factored (i.e. the product of the known prime factors of either N−1 or N+1 (or both) is ≥ the fourth root of it) but neither can be ≥ 1/3 factored (i.e. the products of the known prime factors of both N−1 and N+1 are < the cube roots (https://en.wikipedia.org/wiki/Cube_root, https://mathworld.wolfram.com/CubeRoot.html) of them), then we need to use CHG (https://mersenneforum.org/attachment.php?attachmentid=21133&d=1571237465, https://t5k.org/bios/page.php?id=797, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/CHG) to prove its primality (see https://mersenneforum.org/showpost.php?p=528149&postcount=3 and https://mersenneforum.org/showpost.php?p=603181&postcount=438), however, unlike Brillhart-Lehmer-Selfridge primality test for the numbers N such that either N−1 or N+1 (or both) can be ≥ 1/3 factored (i.e. the product of the known prime factors of either N−1 or N+1 (or both) is ≥ the cube root (https://en.wikipedia.org/wiki/Cube_root, https://mathworld.wolfram.com/CubeRoot.html) of it) can run for arbitrarily large numbers N (thus, there are no unproven probable primes N such that either N−1 or N+1 (or both) can be ≥ 1/3 factored (i.e. the product of the known prime factors of either N−1 or N+1 (or both) is ≥ the cube root (https://en.wikipedia.org/wiki/Cube_root, https://mathworld.wolfram.com/CubeRoot.html) of it)), CHG for the numbers N such that either N−1 or N+1 (or both) can be ≥ 1/4 factored (i.e. the product of the known prime factors of either N−1 or N+1 (or both) is ≥ the fourth root of it) but neither can be ≥ 1/3 factored (i.e. the products of the known prime factors of both N−1 and N+1 are < the cube roots (https://en.wikipedia.org/wiki/Cube_root, https://mathworld.wolfram.com/CubeRoot.html) of them) cannot run for very large N (say > 10100000), for the examples of the numbers which are proven prime by CHG, see https://t5k.org/primes/page.php?id=126454, https://t5k.org/primes/page.php?id=131964, https://t5k.org/primes/page.php?id=123456, https://t5k.org/primes/page.php?id=130933, https://stdkmd.net/nrr/cert/1/ (search for "CHG"), https://stdkmd.net/nrr/cert/2/ (search for "CHG"), https://stdkmd.net/nrr/cert/3/ (search for "CHG"), https://stdkmd.net/nrr/cert/4/ (search for "CHG"), https://stdkmd.net/nrr/cert/5/ (search for "CHG"), https://stdkmd.net/nrr/cert/6/ (search for "CHG"), https://stdkmd.net/nrr/cert/7/ (search for "CHG"), https://stdkmd.net/nrr/cert/8/ (search for "CHG"), https://stdkmd.net/nrr/cert/9/ (search for "CHG"), http://xenon.stanford.edu/~tjw/pp/index.html (search for "CHG"), however, factordb (http://factordb.com/, https://www.rieselprime.de/ziki/Factoring_Database) lacks the ability to verify CHG proofs, see https://mersenneforum.org/showpost.php?p=608362&postcount=165; if neither N−1 nor N+1 can be ≥ 1/4 factored (i.e. the products of the known prime factors of both N−1 and N+1 are < the fourth roots of them) but Nn−1 can be ≥ 1/3 factored (i.e. the product of the known prime factors of Nn−1 is ≥ the cube root (https://en.wikipedia.org/wiki/Cube_root, https://mathworld.wolfram.com/CubeRoot.html) of it) for a small n, then we can use the cyclotomy primality test (https://t5k.org/glossary/xpage/Cyclotomy.html, https://t5k.org/prove/prove3_3.html, http://factordb.com/nmoverview.php?method=3) (however, this situation does not exist for these numbers, since only one of N−1 and N+1 is product of a Cunningham number and a small number, the only exception is the numbers in the family {2}1 in base b, in such case both N−1 and N+1 are products of a Cunningham number and a small number, thus for the numbers in the family {2}1 in base b, maybe factorization of N2−1 can be used)): (thus these numbers also do not need primality certificates)

(for the examples of generalized repunit primes (all generalized repunit primes base b have that N−1 is product of a Cunningham number (base b, the −1 side) and a small number (namely b/(b−1))), see https://web.archive.org/web/20021111141203/http://www.users.globalnet.co.uk/~aads/primes.html and https://web.archive.org/web/20021114005730/http://www.users.globalnet.co.uk/~aads/titans.html and https://web.archive.org/web/20131019185910/http://www.primes.viner-steward.org/andy/titans.html and http://xenon.stanford.edu/~tjw/pp/index.html)

(for more examples see https://stdkmd.net/nrr/prime/primesize.txt and https://stdkmd.net/nrr/prime/primesize.zip (see which numbers have "proven@" in the "note" column), also see https://stdkmd.net/nrr/cert/1/ and https://stdkmd.net/nrr/cert/2/ and https://stdkmd.net/nrr/cert/3/ and https://stdkmd.net/nrr/cert/4/ and https://stdkmd.net/nrr/cert/5/ and https://stdkmd.net/nrr/cert/6/ and https://stdkmd.net/nrr/cert/7/ and https://stdkmd.net/nrr/cert/8/ and https://stdkmd.net/nrr/cert/9/ for the related numbers (although not all of them are related to Cunningham numbers), e.g. "11101_4809" (decimal (base b = 10) form: 1480701, algebraic form: (104809−91)/9) is related to "Phi_4807_10" (the number Φ4807(10), where Φ is the cyclotomic polynomial), "15551_2197" (decimal (base b = 10) form: 1521961, algebraic form: (14×102197−41)/9, the prime is a cofactor of it (divided it by 11×23×167)) is related to "93307_2197" (decimal (base b = 10) form: 93219507, algebraic form: (28×102197−79)/3), "16667_4296" (decimal (base b = 10) form: 1642957, algebraic form: (5×104296+1)/3, the prime is a cofactor of it (divided it by 347×821×140235709×806209146522749)) is related to "33337_12891" (decimal (base b = 10) form: 3128907, algebraic form: (1012891+11)/3), "20111_2692" (decimal (base b = 10) form: 2012692, algebraic form: (181×102692−1)/9, the prime is a cofactor of it (divided it by 3×43)) is related to "20111_2693" (decimal (base b = 10) form: 2012693, algebraic form: (181×102693−1)/9), "23309_10029" (decimal (base b = 10) form: 231002709, algebraic form: (7×1010029−73)/3) is related to "Phi_5014_10" (the number Φ5014(10), where Φ is the cyclotomic polynomial), "37773_15768" (decimal (base b = 10) form: 37157673, algebraic form: (34×1015768−43)/9) is related to "Phi_7884_10" (the number Φ7884(10), where Φ is the cyclotomic polynomial), "6805w7_3739" (decimal (base b = 10) form: 680537387, algebraic form: (6125×103739+13)/9, the prime is a cofactor of it (divided it by 32)) is related to "27227_3741" (decimal (base b = 10) form: 27237407, algebraic form: (245×103741+43)/9), "68883_5132" (decimal (base b = 10) form: 6851313, algebraic form: (62×105132−53)/9) is related to "Phi_1283_10" (the number Φ1283(10), where Φ is the cyclotomic polynomial), "79921_11629" (decimal (base b = 10) form: 791162721, algebraic form: 8×1011629−79) is related to "Phi_2907_10" (the number Φ2907(10), where Φ is the cyclotomic polynomial), "80081_5736" (decimal (base b = 10) form: 80573481, algebraic form: 8×105736+81) is related to "Phi_11470_10" (the number Φ11470(10), where Φ is the cyclotomic polynomial), "83w16w7_543" (decimal (base b = 10) form: 83542165427, algebraic form: (25×101086−5×10543+1)/3, the prime is a cofactor of it (divided it by 7×109×563041×869047141×147372142447)) is related to "11103_3258" (decimal (base b = 10) form: 1325603, algebraic form: (103258−73)/9), etc. the N−1 of "11101_4809" is 100 × R4807(10) (which is equivalent to the Cunningham number 104807−1) and Φ4807(10) is an algebraic factor of the Cunningham number 104807−1, the N−1 of "93307_2197" is 6 × "15551_2197", the N−1 of "33337_12891" has sum-of-two-cubes factorization and an algebraic factor is 2 × "16667_4296", the N−1 of "20111_2693" is 10 × "20111_2692", the N+1 of "23309_10029" is 210 × R10028(10) (which is equivalent to the Cunningham number 1010028−1) and Φ5014(10) is an algebraic factor of the Cunningham number 1010028−1, the N+1 of "37773_15768" is 34 × R15768(10) (which is equivalent to the Cunningham number 1015768−1) and Φ7884(10) is an algebraic factor of the Cunningham number 1015768−1, the N+1 of "27227_3741" is 4 × "6805w7_3739", the N−1 of "68883_5132" is 62 × R5132(10) (which is equivalent to the Cunningham number 105132−1) and Φ1283(10) is an algebraic factor of the Cunningham number 105132−1, the N−1 of "79921_11629" is 720 × R11628(10) (which is equivalent to the Cunningham number 1011628−1) and Φ2907(10) is an algebraic factor of the Cunningham number 1011628−1, the N−1 of "80081_5736" is 80 × S5735(10) (which is equivalent to the Cunningham number 105735+1) and Φ11470(10) is an algebraic factor of the Cunningham number 105735+1, the N+1 of "11103_3258" has difference-of-two-6th-powers factorization and an algebraic factor is 4 × "83w16w7_543", etc.)

