Skip to content

Use a value between 20% and 25%

Files

primality-certificates

Directory actions

More options

primality-certificates

Folders and files

NameName
Last commit message
Last commit date

parent directory

..

(File)

(File)

These are the Primo (http://www.ellipsa.eu/public/primo/primo.html, http://www.rieselprime.de/dl/Primo309.zip, https://t5k.org/bios/page.php?id=46, https://www.rieselprime.de/ziki/Primo, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/primo-433-lx64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/Primo309) (an elliptic curve primality proving (https://t5k.org/prove/prove4_2.html, https://en.wikipedia.org/wiki/Elliptic_curve_primality, https://t5k.org/glossary/xpage/ECPP.html, https://mathworld.wolfram.com/EllipticCurvePrimalityProving.html, http://irvinemclean.com/maths/pfaq7.htm, https://t5k.org/top20/page.php?id=27, https://t5k.org/primes/search.php?Comment=ECPP&OnList=all&Number=1000000&Style=HTML, http://www.ellipsa.eu/public/primo/records.html, http://www.lix.polytechnique.fr/~morain/Prgms/ecpp.english.html, https://www.multiprecision.org/cm/ecpp.html, https://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1199989-X/S0025-5718-1993-1199989-X.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_256.pdf)) implementation) primality certificates (https://en.wikipedia.org/wiki/Primality_certificate, https://t5k.org/glossary/xpage/Certificate.html, https://mathworld.wolfram.com/PrimalityCertificate.html, http://www.ellipsa.eu/public/primo/records.html, http://www.lix.polytechnique.fr/Labo/Francois.Morain/Primes/myprimes.html, https://stdkmd.net/nrr/cert/, https://alfredreichlg.de/10w7/certifiedprimes.html, http://xenon.stanford.edu/~tjw/pp/index.html, http://factordb.com/certoverview.php) for the minimal primes > 10299 and < 1025000 (primes < 10299 are automatically proven primes in factordb, and primes < 10299 can be verified in a few seconds, proof of their primality is not included here, in order to save space, larger primes can take from hours to months to prove, unless their N−1 (https://t5k.org/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=1) or/and N+1 (https://t5k.org/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=2) can be ≥ 1/4 factored) in bases 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36 (the solved or near-solved bases, i.e. the bases b with ≤ 6 unsolved families)

The large minimal primes in base b are of the form (a×bn+c)/gcd(a+c,b−1) for some a, b, c, n such that a ≥ 1, b ≥ 2 (b is the base), c ≠ 0, gcd(a,c) = 1, gcd(b,c) = 1, the large numbers (i.e. the numbers with large n, say n > 1000) can be easily proven primes using N−1 test (https://t5k.org/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=1) or N+1 test (https://t5k.org/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=2) if and only if c = ±1 and gcd(a+c,b−1) = 1, except this special case (https://en.wikipedia.org/wiki/Special_case) of c = ±1 and gcd(a+c,b−1) = 1, such numbers need primality certificates to be proven primes (otherwise, they will only be probable primes (https://en.wikipedia.org/wiki/Probable_prime, https://t5k.org/glossary/xpage/PRP.html, https://www.rieselprime.de/ziki/Probable_prime, https://mathworld.wolfram.com/ProbablePrime.html, http://www.primenumbers.net/prptop/prptop.php, https://stdkmd.net/nrr/records.htm#probableprimenumbers, https://stdkmd.net/nrr/repunit/prpfactors.htm, https://www.alfredreichlg.de/10w7/prp.html, http://factordb.com/listtype.php?t=1)), and elliptic curve primality proving are used for these numbers.

There are also other versions of the N−1 and N+1 tests, using primitive roots (https://en.wikipedia.org/wiki/Primitive_root_modulo_n, https://mathworld.wolfram.com/PrimitiveRoot.html, http://www.bluetulip.org/2014/programs/primitive.html, http://www.numbertheory.org/php/lprimroot.html, http://www.numbertheory.org/php/lprimrootneg.html, http://www.numbertheory.org/php/lprimroot_generator.html, http://www.numbertheory.org/php/lprimrootneg_generator.html, https://oeis.org/A046147, https://oeis.org/A060749, https://oeis.org/A046144, https://oeis.org/A008330, https://oeis.org/A046145, https://oeis.org/A001918, https://oeis.org/A046146, https://oeis.org/A071894, https://oeis.org/A002199, https://oeis.org/A033948, https://oeis.org/A033949), see https://www.mathpages.com/home/kmath473/kmath473.htm for the N−1 test and see https://bln.curtisbright.com/2013/11/23/a-variant-n1-primality-test/ for the N+1 test.

