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Abstract

The appearance of primes in a family of linear recurrence sequences
labelled by a positive integer n is considered. The terms of each se-
quence correspond to a particular class of Lehmer numbers, or (view-
ing them as polynomials in n) dilated versions of the so-called Cheby-
shev polynomials of the fourth kind, also known as airfoil polynomials.
It is proved that when the value of n is given by a dilated Chebyshev
polynomial of the first kind evaluated at a suitable integer, either the
sequence contains a single prime, or no term is prime. For all other
values of n, it is conjectured that the sequence contains infinitely many
primes, whose distribution has analogous properties to the distribution
of Mersenne primes among the Mersenne numbers. Similar results are
obtained for the sequences associated with negative integers n, which
correspond to Chebyshev polynomials of the third kind, and to an-
other family of Lehmer numbers.
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1 Introduction

Consider the linear recurrence of second order given by

sk+2 − n sk+1 + sk = 0, (1)

together with the initial conditions

s0 = 1, s1 = n+ 1. (2)

For each integer n, this generates an integer sequence that begins

1, n+ 1, n2 + n− 1, n3 + n2 − 2n− 1, n4 + n3 − 3n2 − 2n+ 1,
n5 + n4 − 4n3 − 3n2 + 3n+ 1, . . . .

(3)

The sequence can also be extended backwards to negative indices k, so that
in particular s−1 = −1 = −s0, which implies that it has the symmetry

sk(n) = −s−k−1(n) (4)

for all k. In this way we obtain a sequence that we denote by ( sk(n) )k∈Z,
where the argument denotes the dependence on n.

We can also interpret this as a sequence of polynomials in the variable n,
with the integer sequences being obtained by substituting particular values
for the argument. From this point of view, it is apparent from the recursive
definition that, for each k ≥ 0, sk(n) is a monic polynomial of degree k in
n with integer coefficients. In fact, these are rescaled (or dilated) versions
of polynomials that are used to determine the pressure distribution in linear
airfoil theory, being given by

sk(n) = Wk

(n
2

)
, Wk(cos θ) =

sin
(

(2k + 1)θ/2
)

sin(θ/2)
, (5)

where Wk are known as the Chebyshev polynomials of the fourth kind [18],
or the airfoil polynomials of the second kind (see [5], where the notation uk
is used in place of Wk). As a function of θ, the expression on the far right-
hand side of (5) is known as the Dirichlet kernel in Fourier analysis, where
it is usually denoted Dk(θ) [8]. Compared with those of the third and fourth
kinds, the properties of Chebyshev polynomials of the first and second kinds
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are much better known, and in what follows we will make extensive use of
connections with the latter two sets of polynomials.

The primary goal of this article is to describe the case where n is a
positive integer, but before proceeding, we consider the sequences obtained
for some particular small values of |n| ≤ 2, which will mostly be excluded
from subsequent analysis, but are relevant nevertheless. In the case n = 0,
the sequence ( sk(0) ) begins

1, 1,−1,−1, . . . , (6)

and repeats with period 4; we mention this case because it is equivalent to
the sequence ( sk(n) mod n ). When n = 1 the sequence has period 6, being
specified by the six initial terms

1, 2, 1,−1,−2,−1, . . . , (7)

and for n = −1 the sequence repeats the values

1, 0,−1 (8)

with period 3. For n = 2 the sequence grows linearly with k, beginning with

1, 3, 5, 7, 9, 11, . . . , (9)

and consists of the odd integers, that is

sk(2) = 2k + 1, (10)

while for n = −2 the sequence has period 2, being given by

sk(−2) = (−1)k. (11)

For each integer n ≥ 3 the sequence increases monotonically for k ≥ 0 and
grows exponentially with k (see below for details).

Sequence A269254 in the Online Encyclopedia of Integer Sequences (OEIS)
[27] records the first appearance of a prime term in ( sk(n) ).

Definition 1.1. (Sequence A269254.) For each integer n ≥ 1, if the
sequence of terms ( sk(n) )k≥0 with non-negative indices contains a prime,
then let an be the smallest value of k ≥ 1 such that sk(n) is prime; or
otherwise, if there is no such term, let an = −1.
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There is also sequence A269253, whose nth term is given by the first
prime to appear in ( sk(n) )k≥0, or by −1 if no prime appears.

To illustrate the above definition, let us start with n = 1: since the
first prime term in the sequence (7) is s1(1) = 2, it follows that a1 = 1.
Similarly, for n = 2, the first prime in (9) is s1(2) = 3, so a2 = 1; but
for n = 3, the sequence ( sk(3) ) begins 1, 4, 11, . . ., so a3 = 2. In cases
where a prime term has appeared in the sequence ( sk(n) ), the value of an
is immediately determined. The sequence (an)n≥1 begins with the following
terms for 1 ≤ n ≤ 34 :

1, 1, 2, 1, 2, 1,−1, 2, 2, 1, 2, 1, 2,−1, 2, 1, 3, 1, 2, 2, 2, 1,−1, 2, 6, 2, 3, 1,
3, 1, 2, 9, 9,−1, . . . .

(12)

All of the positive values above can be checked very rapidly, and it turns out
that all values of an > 0 are of the form (p− 1)/2, where p is an odd prime:
this is a direct consequence of Lemma 4.12 below. What is less easy to verify
is the negative values a7 = a14 = a23 = a34 = −1 displayed above, indicating
no primes. For instance, when n = 7, the sequence ( sk(7) ) begins with

1, 8, 55, 377, 2584, 17711, 121393, 832040, 5702887, . . . , (13)

and it can be verified that none of these first few terms are prime; but to
show that a7 = −1 it is necessary to prove that sk(7) is composite for all
k > 0: a proof of this fact can be found in section 3, while another proof
appears in section 5 in a broader setting.

In fact, in order to understand the family of sequences ( sk(n) ) with
positive n, it will be natural to consider negative integer values of n as well.
In that case, it is helpful to define the family of sequences ( rk(n) ) given by

rk(n) = (−1)k sk(−n). (14)

It is straightforward to show by induction that, for fixed n, the sequence
( rk(n) ) satisfies the same recurrence (1) but with different initial conditions,
namely

rk+2 − n rk+1 + rk = 0,

together with
r0 = 1, r1 = n− 1. (15)

For integer n, this generates an integer sequence that begins

1, n− 1, n2 − n− 1, n3 − n2 − 2n+ 1, n4 − n3 − 3n2 + 2n+ 1,
n5 − n4 − 4n3 + 3n2 + 3n− 1, . . . .

(16)
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Up to rescaling n by a factor of 2, this sequence of polynomials arises in
describing the downwash distribution in linear airfoil theory, and in this
context they are referred to as the airfoil polynomials of the first kind [5],
denoted tk; with the alternative notation Vk they are also referred to as the
Chebyshev polynomials of the third kind [18], so that

rk(n) = Vk

(n
2

)
, Vk(cos θ) =

cos
(

(2k + 1)θ/2
)

cos(θ/2)
. (17)

Since n = 2 cos θ, the identity (14) can also be obtained immediately by
taking θ → θ + π in (5), and comparing with (17).

There is another OEIS sequence that is relevant here, corresponding to
the first appearance of a prime in the sequence defined by (14) for each
positive integer n.

Definition 1.2. (Sequence A269252.) For each integer n ≥ 1, if the
sequence of terms ( rk(n) )k≥0 with non-negative indices contains a prime,
then let ãn be the smallest value of k ≥ 1 such that rk(n) is prime; or
otherwise, if there is no such term, let ãn = −1.

There is also sequence A269251, whose nth term is given by the first
prime to appear in ( rk(n) )k≥0, or by −1 if no prime appears.

For comparison with A269254, note that the first few terms of A269252
for 1 ≤ n ≤ 34 are given by

−1,−1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 14, 1, 2, 2, 3, 1, 2, 5, 2, 36,
2, 1, 2, 1, 15,−1, . . . .

(18)

The two initial −1 values that appear above for n = 1, 2 clearly correspond
to (8) and (11), respectively, while the first non-trivial case to consider is the
value −1 that appears for n = 34, corresponding to the sequence ( rk(34) ),
which begins with

1, 33, 1121, 38081, 1293633, 43945441, 1492851361, 50713000833, . . . ; (19)

again it can be verified that none of these first few terms are prime, while
a proof that all terms with k > 0 are composite for this and certain other
values of n is given in section 5.

Aside from the connection with Chebyshev polynomials, the numbers
sk(n) and rk(n) also correspond to particular instances of Lehmer numbers
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with odd index, which are closely related to sequences of Lucas numbers.
Prime divisors in sequences of Lucas and Lehmer numbers have been studied
for some time; see e.g. [1, 25, 26, 29] for some general results, or see [10] for
a more elementary introduction to primitive divisors. However, to the best
of our knowledge, the question of when such sequences are without prime
terms, or of where the first prime appears in such sequences, has not been
considered in detail before, except in the case n = 6.

The case n = 6 corresponds to the so-called NSW numbers, named af-
ter [20] (sequence A002315). An NSW number q can be characterized by
there being some r such that the pair of positive integers (q, r) satisfies the
Diophantine equation

q2 + 1 = 2r2.

The sequence of NSW numbers is given by q = sk(6) for k ≥ 0, with the
corresponding solution to the above equation being (q, r) = (sk(6), rk(6)).
The subsequence of prime NSW numbers is of particular interest in relation
to finite simple groups of square order: the symplectic group of dimension 4
over the finite field Fq has a square order if and only if q is a prime NSW
number, with the order being (q2(q2 − 1)r)2. The first prime NSW number
is s1(6) = 7, and the symplectic group of dimension 4 over F7 is of order
117602.