(for the references of factorization of bn±1, see: https://homes.cerias.purdue.edu/~ssw/cun/index.html (2 ≤ b ≤ 12), https://homes.cerias.purdue.edu/~ssw/cun/pmain1123.txt (2 ≤ b ≤ 12), https://doi.org/10.1090/conm/022 (2 ≤ b ≤ 12), https://www.mersenneforum.org/attachment.php?attachmentid=7727&d=1330555980 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_7.pdf) (2 ≤ b ≤ 12), https://web.archive.org/web/20190315214330/http://cage.ugent.be/~jdemeyer/cunningham/ (2 ≤ b ≤ 12), http://myfactorcollection.mooo.com:8090/cgi-bin/showCustomRep?CustomList=B&EN=&LM= (2 ≤ b ≤ 12), http://myfactorcollection.mooo.com:8090/cgi-bin/showREGComps?REGCompList=F&REGSortList=A&LabelList=E&REGHeader=&REGExp= (2 ≤ b ≤ 12), https://maths-people.anu.edu.au/~brent/factors.html (13 ≤ b ≤ 99), https://arxiv.org/pdf/1004.3169.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_206.pdf) (13 ≤ b ≤ 99), https://maths-people.anu.edu.au/~brent/pd/rpb134t.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_208.pdf) (13 ≤ b ≤ 99), http://myfactorcollection.mooo.com:8090/cgi-bin/showANCustomRep?LevelList=A&BaseRangeList=A&EN=&LM= (13 ≤ b ≤ 99), http://myfactorcollection.mooo.com:8090/cgi-bin/showANCustomRep?LevelList=B&BaseRangeList=A&EN=&LM= (13 ≤ b ≤ 99), https://web.archive.org/web/20220513215832/http://myfactorcollection.mooo.com:8090/cgi-bin/showCustomRep?CustomList=A&EN=&LM= (13 ≤ b ≤ 99), http://myfactorcollection.mooo.com:8090/cgi-bin/showANComps?LevelList=A&BaseRangeList=A&REGSortList=A&LabelList=E&REGHeader=&REGExp= (13 ≤ b ≤ 99), http://myfactorcollection.mooo.com:8090/cgi-bin/showANComps?LevelList=B&BaseRangeList=A&REGSortList=A&LabelList=E&REGHeader=&REGExp= (13 ≤ b ≤ 99), https://web.archive.org/web/20021015210104/http://www.users.globalnet.co.uk/~aads/faclist.html (2 ≤ b ≤ 999), https://mers.sourceforge.io/factoredM.txt (b = 2), https://web.archive.org/web/20130530210800/http://www.euronet.nl/users/bota/medium-p.htm (b = 2), https://www.mersenne.org/report_exponent/ (b = 2, −1 side, prime exponents), https://www.mersenne.org/report_factors/ (b = 2, −1 side, prime exponents), https://www.mersenne.org/report_exponent/?exp_lo=2&exp_hi=1000&full=1&ancient=1&expired=1&ecmhist=1&swversion=1 (b = 2, −1 side, prime exponents), https://www.mersenne.org/report_exponent/?exp_lo=1001&exp_hi=2000&full=1&ancient=1&expired=1&ecmhist=1&swversion=1 (b = 2, −1 side, prime exponents), https://www.mersenne.org/report_factors/?dispdate=1&exp_hi=999999937 (b = 2, −1 side, prime exponents), https://www.mersenne.ca/prp.php?show=2 (b = 2, −1 side, prime exponents), https://www.mersenne.ca/exponent/browse/1/9999 (b = 2, −1 side, prime exponents), https://web.archive.org/web/20211128174912/http://mprime.s3-website.us-west-1.amazonaws.com/mersenne/MERSENNE_FF_with_factors.txt (b = 2, −1 side, prime exponents), https://web.archive.org/web/20210726214248/http://mprime.s3-website.us-west-1.amazonaws.com/wagstaff/WAGSTAFF_FF_with_factors.txt (b = 2, +1 side, prime exponents), https://web.archive.org/web/20190211112446/http://home.earthlink.net/~elevensmooth/ (b = 2, exponents which divide 1663200), https://stdkmd.net/nrr/repunit/ (b = 10), https://stdkmd.net/nrr/repunit/10001.htm (b = 10), https://stdkmd.net/nrr/repunit/phin10.htm (b = 10, only primitive factors), https://stdkmd.net/nrr/repunit/Phin10.txt (b = 10, only primitive factors), https://stdkmd.net/nrr/repunit/Phin10.txt.lz (b = 10, only primitive factors), https://stdkmd.net/nrr/repunit/Phin10.txt.gz (b = 10, only primitive factors), https://kurtbeschorner.de/ (b = 10), https://kurtbeschorner.de/fact-2500.htm (b = 10), https://repunit-koide.jimdofree.com/ (b = 10), https://repunit-koide.jimdofree.com/app/download/10034950550/Repunit100-20230630.pdf?t=1688135997 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_242.pdf) (b = 10), https://gmplib.org/~tege/repunit.html (b = 10), https://gmplib.org/~tege/fac10m.txt (b = 10), https://gmplib.org/~tege/fac10p.txt (b = 10), http://chesswanks.com/pxp/repfactors.html (b = 10), https://web.archive.org/web/20120426061657/http://oddperfect.org/ (prime b, −1 side, prime exponents), http://myfactorcollection.mooo.com:8090/oddperfect/Jan27_2023/opfactors.gz (prime b, −1 side, prime exponents), https://web.archive.org/web/20081006071311/http://www-staff.maths.uts.edu.au/~rons/fact/fact.htm (2 ≤ b ≤ 9973, prime b), http://myfactorcollection.mooo.com:8090/cgi-bin/showCROPComps?OPCompList=A&OPSortList=A&LabelList=E&OPHeader=&OPExp= (2 ≤ b ≤ 9973, prime b, −1 side, prime exponents), http://myfactorcollection.mooo.com:8090/cgi-bin/showCROPComps?OPCompList=B&OPSortList=A&LabelList=E&OPHeader=&OPExp= (2 ≤ b ≤ 9973, prime b, −1 side, prime exponents), http://myfactors.mooo.com/ (any b), http://myfactorcollection.mooo.com:8090/dbio.html (any b), http://myfactorcollection.mooo.com:8090/interactive.html (any b) (the lattices saparated to two lattices means the number has Aurifeuillean factorization, and for such lattices, the left lattice is for the Aurifeuillean L part, and the right lattice is for the Aurifeuillean M part), http://myfactorcollection.mooo.com:8090/brentdata/Nov30_2023/factors.gz (any b), http://www.asahi-net.or.jp/~KC2H-MSM/cn/old/index.htm (any b, only primitive factors), http://www.asahi-net.or.jp/~KC2H-MSM/cn/index.htm (any b, only primitive factors), https://web.archive.org/web/20050922233702/http://user.ecc.u-tokyo.ac.jp/~g440622/cn/index.html (any b, only primitive factors), also for the factors of bn±1 with 2 ≤ b ≤ 100 and 1 ≤ n ≤ 100 see http://myfactorcollection.mooo.com:8090/cgi-bin/showFullRep?FBase=2&TBase=100&FExp=1&TExp=100&c0=&EN=&LM= (all factors) and http://myfactorcollection.mooo.com:8090/cgi-bin/showPrimFactors?FBase=2&TBase=100&FExp=1&TExp=100&c0=&LM= (only primitive factors) and http://myfactorcollection.mooo.com:8090/cgi-bin/showComps?FBase=2&TBase=100&FExp=1&TExp=100&FDigits=&TDigits=&FTL=&TTL=&c0=&MaxCount=&LabelList=E&SortList=A&CompExp= (remaining composites), also for the factors of bn±1 with 2 ≤ b ≤ 100 and 101 ≤ n ≤ 200 see http://myfactorcollection.mooo.com:8090/cgi-bin/showFullRep?FBase=2&TBase=100&FExp=101&TExp=200&c0=&EN=&LM= (all factors) and http://myfactorcollection.mooo.com:8090/cgi-bin/showPrimFactors?FBase=2&TBase=100&FExp=101&TExp=200&c0=&LM= (only primitive factors) and http://myfactorcollection.mooo.com:8090/cgi-bin/showComps?FBase=2&TBase=100&FExp=101&TExp=200&FDigits=&TDigits=&FTL=&TTL=&c0=&MaxCount=&LabelList=E&SortList=A&CompExp= (remaining composites), also for the first holes of bn±1 with 2 ≤ b ≤ 100 see http://myfactorcollection.mooo.com:8090/cgi-bin/showFH?FBase=2&TBase=100&c0=&Expanded= and http://myfactorcollection.mooo.com:8090/cgi-bin/showCRHoles?BaseRangeList=A)

