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Not-So-Recent Developments

in Primality Proving
The Pocklington-Lehmer n — 1 Test

Let n be an integer with n — 1 = F'R
and F' > 4/n. If there exists an a with

a1 =1 modn and

n—1

gcd(a™@ —1,n) =1

for each prime g|F', then n is prime.

Why? For each prime p|n, we have
(a®)F = 1 mod p, but (a®)¥/2 £ 1 for any
g|F. Thus a®* has order F mod p. But
a?~! =1 mod p, and thus F|(p—1). There-
fore, p—1 > F > 4/n for each p|n. This can

only happen if n is prime.



The n — 1 method and its relatives

With the n — 1 method,and the n 4+ 1,
n?+1,n*—n+1or n?—n—1 methods (Lu-
cas; Pocklington; Lehmer; Robinson; Brill-
hart, Lehmer, Selfridge; Williams), the time
required to prove primality is polynomial,
once you find the factorization of a
factor of n — 1 (or n + 1, etc.) that
is greater than n'/3 (or n'/2, depending
on the test).

This is a practical test. A version of
the n+1 test has been used to prove primal-
ity or compositeness of Mersenne numbers
(2P — 1), including the current world record

21398269

prime, — 1, which was proved prime

in 88 hours on a Pentium-90.



The APR Test

The APR test (or the APRCL test)
(Adleman, Pomerance, Rumely; Cohen, H.
Lenstra) was first described in 1980. It in-
volves testing congruences in cyclotomic ex-

tensions of the rationals.

The APR test turns out to have a run-
ning time of O ((logn)coglogloe™) In one
version, the running time is probabilistic; in

another, the running time is deterministic.

The probabilistic version of the APR

test is practical.



Not-So-Recent Developments
in Probable Prime Testing

Pseudoprimes

By Fermat’s Little Theorem, if p is a

prime not dividing a,

a?~1 =1 mod p.

The converse is not true. 23%° = 1 mod
341, but 341 is not prime. We call 341 a

pseudoprime to the base 2.

The pseudoprime test, however, is of-
ten “good enough.” In particular, it pro-

vides a useful way of exposing composites.



Other Pseudoprimes

We also know if p f2a,

p— a
0T = (—) mod p.
p

The converse does not hold; for exam-

ple, 2280 = (). We call 561 an Euler

pseudoprime to the base 2. (Robinson)

If n =1 mod 4, we can look at a(n—1)/2"
for kK > 1. A strong pseudoprime to the
base a is an odd composite n = 2"s+1, with
s odd, such that either a® = 1 mod n, or

a2’ = —1 for some integer t, with r > ¢t > 0.

(Dubois; Selfridge)

Composites n dividing Fn—(”) are Fi-
bonacci pseudoprimes. This generalizes

to the concept of Lucas pseudoprimes.



Pseudoprimes to Multiple Bases

There are numbers which are pseudo-
primes to every base. We call these numbers

Carmichael numbers.

No numbers are Euler pseudoprimes to
all bases. In fact, for every composite n, for
at least %n bases less than n, n is not an

Euler pseudoprime. (Solovay-Strassen)

Even better — no composite n can be a

strong pseudoprime to more than %n bases.
(Monier; Rabin)

This means that if we chose bases at

random, a composite has at most a % chance

1

of passing 1 iteration of this test, and a 4

chance of passing k iterations.



When Probable becomes Provable

Miller proved a result which is equiva-
lent to this:

Assuming the ERH, if n is composite,
there is a base b < clog”® n for which n fails

the strong pseudoprime test to the base b.

Since a strong pseudoprime test takes
O(log® n) bit operations, we have a method
of primality proving that can be done in
O(log® n) bit operations...if we can prove

the Extended Riemann Hypothesis.

A hard problem in computational num-
ber theory (primality proving in determinis-
tic polynomial time) was reduced to a hard

problem in analytic number theory (ERH).



New Results in Primality Proving

Goldwasser-Kilian

Goldwasser and Kilian gave a test that
heuristically runs in polynomial time. It
runs in polynomial time for all but a small

(infinite) class of primes.

Replace the group (Z/nZ)" in the n—1
test with the group of points on an ellip-

tic curve modulo n. Count the points with
Schoof’s algorithm (time: O(log®n)).

The Goldwasser—Kilian algorithm isn’t
very practical, but represents an important

conceptual breakthrough.

This method produces primality cer-
tificates which can be checked quickly with-

out repeating the entire proof.
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Atkin and Morain’s ECPP

Atkin developed a similar algorithm,;

he and Morain implemented it.

They only use curves with complex mul-
tiplication. It is much faster to compute the

order of these curves.

As a result, their algorithm is practi-
cal. They have made a version of it avail-

able under the name ECPP (Elliptic Curves
and Primality Proving).

The ECPP program produces certifi-
cates that can be checked with a less com-

plicated program.
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Adleman-Huang

Adleman and Huang achieved an im-
pressive theoretical milestone by modifying

Goldwasser-Kilian.

Instead of using elliptic curves, they
use Jacobians of curves y* = f(z); f(z) has
degree 6. The number of points m will be
larger than the prime. But, if m is prime,
we may be able to prove its primality with
the Goldwasser-Kilian method.

If we can’t use that method to prove
primality, we can just pick another polyno-

mial f(x) and try again.