For an arbitrary linear recurrence relation of second order, that is

xk+2 = a xk+1 + b xk, (a, b) ∈ Z2,

the general question of whether it generates a sequence without prime terms
has been considered for some time. If either the coefficients a, b or the two
initial values x0, x1 have a common factor then it is obvious that all terms
xk for k ≥ 2 have the same common factor, so the main case of interest is
where gcd(a, b) = 1 = gcd(x0, x1). In the case of the Fibonacci recurrence
with a = b = 1, the groundbreaking result was due to Graham, who found a
sequence whose first two terms are relatively prime and which consists only of
composite integers [11]. This result was generalized to arbitrary second-order
recurrences by Somer [28] and Dubickas et al. [6].

An outline of the paper is as follows. The next section serves to set up
notation and provide a rapid introduction to the properties of dilated Cheby-
shev polynomials of the first and second kinds, which will be used extensively
in the sequel, and also contains the required definitions of the corresponding
sequences of Lucas and Lehmer numbers that appear subsequently. Section
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3 provides a very brief review of some standard facts about linear recurrence
sequences and products of such sequences, before a presentation of examples
and preliminary results about values of n for which the terms sk(n) factor
into a product of two linear recurrence sequences; this serves to illustrate and
motivate the results which appear in section 5. As preparation for the latter,
section 4 contains a collection of various general properties of the sequences
( sk(n) ). The main results of the paper, on the factorization of ( sk(n) ) and
( rk(n) ) when n is a dilated Chebyshev polynomial of the first kind eval-
uated at integer argument (Chebyshev values), are presented in section 5.
Section 6 considers the appearance of primes in these sequences in the case
that n is not one of the Chebyshev values, and gives heuristic arguments and
numerical evidence to support a conjecture to the effect that the behaviour
is analogous to that of the sequence of Mersenne primes. Some conclusions
are made in the final section, and there are two appendices: the first is a
collection of data on prime appearances, and the second is a brief catalogue
of related sequences in the OEIS.

This paper arose out of a series of posts to the SeqFan mailing list, with
contributions from many people, both professional and recreational mathe-
maticians. Our aim throughout has been to make the presentation as explicit
as possible, and for the sake of completeness we have stated several standard
facts and definitions, as well as providing direct, elementary proofs of almost
every statement (even when some of them are particular cases of more gen-
eral results in the literature). We hope that in this form it will be possible
for our work to be appreciated by sequence enthusiasts of every persuasion.

2 Dilated Chebyshev polynomials and Lehmer

numbers

The families of Chebyshev polynomials arise in the theory of orthogonal
polynomials, and have diverse applications in numerical analysis [18]. There
are four such families, and while the Chebyshev polynomials of the first and
second kinds are well studied in the literature, those of the third and fourth
kinds are not so well known, and some of their connections to arithmetical
problems have only been considered quite recently [13].

In order to define scaled versions of the standard Chebsyhev polynomials
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in terms of trigonometric functions, let

n = 2 cos θ = λ+ λ−1,

so that we may write

λ =
n+
√
n2 − 4

2
= eiθ, (20)

where i =
√
−1. Then the formulae

Tk(2 cos θ) = 2 cos(kθ), Uk(2 cos θ) =
sin ((k + 1)θ)

sin θ
(21)

define Tk, Uk as polynomials in n, for all k ∈ Z. In chapter 18 of [19] these
polynomials are referred to as the dilated Chebyshev polynomials of the first
and second kinds, and they are denoted by Ck, Sk respectively. In standard
notation, the classical Chebyshev polynomials of the first and second kinds
are written as Tk and Uk, and their precise relationship with the dilated
polynomials used here is as follows:

Tk(n) = 2Tk

(n
2

)
, Uk(n) = Uk

(n
2

)
.

It is straightforward to show from the definitions (21) that the dilated
Chebyshev polynomials of the first and second kinds satisfy the same re-
currence (1) as the sequence ( sk(n) ), but with different initial values. For
example, to verify that the sequence (Uk(n) ) satisfies the recurrence, it is
sufficient to note that

Uk(n)− nUk−1(n) + Uk−2(n) = sin((k+1)θ)−2 cos θ sin(kθ)+sin((k−1)θ)
sin θ

, (22)

and then observe that the right-hand side above vanishes as a consequence
of the addition formula for sine in the form

sin(θ + φ) + sin(θ − φ) = 2 sin θ cosφ. (23)

For comparison with other texts, we note that the sequence of dilated first
kind polynomials begins thus:

( Tk(n) ) : 2, n, n2 − 2, n3 − 3n, n4 − 4n2 + 2, n5 − 5n3 + 5n, . . . . (24)

In contrast, the sequence of dilated second kind polynomials begins as

(Uk(n) ) : 1, n, n2 − 1, n3 − 2n, n4 − 3n2 + 1, n5 − 4n3 + 3n, . . . . (25)
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For future reference, we note the standard identities

Tab(n) = Ta(Tb(n)) (26)

and
Uab−1(n) = Ua−1(Tb(n))Ub−1(n), (27)

which follow from the trigonometric definitions above.
In order to get a formula for the coefficients of the polynomials sk(n),

we present an explicit expansion for the dilated Chebyshev polynomials of
the second kind. Although this can be found elsewhere in the literature
(cf. equations (5.74) and (6.129) in [12]), for completeness we present an
elementary proof.

Proposition 2.1. The dilated Chebyshev polynomials of the second kind are
given by

Uk(n) =

b k2c∑
i=0

(−1)i
(
k − i
i

)
nk−2i. (28)

Proof. First note that for k = 0, 1 the sum on the right-hand side of (28)
agrees with the initial terms U0 = 1, U1 = n. Then, upon substituting
the sum formula into the recurrence (22) and comparing powers of n, after
dividing by (−1)i we see that the coefficient of nk−2i yields the identity(

k − i
i

)
−
(
k − i− 1

i

)
−
(
k − i− 1

i− 1

)
= 0

for binomial coefficients. Thus the sequences defined by the left-hand and
right-hand sides of (28) satisfy the same recurrence with the same initial
conditions, so they must coincide.

For use in what follows, we also define Lehmer numbers. Given a quadratic
polynomial in X with roots α, β, that is

X2 −
√
RX +Q = (X − α)(X − β), Q,R ∈ Z, (29)

where it is assumed that Q,R are coprime and α/β is not a root of unity,
there are two associated sequences of Lehmer numbers, which (adapting the
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notation of [9]) we denote by L−k (
√
R,Q) and L+

k (
√
R,Q), where

L−k (
√
R,Q) =


αk − βk

α− β
, k odd

αk − βk

α2 − β2
, k even,

(30)

and

L+
k (
√
R,Q) =


αk + βk

α + β
, k odd

αk + βk, k even.

(31)

The sequences of Lehmer numbers can be viewed as generalizations of the
Lucas sequences. Assuming that R is a perfect square, so P =

√
R ∈ Z, the

two types of Lucas sequences associated to the quadratic X2 − PX + Q =
(X − α)(X − β) are given by

`−k (P,Q) =
αk − βk

α− β
, `+k (P,Q) = αk + βk; (32)

the corresponding Lehmer numbers L±k (P,Q) are obtained from the Lucas
numbers `±k (P,Q) by removing trivial factors.

From the above definitions, there is a clear link between Chebyshev poly-
nomials and Lucas/Lehmer numbers, which can be summarized in the fol-
lowing

Proposition 2.2. For integer values n, the sequences of dilated Chebyshev
polynomials of the first and second kinds coincide with particular Lucas se-
quences, that is

Tk(n) = `+k (n, 1), Uk−1(n) = `−k (n, 1), (33)

while the sequences generated by (1) with initial values (15) and (2) consist
of Lehmer numbers with odd index, namely

rk(n) = L+
2k+1

(√
n+ 2, 1

)
, sk(n) = L−2k+1

(√
n+ 2, 1

)
(34)

respectively, for all k.
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Proof. The formulae for Tk and Uk follow immediately from comparison of
(21) with (32), requiring from (20) that α = λ = eiθ = β−1 in (29). For the
proof of the second part of the statement, note that taking k = 0, 1 gives
L−1 (
√
n+ 2, 1) = 1 and L−3 (

√
n+ 2, 1) = n+1, while a short calculation shows

that L−2k+1(
√
n+ 2, 1) satisfies the same recurrence (1) as sk(n), and similarly

for the other sequence given by rk(n) = (−1)ksk(−n); so for each equation
in (34), the sequences given by their left/right-hand sides coincide.

Remark 2.3. There are also expressions for rk(n) and sk(n) in terms of
dilated Chebyshev polynomials of the first/second kinds, respectively, with
argument

√
n+ 2: see (74) and (53) below.

By writing the roots of the polynomial X2 −
√
n+ 2X + 1 as

α±1 =

√
n+ 2±

√
n− 2

2
, (35)

we have an alternative way to identify the terms in sequence A269254.

Corollary 2.4. (Alternative characterization of sequence A269254.)
For each n ≥ 3, if α is defined by (35), then an is that positive integer k
yielding the smallest prime of the form

α2k+1 − α−(2k+1)

α− α−1
, (36)

or an = −1 if no such k exists.

The sequence A269252 can be identified in terms of the characteristic
roots of (35) in a similar way.

Corollary 2.5. (Alternative characterization of sequence A269252.)
For each n ≥ 3, if α is defined by (35), then ãn is that positive integer k
yielding the smallest prime of the form

α2k+1 + α−(2k+1)

α + α−1
, (37)

or ãn = −1 if no such k exists.
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3 Some surprising factorizations

In this section we briefly recall some basic facts about sequences generated by
linear recurrences, before looking at some special properties of the family of
sequences ( sk(n) ). We assume that all recurrences are defined over the field
C of complex numbers. (In the next section we will also consider recurrences
in finite fields or residue rings.) For a broad review of linear recurrences in a
more general setting, the reader is referred to [9].

For what follows, it is convenient to make use of the forward shift, denoted
S, which is a linear operator that acts on any sequence (fk) with index k
according to

S fk = fk+1.

With this notation, the fact that a sequence (xk) satisfies a linear recurrence
relation of order N with constant coefficients can be expressed in the form

F (S)xk = 0, (38)

where F (of degree N) is the characteristic polynomial of the recurrence.