The Cunningham numbers bn±1 has algebraic factorization to product of Φd(b) with positive integers d dividing n (the bn−1 case) (see https://stdkmd.net/nrr/repunit/repunitnote.htm#repunit_factorization) or positive integers d dividing 2×n but not dividing n (the bn+1 case) (see https://stdkmd.net/nrr/repunit/repunitnote.htm#repunit_factorization), where Φ is the cyclotomic polynomial (https://en.wikipedia.org/wiki/Cyclotomic_polynomial, https://mathworld.wolfram.com/CyclotomicPolynomial.html, http://www.numericana.com/answer/polynomial.htm#cyclotomic, https://stdkmd.net/nrr/repunit/repunitnote.htm#cyclotomic, https://oeis.org/A013595, https://oeis.org/A013596, https://oeis.org/A253240) (see https://stdkmd.net/nrr/repunit/repunitnote.htm and https://doi.org/10.1090/conm/022, https://www.mersenneforum.org/attachment.php?attachmentid=7727&d=1330555980 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_7.pdf) and https://homes.cerias.purdue.edu/~ssw/cun/mine.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_6.pdf) and http://homes.cerias.purdue.edu/~ssw/cun1.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_71.pdf))

(below, "Rn(b)" means the repunit (https://en.wikipedia.org/wiki/Repunit, https://en.wikipedia.org/wiki/List_of_repunit_primes, https://t5k.org/glossary/xpage/Repunit.html, https://t5k.org/glossary/xpage/GeneralizedRepunitPrime.html, https://www.rieselprime.de/ziki/Repunit, https://mathworld.wolfram.com/Repunit.html, https://mathworld.wolfram.com/RepunitPrime.html, https://pzktupel.de/Primetables/TableRepunit.php, https://pzktupel.de/Primetables/TableRepunitGen.php, https://pzktupel.de/Primetables/TableRepunitGen.txt, https://www.numbersaplenty.com/set/repunit/, https://stdkmd.net/nrr/repunit/repunitnote.htm#repunit, https://web.archive.org/web/20021001222643/http://www.users.globalnet.co.uk/~aads/index.html, https://web.archive.org/web/20021111141203/http://www.users.globalnet.co.uk/~aads/primes.html, https://web.archive.org/web/20021114005730/http://www.users.globalnet.co.uk/~aads/titans.html, https://web.archive.org/web/20021015210104/http://www.users.globalnet.co.uk/~aads/faclist.html, https://web.archive.org/web/20131019185910/http://www.primes.viner-steward.org/andy/titans.html, https://web.archive.org/web/20120227163453/http://phi.redgolpe.com/, https://web.archive.org/web/20120227163614/http://phi.redgolpe.com/5.asp, https://web.archive.org/web/20120227163508/http://phi.redgolpe.com/4.asp, https://web.archive.org/web/20120227163610/http://phi.redgolpe.com/3.asp, https://web.archive.org/web/20120227163512/http://phi.redgolpe.com/2.asp, https://web.archive.org/web/20120227163521/http://phi.redgolpe.com/1.asp, http://www.elektrosoft.it/matematica/repunit/repunit.htm, http://www.fermatquotient.com/PrimSerien/GenRepu.txt (in German), http://www.fermatquotient.com/PrimSerien/GenRepuP.txt (in German), http://www.primenumbers.net/Henri/us/MersFermus.htm, http://www.bitman.name/math/article/380/231/, http://www.bitman.name/math/table/379, http://www.bitman.name/math/table/488, https://www.ams.org/journals/mcom/1993-61-204/S0025-5718-1993-1185243-9/S0025-5718-1993-1185243-9.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_4.pdf), https://cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_5.pdf), https://www.ams.org/journals/mcom/1979-33-148/S0025-5718-1979-0537980-7/S0025-5718-1979-0537980-7.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_119.pdf), https://t5k.org/top20/page.php?id=57, https://t5k.org/top20/page.php?id=16, https://t5k.org/primes/search.php?Comment=Repunit&OnList=all&Number=1000000&Style=HTML, https://t5k.org/primes/search.php?Comment=Generalized%20repunit&OnList=all&Number=1000000&Style=HTML, https://oeis.org/A002275, https://oeis.org/A004022, https://oeis.org/A053696, https://oeis.org/A085104, https://oeis.org/A179625) in base b with length n, i.e. Rn(b) = (bn−1)/(b−1) (see https://stdkmd.net/nrr/repunit/repunitnote.htm#repunit_factorization), "Sn(b)" means bn+1 (see https://stdkmd.net/nrr/repunit/repunitnote.htm#repunit_factorization), the special cases of Rn(10) and Sn(10) are in https://stdkmd.net/nrr/repunit/ and https://stdkmd.net/nrr/repunit/10001.htm, respectively, in fact, Rn(b) and Sn(b) are 111...111 and 1000...0001 in base b, respectively, also, Rn(b) and Sn(b) are the Lucas sequences (https://en.wikipedia.org/wiki/Lucas_sequence, https://mathworld.wolfram.com/LucasSequence.html, https://t5k.org/top20/page.php?id=23, https://t5k.org/primes/search.php?Comment=Generalized%20Lucas%20number&OnList=all&Number=1000000&Style=HTML) Un(b+1,b) and Vn(b+1,b), respectively)