While not practical, this method is the
only known polynomial time primality prov-

ing algorithm. (It is not deterministic.)
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New life for the n — 1 test

H. Lenstra described a test based on
polynomials over a finite field that has the

same running time as the APR test.

Let n > 1 be an integer. Let I, FE be
integers with Eln! — 1 and £ > /n. Let
f(x) € (Z/nZ)|x] be a monic polynomial of
degree I such that mod n, f(z)|z™ —z and
ged(f(x), 2" —x) =1forall p|I. Let A =
(Z/nZ)|x]/(f(x)). Let @ € A be such that
af =1 and a/7 — 1 € A* for all primes
q|E;’.1If gl) = (T —a)(T —a™)... (T —
a” ) € (Z/nZ)[T] and the least residue
n? mod E is not a proper divisor of n for

1 <3 < I, then n is prime.
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Konyagin-Pomerance

In a recent paper, Konyagin and Pomer-
ance gave several new versions of the n — 1
test.

They gave a practical version if the fac-

tored part F of n — 1 is greater than n3/10.

They gave a version that, if F'is greater
than n!'/4t€ runs in deterministic polyno-

mial time.

They gave a version that, if the fac-
tored part is greater than n® and consists
entirely of small primes, runs in determin-
istic polynomial time. This method works

for > z!'~¢ primes less than z.
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What’s new in probable primality testing

Bach has shown that the bound in the
ERH-conditional test can be taken to be
21og? n.

If k-bit integers (k > 1) are chosen at
random until one is found which passes ¢
strong pseudoprime tests, then the proba-
bility that the number is composite is less

than 47*. (Damgard, Landrock, Pomerance;
Burthe)

There are infinitely many Carmichael
numbers! (Alford, Granville, Pomerance)
Their proof uses a heuristic of Erdos, a ver-
sion of the prime number theorem for arith-

metic progressions, and other ingredients.
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Perrin Pseudoprimes

In the 1982, Adams and Shanks intro-
duced a test based on a third-order sequence
known as Perrin’s sequence:

A, =A,_2+A,_3, A_1=-1, Ay =3,
A =0.

The test examines congruence proper-

ties mod n of the “signature”

(A—n—la A—n7 A—n—l—la An—ly Ana An—|—1)°

There are 3 types of acceptable signa-
tures. The S-signature is
(1,-1,3,3,0,2).

Pseudoprimes for this test are relatively
rare. Adams and Shanks conjectured, but
could not prove, that there are infinitely

many.
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How it Generalizes and Strengthens

When n = 2 or 3 mod 5, the Fibonacci
pseudoprime test asks whether F,, 1 = 0.

Equivalently, do we have
" — (1—2)"" =0mod (n,2* —x —1)?

When n is prime, 2 = 1 — x, and
(1— z)"==z. So
" —(1—2)""t=1—-z)z—z(1—2) =0.
The Frobenius Test, in this case, asks
whether £ = 1—z mod (n, z*—z—1). From

that, it follows that n passes the Fibonacci
test.

Not vice versa. 323 is the first Fibonacci
pseudoprime. 5777 is the first Frobenius

pseudoprime with respect to z2 — x — 1.
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Why Should You Buy

a Definition from Me?

Gurak and Szekeres have given general-
izations of the Perrin test. I should have to

convince you why you should adopt mine.

First of all, it contains their definitions.

This is good, but not sufficient.

Looking at polynomials over finite fields

exposes the underlying structure.

I discovered that two types of pseudo-
primes — Lehmer pseudoprimes and Lucas
pseudoprimes — are essentially equivalent.

Both notions are over 25 years old.

OK, but what else does it come with?
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Competitors to Monier-Rabin

Arnault showed that a composite n is a
strong Lucas pseudoprime to at most % of
the bases. (Except for some easy to detect

cases.)

Jones and Mo showed that a composite
is an extra strong Lucas pseudoprime to at
most % of the bases. The test takes 2 times

as long as the strong pseudoprime test.

A version of my test, the Quadratic
Frobenius Test, takes asymptotically 3 times
as long to run as the strong pseudoprime
test. Any composite passes for less than

1
) of the bases.
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A Version of the Quadratic Frobenius Test

Here is one formulation of the Quadratic

Frobenius Test for numbers n = 1 mod 4.

1) Verify that n is not a perfect square.
2) Verify that n is not divisible by a
prime less than 50000.

3) Choose (b,c) at random until you
find a pair with (bz;t%) = —1.

4) Let y = 2" mod (n,z* — bz — ¢).

Verify that y € Z and y? = —c.

5) Perform a strong pseudoprime test

to the base y.
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How Many Are There?

Let f(z) € Z|x] be a monic, squarefree
polynomial with splitting field K. There
are infinitely many Frobenius pseudoprimes
with respect to f(x). In fact, there are
> N€ Frobenius pseudoprimes with respect
to f(x) which are less than N, for some
c = ¢(K) > 0. These numbers are Frobe-
nius pseudoprimes for any polynomial with
splitting field K.

This theorem answers the 1982 conjec-
ture of Adams and Shanks, as well as prov-
ing there are infinitely many pseudoprimes
in the senses of Gurak and Szekeres, or any
other definition that uses the same ba-

sic concepts.

22