Definition 3.1. A decimation of a sequence (xk)k∈Z is any subsequence of
the form (xi+dk)k∈Z, for some fixed integers i, d, with d ≥ 2. A particular
name for the case d = 2 is a bisection, d = 3 is a trisection, and in general
this is a decimation of order d.

Remark 3.2. The case of decimations of linear recurrences defined over
finite fields is considered in [7].

Since, at least in the case that all the roots λ1, λ2, . . . , λN of F are distinct,
the general solution of (38) can be written as a linear combination of kth
powers of the λj, it is apparent that the terms of a decimation of order d are

given by xi+dk =
∑N

j=1Aj λ
dk
j , for some coefficients Aj. Hence the decimation

satisfies the linear recurrence

N∏
j=1

(S− λdj )xi+dk = 0. (39)

(The recurrence for the decimation has the same form in the case of repeated
roots.) Decimations of the sequence ( sk(n) ) will be considered in Proposition
4.9 in the next section.
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Given two sequences (xk), (yk) that satisfy linear recurrences of order
N,M respectively, the product sequence

(zk) = (xkyk)

also satisfies a linear recurrence. The following result is well known.

Theorem 3.3. The product (zk) = (xkyk) of two sequences that satisfy linear
recurrences of order N,M satisfies a linear recurrence of order at most NM .

To prove the theorem in the generic situation where the recurrences for
(xk), (yk) both have distinct characteristic roots, given by λi, 1 ≤ i ≤ N
and µj, 1 ≤ j ≤ M respectively, observe that each product νi,j = λiµj is a
characteristic root for the linear recurrence satisfied by (zk), that is∏

i,j

(S− νi,j) zk = 0, (40)

where the sum is over a maximum set of i, j that give distinct νi,j; so if
the νi,j are all different from each other then the order of the recurrence is
exactly MN , but the order could be smaller if some of the νi,j coincide. For
the general situation with repeated roots, see [33].

We now consider an observation concerning the sequences ( sk(n) ) for
the special values n = j2 − 2 where j ∈ Z, which includes the cases n =
7, 14, 23, 34 that have an = −1 in (12). The fact is that for all these values,
there is a factorization of the form

sk(j
2 − 2) = rk(j)sk(j), (41)

where both factors on the right-hand side above satisfy a linear recurrence
of second order. This is surprising, because in the light of Theorem 3.3 one
would naively expect such a product to satisfy a recurrence of order 4.

Theorem 3.4. For the values n = j2− 2, the terms of the sequence ( sk(n) )
admit the factorization (41), where rk(j) satisfies the same recurrence as
sk(j), that is

rk+2(j)− j rk+1(j) + rk(j) = 0, (42)

with the initial values

r0(j) = 1, r1(j) = j − 1. (43)

Thus for all j ∈ Z the formula (41) expresses sk(j
2 − 2) as a product of two

integers.
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Proof. In the case n = j2 − 2, the formula (35) fixes the characteristic roots
of the recurrence (1) as λ = α2, λ−1 = α−2, where α = (j +

√
j2 − 4)/2; so

α + α−1 = j, and the square root of α can be fixed so that α1/2 + α−1/2 =√
j + 2. Then, by applying the difference of two squares to the numerator

and denominator of (36), it follows that

sk(j
2 − 2) =

(
α(2k+1)/2 + α−(2k+1)/2

α1/2 + α−1/2

) (
α(2k+1)/2 − α−(2k+1)/2

α1/2 − α−1/2

)
(44)

which is the factorization (41) with rk(j) and sk(j) given by making the re-
placement n→ j in (34). (For an alternative expression for these factors, see
(55) in Remark 4.2 below.) Each of the factors above is a linear combination
of kth powers of the characteristic roots α, α−1, and rk(j) = (−1)ksk(−j) as
in (14), so they each satisfy the same recurrence (42) with an appropriate
set of initial values.

Remark 3.5. Generically, the product of any two solutions of the recur-
rence (42) would have three characteristic roots, namely α2, α−2, 1, giving
a recurrence of order 3 in (40), but the potential root 1 cancels from the
product (44), giving the second-order recurrence (1) with n = j2 − 2. An
inductive proof of the preceding result was given by Klee in a post to the
Seqfan mailing list: see [16] for details. However, the factorization (44) in
the form L−2k+1(j, 1) = L+

2k+1(
√
j + 2, 1)L−2k+1(

√
j + 2, 1) appears to be well

known in the literature on Lehmer numbers; see e.g. [4] and references.1

Example 3.6. In the case n = 7, there is the factorization

sk(7) = rk(3) sk(3),

where the first terms of the factor sequences are

( rk(3) ) : 1, 2, 5, 13, 34, 89, 233, 610, 1597, . . . ,
( sk(3) ) : 1, 4, 11, 29, 76, 199, 521, 1364, 3571, . . . ,

which multiply together to give the terms in (13). Since both ( rk(3) ) and
( sk(3) ) are strictly increasing sequences, it follows that sk(7) is composite
for all k ≥ 1, and hence a7 = −1, as asserted previously.

1In particular, see http://primes.utm.edu/top20/page.php?id=47 for a sketch of a
proof of Theorem 3.4.
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As a consequence of the factorization (41), one can show similarly that
for all integers j ≥ 3, the terms sk(j

2− 2) are composite for k ≥ 1, and thus
aj2−2 = −1 for all j ≥ 3 (for full details, see the proof of Theorem 5.2 below).
In particular, Theorem 3.4 accounts for all the values n = 7, 14, 23, 34 with
an = −1 that are shown in the list (12).

The question is now whether there are other cases with an = −1, for
which n 6= j2− 2 for some j. It turns out that the answer to this question is
affirmative, and the first case with an = −1 that does not fit into the above
pattern is n = 110 [15].

Example 3.7. The sequence ( sk(110) )k≥0, beginning with

1, 111, 12209, 1342879, 147704481, 16246150031, 1786928798929,
196545921732159, . . . ,

(45)

appears as number A298677 in the OEIS. To see that none of the terms are
prime, first of all note that the sequence ( sk(110) mod 111 ) is periodic with
period 3: it is equivalent to the sequence (8); this observation is a special
case of Lemma 4.13 below. Thus it is helpful to consider the three trisections
( s3k+i(110) ) for i = 0, 1, 2, each of which satisfy the second-order recurrence

s3(k+2)+i(110)− 1330670 s3(k+1)+i(110) + s3k+i(110) = 0, (46)

as follows by applying the formula (39). The easiest case is i = 1, since
s3k+1 ≡ 0 (mod 111) for all k; so in this subsequence, the first term 111 =
3 × 37 is composite, and subsequent terms 147704481 = 111 × 1330671,
196545921732159 = 111× 1770683979569, etc. are all multiples of 111. The
trisection ( s3k(110) ) is the subsequence beginning with s0(110) = 1, and then
s3(110) = 1342879 = 9661 × 139, s6(110) = 1786928798929 = 116876761 ×
15289, and by induction it can be shown that each of these terms is divisible
by the corresponding one for the sequence ( s3k(5) ) = 1, 139, 15289, . . ., so
that

s3k(110) = R3k(5) s3k(5), (47)

where the integer sequence of prefactors satisfies the third order recurrence

R3(k+3)(5)− 12099
(
R3(k+2)(5)−R3(k+1)(5)

)
−R3k(5) = 0. (48)

Similarly, for the remaining trisection, namely ( s3k+2(110) ), one has

s3k+2(110) = R3k+2(5) s3k+2(5), (49)
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where the prefactor sequence (R3k+2(5) ) consists of integers and satisfies the
same recurrence (48). In fact, it is not necessary to consider this trisection
separately, since its properties follow immediately from extending ( s3k(110) )
to k < 0 and using the symmetry (4). These observations show that all the
terms in (45) are composite for k > 0, confirming that a110 = −1 as claimed.
Moreover, for all k there is a factorization

sk(110) = Rk(5) sk(5), (50)

where
Rk+3(5)− 24

(
Rk+2(5)−Rk+1(5)

)
−Rk(5) = 0, (51)

but the prefactors making up the full sequence (Rk(5) )k≥0, that is

1,
37

2
, 421, 9661,

443557

2
, 5091241, 116876761,

5366148517

2
, . . . ,

are only integers in the cases (47) and (49), and not when k ≡ 1 (mod 3).

The values of n with an = −1 mentioned so far all have one thing in
common: they correspond to values of dilated Chebyshev polynomials of the
first kind. Indeed, the four -1 terms displayed in (12) appear at the index
values

7 = T2(3), 14 = T2(4), 23 = T2(5), 34 = T2(6),

and Theorem (3.4) implies that sk(n) is composite for all k ≥ 1 when n =
T2(j), j ≥ 3, while

110 = T3(5).

It turns out that for any Chebyshev value n = Tp(j) with p > 1, there is a
factorization analogous to (41) or (50): see Theorem 5.1 below. Due to the
identity (26), it is sufficient to consider the case of prime p only.

The curious reader might wonder why the values n = 18 = T3(3) and
n = 52 = T3(4) are missing from the discussion. The reason is that, although
there is a factorization analogous to (50) for these values of n, there are the
prime terms s1(18) = 19 and s1(52) = 53, which imply that a18 = 1 = a52;
but it turns out that there are no other primes in the sequences ( sk(n) )k≥0
for n = 18 or 52. See Theorem 5.2 for a more general statement which
includes all these Chebyshev values.
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4 General properties of the defining sequences

By writing the general solution of (1) in terms of the roots of its charac-
teristic quadratic, and using various expressions for the dilated Chebyshev
polynomials, as in section 2, we immediately obtain a number of equivalent
explicit formulae for the sequence ( sk(n) ).