The case c = 1 and gcd(a+c,b−1) = 1 (corresponding to generalized Proth prime (https://en.wikipedia.org/wiki/Proth_prime, https://t5k.org/glossary/xpage/ProthPrime.html, https://www.rieselprime.de/ziki/Proth_prime, https://mathworld.wolfram.com/ProthNumber.html, http://irvinemclean.com/maths/pfaq6.htm, https://www.numbersaplenty.com/set/Proth_number/, https://web.archive.org/web/20230706041914/https://pzktupel.de/Primetables/TableProthTOP10KK.php, https://pzktupel.de/Primetables/ProthK.txt, https://pzktupel.de/Primetables/TableProthTOP10KS.php, https://pzktupel.de/Primetables/ProthS.txt, https://pzktupel.de/Primetables/TableProthGen.php, https://pzktupel.de/Primetables/TableProthGen.txt, https://sites.google.com/view/proth-primes, https://t5k.org/primes/search_proth.php, https://t5k.org/top20/page.php?id=66, https://www.primegrid.com/forum_thread.php?id=2665, https://www.primegrid.com/stats_pps_llr.php, https://www.primegrid.com/stats_ppse_llr.php, https://www.primegrid.com/stats_mega_llr.php, https://www.primegrid.com/primes/primes.php?project=PPS&factors=XGF&only=ALL&announcements=ALL&sortby=size&dc=yes&search=, https://www.primegrid.com/primes/primes.php?project=PPSE&factors=XGF&only=ALL&announcements=ALL&sortby=size&dc=yes&search=, https://www.primegrid.com/primes/primes.php?project=MEG&factors=XGF&only=ALL&announcements=ALL&sortby=size&dc=yes&search=, https://www.rieselprime.de/ziki/PrimeGrid_Proth_Prime_Search, https://www.rieselprime.de/ziki/PrimeGrid_Proth_Prime_Search_Extended, https://www.rieselprime.de/ziki/PrimeGrid_Proth_Mega_Prime_Search) base b: a×bn+1, they are related to generalized Sierpinski conjecture base b (http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjecture-reserves.htm, https://web.archive.org/web/20230928115832/http://www.noprimeleftbehind.net/crus/vstats_new/all_ck_sierpinski.txt, https://mersenneforum.org/attachment.php?attachmentid=17598&d=1516910519, https://web.archive.org/web/20221230035429/https://sites.google.com/site/robertgerbicz/sierpinski.txt, https://mersenneforum.org/attachment.php?attachmentid=4557&d=1263456866, https://mersenneforum.org/showthread.php?t=10910, https://mersenneforum.org/showthread.php?t=25177, https://www.utm.edu/staff/caldwell/preprints/2to100.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_3.pdf), http://www.bitman.name/math/article/1259 (in Italian))) can be easily proven prime using Pocklington N−1 method (https://t5k.org/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1), and the case c = −1 and gcd(a+c,b−1) = 1 (corresponding to generalized Riesel prime (https://www.rieselprime.de/ziki/Riesel_prime, http://irvinemclean.com/maths/pfaq6.htm, https://web.archive.org/web/20230628151418/https://pzktupel.de/Primetables/TableRieselTOP10KK.php, https://pzktupel.de/Primetables/RieselK.txt, https://pzktupel.de/Primetables/TableRieselTOP10KS.php, https://pzktupel.de/Primetables/RieselS.txt, https://pzktupel.de/Primetables/TableRieselGen.php, https://pzktupel.de/Primetables/TableRieselGen.txt, https://sites.google.com/view/proth-primes, http://www.noprimeleftbehind.net/stats/index.php?content=prime_list, https://t5k.org/primes/search_proth.php, http://www.noprimeleftbehind.net:9000/all.html, http://www.noprimeleftbehind.net:2000/all.html, http://www.noprimeleftbehind.net:1468/all.html, http://www.noprimeleftbehind.net:1400/all.html, https://www.rieselprime.de/ziki/NPLB_Drive_17, https://www.rieselprime.de/ziki/NPLB_Drive_18, https://www.rieselprime.de/ziki/NPLB_Drive_19, https://www.rieselprime.de/ziki/NPLB_Drive_High-n) base b: a×bn−1, they are related to generalized Riesel conjecture base b (http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjecture-reserves.htm, https://web.archive.org/web/20230928115850/http://www.noprimeleftbehind.net/crus/vstats_new/all_ck_riesel.txt, https://mersenneforum.org/attachment.php?attachmentid=17597&d=1516910519, https://web.archive.org/web/20221230035558/https://sites.google.com/site/robertgerbicz/riesel.txt, https://mersenneforum.org/attachment.php?attachmentid=4558&d=1263456995, https://mersenneforum.org/showthread.php?t=10910, https://mersenneforum.org/showthread.php?t=25177)) can be easily proven prime using Morrison N+1 method (https://t5k.org/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=2), these primes can be proven prime using Yves Gallot's Proth.exe (https://t5k.org/programs/gallot/, https://t5k.org/bios/page.php?id=411, https://www.rieselprime.de/ziki/Proth.exe, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/proth), these primes can also be proven prime using Jean Penné's LLR (http://jpenne.free.fr/index2.html, https://t5k.org/bios/page.php?id=431, https://www.rieselprime.de/ziki/LLR, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403linux64), also you can compare the top definitely primes page (https://t5k.org/primes/lists/all.txt) and the top probable primes page (http://www.primenumbers.net/prptop/prptop.php), also see https://stdkmd.net/nrr/prime/primesize.txt and https://stdkmd.net/nrr/prime/primesize.zip (see which numbers have "-", "+", "-proven", "+proven" in the "note" column), also see https://stdkmd.net/nrr/records.htm (compare the sections "Prime numbers" and "Probable prime numbers").

