Optimization of Primality Testing Methods by GPU Evolutionary Search

Steve Worley
Worley Laboratories

Abstract

Modern fast primality testing uses a combination of StrongbP
able Prime (SPRP) rejection tests. We find more powerful éomb
nations by intensive search of the vast domain of SPRP test co
figurations. Evolutionary guidance using previous prongsie-
sults boosts search speed. We implement the entire searitte on
GPU with the CUDA programming language resulting in 65-time
speedup over a CPU search. This project has already foustiate
order of magnitude more powerful than the best previoustynkm

1 Primality Tests by Strong Probable Primes

How do you determine if a given is prime? Countless practi-
cal and diverse problems ask this, ranging from hash taldigae
cryptography, Rabin-Karp string searching, and randodhizek
scheduling. Simple trial division with the integers from®+/n

is a classic and well known method, but@$,/n), faster meth-
ods are much better fot larger than 5000 or so. In practice the
fastest computational method for largeis Strong Probable Prime
testind]

By |Fermat's Little Theorem, for an odd prime the number 1 has
only two square roots module, 1 andn — 1. So for primen and
any integera > 1 the square root o™ ! mod n is 1 orn — 1.
We can use this fact to identify many composite numbers bylyper
choosing anyu, substitutingn into the equation and checking the
modular remainder. If the remainder is not 1 or n-1, we cap sto
since we now knowh is composite. However this doemt yet
guarantee that all passed values are prime.

We can make the test even better at quickly identifying casiips
by noting that if(n — 1) /2 is even, we can take another square root
and get yet another rejection test.

We remove out the factors of 2 to form-1 = d-2° whered is odd
ands is non negativen is called a strong probable prime bas@n
a-SPRP) if eithern® = 1 mod n or (a?)? = n — 1 mod n for
some non-negative less than s.

All integersn > 1 which fail this test are composites. Integers
that pasgrobably are primes. Fou = 2, the 2-SPRP test is rarely
incorrect, and in fact the first composite undetected by the 2-
SPRP testiss = 2047 = 23 - 89. The first missed by the 3-SPRP
testisn = 121 = 11 - 11. The first miss by the 5-SPRP test is
n="781=11-71.

SPRP tests are very fast in practice using standard mettoods f
modular powers (also used|in RSA encryption). The compmrtati
is O(log® n) and isindependent of the choice ofa.

Since an SPRP test can miss an occasional composite, teating
be repeated with two or more independent SPRP bases to dive be
ter and better confidence that a value repeatedly passedededn
prime. Miller and Rabin made this a practicplbranteed primality

test by finding an explicit pair of SPRP bases, which combared
pre-verified to correctly identify primality for as largeas possible.

*e-mail: sw@worley.com

IMuch of the mathematical description for this section drémem the
excellen: Prime Pages website at primes.utm.edu. Thisiteetiso inspired
this work when | was searching for an isPrime() function.

For example, the smallest compositevhich ishboth a 2-SPRP and

a 3-SPRP is 1,373,653. This immediately forms a guarantged p
mality test for anyn < 1,373, 653. Such a (now deterministic) test

is known as the Miller Rabin primality test. Other researstreal-

ized this was a very useful tool in practice, and significdterapts
were made to discover the best values of bastsmaximize pri-
mality testing ranges beyond 1,373,653. In 1980 Carl Poncdia
explored the SPRP tests and shared the first high speed @étne t
ing code, used extensively for years. All tests using two BPR
evaluations require the same amount of computation, soestte
grew in discovering the SPRP bases that maximize the range of
n that the tests apply to. In 1993, a paper/ by Gerhard Jae€schke
showed that primes from the much wider range of up to 9,080,19
could be classified with just two tests (a 31-SPRP and 73-$PRP
In 2004 Zhang and Tang improved the theory of the search domai
Finally in 2005, Greathouse and Livingstone used compariatn
several computers for a period of months to find the currdrelst
known published results: a combination of 2-SPRP and 299417
SPRP gives guaranteed primality results forak 19, 471, 0330

2 Searching for better SPRP combinations

The speed of SPRP tests do not varyibgo itis completely accept-
able to choose whatever values work best. A practical liraéds

a < 2% just for ease of representation and use of native processor
math operations.