Proposition 4.1. The terms of the sequence generated by (1) with the initial
values (2) are given explicitly by

sk(n) =
λk+1 − λ−k

λ− 1
= Uk−1(n) + Uk(n), (52)

where λ is given in terms of n according to (20), and by

sk(n) = U2k(
√
n+ 2) =

sin
(

(2k + 1)θ/2
)

sin(θ/2)
, (53)

and they have the generating function

G(X,n) :=
∞∑
j=0

sj(n)Xj =
1 +X

1− nX +X2
. (54)

Proof. The first formula in (52) is equivalent to (36), with λ = α2, and the
other one follows by rewriting the Chebyshev polynomials as linear combi-
nations of λk and λ−k, which generically provide two independent solutions
of (1).2 For the latter set of identities, let m =

√
n+ 2, and note that

T2(m) = n, so θ can always be chosen such that m = 2 cos(θ/2). The ex-
pression on the far right-hand side of (53) is obtained by by applying (23) to
the last equality in (52), or by setting α = eiθ/2 in (36), and this expression
equals U2k(2 cos(θ/2)) = U2k(m). The generating function (54) follows from
using the first formula in (52) and summing a pair of geometric series.

Remark 4.2. The last formula in (52) together with (14) shows that the
terms on the right-hand side of the factorization (41) in the case n = T2(j) =
j2 − 2 can also be written as

rk(j) = Uk(j)− Uk−1(j), sk(j) = Uk(j) + Uk−1(j). (55)

2The first equality is invalid when n = ±2, due to repeated roots λ = λ−1 = ±1, cf.
(10) and (11).
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If 5/2 < n ∈ R then λ > 2, so λ−k/(λ − 1) < 1 for all k ≥ 0, and so we
have

Corollary 4.3. For all real n > 5/2, the terms sk(n) for k ≥ 0 are given by

sk(n) =

⌊
λk+1

λ− 1

⌋
.

The recurrence (1) can also be rewritten in matrix form, as

vj = A vj−1, (56)

where

A =

(
0 1
−1 n

)
, vj =

(
sj(n)
sj+1(n)

)
,

hence for all j the terms of the sequence are given in terms of the powers of
A by

vj = Aj v0.

By a standard method of repeated squaring, this allows rapid calculation of
the terms of the sequence.

Proposition 4.4. The jth power of the matrix A is given explicitly by

Aj =

(
−Uj−2(n) Uj−1(n)
−Uj−1(n) Uj(n)

)
, (57)

and this can be calculated in O(log j) steps.

Proof. The formula (57) follows by induction, noting that the columns of
the matrix on the right-hand side satisfy the same recurrence (56) as the
vector vj, and it is trivially true for j = 0. To calculate the powers of

A quickly, compute the binary expansion j =
∑d−1

i=0 bi 2
i, where bd−1 = 1

and d = log2 j + 1 is the number of bits, then use repeated squaring to
obtain the sequence Ãi = A2i for i = 0, 1, . . . , d − 1, and finally evaluate
Aj =

∏d−1
i=0 Ãbi

i .

There are other useful representations for the terms sk(n), two of which
we record in the following
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Proposition 4.5. For k ≥ 0, the terms of the sequence ( sk(n) ) admit the
expansion

sk(n) =

b k2c∑
i=0

(−1)i
(
k − i
i

)
nk−2i +

b k−1
2 c∑
i=0

(−1)i
(
k − i− 1

i

)
nk−2i−1 (58)

in powers of n, and the expansion

sk(n) =
1

2
T0(n) +

k∑
i=1

Ti(n) (59)

in terms of dilated Chebyshev polynomials of the first kind.

Proof. The first expansion (58) follows from the expression on the far right-
hand side of (52), together with equation (28). The second expansion (59)
corresponds to a standard identity for the Dirichlet kernel; it can be proved
by noting that dilated first/second kind Chebyshev polynomials are related
via the identity Tk(n) = 2Uk(n) − nUk−1(n), which is easily verified. Taken
together with the recurrence (22), as well as the last expression in (52), this
gives

sk(n)− sk−1(n) = Tk(n). (60)

Thus the expansion (59) is obtained by starting from s0 = 1 = 1
2
T0 and then

taking the telescopic sum of the first difference formula (60).

Remark 4.6. A different form of series expansion for the airfoil polynomials
of the second kind is given in [5].

Proposition 4.7. For any odd integer p,

sk+p(n)− sk(n) = Tk+ p+1
2

(n) s(p−1)/2(n). (61)

Proof. This follows from the trigonometric expression on the far right-hand
side of (53), by applying the addition formula (23).

Remark 4.8. The formula (60) is the particular case p = 1 of the above
identity.

Proposition 4.9. Any decimation ( si+dk(n) ) of the sequence of order d,
satisfies the linear recurrence

si+d(k+1)(n)− Td(n) si+dk(n) + si+d(k−1)(n) = 0. (62)
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Proof. By the first formula for sk(n) in (52), the terms of the decimated
sequence can be written as linear combinations of kth powers of λd and λ−d,
so from the formula (39) we find(

S2 − (λd + λ−d) S + 1
)
si+dk(n) = 0,

and by using (20) we see that λd + λ−d = 2 cos(dθ) = Td(n), which verifies
(62).

It is worth highlighting some particular cases of the preceding two results,
namely the formulae

s2j(n) + 1 = sj(n) Tj(n), s2j+1(n)− 1 = sj(n) Tj+1(n), (63)

of which the first arises by setting i = 0, k = 1, d = j in (62), while the
second comes from taking k = 0, p = 2j+1 in (61). For primality testing of a
number q, it is often useful to have a factorization, or a partial factorization,
of either q − 1 or q + 1 [2, 22], and each of the identities in (63) also has an
analogue where the sign of the ±1 term on the left-hand side is reversed.

Proposition 4.10. For any integer j,

s2j(n)−1 = (n+2) rj(n)Uj−1(n), s2j+1(n)+1 = (n+2) rj(n)Uj(n). (64)

Proof. For the first identity in (64), using λ = α2 with α = eiθ/2 and n =
λ+ λ−1 yields n+ 2 = (α + α−1)2, and then from (37) and the definition of
the dilated Chebyshev polynomials of the second kind it follows that (n +
2)rj(n)Uj−1(n) is equal to

(α + α−1)2
(
α2j+1 + α−(2j+1)

α + α−1

) (
α2j − α−2j

α2 − α−2

)
=

(
α4j+1 − α−(4j+1)

α− α−1

)
− 1

which is precisely s2j(n) − 1, by (36). The proof of the second identity is
similar.

Another basic fact we shall use is that, with a suitable restriction on n,
sk(n) is monotone increasing with k.

Proposition 4.11. For each real n ≥ 2, the sequence ( sk(n) ) is strictly
increasing, and grows exponentially with leading order asymptotics

sk(n) ∼ 1

2

(
1 +

√
n+ 2

n− 2

) (
n+
√
n2 − 4

2

)k
as k →∞,

for all n > 2.
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Proof. For real n ≥ 2, from (20) we can set

τ = iθ = log

(
n+
√
n2 − 4

2

)
,

which defines a bijection from the interval n ∈ [2,∞) to τ ∈ [0,∞). The
inverse is

n = 2 coshτ =⇒ dn

dτ
= 2 sinhτ > 0,

and we have

Tk(n) = 2 cosh(kτ) =⇒ d

dτ
Tk(n) = 2k sinh(kτ) > 0

for τ > 0; hence, for all fixed k, Tk(n) is a strictly increasing function of n for
n ≥ 2. Similarly, d

dk
Tk(n) = 2τ sinh(kτ) so for all fixed n > 2, the sequence

( Tk(n) )k≥0 is also strictly increasing with k. Then since Tk(2) = 2 for all k,
it follows that, for all k,

Tk(n) ≥ 2 ∀n ≥ 2, (65)

so from (60) we have
sk(n)− sk−1(n) ≥ 2.

Upon taking the leading term of the explicit expression in terms of λ in (52)
and rewriting it as a function of n, the asymptotic formula results.

We can now use the explicit formulae above to derive various arithmetical
properties of the integer sequences defined by sk(n) for positive integers n.
This will culminate in Lemma 4.15 below, which describes coprimality condi-
tions on the terms, as well as Lemma 4.18 and its corollaries, which constrain
where particular prime factors can appear. To begin with we describe where
primes can appear in the sequence.

Lemma 4.12. For all integers n ≥ 2, if sk(n) is prime then k = (p − 1)/2
for p an odd prime.

Proof. If 2k + 1 = ab is composite, for some odd integers a, b ≥ 3, then the
identity (27) can be applied to the middle expression in (53), to write sk(n)
as the product

sk(n) = Ua−1
(
Tb(
√
n+ 2)

)
Ub−1(

√
n+ 2)

= s(a−1)/2
(
Tb(
√
n+ 2)2 − 2

)
s(b−1)/2(n).
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Then, since T2(j) = j2 − 2, by using (26) we have

sk(n) = s(a−1)/2
(
T2b(
√
n+ 2)

)
s(b−1)/2(n)

= s(a−1)/2 (Tb(n)) s(b−1)/2(n),
(66)

and each factor above is an integer greater than 1.

Henceforth we will consider only integer values of n. It is well known that
all linear recurrence sequences defined over Z are eventually periodic mod m
for any modulus m [32]; and for the recurrence (1) we can say further that it
is strictly periodic modm, because the linear map (sk, sk+1) 7→ (sk+1, sk+2)
defined by the matrix A in (56) is always invertible modm (since det A =
1). However, in order to obtain coprimality conditions, we need a lemma that
explicitly describes the periodicity of the terms sk(n) mod sj(n) for fixed j.

Lemma 4.13. For all integers n ≥ 2 and any odd number p ≥ 3, the sequence
of residues sk(n) mod s(p−1)/2(n) is periodic with period p, and sk(n) ≡ 0
(mod s(p−1)/2(n)) if and only if k ≡ (p− 1)/2 (mod p).

Proof. The identity (61) implies that, for all k,

sk+p(n) ≡ sk(n) (mod s(p−1)/2(n)),

so the residues repeat with period p. By the monotonicity result in Proposi-
tion 4.11,

1 = s0(n) < s1(n) < · · · < s(p−3)/2(n) < s(p−1)/2(n).

Then the symmetry (4) implies that the residues mod s(p−1)/2(n) are non-
zero in the range −(p − 1)/2 ≤ k ≤ (p − 3)/2, so the rest of the statement
follows from the periodicity.

