
Optimization of Primality Testing Methods by GPU Evolutionary Search

Steve Worley∗

Worley Laboratories

Abstract

Modern fast primality testing uses a combination of Strong Prob-
able Prime (SPRP) rejection tests. We find more powerful combi-
nations by intensive search of the vast domain of SPRP test con-
figurations. Evolutionary guidance using previous promising re-
sults boosts search speed. We implement the entire search onthe
GPU with the CUDA programming language resulting in 65-time
speedup over a CPU search. This project has already found a test an
order of magnitude more powerful than the best previously known.

1 Primality Tests by Strong Probable Primes

How do you determine if a givenn is prime? Countless practi-
cal and diverse problems ask this, ranging from hash table design,
cryptography, Rabin-Karp string searching, and randomized task
scheduling. Simple trial division with the integers from 2 to

√
n

is a classic and well known method, but asO(
√

n), faster meth-
ods are much better forn larger than 5000 or so. In practice the
fastest computational method for largern is Strong Probable Prime
testing.1

By Fermat’s Little Theorem, for an odd primen, the number 1 has
only two square roots modulon, 1 andn − 1. So for primen and
any integera > 1 the square root ofan−1 mod n is 1 or n − 1.
We can use this fact to identify many composite numbers by merely
choosing anya, substitutingn into the equation and checking the
modular remainder. If the remainder is not 1 or n-1, we can stop
since we now known is composite. However this doesnot yet
guarantee that all passed values are prime.

We can make the test even better at quickly identifying composites
by noting that if(n− 1)/2 is even, we can take another square root
and get yet another rejection test.

We remove out the factors of 2 to formn−1 = d·2s whered is odd
ands is non negative.n is called a strong probable prime basea (an
a-SPRP) if eitherad ≡ 1 mod n or (ad)2

r ≡ n − 1 mod n for
some non-negativer less than s.

All integersn > 1 which fail this test are composites. Integers
that passprobably are primes. Fora = 2, the 2-SPRP test is rarely
incorrect, and in fact the first compositen undetected by the 2-
SPRP test isn = 2047 = 23 · 89. The first missed by the 3-SPRP
test isn = 121 = 11 · 11. The first miss by the 5-SPRP test is
n = 781 = 11 · 71.

SPRP tests are very fast in practice using standard methods for
modular powers (also used in RSA encryption). The computation
is O(log3 n) and isindependent of the choice ofa.

Since an SPRP test can miss an occasional composite, testingcan
be repeated with two or more independent SPRP bases to give bet-
ter and better confidence that a value repeatedly passed is indeed
prime. Miller and Rabin made this a practicalguaranteed primality
test by finding an explicit pair of SPRP bases, which combinedare
pre-verified to correctly identify primality for as largen as possible.

∗e-mail: sw@worley.com
1Much of the mathematical description for this section drawsfrom the

excellent Prime Pages website at primes.utm.edu. This website also inspired
this work when I was searching for an isPrime() function.

For example, the smallest compositen which isboth a 2-SPRP and
a 3-SPRP is 1,373,653. This immediately forms a guaranteed pri-
mality test for anyn < 1, 373, 653. Such a (now deterministic) test
is known as the Miller Rabin primality test. Other researchers real-
ized this was a very useful tool in practice, and significant attempts
were made to discover the best values of basesa to maximize pri-
mality testing ranges beyond 1,373,653. In 1980 Carl Pomerance2

explored the SPRP tests and shared the first high speed prime test-
ing code, used extensively for years. All tests using two SPRP
evaluations require the same amount of computation, so interest
grew in discovering the SPRP bases that maximize the range of
n that the tests apply to. In 1993, a paper by Gerhard Jaeschke
showed that primes from the much wider range of up to 9,080,191
could be classified with just two tests (a 31-SPRP and 73-SPRP).
In 2004 Zhang and Tang improved the theory of the search domain.
Finally in 2005, Greathouse and Livingstone used computation on
several computers for a period of months to find the currentlybest
known published results: a combination of 2-SPRP and 299417-
SPRP gives guaranteed primality results for alln < 19, 471, 033.3

2 Searching for better SPRP combinations

The speed of SPRP tests do not vary bya, so it is completely accept-
able to choose whatever values work best. A practical limit keeps
a < 232 just for ease of representation and use of native processor
math operations.