The helper file for the 3168th minimal prime in base 13 (93081) in factordb: http://factordb.com/helper.php?id=1100000000840126705

The helper file for the 3179th minimal prime in base 13 (B563C) in factordb: http://factordb.com/helper.php?id=1100000000000217927

The helper file for the 3180th minimal prime in base 13 (1B576) in factordb: http://factordb.com/helper.php?id=1100000002321021456

The helper file for the 13304th minimal prime in base 21 (72301) in factordb: http://factordb.com/helper.php?id=1100000002325398836

The helper file for the 13355th minimal prime in base 21 (310632) in factordb: http://factordb.com/helper.php?id=1100000002325396014

The helper file for the 25199th minimal prime in base 26 (9K343AP) in factordb: http://factordb.com/helper.php?id=1100000000840632228

The helper file for the 25200th minimal prime in base 26 (83541) in factordb: http://factordb.com/helper.php?id=1100000000840632517

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 3168th minimal prime in base 13 (93081) in factordb: http://factordb.com/index.php?id=1100000000840126706&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 3179th minimal prime in base 13 (B563C) in factordb: http://factordb.com/index.php?id=1100000000271764311&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 3180th minimal prime in base 13 (1B576) in factordb: http://factordb.com/index.php?id=1100000002321021531&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 13304th minimal prime in base 21 (72301) in factordb: http://factordb.com/index.php?id=1100000002325398854&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N+1 for the 13355th minimal prime in base 21 (310632) in factordb: http://factordb.com/index.php?id=1100000002325396028&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N+1 for the 25199th minimal prime in base 26 (9K343AP) in factordb: http://factordb.com/index.php?id=1100000000840632232&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 25200th minimal prime in base 26 (83541) in factordb: http://factordb.com/index.php?id=1100000000840632623&open=ecm

(in the tables below, Φ is the cyclotomic polynomial (https://en.wikipedia.org/wiki/Cyclotomic_polynomial, https://mathworld.wolfram.com/CyclotomicPolynomial.html, http://www.numericana.com/answer/polynomial.htm#cyclotomic, https://stdkmd.net/nrr/repunit/repunitnote.htm#cyclotomic, https://oeis.org/A013595, https://oeis.org/A013596, https://oeis.org/A253240))

(for the prime factors > 1024 (other than the ultimate prime factor (https://stdkmd.net/nrr/records.htm#BIGFACTOR, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Largest penultimate prime factor (ultimate factor shown also):")) of each algebraic factor) in the tables below, "ECM" means the elliptic-curve factorization method (https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization, https://www.rieselprime.de/ziki/Elliptic_curve_method, https://mathworld.wolfram.com/EllipticCurveFactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#ecm, http://factordb.com/listecm.php?c=1, http://www.loria.fr/~zimmerma/ecmnet/, http://www.loria.fr/~zimmerma/records/ecmnet.html, http://www.loria.fr/~zimmerma/records/factor.html, http://www.loria.fr/~zimmerma/records/top50.html, https://oeis.org/wiki/OEIS_sequences_needing_factors#ECM_efforts, https://stdkmd.net/nrr/records.htm#largefactorecm, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Elliptic curve method:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=ecm&maxrows=10000, http://maths-people.anu.edu.au/~brent/factors.html, http://maths-people.anu.edu.au/~brent/ftp/champs.txt, https://www.alpertron.com.ar/ECM.HTM, https://www.alpertron.com.ar/ECMREC.HTM, https://homes.cerias.purdue.edu/~ssw/cun/press/tech.html, https://homes.cerias.purdue.edu/~ssw/cun/press/nontech.html, http://www.mersenne.org/report_ECM/, https://www.mersenne.ca/userfactors/ecm/1, https://stdkmd.net/nrr/c.cgi?q=37771_259#ecm, https://stdkmd.net/nrr/c.cgi?q=23333_233#ecm, https://kurtbeschorner.de/ecm-efforts.htm, http://www.rechenkraft.net/yoyo//y_factors_ecm.php, http://www.rechenkraft.net/yoyo/y_status_ecm.php, http://www.wraithx.net/math/ecmprobs/ecmprobs.html), "P−1" means the Pollard P−1 method (https://en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1_algorithm, https://www.rieselprime.de/ziki/P-1_factorization_method, https://mathworld.wolfram.com/Pollardp-1FactorizationMethod.html, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Pollard p-1:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=p-1&maxrows=10000, http://www.numericana.com/answer/factoring.htm#p-1, http://factordb.com/listecm.php?c=2, http://www.loria.fr/~zimmerma/records/Pminus1.html, https://www.mersenne.org/report_pminus1/, https://www.mersenne.ca/userfactors/pm1/1, https://www.mersenne.ca/smooth.php, https://www.mersenne.ca/p1missed.php, https://www.mersenne.ca/prob.php), "P+1" means the Williams P+1 method (https://en.wikipedia.org/wiki/Williams%27s_p_%2B_1_algorithm, https://www.rieselprime.de/ziki/P%2B1_factorization_method, https://mathworld.wolfram.com/WilliamspPlus1FactorizationMethod.html, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "p+1:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=p%2b1&maxrows=10000, http://www.numericana.com/answer/factoring.htm#p+1, http://factordb.com/listecm.php?c=3, http://www.loria.fr/~zimmerma/records/Pplus1.html, https://www.mersenne.org/report_pplus1/, https://www.mersenne.ca/userfactors/pp1/1, https://www.mersenne.ca/pplus1.php), "SNFS" means the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://www.rieselprime.de/ziki/SNFS_polynomial_selection, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGSNFS, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (sections "Special number field sieve by size of number factored:" and "Special number field sieve by SNFS difficulty:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=snfs&maxrows=10000, https://stdkmd.net/nrr/wanted.htm#smallpolynomial, https://www.mersenne.ca/userfactors/nfs/1, http://escatter11.fullerton.edu/nfs/), "GNFS" means the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGGNFS, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "General number field sieve by size of number factored:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=gnfs&maxrows=10000, https://stdkmd.net/nrr/wanted.htm#suitableforgnfs, https://www.mersenne.ca/userfactors/nfs/1, http://escatter11.fullerton.edu/nfs/))

