Frobenius Pseudoprimes

Let $f(x) \in \mathbf{Z}[x]$ be a monic polynomial of degree d with discriminant Δ . An odd integer n > 1 is said to pass the **Frobenius probable prime test** with respect to f(x) if we have $\gcd(n, f(0)\Delta) = 1$, and n is declared to be a probable prime by the following algorithm. (Such an integer will be called a **Frobenius probable prime** with respect to f(x).) All computations are done in $(\mathbf{Z}/n\mathbf{Z})[x]$.

Factorization Step Let $f_0(x) = f(x) \mod n$. For $1 \le i \le d$, let $F_i(x) = \gcd(x^{n^i} - x, f_{i-1}(x))$, and let $f_i(x) = f_{i-1}(x)/F_i(x)$. If any of the gcds fail to exist, declare n to be composite and stop. If $f_d(x) \ne 1$, declare n to be composite and stop.

Frobenius Step For $2 \leq i \leq d$, compute $F_i(x^n)$ mod $F_i(x)$. If it is nonzero for some i, declare n to be composite and stop.

Jacobi Step Let $S = \sum_{2|i} \deg(F_i(x))/i$.

If $(-1)^S \neq \left(\frac{\Delta}{n}\right)$, declare n to be composite and stop.

A Theorem in Analytic Number Theory

Let $f(t) \in \mathbf{Z}[t]$ be a monic polynomial with splitting field K, $[K:\mathbf{Q}]=n$. Then we have real numbers $x_{1/3},\eta_{1/3}>0$ and an integer $q_{1/3}(x)>\log x$, depending on K, such that the following statement holds. If $q \leq x^{\eta_{1/3}}$, $\gcd(a,q)=1$, $q_{1/3}(x) \not| q$, $x \geq x_{1/3}$ and $x^{1/2} < y < x$, then the number of primes p < y that are $a \mod q$ and such that f(t) splits into linear factors mod p (equivalently, p splits completely in K) is at least $\frac{1}{2\phi(q)n\pi(x)}$.