We could try to find a test with an even highern limit by picking
two a values and testing every composite integer until both SPRP
tests fail and hoping we exceed our previous best knownn. Un-
fortunately while the SPRP test is very fast, we need to evaluate
the test for millions of composite value to determine the minimum
composite which fails, and hope that first failure is larger than the
best known test’s range. Such a brute force algorithm is straight-
forward to implement but on a CPU requires several seconds totest
a pair of SPRP bases over the several million test values. If we re-
stricta < 232 for efficiency, there are263 possible pairs of bases to
choose from, far too many to explore exhaustively.

The distribution and behavior of prime number distributionis a
huge topic in number theory, and the behavior of SPRP compos-
ite failures is similarly chaotic. The best theoretical analysis has
been by Zhang and Tang, who found limits on minimumn but no
useful guidance on how to find sets of tests which are especially ef-
ficient. Therefore, finding better SPRP tests is a task of raw power
and empirical heuristics.

Several obvious search strategies were initially explored. One was
a simple brute force enumeration of pairs in a deterministicorder
based on minimizing their sum. Another enumerated (2,x) forall
x < 232, then proceeded to (3,x) and so on. A third randomly
sampled the whole domain.

However, the most effective algorithm found was a simple progres-
sive evolutionary test, subjecting test bases to a successively more
difficult set of challenges and allowing only the best-performing to
continue. The most promising base values pass each test and there-

2Developer of the factoring method to crack RSA-129 decryption!
3Errors have been found in some of Greathouse’s higher order results,

but his SPRP tests for two bases are correct.

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem
http://primes.utm.edu/glossary/xpage/StrongPRP.html
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
http://primes.utm.edu/prove/prove2_3.html
http://en.wikipedia.org/wiki/Carl_Pomerance
http://math.crg4.com/primes.html#Jaeschke1993
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.99.5836
http://math.crg4.com/primes.html


fore even more computation is invested in them for another round
of search. This strategy performed exceedingly well, perhaps be-
cause the amount of effort spent on each value is proportional to
how well it proved itself on previous rounds.

The search algorithm starts by picking a random initial basevalue.
The value is exhaustively tested as a partner with all valuesfrom
2 to 10,000,000, taking approximately 10 seconds on a NVidia
GTX280. The fitness measure to maximize is the value of the
first compositen which the pair of values both misidentify as a
prime. The best result of that search is tested against a predeter-
mined threshold to allow only about 30% of test values to passto
a more intensive second round of 25M additional tests. This cycle
of survival-of-the-fittest continues with five rounds, eachwith an
increasing number of tests but also an increasingly difficult fitness
threshold to cross. The final state is an ultimate exhaustivetest of
all 232 − 1 partner values. Less than 0.1% of test values are fit
enough to reach the final exhaustive stage.

3 GPU Implementation

GPUs have enormous computational horsepower compared to
CPUs, making them attractive for a compute intensive task like
SPRP searching. Even though GPUs are actually faster at floating
point than integer, the vast number of GPU subprocessors makes up
for any weakness.

We implement the search using the CUDA programming enviro-
ment for NVidia GPUs. The very C-like language made prototyp-
ing and implementation straightforward.

The SPRP’s evaluation is quite straightforward as a classicmodular
power computation, very similar to one used for RSA encryption.
We have an advantage in that our values ofa andn are under232

and we can use many native CPU math operations instead of using
a generalized “bigint” library.

Most of the SPRP algorithm’s time is simply spent doing modu-
lar powers, such asab mod c. This is a classic computer science
homework problem, and it is often solved by reduction by noting
that if b is even thenab mod c = (ab/2 mod c)2 mod c, and if b
is odd, thenab mod c = a · (abb/2c mod c)2 mod c.

The above reduction now just needs a way to computea · b mod c,
which is complicated by the fact thata · b can easily overflow a 32-
bit integer. Another reduction of the same style solves the problem.
If b is even, thena · b mod c = 2a · b

2
mod c and if b is odd, then

a · b mod c = a+2a · b b
2
c mod c. The final subproblem of simple

modular addition ofa + b mod c is an easy addition and single
overflow test.