We could try to find a test with an even highedimit by picking
two a values and testing every composite integer until both SPRP
tests fail and hoping we exceed our previous best knawrun-
fortunately while the SPRP test is very fast, we need to ewalu
the test for millions of composite value to determine theimim
composite which fails, and hope that first failure is lardeart the
best known test's range. Such a brute force algorithm isgétia
forward to implement but on a CPU requires several secongsto
a pair of SPRP bases over the several million test valuese ifes
stricta < 232 for efficiency, there ar@® possible pairs of bases to
choose from, far too many to explore exhaustively.

The distribution and behavior of prime number distributisna
huge topic in number theory, and the behavior of SPRP compos-
ite failures is similarly chaotic. The best theoretical lggs has
been by Zhang and Tang, who found limits on minimurbut no
useful guidance on how to find sets of tests which are espeefal
ficient. Therefore, finding better SPRP tests is a task of rawep

and empirical heuristics.

Several obvious search strategies were initially explofede was

a simple brute force enumeration of pairs in a deterministiter
based on minimizing their sum. Another enumerated (2,xgfbr

xz < 232, then proceeded to (3,x) and so on. A third randomly
sampled the whole domain.

However, the most effective algorithm found was a simplgpes-
sive evolutionary test, subjecting test bases to a sussdgsnore
difficult set of challenges and allowing only the best-perfing to
continue. The most promising base values pass each tedtened t

2Developer of the factoring method to crack RSA-129 decoypti
3Errors have been found in some of Greathouse’s higher oedelts,
but his SPRP tests for two bases are correct.

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem
http://primes.utm.edu/glossary/xpage/StrongPRP.html
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
http://primes.utm.edu/prove/prove2_3.html
http://en.wikipedia.org/wiki/Carl_Pomerance
http://math.crg4.com/primes.html#Jaeschke1993
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.99.5836
http://math.crg4.com/primes.html

fore even more computation is invested in them for anothendo the first misclassified composite. We want kernel launchegto

of search. This strategy performed exceedingly well, pesHze- main in the millisecond range to keep the OS interactive. ddre-
cause the amount of effort spent on each value is propotttona pute proceeds by evaluating only a few thousand tests arckche
how well it proved itself on previous rounds. pointing its progress (needing to store only two words) sumse in
the next launch. Thus the continuous GPU search has littler®S
The search algorithm starts by picking a random initial basee. pact, allowing the compute to run unobtrusively for days eeks.

The value is exhaustively tested as a partner with all values))

2 to 10,000,000, taking approximately 10 seconds on a NVidia The pause-and-restart design also allowed for automadit bal-
GTX280. The fitness measure to maximize is the value of the ancing. If a thread is unlucky and tests a poor candidategrit
first compositer. which the pair of values both misidentify as a finish its work much earlier than another thread who neededb t

prime. The best result of that search is tested against @fred more values, leaving the early thread idle. A simple testeané
mined threshold to allow only about 30% of test values to pass launch identifies idle threads and has them steal work froeats

a more intensive second round of 25M additional tests. Tyatec ~ With work remaining. This load balancing was easy to impleme

of survival-of-the-fittest continues with five rounds, eaith an by merely rearranging the saved work status storage. Ldzal-re
increasing number of tests but also an increasingly diffiitrless ancing boosted search throughput by 60% by retasking thiése i
threshold to cross. The final state is an ultimate exhausisteof threads. The design of CUDA automatically handles blockewi
all 232 — 1 partner values. Less than 0.1% of test values are fit Work assignment, so the software does not know nor care if the
enough to reach the final exhaustive stage. GPU is a small 16 core or large 240 core GPU; speed simplyscale

completely linearly with SP count.