For the number 13308−1, it is the product of Φd(13) with positive integers d dividing 308 (i.e. d = 1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 308), and the factorization of Φd(13) for these positive integers d are:

from prime factorization
Φ1(13) 22 × 3
Φ2(13) 2 × 7
Φ4(13) 2 × 5 × 17
Φ7(13) 5229043
Φ11(13) 23 × 419 × 859 × 18041
Φ14(13) 7 × 29 × 22079
Φ22(13) 128011456717
Φ28(13) 23161037562937
Φ44(13) 5281 × 3577574298489429481
Φ77(13) 624958606550654822293 × (47-digit prime)
Φ154(13) 78947177 × (59-digit prime)
Φ308(13) 7393 × 1702933 × 150324329 × 718377597171850001 × 4209006442599882158485591696242263069 × (61-digit prime)

For the number 13564−1, it is the product of Φd(13) with positive integers d dividing 564 (i.e. d = 1, 2, 3, 4, 6, 12, 47, 94, 141, 188, 282, 564), and the factorization of Φd(13) for these positive integers d are:

from prime factorization
Φ1(13) 22 × 3
Φ2(13) 2 × 7
Φ3(13) 3 × 61
Φ4(13) 2 × 5 × 17
Φ6(13) 157
Φ12(13) 28393
Φ47(13) 183959 × 19216136497 × 534280344481909234853671069326391741
Φ94(13) 498851139881 × 3245178229485124818467952891417691434077
Φ141(13) 283 × 1693 × 1924651 × 455036140638637 × (76-digit prime)
Φ188(13) 36097 × 75389 × 99886248944632632917 × (74-digit prime)
Φ282(13) 590202369266263393 × (85-digit prime)
Φ564(13) 233628485003849577181 × 94531330515097101267386264339794253977 (ECM, B1 = 3000000, Sigma = 2146847123, the prime factorization of the group order is 23 × 33 × 5 × 11 × 23 × 4871 × 10099 × 17207 × 1389277 × 2661643 × 110532803) × 27969827431131578608318126024627616357147784803797 (GNFS) × (98-digit prime)

For the number 13576−1, it is the product of Φd(13) with positive integers d dividing 576 (i.e. d = 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 144, 192, 288, 576), and the factorization of Φd(13) for these positive integers d are:

from prime factorization
Φ1(13) 22 × 3
Φ2(13) 2 × 7
Φ3(13) 3 × 61
Φ4(13) 2 × 5 × 17
Φ6(13) 157
Φ8(13) 2 × 14281
Φ9(13) 3 × 1609669
Φ12(13) 28393
Φ16(13) 2 × 407865361
Φ18(13) 19 × 271 × 937
Φ24(13) 815702161
Φ32(13) 2 × 2657 × 441281 × 283763713
Φ36(13) 37 × 428041 × 1471069
Φ48(13) 1009 × 659481276875569
Φ64(13) 2 × 193 × 1601 × 10433 × 68675120456139881482562689
Φ72(13) 73 × 4177 × 181297 × 9818892432332713
Φ96(13) 97 × 88993 × 127028743393 × 403791981344275297
Φ144(13) 3889 × 680401 × 29975087953 × 6654909974864689 × 558181416418089697
Φ192(13) 1153 × 11352931040252580224415980746369 × 14977427998321433931503086910333672833
Φ288(13) 2017 × 47521 × 54721 × 1590049 × 8299042833797200969471889569 × (61-digit prime)
Φ576(13) 577 × 6337 × 5247817273269739636080024961 × 5497355933986265726220616321 × 1032606621363411464640473542092061600217962755283816476128113983937 (GNFS) × (86-digit prime)

For the number 21230−1, it is the product of Φd(21) with positive integers d dividing 230 (i.e. d = 1, 2, 5, 10, 23, 46, 115, 230), and the factorization of Φd(21) for these positive integers d are:

from prime factorization
Φ1(21) 22 × 5
Φ2(21) 2 × 11
Φ5(21) 5 × 40841
Φ10(21) 185641
Φ23(21) 47 × 19597 × 139870566115103282847737
Φ46(21) 277 × 461 × 599 × 691 × 2215825387044753577
Φ115(21) 1381 × 282924347471791 × 3394964812534556016503466037951 × (69-digit prime)
Φ230(21) 2531 × 11731 × 22952851 × 595377311 × 688660481 × 58286351831 × 69727564981 × (63-digit prime)

For the number 211064−1, it is the product of Φd(21) with positive integers d dividing 1064 (i.e. d = 1, 2, 4, 7, 8, 14, 19, 28, 38, 56, 76, 133, 152, 266, 532, 1064), and the factorization of Φd(21) for these positive integers d are:

from prime factorization
Φ1(21) 22 × 5
Φ2(21) 2 × 11
Φ4(21) 2 × 13 × 17
Φ7(21) 43 × 631 × 3319
Φ8(21) 2 × 97241
Φ14(21) 81867661
Φ19(21) 12061389013 × 54921106624003
Φ28(21) 29 × 3697 × 68454248717
Φ38(21) 609673 × 987749814642143197
Φ56(21) 617 × 912521 × 115593326297 × 831380909129
Φ76(21) 229 × 457 × (43-digit prime)
Φ133(21) 948175293266954869500463698756935713088089028515629708586399 × (83-digit prime)
Φ152(21) 136649 × 6629177 × 8871582886760161 × 4370570172021545617284038736601 × 4510053597010461591911520110711387257
Φ266(21) 4523 × 263478423344974307 × 39188712102054729290763779 × 1027619231425962708522784338595411210117 × (58-digit prime)
Φ532(21) 1080514246723801 × 4598307023923376056176577 (P−1, B1 = 100000, B2 = 39772318, the prime factorization of P−1 is 26 × 3 × 7 × 11 × 19 × 23 × 241 × 1229 × 1697 × 7369 × 192161) × 173111326443349916878938361 × (220-digit composite with no known proper factor, SNFS difficulty is 301.466, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=21&Exp=266&c0=%2B&LM=&SA=, this composite has already checked with P−1 to B1 = 50000 and 3 times P+1 to B1 = 150000 and 10 times ECM to B1 = 250000 (these can be checked for composites < 10300), see http://factordb.com/sequences.php?se=1&aq=%2821%5E266%2B1%29*442%2F%2821%5E38%2B1%29%2F%2821%5E14%2B1%29&action=all&fr=0&to=100)
Φ1064(21) 140449 × 723460417 × (558-digit composite with no known proper factor, SNFS difficulty is 602.932, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=21&Exp=532&c0=%2B&LM=&SA=)

For the number 26344−1, it is the product of Φd(26) with positive integers d dividing 344 (i.e. d = 1, 2, 4, 8, 43, 86, 172, 344), and the factorization of Φd(26) for these positive integers d are:

from prime factorization
Φ1(26) 52
Φ2(26) 33
Φ4(26) 677
Φ8(26) 17 × 26881
Φ43(26) (60-digit prime)
Φ86(26) 681293 × (54-digit prime)
Φ172(26) 173 × 66221 × 97942133 × 338286119038330712762413 × 290239124722842089063959709049053 × (48-digit prime)
Φ344(26) 259295161 × 14470172263033 × (217-digit prime)