Primes which either N−1 or N+1 is trivially (https://en.wikipedia.org/wiki/Triviality_(mathematics), https://mathworld.wolfram.com/Trivial.html) fully factored (i.e. primes of the form k×bn±1, with small k) do not need primality certificates, since they can be easily proven primes using N−1 test (https://t5k.org/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=1) or N+1 test (https://t5k.org/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=2), these primes are: (i.e. their N−1 or N+1 are smooth numbers (https://en.wikipedia.org/wiki/Smooth_number, https://mathworld.wolfram.com/SmoothNumber.html, https://oeis.org/A003586, https://oeis.org/A051037, https://oeis.org/A002473, https://oeis.org/A051038, https://oeis.org/A080197, https://oeis.org/A080681, https://oeis.org/A080682, https://oeis.org/A080683)) (i.e. the greatest prime factor (http://mathworld.wolfram.com/GreatestPrimeFactor.html, https://oeis.org/A006530) of N−1 or N+1 is small)

(these primes can be proven prime using Yves Gallot's Proth.exe (https://t5k.org/programs/gallot/, https://t5k.org/bios/page.php?id=411, https://www.rieselprime.de/ziki/Proth.exe, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/proth), these primes can also be proven prime using Jean Penné's LLR (http://jpenne.free.fr/index2.html, https://t5k.org/bios/page.php?id=431, https://www.rieselprime.de/ziki/LLR, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403linux64), see the README file for LLR (https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/llr403win64/Readme.txt, https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/llr403linux64/Readme.txt, http://jpenne.free.fr/index2.html))

Also, there are no primality certificates for these primes in factordb because although they are > 10299, but their N−1 or N+1 is fully factored (but not trivially (https://en.wikipedia.org/wiki/Triviality_(mathematics), https://mathworld.wolfram.com/Trivial.html) fully factored, however, only need trial division (https://en.wikipedia.org/wiki/Trial_division, https://t5k.org/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial, https://oeis.org/A189172) to 108) and the largest prime factor is < 10299 (primes < 10299 are automatically proven primes in factordb): (i.e. their N−1 or N+1 are product of a 108-smooth number (https://en.wikipedia.org/wiki/Smooth_number, https://mathworld.wolfram.com/SmoothNumber.html, https://oeis.org/A003586, https://oeis.org/A051037, https://oeis.org/A002473, https://oeis.org/A051038, https://oeis.org/A080197, https://oeis.org/A080681, https://oeis.org/A080682, https://oeis.org/A080683) and a prime < 10299) (i.e. the greatest prime factor (http://mathworld.wolfram.com/GreatestPrimeFactor.html, https://oeis.org/A006530) of N−1 or N+1 is < 10299, and the second-greatest prime factor (https://oeis.org/A087039, https://stdkmd.net/nrr/records.htm#BIGFACTOR, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Largest penultimate prime factor (ultimate factor shown also):")) of this number (N−1 or N+1) is < 108)

  • the 2328th minimal prime in base 16, 8802467, with 300 decimal digits, N−1 is 23 × 3 × 7 × 13 × 25703261 × (289-digit prime)
  • the 25174th minimal prime in base 26, OL0214M9, with 309 decimal digits, N−1 is 22 × 52 × 7 × 223 × 42849349 × (296-digit prime)
  • the 25485th minimal prime in base 28, JN206, with 300 decimal digits, N−1 is 2 × 1061 × 1171 × 74311 × (289-digit prime)

The helper file for the 2328th minimal prime in base 16 (8802467) in factordb: http://factordb.com/helper.php?id=1100000002468140199

The helper file for the 25174th minimal prime in base 26 (OL0214M9) in factordb: http://factordb.com/helper.php?id=1100000000840631576

The helper file for the 25485th minimal prime in base 28 (JN206) in factordb: http://factordb.com/helper.php?id=1100000002611724435

Factorization of N−1 for the 2328th minimal prime in base 16 (8802467) in factordb: http://factordb.com/index.php?id=1100000002468140641&open=ecm

Factorization of N−1 for the 25174th minimal prime in base 26 (OL0214M9) in factordb: http://factordb.com/index.php?id=1100000000840631577&open=ecm

Factorization of N−1 for the 25485th minimal prime in base 28 (JN206) in factordb: http://factordb.com/index.php?id=1100000002611724440&open=ecm