Lemma 4.14. For each integer n ≥ 2 and any odd integer p ≥ 3, sk(n) is
coprime to s(p−1)/2(n) if and only if (p− 1)/2− k is coprime to p.

Proof. Once again, we drop the argument n for the purposes of the proof,
and perform induction on the odd integers p ≥ 3. With p fixed, for each k it
will be convenient to consider

m = (p− 1)/2− k. (67)
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For the base case p = 3, note that the sequence of sk mod s1 repeats with pe-
riod 3, by Lemma 4.13, and clearly gcd(s0, s1) = 1 = gcd(s−1, s1) so the pat-
tern is sk ≡ −1, 1, 0 (mod s1) for k ≡ −1, 0, 1 (mod 3); hence gcd(sk, s1) = 1
if and only if the quantity m = 1 − k 6≡ 0 (mod 3), which is the required
result in this case. Now we will assume that the result is true for all odd q
with 3 ≤ q < p, and proceed to show that it is true for p.

Firstly, if for some k the corresponding value of m, given by (67), is not
coprime to p, then there is some odd q with 3 ≤ q ≤ p, q|m and q|p. Therefore
we have

(q − 1)/2− k = (q − p)/2 +m ≡ (q − p)/2 ≡ 0 (mod q).

So by Lemma 4.13, both sk ≡ 0 (mod s(q−1)/2) and s(p−1)/2 ≡ 0 (mod s(q−1)/2),
hence sk and s(p−1)/2 are not coprime.

Thus it remains to show that

gcd(m, p) = 1 =⇒ gcd(s(p−1)/2−m, s(p−1)/2) = 1.

Observe that, by Lemma 4.13, it is sufficient to verify this for values of m
between 1 and p− 1 (i.e. the non-zero residue classes mod p). First consider
k = (p−1)/2−m lying in the range 0 ≤ k ≤ (p−3)/2: this can be written as
k = (q−1)/2 for some odd positive integer q, and gcd(m, p) = 1 is equivalent
to the requirement that gcd(q, p) = 1; so either q = 1 and gcd(s0, s(p−1)/2) = 1
is trivially true, or 3 ≤ q < p− 2 and gcd(s(q−1)/2, s(p−1)/2) = 1 holds by the
inductive hypothesis. Now for the range −(p − 1)/2 ≤ k ≤ −1, the result
follows by the symmetry k → −1−k, using (4). Hence, by applying the shift
k → k + p and using Lemma 4.13, the result is true for all integers k such
that gcd((p− 1)/2− k, p) = 1.

In fact, it is possible to make a stronger statement about the common
factors of the terms of the sequence.

Lemma 4.15. For all integers n ≥ 2 and j, k ≥ 0,

gcd
(
sj(n), sk(n)

)
= sm(n), where 2m+ 1 = gcd(2j + 1, 2k + 1).

Proof. Given any j, k, suppose that 2m + 1 = gcd(2j + 1, 2k + 1). The
case m = 0 follows from Lemma 4.14, taking p = 2j + 1. If m > 0, then
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by writing 2j + 1 = (2m + 1)(2j′ + 1), 2k + 1 = (2m + 1)(2k′ + 1) with
gcd(2j′ + 1, 2k′ + 1) = 1, and applying (66), we have

gcd
(
sj(n), sk(n)

)
= sm(n) gcd

(
sj′(T2m+1(n)), sk′(T2m+1(n))

)
= sm(n),

by applying Lemma 4.14 once again.

Remark 4.16. The preceding result is a special case of a result on the
greatest common divisor of a pair of Lehmer numbers: see Lemma 3 in [29].

Remark 4.17. Since the argument n plays a passive role in most of the
above, it is clear that, mutatis mutandis, Lemmas 4.13, 4.14 and 4.15 also
apply to the sequence of polynomials ( sk(n) ) in Z[n]. Analogous divisibility
properties for the Chebyshev polynomials of the first kind are described in
[23].

The preceding results allow the periodicity of the sequence modulo any
prime to be described quite precisely. The notation

( ·
·

)
is used below to

denote the Legendre symbol.

Lemma 4.18. Let n ≥ 2 be fixed, and for any prime q let π(q) denote the
period of the sequence (sk(n) mod q). Then π(2) = 3 if and only if n is odd,
in which case sk(n) is even ⇐⇒ k ≡ 1 (mod 3), while π(2) = 1 and all
sk(n) are odd when n is even. Moreover, for q an odd prime, one of three
possibilities can occur: (i)

(
n2−4
q

)
= ±1 and π(q)|q ∓ 1; (ii) n ≡ 2 (mod q)

and π(q) = q with sk(n) ≡ 0 (mod q) ⇐⇒ q|2k + 1; (iii) n ≡ −2 (mod q)
and π(q) = 2 with sk(n) ≡ (−1)k (mod q).

Proof. When n is even, then since s0(n) = 1 and s1(n) = n+1 are both odd,
it follows from (1) that sk(n) is odd for all k, so π(2) = 1. For n odd, s1(n)
is even, so by Lemma 4.14, sk(n) is even if and only if k ≡ 1 (mod 3), and
π(2) = 3.

Now let q be an odd prime. For case (i) it is most convenient to consider
the behaviour of (sk mod q) in terms of the equivalent sequence defined by
the recurrence (1) in the finite field Fq. In that case we have n > 2, and

when
(
n2−4
q

)
= 1 it follows that n2 − 4 is a quadratic residue mod q, so the

first formula in (52), which can be rewritten as

sk(n) =
λ−k(λ2k+1 − 1)

λ− 1
, (68)
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remains valid in terms of λ ∈ Fq, with λ 6= ±1, and λq−1 = 1 in Fq by
Fermat’s little theorem. The terms of the sequence repeat with period π(q) =
ord(λ) > 2, the multiplicative order of λ in the group F∗q, and this divides

q − 1 by Lagrange’s theorem. The case
(
n2−4
q

)
= −1 is similar, but now

n2 − 4 is a quadratic nonresidue mod q, so λ is not defined in Fq and the
formula (68) should be interpreted in the field extension Fq[

√
n2 − 4] ' Fq2 .

The Frobenius automorphism λ → λq exchanges the roots of the quadratic
X2−nX + 1 = (X −λ)(X −λ−1), hence λq = λ−1. Thus λq+1 = 1, and now
the sequence given by (68) repeats with period π(q) = ord(λ), the order of
λ in F∗q2 , which divides q + 1. In case (ii), the sequence sk(n) mod q is the
same as the sequence (10) mod q, which first vanishes when k = (q − 1)/2
and repeats with period q, and in case (iii) the sequence is equivalent to (11),
which is never zero mod q.

At this stage it is convenient to introduce the notion of a primitive prime
divisor (sometimes just referred to as a primitive divisor), which is a prime
factor q that divides sk(n) but does not divide any of the previous terms in
the sequence [10], and by convention does not divide the discriminant n2− 4
either [1, 26].

Definition 4.19. Let the product of the discriminant and the first k terms
be denoted by

Πk(n) = (n2 − 4) s1(n)s2(n) · · · sk(n). (69)

A primitive prime divisor of sk(n) is a prime q|sk(n) such that q 6 |Πk−1(n).

Case (i) of Lemma 4.18 is the most interesting one. In that case it is clear
from (68) that a prime q|sk(n) for some k whenever λ2k+1 = 1 in Fq2 ⊃ Fq,
and then π(q) = ord(λ) = 2k∗+ 1 must be odd, where k∗ = (π(q)− 1)/2 > 0
is the smallest k for which this happens; and if π(q) is even then this cannot
happen. If we include q = 2, then we can rephrase the latter by saying that
the prime factors q appearing in the sequence ( sk(n) ) are precisely those q
which have an odd period π(q) > 1, and this consequence of Lemma 4.18 can
be restated in terms of primitive prime divisors.

Corollary 4.20. A prime q is a primitive divisor of sk(n) if and only if
k = (π(q) − 1)/2 where π(q) is odd. Moreover, if q is odd and

(
n2−4
q

)
= ±1

then q = 2aπ(q)± 1 for some positive integer a.
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The latter statement just says that an odd primitive divisor of sk(n) has
the form q = 2a(2k + 1) ± 1 for some a ≥ 1, so the minus sign with a = 1
gives the lower bound q ≥ 4k + 1. Hence the primes that do not appear as
factors in the sequence can also be characterized.

Corollary 4.21. If a prime q < 4k + 1 is not a factor of Πk−1(n), then it
never appears as a factor of sj(n) for j ≥ k, and π(q) is even.

So far we have concentrated on properties of sk(n) for fixed n and allowed
k to vary. However, if one is interested in finding factors of sk(n) for large n,
then it may also be worthwhile to consider other values of n, as the following
result shows.

Proposition 4.22. Suppose that an integer f |sk(n) for some k, n. Then
f |sk(m) whenever m ≡ n (mod f).

Proof. If m ≡ n (mod f) then mj ≡ nj (mod f) for any exponent j ≥ 0,
and since sk(m) is a polynomial in m with integer coefficients, it follows that
sk(m) ≡ sk(n) ≡ 0 (mod f), as required.

5 Generic factorization for Chebyshev values

The sequence ( sk(n) ) has special properties when n is given by a dilated
Chebyshev polynomial of the first kind evaluated at an integer value of the
argument.