For the number 26354−1, it is the product of Φd(26) with positive integers d dividing 354 (i.e. d = 1, 2, 3, 6, 59, 118, 177, 354), and the factorization of Φd(26) for these positive integers d are:

from prime factorization
Φ1(26) 52
Φ2(26) 33
Φ3(26) 19 × 37
Φ6(26) 3 × 7 × 31
Φ59(26) 3541 × 334945708538658924935948356996883525107 × 10265667109489266992108219345733472151257
Φ118(26) 254250862891621 × (68-digit prime)
Φ177(26) 47791 × 1311074895191091284466533625050044762267011115706300424823729 × (100-digit prime)
Φ354(26) 709 × 16441898216641 × (149-digit prime)

Although these numbers also have N−1 or N+1 is product of a Cunningham number and a small number, but since the corresponding Cunningham numbers are < 25% factored, and the partial factorizations of them are insufficient for any of the proving methods that could make use of them, like the numbers (131193−1)/12 (see https://web.archive.org/web/20020809125049/http://www.users.globalnet.co.uk/~aads/C0131193.html and its factordb entry http://factordb.com/index.php?id=1000000000043597217&open=prime and its primality certificate http://factordb.com/cert.php?id=1000000000043597217 and its certificate chain http://factordb.com/certchain.php?fid=1000000000043597217&action=all&fr=0&to=100 and its helper file http://factordb.com/helper.php?id=1000000000043597217 and factorization status of its N−1 http://factordb.com/index.php?id=1100000000271071123&open=ecm and http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=13&Exp=1192&c0=-&EN=&LM=) and (55839−1)/54 (see https://web.archive.org/web/20020821230129/http://www.users.globalnet.co.uk/~aads/C0550839.html and its factordb entry http://factordb.com/index.php?id=1100000000672342180&open=prime and its primality certificate http://factordb.com/cert.php?id=1100000000672342180 and its certificate chain http://factordb.com/certchain.php?fid=1100000000672342180&action=all&fr=0&to=100 and its helper file http://factordb.com/helper.php?id=1100000000672342180 and factorization status of its N−1 http://factordb.com/index.php?id=1100000000674669599&open=ecm and http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=55&Exp=838&c0=-&EN=&LM=) and (701013−1)/69 (see https://web.archive.org/web/20020825072348/http://www.users.globalnet.co.uk/~aads/C0701013.html and its factordb entry http://factordb.com/index.php?id=1100000000599116446&open=prime and its primality certificate http://factordb.com/cert.php?id=1100000000599116446 and its certificate chain http://factordb.com/certchain.php?fid=1100000000599116446&action=all&fr=0&to=100 and its helper file http://factordb.com/helper.php?id=1100000000599116446 and factorization status of its N−1 http://factordb.com/index.php?id=1100000000599116447&open=ecm and http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=70&Exp=1012&c0=-&EN=&LM=) and (79659−1)/78 (see https://web.archive.org/web/20020825073634/http://www.users.globalnet.co.uk/~aads/C0790659.html and its factordb entry http://factordb.com/index.php?id=1100000000235993821&open=prime and its primality certificate http://factordb.com/cert.php?id=1100000000235993821 and its certificate chain http://factordb.com/certchain.php?fid=1100000000235993821&action=all&fr=0&to=100 and its helper file http://factordb.com/helper.php?id=1100000000235993821 and factorization status of its N−1 http://factordb.com/index.php?id=1100000000271854142&open=ecm and http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=79&Exp=658&c0=-&EN=&LM=) and (1049081−1)/9 (see https://mersenneforum.org/showthread.php?t=13435 and its factordb entry http://factordb.com/index.php?id=1100000000013937242&open=prime and its primality certificate http://factordb.com/cert.php?id=1100000000013937242 and its certificate chain http://factordb.com/certchain.php?fid=1100000000013937242&action=all&fr=0&to=100 and its helper file http://factordb.com/helper.php?id=1100000000013937242 and factorization status of its N−1 http://factordb.com/index.php?id=1100000000020361525&open=ecm and http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=10&Exp=49080&c0=-&EN=&LM=) and (7116384+1)/2 (see section "Faktorisieren der Zahl (71^16384+1)/2-1" of http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt and its factordb entry http://factordb.com/index.php?id=1100000000213085670&open=prime and its primality certificate http://factordb.com/cert.php?id=1100000000213085670 and its certificate chain http://factordb.com/certchain.php?fid=1100000000213085670&action=all&fr=0&to=100 and its helper file http://factordb.com/helper.php?id=1100000000213085670 and factorization status of its N−1 http://factordb.com/index.php?id=1100000000710475165&open=ecm and http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=71&Exp=16384&c0=-&EN=&LM=), for more examples see https://stdkmd.net/nrr/prime/primesize.txt and https://stdkmd.net/nrr/prime/primesize.zip (see which numbers have "-" or "+" in the "note" column), thus we treat these numbers as integers with no special form (i.e. ordinary primes (https://t5k.org/glossary/xpage/OrdinaryPrime.html)) and prove its primality with Primo (http://www.ellipsa.eu/public/primo/primo.html, http://www.rieselprime.de/dl/Primo309.zip, https://t5k.org/bios/page.php?id=46, https://www.rieselprime.de/ziki/Primo, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/primo-433-lx64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/Primo309), and these numbers still need primality certificates:

The helper file for the 151st minimal prime in base 9 (30115811) in factordb: http://factordb.com/helper.php?id=1100000002376318423

The helper file for the 3187th minimal prime in base 13 (715041) in factordb: http://factordb.com/helper.php?id=1100000002320890755

The helper file for the 2342nd minimal prime in base 16 (90354291) in factordb: http://factordb.com/helper.php?id=1100000000633424191

The helper file for the 10391st minimal prime in base 17 (1F7092) in factordb: http://factordb.com/helper.php?id=1100000000840355927

The helper file for the 25240th minimal prime in base 26 (518854P) in factordb: http://factordb.com/helper.php?id=1100000003850155314

The helper file for the 35277th minimal prime in base 36 (OZ3932AZ) in factordb: http://factordb.com/helper.php?id=1100000000840634476

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 151st minimal prime in base 9 (30115811) in factordb: http://factordb.com/index.php?id=1100000002376318436&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 3187th minimal prime in base 13 (715041) in factordb: http://factordb.com/index.php?id=1100000002320890782&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 2342nd minimal prime in base 16 (90354291) in factordb: http://factordb.com/index.php?id=1100000000633424203&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N+1 for the 10391st minimal prime in base 17 (1F7092) in factordb: http://factordb.com/index.php?id=1100000000840355928&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N+1 for the 25240th minimal prime in base 26 (518854P) in factordb: http://factordb.com/index.php?id=1100000003850159350&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N+1 for the 35277th minimal prime in base 36 (OZ3932AZ) in factordb: http://factordb.com/index.php?id=1100000000840634478&open=ecm

(in the tables below, Φ is the cyclotomic polynomial (https://en.wikipedia.org/wiki/Cyclotomic_polynomial, https://mathworld.wolfram.com/CyclotomicPolynomial.html, http://www.numericana.com/answer/polynomial.htm#cyclotomic, https://stdkmd.net/nrr/repunit/repunitnote.htm#cyclotomic, https://oeis.org/A013595, https://oeis.org/A013596, https://oeis.org/A253240))