Also the case where N−1 or N+1 is product of a Cunningham number (of the form bn±1, see https://en.wikipedia.org/wiki/Cunningham_number, https://mathworld.wolfram.com/CunninghamNumber.html, https://www.numbersaplenty.com/set/Cunningham_number/, https://en.wikipedia.org/wiki/Cunningham_Project, https://t5k.org/glossary/xpage/CunninghamProject.html, https://www.rieselprime.de/ziki/Cunningham_project, https://homes.cerias.purdue.edu/~ssw/cun/index.html, https://maths-people.anu.edu.au/~brent/factors.html, https://web.archive.org/web/20190315214330/http://cage.ugent.be/~jdemeyer/cunningham/, http://myfactors.mooo.com/, https://doi.org/10.1090/conm/022, https://www.mersenneforum.org/attachment.php?attachmentid=7727&d=1330555980 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_7.pdf), https://homes.cerias.purdue.edu/~ssw/cun/mine.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_6.pdf), http://homes.cerias.purdue.edu/~ssw/cun1.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_71.pdf)) and a small number (either a small integer or a fraction whose numerator and denominator are both small), and this Cunningham number is ≥ 1/3 factored (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm) or this Cunningham number is ≥ 1/4 factored and the number is not very large (say not > 10100000). If either N−1 or N+1 (or both) can be ≥ 1/2 factored, then we can use the Pocklington N−1 primality test (https://t5k.org/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1) (the N−1 case) or the Morrison N+1 primality test (https://t5k.org/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://irvinemclean.com/maths/pfaq4.htm, http://factordb.com/nmoverview.php?method=2) (the N+1 case); if either N−1 or N+1 (or both) can be ≥ 1/3 factored, then we can use the Brillhart-Lehmer-Selfridge primality test (https://www.ams.org/journals/mcom/1975-29-130/S0025-5718-1975-0384673-1/S0025-5718-1975-0384673-1.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_23.pdf), https://en.wikipedia.org/wiki/Pocklington_primality_test#Extensions_and_variants); if either N−1 or N+1 (or both) can be ≥ 1/4 factored but neither can be ≥ 1/3 factored, then we need to use CHG (https://mersenneforum.org/attachment.php?attachmentid=21133&d=1571237465, https://t5k.org/bios/page.php?id=797, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/CHG) to prove its primality (see https://mersenneforum.org/showpost.php?p=528149&postcount=3 and https://mersenneforum.org/showpost.php?p=603181&postcount=438), however, unlike Brillhart-Lehmer-Selfridge primality test for the numbers N such that N−1 or N+1 (or both) can be ≥ 1/3 factored can run for arbitrarily large numbers N (thus, there are no unproven probable primes N such that N−1 or N+1 (or both) can be ≥ 1/3 factored), CHG for the numbers N such that either N−1 or N+1 (or both) can be ≥ 1/4 factored but neither can be ≥ 1/3 factored cannot run for very large N (say > 10100000), for the examples of the numbers which are proven prime by CHG, see https://t5k.org/primes/page.php?id=126454, https://t5k.org/primes/page.php?id=131964, https://t5k.org/primes/page.php?id=123456, https://t5k.org/primes/page.php?id=130933, https://stdkmd.net/nrr/cert/1/ (search for "CHG"), https://stdkmd.net/nrr/cert/2/ (search for "CHG"), https://stdkmd.net/nrr/cert/3/ (search for "CHG"), https://stdkmd.net/nrr/cert/4/ (search for "CHG"), https://stdkmd.net/nrr/cert/5/ (search for "CHG"), https://stdkmd.net/nrr/cert/6/ (search for "CHG"), https://stdkmd.net/nrr/cert/7/ (search for "CHG"), https://stdkmd.net/nrr/cert/8/ (search for "CHG"), https://stdkmd.net/nrr/cert/9/ (search for "CHG"), http://xenon.stanford.edu/~tjw/pp/index.html (search for "CHG"), however, factordb (http://factordb.com/, https://www.rieselprime.de/ziki/Factoring_Database) lacks the ability to verify CHG proofs, see https://mersenneforum.org/showpost.php?p=608362&postcount=165; if neither N−1 nor N+1 can be ≥ 1/4 factored but Nn−1 can be ≥ 1/3 factored for a small n, then we can use the cyclotomy primality test (https://t5k.org/glossary/xpage/Cyclotomy.html, https://t5k.org/prove/prove3_3.html, http://factordb.com/nmoverview.php?method=3) (however, this situation does not exist for these numbers, since only one of N−1 and N+1 is product of a Cunningham number and a small number, the only exception is the numbers in the family {2}1 in base b, in such case both N−1 and N+1 are products of a Cunningham number and a small number, thus for the numbers in the family {2}1 in base b, maybe factorization of N2−1 can be used)): (thus these numbers also do not need primality certificates)

(for the examples of generalized repunit primes (all generalized repunit primes base b have that N−1 is product of a Cunningham number (base b, the −1 side) and a small number (namely b/(b−1))), see https://web.archive.org/web/20021111141203/http://www.users.globalnet.co.uk/~aads/primes.html and https://web.archive.org/web/20021114005730/http://www.users.globalnet.co.uk/~aads/titans.html and https://web.archive.org/web/20131019185910/http://www.primes.viner-steward.org/andy/titans.html and http://xenon.stanford.edu/~tjw/pp/index.html)