Theorem 5.1. For all integers p ≥ 2, when n = Tp(j) for some integer j
the terms of the sequence ( sk(n) ) can be factorized as a product of rational
numbers, that is

sk(Tp(j)) = Rk(j) sk(j), (70)

where the prefactors Rk(j) ∈ Q are given by

Rk(j) =
Up−1(T2k+1(

√
j + 2))

Up−1(
√
j + 2)

(71)

and satisfy a linear recurrence of order p. In particular, for p = 2 the pref-
actor is Rk(j) = rk(j) ∈ Z, as given in Theorem 3.4, while for all odd p the
prefactor can be written as

Rk(j) =
s(p−1)/2(T2k+1(j))

s(p−1)/2(j)
∈ Q, (72)

26



and satisfies the recurrence

(S− 1)

(p−1)/2∏
i=1

(S2 − T2i(j) S + 1)Rk(j) = 0. (73)

Proof. Upon introducing φ such that ` =
√
j + 2 = 2 cos(φ/2), the formula

(53) gives

Rk(j) =
sk(Tp(j))
sk(j)

=
sin
(

(2k + 1)pφ/2
)

sin(φ/2)

sin(pφ/2) sin
(

(2k + 1)φ/2
) ,

and the definition of the dilated Chebyshev polynomials of the second kind
in (21) produces (71). For integer j, Rk(j) is a ratio of integers, so it is a
rational number (positive for j ≥ 2). In the case p = 2, Rk(j) = rk(j), which
can be written in the form

rk(j) =
T2k+1(

√
j + 2)√

j + 2
, (74)

which is an integer, as follows from the fact that U1(`) = `, and this ratio
is an even polynomial of degree 2k in ` with integer coefficients, hence it is
a polynomial of degree k in j; and by (65) it is positive for real j ≥ 2, and
takes positive integer values for integers j in this range. In the case that
p is odd, the expression (72) is found by applying the formula (53) to the
numerator and denominator of (71).

To see that Rk(j) satisfies a linear recurrence of order p, note that, upon
setting µ = exp(iφ) and applying the first formula in (52) with λ = µp, the
factorization (70) can be seen as a consequence of the elementary algebraic
identity

µp(k+1) − µ−pk

µp − 1
=

(∑p−1
j=0 µ

(k+1)(p−1)−(2k+1)j

µp−1 + µp−2 + · · ·+ 1

) (
µk+1 − µ−k

µ− 1

)
, (75)

where the first factor on the right-hand side above is just Rk(j). Thus the
denominator of the expression for Rk(j) in (75) is

∑p−1
j=0 µ

j, which is inde-
pendent of k, while the numerator is a linear combination of kth powers of
the characteristic roots µ(p−1), µ(p−3), . . . , µ−(p−3), µ−(p−1), giving a total of p
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distinct roots. When p is even, the roots come in p/2 pairs, namely µ±(2i−1)

for i = 1, . . . , p/2, which gives the characteristic polynomial

F (λ) =

p/2∏
i=1

(λ2 − T2i−1(j)λ+ 1),

so that, in particular, for p = 2 the recurrence satisfied by Rk(j) is (42),
while for p odd there are the pairs µ±2i for i = 1, . . . , (p− 1)/2 together with
the root 1, which yields (73).

Theorem 5.2. Let (an)n≥1 be the sequence specified by Definition 1.1. If
n = T2(j) for some j ≥ 3, then an = −1. Furthermore, if n = Tp(j) for
some j ≥ 3 with p an odd prime, then either s(p−1)/2(n) is not prime and
an = −1, or s(p−1)/2(n) is the only prime in the sequence ( sk(n) )k≥0 and
an = (p− 1)/2.

Proof. First of all, consider the factorization (70) when p = 2, with prefactor
rk(j) as in Theorem 3.4, given by (74). When j = 2 this is not interesting,
because it gives rk(j) = 1 for all j. However, note the property (mentioned
in passing in the proof of Proposition 4.11), that for real n > 2, the se-
quence ( Tk(n) )k≥0 is strictly increasing with the index. Hence, for all k > 0,
T2k+1(

√
j + 2) >

√
j + 2 = T1(

√
j + 2). Thus for all j ≥ 3 and k ≥ 1, both

factors rk(j), sk(j) are greater than 1, so sk(T2(j)) can never be prime, and
an = −1.

Now for any odd prime p, note that, a priori, the prefactor Rk(j) in (70)
is a positive rational number, and the formula (72) gives

sk(Tp(j)) =
sk(j) s(p−1)/2(T2k+1(j))

s(p−1)/2(j)
. (76)

However, according to Lemma 4.13, s(p−1)/2(j)|sk(j) whenever k ≡ (p− 1)/2
(mod p). On the other hand, for all other values of k 6≡ (p − 1)/2 (mod p),
Lemma 4.14 says that gcd(sk(j), s(p−1)/2(j)) = 1, therefore s(p−1)/2(j) divides
s(p−1)/2(T2k+1(j)) and Rk(j) ∈ Z. Thus, for all k, the terms sk(Tp(j)) can be
written as a product of two integers, that is

sk(Tp(j)) =

{
R̂k(j) s(p−1)/2(T2k+1(j)), k ≡ (p− 1)/2 (mod p);

Rk(j) sk(j), otherwise,
(77)
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where Rk(j) is given by (72) as above, and

R̂k(j) =
sk(j)

s(p−1)/2(j)
= si(Tp(j)) for k = (p− 1)/2 + ip, (78)

with the latter formula being obtained from (66). In the first case of (77)
above, for k = (p − 1)/2 the prefactor is R̂(p−1)/2(j) = 1, while R̂k(j) > 1
for all k = (p − 1)/2 + ip, i ≥ 1, by Lemma 4.11, and the other factor is
s(p−1)/2(T2k+1(j)) > 1 for all these values of k. In the second case, for k > 0,
we can use (59) together with (26) to write

s(p−1)/2(T2k+1(j)) = 1
2
T0 +

∑(p−1)/2
i=1 Ti(T2k+1(j))

= 1
2
T0 +

∑(p−1)/2
i=1 T(2k+1)i(j)

> 1
2
T0 +

∑(p−1)/2
i=1 Ti(j) = s(p−1)/2(j),

so s(p−1)/2(T2k+1(j))/s(p−1)/2(j) > 1. Hence both factors Rk(j), sk(j) are
greater than 1 in the second case of (77). Thus the only term that can be
prime is s(p−1)/2(Tp(j)), and the result is proved.

Remark 5.3. For any odd p = 2i+ 1, the identity (76) can be rewritten in
the symmetric form

si(j) sk(T2i+1(j)) = sk(j) si(T2k+1(j)). (79)

Remark 5.4. Similarly to the remark after Lemma 4.15, the formula (77)
also corresponds to factorizations of the corresponding polynomials in Z[j],
according to whether k ≡ (p− 1)/2 (mod p) or not.

It is clear from the factorizations (77) that in the second case, sk(Tp(j)) ≡
0 (mod sk(j)) whenever k is not congruent to (p − 1)/2 mod p. It turns
out that an explicit expression for sk(Tp(j)) mod sk(j) can be given in the
first case as well. Before doing so, it is convenient to define some more
polynomials, which are shifted versions of the airfoil polynomials.

Definition 5.5. Polynomials Pk(z) are defined as elements of Z[z] by

Pk(z) = sk(2− z),

or equivalently by

Pk(4 sin2 θ) =
sin
(

(2k + 1)θ
)

sin θ
. (80)
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They satisfy the linear recurrence

Pk+1(z) + (z − 2)Pk(z) + Pk−1(z) = 0, (81)

and for k ≥ 0 their expansion in powers of z takes the form

Pk(z) = 2k + 1− c(1)k z + c
(2)
k z2 + · · ·+ (2k + 1)(−z)k−1 + (−z)k. (82)

with

c
(1)
k =

k(k + 1)(2k + 1)

3!
, c

(2)
k =

k(k − 1)(k + 1)(2k2 + 5k + 2)

5!
.

Theorem 5.6. For all odd integers p,

sk(Tp(j)) = si(Tp(j))P(p−1)/2

(
(2− j) sk(j)2

)
for k = (p−1)/2+ ip, (83)

and in particular,

sk(Tp(j)) ≡ p si(Tp(j)) (mod (j − 2) sk(j)
2)

holds in that case.

Proof. Upon setting p = 2q+ 1, by using (78) together with the first formula
in (77), we have

sk(Tp(j))/si(Tp(j)) = sin
(

(2q + 1)(2k + 1)φ/2
)/

sin
(

(2k + 1)φ/2
)

= Pq(z), where z = 4 sin2
(

(2k + 1)φ/2
)
,

and (with the same notation as in the proof of Theorem 5.1) we also have j =
2 cosφ. Comparing the expressions for z and j gives z = 4 sin2(φ/2) sk(j)

2 =
(2 − j) sk(j)

2, which yields the identity (83) in terms of the shifted airfoil
polynomial P(p−1)/2. The terms displayed in the expansion (82) are easily
obtained from the recurrence (81), or by substituting n = 2− z in (58), and
the leading term gives the reduction of (83) mod sk(j)

2.

We now turn to the sequences ( rk(n) ) for n > 0, which are associated
with negative values of n via (14). It turns out that these sequences also
admit factorizations for certain Chebyshev values of n. The case of n = Tp(j)
for odd index p can be inferred immediately from Theorem 5.1 together with

30



(14), since Tp is an odd function of its argument in that case. However, the
even case n = T2(j) does not translate directly to the sequences ( rk(n) ), and
requires a separate treatment. That there should be a significant difference
for values of even Chebyshev polynomials is also apparent from comparison
of the fact that a7 = a14 = a23 = a34 = −1 in (12), but ã1 = ã2 = ã34 = −1
in (18), while ã7, ã14 and ã23 are all positive.

The following analogue of Theorem 3.4 for the sequences ( rk(n) ) only
provides a factorization of the terms for a particular subset of the values
n = T2(j) .