(for the prime factors > 1024 (other than the ultimate prime factor (https://stdkmd.net/nrr/records.htm#BIGFACTOR, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Largest penultimate prime factor (ultimate factor shown also):")) of each algebraic factor) in the tables below, "ECM" means the elliptic-curve factorization method (https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization, https://www.rieselprime.de/ziki/Elliptic_curve_method, https://mathworld.wolfram.com/EllipticCurveFactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#ecm, http://factordb.com/listecm.php?c=1, http://www.loria.fr/~zimmerma/ecmnet/, http://www.loria.fr/~zimmerma/records/ecmnet.html, http://www.loria.fr/~zimmerma/records/factor.html, http://www.loria.fr/~zimmerma/records/top50.html, https://oeis.org/wiki/OEIS_sequences_needing_factors#ECM_efforts, https://stdkmd.net/nrr/records.htm#largefactorecm, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Elliptic curve method:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=ecm&maxrows=10000, http://maths-people.anu.edu.au/~brent/factors.html, http://maths-people.anu.edu.au/~brent/ftp/champs.txt, https://www.alpertron.com.ar/ECM.HTM, https://www.alpertron.com.ar/ECMREC.HTM, https://homes.cerias.purdue.edu/~ssw/cun/press/tech.html, https://homes.cerias.purdue.edu/~ssw/cun/press/nontech.html, http://www.mersenne.org/report_ECM/, https://www.mersenne.ca/userfactors/ecm/1, https://stdkmd.net/nrr/c.cgi?q=37771_259#ecm, https://stdkmd.net/nrr/c.cgi?q=23333_233#ecm, https://kurtbeschorner.de/ecm-efforts.htm, http://www.rechenkraft.net/yoyo//y_factors_ecm.php, http://www.rechenkraft.net/yoyo/y_status_ecm.php, http://www.wraithx.net/math/ecmprobs/ecmprobs.html), "P−1" means the Pollard P−1 method (https://en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1_algorithm, https://www.rieselprime.de/ziki/P-1_factorization_method, https://mathworld.wolfram.com/Pollardp-1FactorizationMethod.html, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Pollard p-1:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=p-1&maxrows=10000, http://www.numericana.com/answer/factoring.htm#p-1, http://factordb.com/listecm.php?c=2, http://www.loria.fr/~zimmerma/records/Pminus1.html, https://www.mersenne.org/report_pminus1/, https://www.mersenne.ca/userfactors/pm1/1, https://www.mersenne.ca/smooth.php, https://www.mersenne.ca/p1missed.php, https://www.mersenne.ca/prob.php), "P+1" means the Williams P+1 method (https://en.wikipedia.org/wiki/Williams%27s_p_%2B_1_algorithm, https://www.rieselprime.de/ziki/P%2B1_factorization_method, https://mathworld.wolfram.com/WilliamspPlus1FactorizationMethod.html, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "p+1:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=p%2b1&maxrows=10000, http://www.numericana.com/answer/factoring.htm#p+1, http://factordb.com/listecm.php?c=3, http://www.loria.fr/~zimmerma/records/Pplus1.html, https://www.mersenne.org/report_pplus1/, https://www.mersenne.ca/userfactors/pp1/1, https://www.mersenne.ca/pplus1.php), "SNFS" means the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://www.rieselprime.de/ziki/SNFS_polynomial_selection, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGSNFS, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (sections "Special number field sieve by size of number factored:" and "Special number field sieve by SNFS difficulty:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=snfs&maxrows=10000, https://stdkmd.net/nrr/wanted.htm#smallpolynomial, https://www.mersenne.ca/userfactors/nfs/1, http://escatter11.fullerton.edu/nfs/), "GNFS" means the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGGNFS, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "General number field sieve by size of number factored:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=gnfs&maxrows=10000, https://stdkmd.net/nrr/wanted.htm#suitableforgnfs, https://www.mersenne.ca/userfactors/nfs/1, http://escatter11.fullerton.edu/nfs/))

For the number 32319+1, it is the product of Φd(3) with positive integers d dividing 4638 but not dividing 2319 (i.e. d = 2, 6, 1546, 4638), and the factorization of Φd(3) for these positive integers d are: (since 6 and 4638 are == 6 mod 12, thus for these two positive integers d, Φd(3) has Aurifeuillean factorization (https://en.wikipedia.org/wiki/Aurifeuillean_factorization, https://www.rieselprime.de/ziki/Aurifeuillian_factor, https://mathworld.wolfram.com/AurifeuilleanFactorization.html, http://www.numericana.com/answer/numbers.htm#aurifeuille, http://pagesperso-orange.fr/colin.barker/lpa/cycl_fac.htm, http://list.seqfan.eu/oldermail/seqfan/2017-March/017363.html, http://myfactorcollection.mooo.com:8090/source/cyclo.cpp, http://myfactorcollection.mooo.com:8090/LCD_2_199, http://myfactorcollection.mooo.com:8090/LCD_2_998, https://stdkmd.net/nrr/repunit/repunitnote.htm#aurifeuillean, https://www.unshlump.com/hcn/aurif.html, https://mersenneforum.org/showpost.php?p=515828&postcount=8, https://www.ams.org/journals/mcom/2006-75-253/S0025-5718-05-01766-7/S0025-5718-05-01766-7.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_138.pdf), https://maths-people.anu.edu.au/~brent/pd/rpb127.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_164.pdf), https://www.jams.jp/scm/contents/Vol-2-3/2-3-16.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_167.pdf)), and ΦdL(3) and ΦdM(3) are their Aurifeuillean L and M factors, respectively)

from currently known prime factorization
Φ2(3) 22
Φ6L(3) 1 (empty product (https://en.wikipedia.org/wiki/Empty_product))
Φ6M(3) 7
Φ1546(3) 1182691 × 454333843 × 7175619780295897339 × 219067434459114063477547 × 650663511671253931884619 × (288-digit composite with no known proper factor, SNFS difficulty is 369.292, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=3&Exp=773&c0=%2B&LM=&SA=, this composite has already checked with P−1 to B1 = 50000 and 3 times P+1 to B1 = 150000 and 10 times ECM to B1 = 250000 (these can be checked for composites < 10300), see http://factordb.com/sequences.php?se=1&aq=%283%5E773%2B1%29%2F4&action=all&fr=0&to=100)
Φ4638L(3) 18553 × 2957658597967379799686737984695290731543 × (325-digit composite with no known proper factor, SNFS difficulty is 369.292, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=3&Exp=2319&c0=%2B&LM=L&SA=)
Φ4638M(3) 4639 × 6716055901 × (356-digit composite with no known proper factor, SNFS difficulty is 369.292, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=3&Exp=2319&c0=%2B&LM=M&SA=)

For the number 131504−1, it is the product of Φd(13) with positive integers d dividing 1504 (i.e. d = 1, 2, 4, 8, 16, 32, 47, 94, 188, 376, 752, 1504), and the factorization of Φd(13) for these positive integers d are:

from currently known prime factorization
Φ1(13) 22 × 3
Φ2(13) 2 × 7
Φ4(13) 2 × 5 × 17
Φ8(13) 2 × 14281
Φ16(13) 2 × 407865361
Φ32(13) 2 × 2657 × 441281 × 283763713
Φ47(13) 183959 × 19216136497 × 534280344481909234853671069326391741
Φ94(13) 498851139881 × 3245178229485124818467952891417691434077
Φ188(13) 36097 × 75389 × 99886248944632632917 × (74-digit prime)
Φ376(13) 41737 × 553784729353 × 188172028979257 × 398225319299696783138113 × 7663511503164270157006126605793 × 8935170451146532986983277856738508374630999814576686938913 × (62-digit prime)
Φ752(13) 13537 × 1232912541076129 × (391-digit composite with no known proper factor, SNFS difficulty is 421.071, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=13&Exp=376&c0=%2B&LM=&SA=)
Φ1504(13) 4513 × 9426289921 × (807-digit composite with no known proper factor, SNFS difficulty is 837.685, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=13&Exp=752&c0=%2B&LM=&SA=)