(for the references of factorization of bn±1, see: https://homes.cerias.purdue.edu/~ssw/cun/index.html (2 ≤ b ≤ 12), https://homes.cerias.purdue.edu/~ssw/cun/pmain723.txt (2 ≤ b ≤ 12), https://doi.org/10.1090/conm/022 (2 ≤ b ≤ 12), https://www.mersenneforum.org/attachment.php?attachmentid=7727&d=1330555980 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_7.pdf) (2 ≤ b ≤ 12), https://web.archive.org/web/20190315214330/http://cage.ugent.be/~jdemeyer/cunningham/ (2 ≤ b ≤ 12), http://myfactorcollection.mooo.com:8090/cgi-bin/showCustomRep?CustomList=B&EN=&LM= (2 ≤ b ≤ 12), http://myfactorcollection.mooo.com:8090/cgi-bin/showREGComps?REGCompList=F&REGSortList=A&LabelList=E&REGHeader=&REGExp= (2 ≤ b ≤ 12), https://maths-people.anu.edu.au/~brent/factors.html (13 ≤ b ≤ 99), https://arxiv.org/pdf/1004.3169.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_206.pdf) (13 ≤ b ≤ 99), https://maths-people.anu.edu.au/~brent/pd/rpb134t.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_208.pdf) (13 ≤ b ≤ 99), http://myfactorcollection.mooo.com:8090/cgi-bin/showANCustomRep?LevelList=A&BaseRangeList=A&EN=&LM= (13 ≤ b ≤ 99), http://myfactorcollection.mooo.com:8090/cgi-bin/showANCustomRep?LevelList=B&BaseRangeList=A&EN=&LM= (13 ≤ b ≤ 99), https://web.archive.org/web/20220513215832/http://myfactorcollection.mooo.com:8090/cgi-bin/showCustomRep?CustomList=A&EN=&LM= (13 ≤ b ≤ 99), http://myfactorcollection.mooo.com:8090/cgi-bin/showANComps?LevelList=A&BaseRangeList=A&REGSortList=A&LabelList=E&REGHeader=&REGExp= (13 ≤ b ≤ 99), http://myfactorcollection.mooo.com:8090/cgi-bin/showANComps?LevelList=B&BaseRangeList=A&REGSortList=A&LabelList=E&REGHeader=&REGExp= (13 ≤ b ≤ 99), https://web.archive.org/web/20021015210104/http://www.users.globalnet.co.uk/~aads/faclist.html (2 ≤ b ≤ 999), https://mers.sourceforge.io/factoredM.txt (b = 2), https://web.archive.org/web/20130530210800/http://www.euronet.nl/users/bota/medium-p.htm (b = 2), https://www.mersenne.org/report_exponent/ (b = 2, −1 side, prime exponents), https://www.mersenne.org/report_exponent/?exp_lo=2&exp_hi=1000&full=1&ancient=1&expired=1&ecmhist=1&swversion=1 (b = 2, −1 side, prime exponents), https://web.archive.org/web/20211128174912/http://mprime.s3-website.us-west-1.amazonaws.com/mersenne/MERSENNE_FF_with_factors.txt (b = 2, −1 side, prime exponents), https://web.archive.org/web/20210726214248/http://mprime.s3-website.us-west-1.amazonaws.com/wagstaff/WAGSTAFF_FF_with_factors.txt (b = 2, +1 side, prime exponents), https://web.archive.org/web/20190211112446/http://home.earthlink.net/~elevensmooth/ (b = 2, exponents which divide 1663200), https://stdkmd.net/nrr/repunit/ (b = 10), https://stdkmd.net/nrr/repunit/10001.htm (b = 10), https://stdkmd.net/nrr/repunit/phin10.htm (b = 10, only primitive factors), https://stdkmd.net/nrr/repunit/Phin10.txt (b = 10, only primitive factors), https://stdkmd.net/nrr/repunit/Phin10.txt.lz (b = 10, only primitive factors), https://stdkmd.net/nrr/repunit/Phin10.txt.gz (b = 10, only primitive factors), https://kurtbeschorner.de/ (b = 10), https://kurtbeschorner.de/fact-2500.htm (b = 10), https://repunit-koide.jimdofree.com/ (b = 10), https://repunit-koide.jimdofree.com/app/download/10034950550/Repunit100-20230630.pdf?t=1688135997 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_242.pdf) (b = 10), https://gmplib.org/~tege/repunit.html (b = 10), https://gmplib.org/~tege/fac10m.txt (b = 10), https://gmplib.org/~tege/fac10p.txt (b = 10), http://chesswanks.com/pxp/repfactors.html (b = 10), https://web.archive.org/web/20120426061657/http://oddperfect.org/ (prime b, −1 side, prime exponents), https://web.archive.org/web/20081006071311/http://www-staff.maths.uts.edu.au/~rons/fact/fact.htm (2 ≤ b ≤ 9973, prime b), http://myfactorcollection.mooo.com:8090/cgi-bin/showCROPComps?OPCompList=A&OPSortList=A&LabelList=E&OPHeader=&OPExp= (2 ≤ b ≤ 9973, prime b, −1 side, prime exponents), http://myfactors.mooo.com/ (any b), http://myfactorcollection.mooo.com:8090/dbio.html (any b), http://www.asahi-net.or.jp/~KC2H-MSM/cn/old/index.htm (any b, only primitive factors), http://www.asahi-net.or.jp/~KC2H-MSM/cn/index.htm (any b, only primitive factors), https://web.archive.org/web/20050922233702/http://user.ecc.u-tokyo.ac.jp/~g440622/cn/index.html (any b, only primitive factors), also for the factors of bn±1 with 2 ≤ b ≤ 100 and 1 ≤ n ≤ 100 see http://myfactorcollection.mooo.com:8090/cgi-bin/showFullRep?FBase=2&TBase=100&FExp=1&TExp=100&c0=&EN=&LM= (all factors) and http://myfactorcollection.mooo.com:8090/cgi-bin/showPrimFactors?FBase=2&TBase=100&FExp=1&TExp=100&c0=&LM= (only primitive factors))

The Cunningham numbers bn±1 has algebraic factorization to product of Φd(b) with positive integers d dividing n (the bn−1 case) (see https://stdkmd.net/nrr/repunit/repunitnote.htm#repunit_factorization) or positive integers d dividing 2×n but not dividing n (the bn+1 case) (see https://stdkmd.net/nrr/repunit/repunitnote.htm#repunit_factorization), where Φ is the cyclotomic polynomial (https://en.wikipedia.org/wiki/Cyclotomic_polynomial, https://mathworld.wolfram.com/CyclotomicPolynomial.html, http://www.numericana.com/answer/polynomial.htm#cyclotomic, https://stdkmd.net/nrr/repunit/repunitnote.htm#cyclotomic, https://oeis.org/A013595, https://oeis.org/A013596, https://oeis.org/A253240) (see https://stdkmd.net/nrr/repunit/repunitnote.htm and https://doi.org/10.1090/conm/022, https://www.mersenneforum.org/attachment.php?attachmentid=7727&d=1330555980 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_7.pdf) and https://homes.cerias.purdue.edu/~ssw/cun/mine.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_6.pdf) and http://homes.cerias.purdue.edu/~ssw/cun1.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_71.pdf))