Theorem 5.7. When n = T2(j) = j2−2 with j = 2(`2−1) for integer ` ≥ 2,
the terms of the sequence ( rk(n) ) admit the factorization

rk(j
2 − 2) = f+

k (j) f−k (j), (84)

where

f±k (j) =
`rk(j)± δk
`± 1

∈ Z, δk = (−1)b
k+1
2 c. (85)

Proof. Since δ2k = 1 and rk(j) = (j + 2)−1/2
(
α(2k+1)/2 + α−(2k+1)/2

)
, using

α1/2 + α−1/2 =
√
j + 2 as in (44), it follows that

f+
k (j) f−k (j) = (`2rk(j)

2 − 1)/(`2 − 1) = j−1
(

(j + 2)rk(j)
2 − 2

)
=

( (
α(2k+1)/2 + α−(2k+1)/2

)2 − 2
)
/(α + α−1),

which coincides with the formula (37) for rk(n) with n = j2−2 = 4`4−8`2+2
in this case. To see that each factor f±k (j) is an integer for all k, note that
(S2− jS + 1)rk(j) = 0, and checking the sequence of signs +1,−1,−1,+1 for
k = 0, 1, 2, 3 shows that (S2 − jS + 1)δk = jδk−1. Hence the factors in (41)
each satisfy an inhomogeneous linear recurrence of second order, that is

f±k+2(j)− j f
±
k+1(j) + f±k (j) = 2(±`− 1)δk−1. (86)

From (85) it can be seen that

f±−1(j) = f±0 (j) = 1

provide integer initial values for (86) in each case, so these two sequences
consist entirely of integers.

31



Example 5.8. For ` = 2, the above result gives j = T2(2
√

2) = 6 and
n = T2(6) = 34 , with the sequence ( rk(34) ) = ( f+

k (6) f−k (6) ) beginning

1, 33, 1121, 38081, 1293633, . . . , (87)

where the factors are

( f+
k (6) ) : 1, 3, 19, 113, 657, . . . , ( f−k (6) ) : 1, 11, 59, 337, 1969, . . . , (88)

and these satisfy the inhomogeneous recurrences

f+
k+2(6)− 6 f+

k+1(6) + f+
k (6) = 2(−1)b

k
2c,

f−k+2(6)− 6 f−k+1(6) + f−k (6) = 6(−1)b
k
2c+1.

For the case where n = Tp(j) for p odd, the formula (72) can be applied,
together with (14), to yield the factorization

rk(Tp(j)) = R̃k(j) rk(j), (89)

where

R̃k(j) = Rk(−j) =
r(p−1)/2(T2k+1(j))

r(p−1)/2(j)
(90)

satisfies the same recurrence (73) as Rk(j).

Example 5.9. When n = T3(3) = 18, the sequence ( rk(18) ) begins

1, 17, 305, 5473, 98209, 1762289, 31622993, 567451585, . . . , (91)

so that ã18 = 1 since r1(18) = 17 is prime. By adapting Theorem 5.1, the
terms can be factored as

rk(18) = R̃k(3) rk(3),

where the sequence ( rk(3) ) begins with

1, 2, 5, 13, 34, 89, 233, 610, . . . , (92)

and ( R̃k(3) ) is a sequence of rational numbers, starting with

1,
17

2
, 61, 421,

5777

2
, 19801, 135721,

1860497

2
, . . . ,
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which satisfies the third order recurrence

R̃k+3(3)− 8
(
R̃k+2(3)− R̃k+1(3)

)
− R̃k(3) = 0.

The prefactors R̃k(3) are integers whenever k ≡ 0 or 2 (mod 3), so rk(3)
divides rk(18) for all such k, while the terms of the trisection ( r3k+1(18) ) are
all divisible by r1(18), which is the only prime in the sequence ( rk(18) )k≥0.

Having described the situation for even Chebyshev values, and given the
above example of an odd Chebyshev value, the analogue of Theorem 5.2 for
( rk(n) ) can now be stated.

Theorem 5.10. Let (ãn)n≥1 be the sequence specified by Definition 1.2. If
n = T2(j) where j = 2(`2 − 1) for some ` ≥ 2, then ãn = −1. Furthermore,
if n = Tp(j) for some j ≥ 3 with p an odd prime, then either r(p−1)/2(n)
is not prime and ãn = −1, or r(p−1)/2(n) is the only prime in the sequence
( rk(n) )k≥0 and ãn = (p− 1)/2.

Proof. For the case n = T2(j), j = 2(`2−1) with ` ≥ 2, note that each factor
in (84) is an integer, and r0(T2(j)) = f±0 (j) = 1. Now as noted in the proof
of Lemma 4.11, for fixed argument the sequence of Chebyshev polynomials
of the first kind is strictly increasing with the index k ≥ 0, so from (74)
it follows that ( rk(j) )k≥0 is strictly increasing. Thus, from their explicit
expressions in (85), both sequences ( f±k (j) ) are strictly increasing as well.
Hence, for these values of j, rk(T2(j)) is composite for k ≥ 1. Hence there
are no primes in the sequence ( rk(n) )k≥0 for any of these even Chebyshev
values of n.

When n = Tp(j), j ≥ 2 with p an odd prime, there is the factorization
(89), with R̃k(j) ∈ Q given by (90). Just as for the sequences ( sk(n) ), it is
necessary to consider whether k ≡ (p− 1)/2 (mod p) or not. One can show
that the analogue of Lemma 4.13 holds for the sequences ( rk(n) ), n ≥ 3, so
that when k ≡ (p − 1)/2 (mod p) the denominator of R̃k(j) divides sk(j);
or, by using (14) together with (66), one can write the explicit factorization

rk(Tp(j)) = ri(Tp(j)) r(p−1)/2(T2k+1(j)) for k = (p− 1)/2 + ip, (93)

where both integer factors above are greater than 1 for i > 0. On the other
hand, for the case k 6≡ (p − 1)/2 (mod p), one can show that the analogue
of Lemma 4.14 also holds for the sequences ( rk(n) ), so in that case the
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denominator in (90) must divide the numerator; hence R̃k(j) ∈ Z and both
factors in (89) are integers. Then, similarly to the proof of Lemma 4.11,
setting

√
j + 2 = 2 coshτ for real j ≥ 2 in (74) gives

rk(j) =
cosh((2k + 1)τ)

coshτ
=⇒ d

dτ
rk(j) =

2k sinh((2k + 1)τ)

coshτ
+

sinh(2kτ)

cosh2τ
> 0

for k > 0, τ > 0, implying that rk(j) is a strictly increasing function of j for
j ≥ 2. Hence R̃k(j) > 1 for j > 2, so when 0 < k 6≡ (p− 1)/2 (mod p), both
integer factors in (89) are greater than 1. Thus r(p−1)/2(Tp(j)) is the only
term that can be prime.

6 Appearance of primes for non-Chebyshev

values

Theorem 5.2 says that for the values n = Tp(j) with prime p and integer
j ≥ 3, the sequence ( sk(n) )k≥0 contains at most one prime term, and this
can only occur if p is an odd prime, in which case s(p−1)/2(Tp(j)) is the only
term that may be prime. It seems likely that these cases are exceptional, and
for non-Chebyshev values of n one would expect infinitely many prime terms,
in line with general heuristic arguments for linear recurrence sequences [9].

Conjecture 6.1. Let n > 1 be a positive integer. The sequence ( sk(n) )k≥0
contains infinitely many primes if and only if n 6= Tp(j) for some prime p
and some integer j ≥ 3.

In order to consider the distribution of primes in the sequence ( sk(n) ), it
is helpful to introduce some notation. Define a subsequence (kN)N≥1 of the
positive integers by requiring that

skN (n) = Nth prime term in ( sk(n) )k≥0,

and, for fixed n, let

Sk(n) = { prime q | q < 4k + 1 } ∪ { prime q | q|Πk−1(n) },

where Πk−1(n) is the product in (69).
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Figure 1: Plot of log log skN (n) against N for the first 43 primes in the sequence
for n = 3.
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Conjecture 6.2. If n ≥ 3 and n 6= Tp(j) for some prime p and some integer
j ≥ 3, then, as N →∞,

log log skN (n) ∼ C N, with C = e−γ log
√
λ, (94)

where λ = n+
√
n2−4
2

, and γ is the Euler–Mascheroni constant.

The above assertion is analogous to a conjecture of Wagstaff regarding
Mersenne primes [31]. If MN is the Nth prime of the form 2k − 1, then the
heuristic arguments of Wagstaff suggest that

log logMN ∼ C ′N, with C ′ = e−γ log 2.

A very clear exposition of the statistical properties of Mersenne primes, with
many plots, can be found on Caldwell’s website [4].3 When n is a non-
Chebyshev value, a heuristic derivation of the corresponding asymptotics of
primes in the sequences ( sk(n) ) can be obtained in a similar way, as we now
describe.

By Lemma 4.12, if sk(n) is prime then 2k + 1 is prime, and by Lemma
4.14, sk(n) is then coprime to sj(n) for all 1 ≤ j ≤ k − 1, and for large
enough k it is also coprime to the discriminant n2− 4, hence it is coprime to
Πk−1(n). On the other hand, by Corollary 4.21, if p = 2k + 1 is prime then
sk(n) is coprime to all primes q < 4k + 1: such primes are either primitive
divisors of lower terms sj(n) with j < k, or they do not appear as divisors of
the sequence at all. Thus no prime q ∈ Sk(n) can be a factor of sk(n) when
2k + 1 is prime. Then from the prime number theorem, for k large,

Prob(2k + 1 prime) ∼ 2/ log(2k + 1);

and, given that 2k+1 is prime, the probability that sk(n) is prime is estimated
by dividing by the probability that sk(n) is indivisible by primes q that either
divide lower terms in the sequence, or are forbidden from being divisors of
sk(n) due to Corollary 4.21, to yield

Prob(sk(n) prime|2k + 1 prime) ∼ 1
log sk(n)

∏
q∈Sk(n)

(
1− 1

q

)−1
∼ 1

k log λ

∏
q∈Sk(n)

(
1− 1

q

)−1
,

3More specifically, see the page https://primes.utm.edu/notes/faq/NextMersenne.
html
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Figure 2: Plot of log log skN (n) against N for the first 23 primes in the sequence
for n = 4.
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where the latter expression comes from the asymptotics in Proposition 4.11.
By multiplying these two probabilities together, and using the limit

lim
k→∞

log k
∏

q prime

q≤k

(
1− 1

q

)
= e−γ,

which is one of Mertens’ theorems (see section 22.8 in [14]), gives

lim
k→∞

log(2k + 1)
∏

q prime

q<4k+1

(
1− 1

q

) ∏
prime q∈Sk(n)

q≥4k+1

(
1− 1

q

)
= e−γ

which produces the estimate

|{prime terms sk(n) for 0 < k ≤ x}| ∼ 1

e−γ log
√
λ

∑
k≤x

1

k
∼ C−1 log x,

so if skN (n) is the Nth prime term in the sequence then the formula (94)
follows from taking

x = kN ∼
log skN (n)

log λ
.