Unrolling the reductions one step for even more efficient compu-
tation is another trick known as Montgomery Reduction. Thisuses
a small table of precomputed values of1, a, a2, a3 mod c to halve
the number of steps needed. In practice we are able to significantly
benefit from such a table lookup. An interesting implementation de-
tail involves the use of CUDA shared memory for the lookup table.
We give each thread in a block “ownership” of 4 words in shared
memory for its own lookup table. These table entries are spaced 16
words apart in order to prevent a subtle memory efficiency problem
known as bank conficts. By giving each thread its scratch mem-
ory spaced by 16, each thread has its own bank of shared memory
and thus does not interfere with other thread’s lookups. This subtle
implementation detail improved performance 20%.

The CUDA kernel is designed to assign every thread one indepen-
dent pair to test. A thread checks its pair, proceeding untilit finds

the first misclassified composite. We want kernel launches tore-
main in the millisecond range to keep the OS interactive. Thecom-
pute proceeds by evaluating only a few thousand tests and check-
pointing its progress (needing to store only two words) to resume in
the next launch. Thus the continuous GPU search has little OSim-
pact, allowing the compute to run unobtrusively for days or weeks.

The pause-and-restart design also allowed for automatic load bal-
ancing. If a thread is unlucky and tests a poor candidate, it can
finish its work much earlier than another thread who needs to test
more values, leaving the early thread idle. A simple test at kernel
launch identifies idle threads and has them steal work from threads
with work remaining. This load balancing was easy to implement
by merely rearranging the saved work status storage. Load rebal-
ancing boosted search throughput by 60% by retasking these idle
threads. The design of CUDA automatically handles block-wise
work assignment, so the software does not know nor care if the
GPU is a small 16 core or large 240 core GPU; speed simply scales
completely linearly with SP count.

All computation is doneentirely on the GPU, leaving the CPU idle
except as a polling kernel host. The simple polling loop keeps the
CPU loaded by about 10%. This could likely be improved by queu-
ing multiple asynchonous kernel launches. The original expecta-
tion was to have the CPU simultaneously run searches, but theraw
speed of the GPU search makes any CPU contribution negligable
and merely a distraction.

Since the evolutionary search begins with a random base choice,
it is embarassingly trivial to support multi-GPU and even multi-
machine evaluation. Each GPU uses its own random seed and each
follows its own independent randomized evolution. Resultsdon’t
need to be combined or intercommunicated except to occasionally
manually note which GPU or machine has the best results so far.
Unlike many distributed computations, there is little needto avoid
work duplication given the huge search space, and the progressive
results from each device is just a simple pair of numbers: thebest
results that GPU has found so far.

4 Results

On a 3.0 GHz Core2 PC with an NVidia GTX280, the GPU search
implementation performs approximately 65 times faster than a CPU
version. This makes sense since there is little memory transfer over-
head and the SPRP search is computationally limited. Even our
relatively weak 32-processor laptop GPU easily exceeds itsCPU
computation speed. Multiple randomized tests show that it’s quite
easy to find newrecord breaking SPRP results forn ≈ 80, 000, 000
within an hour. Compare this to the previously best known test by
the 2005 search by Greathouse and Livingstone, who found a best
result of onlyn < 19, 471, 033.

After one week of constant search on two machines, the best SPRP
test we have found so far is a combination of an 350-SPRP and a
3958281543-SPRP. This combination correctly identifies all primes
for n < 170, 584, 961. This is an order of magnitude better than
the best results known previously.

Further searching continues, and we plan to share the final results
online. The identification of better test values will immediately al-
low various software libraries providing primality tests to give fast
results over a wider range than was previously possible.

Although not presented here, the cases of higher order sets of 3
and 4 SPRP tests are now also being explored with a CPU/GPU
hybrid. This is significantly complicated by the need for 128-bit
integer math. This work is not yet complete but has also already
found order of magnitude improvements in primality testing.

http://en.wikipedia.org/wiki/Montgomery_reduction

	Primality Tests by Strong Probable Primes
	Searching for better SPRP combinations
	GPU Implementation
	Results