(below, "Rn(b)" means the repunit (https://en.wikipedia.org/wiki/Repunit, https://en.wikipedia.org/wiki/List_of_repunit_primes, https://t5k.org/glossary/xpage/Repunit.html, https://t5k.org/glossary/xpage/GeneralizedRepunitPrime.html, https://www.rieselprime.de/ziki/Repunit, https://mathworld.wolfram.com/Repunit.html, https://mathworld.wolfram.com/RepunitPrime.html, https://pzktupel.de/Primetables/TableRepunit.php, https://pzktupel.de/Primetables/TableRepunitGen.php, https://pzktupel.de/Primetables/TableRepunitGen.txt, https://www.numbersaplenty.com/set/repunit/, https://stdkmd.net/nrr/repunit/repunitnote.htm#repunit, https://web.archive.org/web/20021001222643/http://www.users.globalnet.co.uk/~aads/index.html, https://web.archive.org/web/20021111141203/http://www.users.globalnet.co.uk/~aads/primes.html, https://web.archive.org/web/20021114005730/http://www.users.globalnet.co.uk/~aads/titans.html, https://web.archive.org/web/20021015210104/http://www.users.globalnet.co.uk/~aads/faclist.html, https://web.archive.org/web/20131019185910/http://www.primes.viner-steward.org/andy/titans.html, https://web.archive.org/web/20120227163453/http://phi.redgolpe.com/, https://web.archive.org/web/20120227163614/http://phi.redgolpe.com/5.asp, https://web.archive.org/web/20120227163508/http://phi.redgolpe.com/4.asp, https://web.archive.org/web/20120227163610/http://phi.redgolpe.com/3.asp, https://web.archive.org/web/20120227163512/http://phi.redgolpe.com/2.asp, https://web.archive.org/web/20120227163521/http://phi.redgolpe.com/1.asp, http://www.elektrosoft.it/matematica/repunit/repunit.htm, http://www.fermatquotient.com/PrimSerien/GenRepu.txt (in German), http://www.fermatquotient.com/PrimSerien/GenRepuP.txt (in German), http://www.primenumbers.net/Henri/us/MersFermus.htm, http://www.bitman.name/math/article/380/231/, http://www.bitman.name/math/table/379, http://www.bitman.name/math/table/488, https://www.ams.org/journals/mcom/1993-61-204/S0025-5718-1993-1185243-9/S0025-5718-1993-1185243-9.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_4.pdf), https://cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_5.pdf), https://www.ams.org/journals/mcom/1979-33-148/S0025-5718-1979-0537980-7/S0025-5718-1979-0537980-7.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_119.pdf), https://t5k.org/top20/page.php?id=57, https://t5k.org/top20/page.php?id=16, https://t5k.org/primes/search.php?Comment=Repunit&OnList=all&Number=1000000&Style=HTML, https://t5k.org/primes/search.php?Comment=Generalized%20repunit&OnList=all&Number=1000000&Style=HTML, https://oeis.org/A002275, https://oeis.org/A004022, https://oeis.org/A053696, https://oeis.org/A085104, https://oeis.org/A179625) in base b with length n, i.e. Rn(b) = (bn−1)/(b−1) (see https://stdkmd.net/nrr/repunit/repunitnote.htm#repunit_factorization), "Sn(b)" means bn+1 (see https://stdkmd.net/nrr/repunit/repunitnote.htm#repunit_factorization), the special cases of Rn(10) and Sn(10) are in https://stdkmd.net/nrr/repunit/ and https://stdkmd.net/nrr/repunit/10001.htm, respectively, in fact, Rn(b) and Sn(b) are 111...111 and 1000...0001 in base b, respectively)

The helper file for the 3168th minimal prime in base 13 (93081) in factordb: http://factordb.com/helper.php?id=1100000000840126705

The helper file for the 3179th minimal prime in base 13 (B563C) in factordb: http://factordb.com/helper.php?id=1100000000000217927

The helper file for the 3180th minimal prime in base 13 (1B576) in factordb: http://factordb.com/helper.php?id=1100000002321021456

The helper file for the 25199th minimal prime in base 26 (9K343AP) in factordb: http://factordb.com/helper.php?id=1100000000840632228

The helper file for the 25200th minimal prime in base 26 (83541) in factordb: http://factordb.com/helper.php?id=1100000000840632517

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 3168th minimal prime in base 13 (93081) in factordb: http://factordb.com/index.php?id=1100000000840126706&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 3179th minimal prime in base 13 (B563C) in factordb: http://factordb.com/index.php?id=1100000000271764311&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 3180th minimal prime in base 13 (1B576) in factordb: http://factordb.com/index.php?id=1100000002321021531&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N+1 for the 25199th minimal prime in base 26 (9K343AP) in factordb: http://factordb.com/index.php?id=1100000000840632232&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 25200th minimal prime in base 26 (83541) in factordb: http://factordb.com/index.php?id=1100000000840632623&open=ecm

(in the tables below, Φ is the cyclotomic polynomial (https://en.wikipedia.org/wiki/Cyclotomic_polynomial, https://mathworld.wolfram.com/CyclotomicPolynomial.html, http://www.numericana.com/answer/polynomial.htm#cyclotomic, https://stdkmd.net/nrr/repunit/repunitnote.htm#cyclotomic, https://oeis.org/A013595, https://oeis.org/A013596, https://oeis.org/A253240))