For the number 163543+1 = 214172+1, it is the product of Φd(2) with positive integers d dividing 28344 but not dividing 14172 (i.e. d = 8, 24, 9448, 28344), and the factorization of Φd(2) for these positive integers d are:

from currently known prime factorization
Φ8(2) 17
Φ24(2) 241
Φ9448(2) 107083633 × 7076306353 × 2428629073416562046689 × (1382-digit composite with no known proper factor, SNFS difficulty is 1422.066, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=2&Exp=4724&c0=%2B&LM=&SA=)
Φ28344(2) 265073089 × (2834-digit composite with no known proper factor, SNFS difficulty is too large to handle for the script, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=2&Exp=14172&c0=%2B&LM=&SA=)

For the number 177092−1, it is the product of Φd(17) with positive integers d dividing 7092 (i.e. d = 1, 2, 3, 4, 6, 9, 12, 18, 36, 197, 394, 591, 788, 1182, 1773, 2364, 3546, 7092), and the factorization of Φd(17) for these positive integers d are:

from currently known prime factorization
Φ1(17) 24
Φ2(17) 2 × 32
Φ3(17) 307
Φ4(17) 2 × 5 × 29
Φ6(17) 3 × 7 × 13
Φ9(17) 19 × 1270657
Φ12(17) 83233
Φ18(17) 3 × 1423 × 5653
Φ36(17) 37 × 109 × 181 × 2089 × 382069
Φ197(17) 646477768184104922935115731396719622668746018369021 × (191-digit prime)
Φ394(17) 1720812337 × 120652139803422836046398107883 × 11854861245452004511262968204651829313761 × 930821833870171289422620828584179333038475130149 × (115-digit prime)
Φ591(17) 150824383 × (475-digit composite with no known proper factor, SNFS difficulty is 487.258, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=17&Exp=591&c0=-&LM=&SA=)
Φ788(17) (483-digit composite with no known proper factor, SNFS difficulty is 487.258, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=17&Exp=394&c0=%2B&LM=&SA=)
Φ1182(17) 3547 × 1924297 × (473-digit composite with no known proper factor, SNFS difficulty is 487.258, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=17&Exp=591&c0=%2B&LM=&SA=)
Φ1773(17) 99289 × (1443-digit composite with no known proper factor, SNFS difficulty is too large to handle for the script, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=17&Exp=1773&c0=-&LM=&SA=)
Φ2364(17) 3557821 × (959-digit composite with no known proper factor, SNFS difficulty is 969.594, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=17&Exp=1182&c0=%2B&LM=&SA=)
Φ3546(17) 420878287 × 5406628753 × 7195614121 × 32800804957 × (1409-digit composite with no known proper factor, SNFS difficulty is too large to handle for the script, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=17&Exp=1773&c0=%2B&LM=&SA=)
Φ7092(17) 21277 × 1560241 × 2654148561193 × (2872-digit composite with no known proper factor, SNFS difficulty is too large to handle for the script, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=17&Exp=3546&c0=%2B&LM=&SA=)

For the number 261886−1, it is the product of Φd(26) with positive integers d dividing 1886 (i.e. d = 1, 2, 23, 41, 46, 82, 943, 1886), and the factorization of Φd(26) for these positive integers d are:

from currently known prime factorization
Φ1(26) 52
Φ2(26) 33
Φ23(26) 13709 × 1086199 × 1528507873 × 615551139461
Φ41(26) 83 × 2633923 × (49-digit prime)
Φ46(26) 47 × 1157729 × 378673381 × 629584013567417
Φ82(26) 9677 × 1532581 × (47-digit prime)
Φ943(26) 384118835398327 × (1231-digit composite with no known proper factor, SNFS difficulty is 1334.320, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=26&Exp=943&c0=-&LM=&SA=)
Φ1886(26) (1246-digit composite with no known proper factor, SNFS difficulty is 1334.320, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=26&Exp=943&c0=%2B&LM=&SA=)

For the number 363933−1 = 67866−1, it is the product of Φd(6) with positive integers d dividing 7866 (i.e. d = 1, 2, 3, 6, 9, 18, 19, 23, 38, 46, 57, 69, 114, 138, 171, 207, 342, 414, 437, 874, 1311, 2622, 3933, 7866), and the factorization of Φd(6) for these positive integers d are:

from currently known prime factorization
Φ1(6) 5
Φ2(6) 7
Φ3(6) 43
Φ6(6) 31
Φ9(6) 19 × 2467
Φ18(6) 46441
Φ19(6) 191 × 638073026189
Φ23(6) 47 × 139 × 3221 × 7505944891
Φ38(6) 1787 × 48713705333
Φ46(6) 113958101 × 990000731
Φ57(6) 47881 × 820459 × 219815829325921729
Φ69(6) 11731 × 1236385853432057889667843739281
Φ114(6) 457 × 137713 × 190324492938225748951
Φ138(6) 24648570768391 × 816214079084081564521
Φ171(6) 19 × 25896916098621777025320461067950269867 × (46-digit prime)
Φ207(6) 399097 × (98-digit prime)
Φ342(6) 62174327387790051073 × (65-digit prime)
Φ414(6) 4811469913 × 61040960263 × 25280883279243199352415750302719 × (51-digit prime)
Φ437(6) 989723472495640900314985156529340457 × (273-digit composite with no known proper factor, SNFS difficulty is 340.830, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=6&Exp=437&c0=-&LM=&SA=, this composite has already checked with P−1 to B1 = 50000 and 3 times P+1 to B1 = 150000 and 10 times ECM to B1 = 250000 (these can be checked for composites < 10300), see http://factordb.com/sequences.php?se=1&aq=%286%5E437-1%29*5%2F%286%5E23-1%29%2F%286%5E19-1%29&action=all&fr=0&to=100)
Φ874(6) (309-digit prime, for its ECPP primality certificate see http://factordb.com/cert.php?id=1100000000019287760, and for its certificate chain see http://factordb.com/certchain.php?fid=1100000000019287760&action=all&fr=0&to=100)
Φ1311(6) 100745107 × 1719861571 × 2376829061449 × (587-digit composite with no known proper factor, SNFS difficulty is 681.660, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=6&Exp=1311&c0=-&LM=&SA=)
Φ2622(6) 41953 × 266030354191322260711 × (592-digit composite with no known proper factor, SNFS difficulty is 681.660, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=6&Exp=1311&c0=%2B&LM=&SA=)
Φ3933(6) 7867 × (1845-digit composite with no known proper factor, SNFS difficulty is too large to handle for the script, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=6&Exp=3933&c0=-&LM=&SA=)
Φ7866(6) (1849-digit composite with no known proper factor, SNFS difficulty is too large to handle for the script, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=6&Exp=3933&c0=%2B&LM=&SA=)

For the files in this page:

  • File "certificate b n": The primality certificate for the nth minimal prime in base b (local copy from factordb (http://factordb.com/, https://www.rieselprime.de/ziki/Factoring_Database)), after downloading these files, these files should be renamed to ".out" files, e.g. file "certificate9_149" is the primality certificate for the 149th minimal prime in base 9, i.e. the primality certificate for the prime 763292 in base 9, which equals the prime (31×9330−19)/4.