Numerical evidence for small values of n suggests that the log log plot
of the prime terms in the sequence ( sk(n) ) is approximately linear (see e.g.
Figure 1 for the case n = 3), and gives some support for the proposed value of
C. Moreover, it is expected that the appearance of prime terms should behave
like a Poisson process, in complete analogy with Wagstaff’s observations on
the sequence of Mersenne primes [31]. The first appendix below contains a
list of the indices k for the first probable primes that appear in the sequences
( sk(n) ) for n = 3, 4, 5, 6, and as well as including the log log plots, in each
of these cases a linear best fit value of C is found, with the ratio

ρ(n) =
C

log
√
λ

being compared with the value

e−γ ≈ 0.561459

coming from Mertens’ theorem.
An analogous behaviour should be observed in the sequences ( rk(n) ) for

positive n.
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Conjecture 6.3. Let n > 2 be a positive integer. The sequence ( rk(n) )k≥0
contains infinitely many primes if and only if n 6= Tp(j) for some prime p,
where the integer j ≥ 3 takes one of values specified in Theorem 5.10.

The first few prime terms in the sequence ( rk(3) )k≥0 are plotted in Figure
5; for more details see the first appendix.

7 Conclusions

It seems highly likely that Theorem 5.2 identifies all those values of n ≥ 3
such that the sequence ( sk(n) )k≥0 contains at most one prime, and Theorem
5.10 does the same for ( rk(n) )k≥0. The sequences corresponding to all other
values of n should have infinitely many prime terms, but proving this should
be at least as difficult as proving that there are infinitely many Mersenne
primes. For Lehmer numbers, the most sophisticated results currently avail-
able concern primitive divisors [1, 30].

The statistics of prime appearances for non-Chebyshev values of n sug-
gests a close analogy with Mersenne primes. For Mersenne primes, the Lucas-
Lehmer test is extremely efficient [3]. The ideas from [24, 25] can be adapted
to yield a necessary condition for primality of q = sk(n), which can be tested
efficiently, but to provide sufficient conditions requires the use of a Lucas test
or one of its generalizations [2, 22], for which the formulae (63) and (64) are
useful, since they provide partial factorizations of q ± 1. In future we would
like to consider some of the large primes that appear in these sequences,
extending the approach that was applied to the case n = 6 in [20].
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Appendix A: Sequences of prime appearances

In order to study the appearance of prime terms when n is a non-Chebyshev
value, for some particular small values of n we calculated the possible prime
terms q = s(p−1)/2(n) when p = 3, 5, 7, 11, . . . is an odd prime, and then
tested them for primality using the Maple isprime command. This uses
a probabilistic test, which excludes certain composite values of q, while re-
maining q are only pseudoprimes. For all but the largest values of the in-
dex k = (p − 1)/2, we also checked the computations with Mathematica’s
PrimeQ[q] command, as well as performing a Lucas-Lehmer style test for
pseudoprimes of our own, and verified that the answer was the same,

For n = 3, the list of the first 43 values k for which sk(3) appear to be
prime is OEIS sequence A117522, beginning

2, 3, 5, 6, 8, 9, 15, 18, 20, 23, 26, 30, 35, 39, 56, 156, 176, 251, 306, 308, 431, 548,
680, 2393, 2396, 2925, 3870, 4233, 5345, 6125, 6981, 7224, 9734, 17724, 18389,
22253, 25584, 28001, 40835, 44924, 47411, 70028, 74045.

The (probable) primes sk(3) corresponding to these values of k are listed in
sequence A285992. The log log plot of these terms is given in Figure 1. The
slope of the best fit line for these points is

C = 0.2553739565.

For n = 4, the list of the first 23 values k for which sk(4) appear to be
prime is

1, 2, 3, 6, 9, 14, 18, 146, 216, 293, 704, 1143, 1530, 1593, 2924, 7163, 9176, 9489,
11531, 39543, 50423, 60720, 62868,

which are listed in OEIS sequence A299100, while the corresponding values
sk(4) are given in A299107. The log log plot of these terms is given in Figure
2. The best fit line for this set of points has slope

C = 0.5196737962.

For n = 5, the list of the first 24 values k for which sk(5) appear to be
prime is

2, 3, 5, 6, 8, 9, 15, 18, 23, 53, 114, 194, 564, 575, 585, 2594, 3143, 4578, 4970,
9261, 11508, 13298, 30018, 54993,
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Figure 3: Plot of log log skN (n) against N for the first 24 primes in the sequence
for n = 5.

as listed in OEIS sequence A299101, with the corresponding values of sk(5)
listed as sequence A299109. The log log plot of these terms is given in Figure
3. The best fit line for this set of points has slope

C = 0.4568584420.

For n = 6, the list of the first 25 values k for which sk(6) appear to be
prime is

1, 2, 3, 9, 14, 23, 29, 81, 128, 210, 468, 473, 746, 950, 3344, 4043, 4839, 14376,
39521, 64563, 72984, 82899, 84338, 85206, 86121,

as given in OEIS sequence A113501, with the corresponding values of sk(6)
given in sequence A088165 (the prime NSW numbers [20]). In our initial
submission of this paper, we obtained the first 19 of these values indepen-
dently, before we were aware of sequence A113501, and made the log log plot
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Figure 4: Plot of log log skN (n) against N for the first 19 primes in the sequence
for n = 6.
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Figure 5: Plot of log log rkN (n) against N for the first 31 primes in the sequence
for n = 3.
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of these terms is as in Figure 4. The best fit line for these points has slope

C = 0.5434911190.

Subsequently we found the web page [21], where the last six indices above
are listed separately, together with their date of discovery by Eric Weisstein.
However, on that page it is stated unequivocally that all of the corresponding
numbers sk(6) are prime, whereas presumably the largest of these values were
obtained using Mathematica’s probabilistic primality test, so the most that
can be claimed is that they are probable primes.

Assuming that the heuristic arguments given in section 6 above are cor-
rect, and that the small number of points plotted really gives an accurate
picture of the behaviour for large N , the predicted values for the ratio
ρ(n) = C/ log

√
λ in each case are

ρ(3) ≈ 0.530689, ρ(4) ≈ 0.789203, ρ(5) ≈ 0.583174, ρ(6) ≈ 0.616641.

Apart from the case n = 4, all of these values are reasonably close to the
number e−γ ≈ 0.561459 obtained from Mertens’ theorem. The value for
n = 4 seems anomalous: there are fewer prime terms than predicted in this
case. However, it may be unreasonable to expect close agreement with the
predicted value, given the rather small number of data points plotted in each
case.

One can also consider the prime terms in the sequences ( rk(n) ), n ≥ 3,
corresponding to negative values of n in sk(n). The list of the first 31 values
k for which rk(3) appear to be prime is

1, 2, 3, 5, 6, 8, 11, 14, 21, 23, 41, 65, 68, 179, 215, 216, 224, 254, 284, 285, 1485,
2361, 2693, 4655, 4838, 7215, 12780, 15378, 17999, 18755, 25416.

Figure 5 is the log log plot of these terms. Note that ( rk(3) ) is a bisection of
the Fibonacci sequence, for which the prime terms are isted as OEIS sequence
A005478. The slope of the best fit line for these points is

C = 0.3409264905.

Dividing this value by log
√
λ = log

(
(1 +

√
5)/2

)
gives

ρ(−3) ≈ 0.708475,

which is rather large compared with the value of e−γ expected from Mertens’
theorem, suggesting that the number of primes in this sequence is initially
somewhat lower than would be expected from the heuristic argument in sec-
tion 6.
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Appendix B: Related sequences from the OEIS

Here we briefly mention some other sequences in the OEIS which are related
to the considerations in this paper.

Sequence A294099 contains the array of values sk(n) for n ≥ 1, k ≥ 0,
while A299045 is the array of sk(−n) for the same range of n and k.

Sequence A002327 consists of primes of the form n2 − n − 1, and after
sending n→ −n this corresponds to prime values of the polynomial s2(n) =
n2 +n−1, for which the relevant values of n are given by sequence A045546.

Sequence A000032 begins

2, 1, 3, 4, 7, 11, 18, 29, 47, . . . ,

and consists of the Lucas numbers denoted `+k (1,−1) in section 2, which
satisfy the Fibonacci recurrence `+k+2(1,−1) = `+k+1(1,−1) + `+k (1,−1). This
coincides with an interlacing of two sequences, namely

T0(3), s0(3), T1(3), s1(3), T2(3), s2(3), T3(3), . . . ,

so its two distinct bisections are ( Tk(3) ) and ( sk(3) ), given by A005248
and A002878 respectively. Similarly, the Fibonacci sequence A000045 itself
coincides with the interlacing

U−1(3), r0(3),U0(3), r1(3),U1(3), r2(3),U2(3), . . .

obtained from (Uk(3) ) and ( rk(3) ), given by A001906 and A001519 respec-
tively.

There are other values of n for which the OEIS entry for the sequence of
terms sk(n) has not been mentioned so far: ( sk(4) )k≥0 is A001834, ( sk(5) )k≥0
is A030221, ( sk(7) )k≥0 is A033890, ( sk(8) )k≥0 is A057080, and ( sk(9) )k≥0
is A057081.

A008865 is the sequence of values of T2(j) for j = 1, 2, 3, . . .; the array of
values Tk(n) for k ≥ 1, n ≥ 1 is rendered as sequence A298675. The values
Tp(n) for prime p are listed in sequence A298878, while the values Tp(n) with
p an odd prime which are not also of the form T2(m) for some m are given
in A299071.
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