(for the prime factors > 1024 (other than the ultimate prime factor (https://stdkmd.net/nrr/records.htm#BIGFACTOR, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Largest penultimate prime factor (ultimate factor shown also):")) of each algebraic factor) in the tables below, "ECM" means the elliptic-curve factorization method (https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization, https://www.rieselprime.de/ziki/Elliptic_curve_method, https://mathworld.wolfram.com/EllipticCurveFactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#ecm, http://factordb.com/listecm.php?c=1, http://www.loria.fr/~zimmerma/ecmnet/, http://www.loria.fr/~zimmerma/records/ecmnet.html, http://www.loria.fr/~zimmerma/records/factor.html, http://www.loria.fr/~zimmerma/records/top50.html, https://stdkmd.net/nrr/records.htm#largefactorecm, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Elliptic curve method:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=ecm&maxrows=10000, http://maths-people.anu.edu.au/~brent/factors.html, http://maths-people.anu.edu.au/~brent/ftp/champs.txt, https://www.alpertron.com.ar/ECM.HTM, https://www.alpertron.com.ar/ECMREC.HTM, https://homes.cerias.purdue.edu/~ssw/cun/press/tech.html, https://homes.cerias.purdue.edu/~ssw/cun/press/nontech.html, https://kurtbeschorner.de/ecm-efforts.htm, http://www.rechenkraft.net/yoyo//y_factors_ecm.php, http://www.rechenkraft.net/yoyo/y_status_ecm.php, http://www.wraithx.net/math/ecmprobs/ecmprobs.html), "P−1" means the Pollard P−1 method (https://en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1_algorithm, https://www.rieselprime.de/ziki/P-1_factorization_method, https://mathworld.wolfram.com/Pollardp-1FactorizationMethod.html, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Pollard p-1:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=p-1&maxrows=10000, http://www.numericana.com/answer/factoring.htm#p-1, http://factordb.com/listecm.php?c=2), "P+1" means the Williams P+1 method (https://en.wikipedia.org/wiki/Williams%27s_p_%2B_1_algorithm, https://www.rieselprime.de/ziki/P%2B1_factorization_method, https://mathworld.wolfram.com/WilliamspPlus1FactorizationMethod.html, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "p+1:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=p%2b1&maxrows=10000, http://www.numericana.com/answer/factoring.htm#p+1, http://factordb.com/listecm.php?c=3), "SNFS" means the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://www.rieselprime.de/ziki/SNFS_polynomial_selection, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGSNFS, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (sections "Special number field sieve by size of number factored:" and "Special number field sieve by SNFS difficulty:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=snfs&maxrows=10000, https://stdkmd.net/nrr/wanted.htm#smallpolynomial), "GNFS" means the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGGNFS, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "General number field sieve by size of number factored:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=gnfs&maxrows=10000, https://stdkmd.net/nrr/wanted.htm#suitableforgnfs))

For the number 13308−1, it is the product of Φd(13) with positive integers d dividing 308 (i.e. d = 1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 308), and the factorization of Φd(13) for these positive integers d are:

from prime factorization
Φ1(13) 22 × 3
Φ2(13) 2 × 7
Φ4(13) 2 × 5 × 17
Φ7(13) 5229043
Φ11(13) 23 × 419 × 859 × 18041
Φ14(13) 7 × 29 × 22079
Φ22(13) 128011456717
Φ28(13) 23161037562937
Φ44(13) 5281 × 3577574298489429481
Φ77(13) 624958606550654822293 × (47-digit prime)
Φ154(13) 78947177 × (59-digit prime)
Φ308(13) 7393 × 1702933 × 150324329 × 718377597171850001 × 4209006442599882158485591696242263069 × (61-digit prime)

For the number 13564−1, it is the product of Φd(13) with positive integers d dividing 564 (i.e. d = 1, 2, 3, 4, 6, 12, 47, 94, 141, 188, 282, 564), and the factorization of Φd(13) for these positive integers d are:

from prime factorization
Φ1(13) 22 × 3
Φ2(13) 2 × 7
Φ3(13) 3 × 61
Φ4(13) 2 × 5 × 17
Φ6(13) 157
Φ12(13) 28393
Φ47(13) 183959 × 19216136497 × 534280344481909234853671069326391741
Φ94(13) 498851139881 × 3245178229485124818467952891417691434077
Φ141(13) 283 × 1693 × 1924651 × 455036140638637 × (76-digit prime)
Φ188(13) 36097 × 75389 × 99886248944632632917 × (74-digit prime)
Φ282(13) 590202369266263393 × (85-digit prime)
Φ564(13) 233628485003849577181 × 94531330515097101267386264339794253977 (ECM, B1 = 3000000, Sigma = 2146847123) × 27969827431131578608318126024627616357147784803797 (GNFS) × (98-digit prime)

For the number 13576−1, it is the product of Φd(13) with positive integers d dividing 576 (i.e. d = 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 144, 192, 288, 576), and the factorization of Φd(13) for these positive integers d are:

from prime factorization
Φ1(13) 22 × 3
Φ2(13) 2 × 7
Φ3(13) 3 × 61
Φ4(13) 2 × 5 × 17
Φ6(13) 157
Φ8(13) 2 × 14281
Φ9(13) 3 × 1609669
Φ12(13) 28393
Φ16(13) 2 × 407865361
Φ18(13) 19 × 271 × 937
Φ24(13) 815702161
Φ32(13) 2 × 2657 × 441281 × 283763713
Φ36(13) 37 × 428041 × 1471069
Φ48(13) 1009 × 659481276875569
Φ64(13) 2 × 193 × 1601 × 10433 × 68675120456139881482562689
Φ72(13) 73 × 4177 × 181297 × 9818892432332713
Φ96(13) 97 × 88993 × 127028743393 × 403791981344275297
Φ144(13) 3889 × 680401 × 29975087953 × 6654909974864689 × 558181416418089697
Φ192(13) 1153 × 11352931040252580224415980746369 × 14977427998321433931503086910333672833
Φ288(13) 2017 × 47521 × 54721 × 1590049 × 8299042833797200969471889569 × (61-digit prime)
Φ576(13) 577 × 6337 × 5247817273269739636080024961 × 5497355933986265726220616321 × 1032606621363411464640473542092061600217962755283816476128113983937 (GNFS) × (86-digit prime)