3 GPU Implementation All computation is donentirely on the GPU, leaving the CPU idle
except as a polling kernel host. The simple polling loop kettye

GPUs have enormous computational horsepower compared toCPY l0aded by about 10%. This could likely be improved by queu

CPUs, making them attractive for a compute intensive tagk li g multiple asynchonous kernel launches. The originakeiq
SPRP searching. Even though GPUs are actually faster a@nfjoat tion was to have the CPU simultaneously run searches, buahe

point than integer, the vast number of GPU subprocessoresngk ~ SPeed of the GPU search makes any CPU contribution negéigabl
for any weakness. and merely a distraction.

Since the evolutionary search begins with a random baseehoi

it is embarassingly trivial to support multi-GPU and evenltinu
machine evaluation. Each GPU uses its own random seed ahd eac
follows its own independent randomized evolution. Resdtis't
need to be combined or intercommunicated except to occasjon
manually note which GPU or machine has the best results so far
Unlike many distributed computations, there is little née@void
work duplication given the huge search space, and the Bsigee
results from each device is just a simple pair of numbers:btst
results that GPU has found so far.

We implement the search using the CUDA programming enviro-
ment for NVidia GPUs. The very C-like language made protetyp
ing and implementation straightforward.

The SPRP’s evaluation is quite straightforward as a claseitular
power computation, very similar to one used for RSA encoypti
We have an advantage in that our values @ndn are under3?

and we can use many native CPU math operations instead @f usin
a generalized “bigint” library.

Most of the SPRP algorithm’s time is simply spent doing modu-
lar powers, such as® mod c. This is a classic computer science 4 Results
homework problem, and it is often solved by reduction by mpti

that if b is even ther® mod ¢ = (a*/? mod ¢)? mod ¢, and ifb On a 3.0 GHz Core2 PC with an NVidia GTX280, the GPU search

is odd, theru® mod ¢ = a - (a!*/2) mod ¢)? mod c. implementation performs approximately 65 times fasten ta@PU
version. This makes sense since there is little memoryfeanser-

The above reduction now just needs a way to computemod c, head and the SPRP search is computationally limited. Even ou

which is complicated by the fact that b can easily overflow a 32- relatively weak 32-processor laptop GPU easily exceedSRb

bit integer. Another reduction of the same style solves tbblpm. computation speed. Multiple randomized tests show thatjitite

If bis even, them - b mod ¢ = 2a - £ mod c and ifb is odd, then easy to find newecord breaking SPRP results far ~ 80, 000, 000
a-bmod ¢ = a+2a-|2] mod c. The final subproblem of simple within an hour. Compare this to the previously best known tigs
modular addition ofa + b mod c is an easy addition and single the 2005 search by Greathouse and Livingstone, who foundta be
overflow test. result of onlyn < 19,471, 033.

Unrolling the reductions one step for even more efficientgom After one week of constant search on two machines, the béPSP
tation is another trick known as Montgomery Reduction. Ttses test we have found so far is a combination of an 350-SPRP and a

benefit from such a table lookup. An interesting implemeatede- the best results known previously.

tall involves the use of CUDA Sh‘?}md memory for the lookupdab —— gyrther searching continues, and we plan to share the fisaltse
We give each thread in a block “ownership” of 4 words in shared ,jine. The identification of better test values will immesgiy al-
memory for its own lookup table. These table entries areexpaé low various software libraries providing primality testsdive fast

words apart in order to prevent a subtle memory efficienchlpro results over a wider range than was previously possible.
known as bank conficts. By giving each thread its scratch mem-

ory spaced by 16, each thread has its own bank of shared memoryAlthough not presented here, the cases of higher order $&s o

and thus does not interfere with other thread’s lookupss Shbtle and 4 SPRP tests are now also being explored with a CPU/GPU

implementation detail improved performance 20%. hybrid. This is significantly complicated by the need for 448
integer math. This work is not yet complete but has also direa

The CUDA kernel is designed to assign every thread one indepe found order of magnitude improvements in primality testing

dent pair to test. A thread checks its pair, proceeding itrfiihds

http://en.wikipedia.org/wiki/Montgomery_reduction

	Primality Tests by Strong Probable Primes
	Searching for better SPRP combinations
	GPU Implementation
	Results