For the number 26344−1, it is the product of Φd(26) with positive integers d dividing 344 (i.e. d = 1, 2, 4, 8, 43, 86, 172, 344), and the factorization of Φd(26) for these positive integers d are:

from prime factorization
Φ1(26) 52
Φ2(26) 33
Φ4(26) 677
Φ8(26) 17 × 26881
Φ43(26) (60-digit prime)
Φ86(26) 681293 × (54-digit prime)
Φ172(26) 173 × 66221 × 97942133 × 338286119038330712762413 × 290239124722842089063959709049053 × (48-digit prime)
Φ344(26) 259295161 × 14470172263033 × (217-digit prime)

For the number 26354−1, it is the product of Φd(26) with positive integers d dividing 354 (i.e. d = 1, 2, 3, 6, 59, 118, 177, 354), and the factorization of Φd(26) for these positive integers d are:

from prime factorization
Φ1(26) 52
Φ2(26) 33
Φ3(26) 19 × 37
Φ6(26) 3 × 7 × 31
Φ59(26) 3541 × 334945708538658924935948356996883525107 × 10265667109489266992108219345733472151257
Φ118(26) 254250862891621 × (68-digit prime)
Φ177(26) 47791 × 1311074895191091284466533625050044762267011115706300424823729 × (100-digit prime)
Φ354(26) 709 × 16441898216641 × (149-digit prime)

Although these numbers also have N−1 or N+1 is product of a Cunningham number and a small number, but since the corresponding Cunningham numbers are < 25% factored, and the partial factorizations of them are insufficient for any of the proving methods that could make use of them, like the numbers (131193−1)/12 (see https://web.archive.org/web/20020809125049/http://www.users.globalnet.co.uk/~aads/C0131193.html and its factordb entry http://factordb.com/index.php?id=1000000000043597217&open=prime and its primality certificate http://factordb.com/cert.php?id=1000000000043597217 and its helper file http://factordb.com/helper.php?id=1000000000043597217 and factorization status of its N−1 http://factordb.com/index.php?id=1100000000271071123&open=ecm and http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=13&Exp=1192&c0=-&EN=&LM=) and (55839−1)/54 (see https://web.archive.org/web/20020821230129/http://www.users.globalnet.co.uk/~aads/C0550839.html and its factordb entry http://factordb.com/index.php?id=1100000000672342180&open=prime and its primality certificate http://factordb.com/cert.php?id=1100000000672342180 and its helper file http://factordb.com/helper.php?id=1100000000672342180 and factorization status of its N−1 http://factordb.com/index.php?id=1100000000674669599&open=ecm and http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=55&Exp=838&c0=-&EN=&LM=) and (701013−1)/69 (see https://web.archive.org/web/20020825072348/http://www.users.globalnet.co.uk/~aads/C0701013.html and its factordb entry http://factordb.com/index.php?id=1100000000599116446&open=prime and its primality certificate http://factordb.com/cert.php?id=1100000000599116446 and its helper file http://factordb.com/helper.php?id=1100000000599116446 and factorization status of its N−1 http://factordb.com/index.php?id=1100000000599116447&open=ecm and http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=70&Exp=1012&c0=-&EN=&LM=) and (79659−1)/78 (see https://web.archive.org/web/20020825073634/http://www.users.globalnet.co.uk/~aads/C0790659.html and its factordb entry http://factordb.com/index.php?id=1100000000235993821&open=prime and its primality certificate http://factordb.com/cert.php?id=1100000000235993821 and its helper file http://factordb.com/helper.php?id=1100000000235993821 and factorization status of its N−1 http://factordb.com/index.php?id=1100000000271854142&open=ecm and http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=79&Exp=658&c0=-&EN=&LM=) and (7116384+1)/2 (see section "Faktorisieren der Zahl (71^16384+1)/2-1" of http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt and its factordb entry http://factordb.com/index.php?id=1100000000213085670&open=prime and its primality certificate http://factordb.com/cert.php?id=1100000000213085670 and its helper file http://factordb.com/helper.php?id=1100000000213085670 and factorization status of its N−1 http://factordb.com/index.php?id=1100000000710475165&open=ecm and http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=71&Exp=16384&c0=-&EN=&LM=), thus we treat these numbers as integers with no special form (i.e. ordinary primes (https://t5k.org/glossary/xpage/OrdinaryPrime.html)) and prove its primality with Primo (http://www.ellipsa.eu/public/primo/primo.html, http://www.rieselprime.de/dl/Primo309.zip, https://t5k.org/bios/page.php?id=46, https://www.rieselprime.de/ziki/Primo, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/primo-433-lx64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/Primo309), and these numbers still need primality certificates:

The helper file for the 151st minimal prime in base 9 (30115811) in factordb: http://factordb.com/helper.php?id=1100000002376318423

The helper file for the 3187th minimal prime in base 13 (715041) in factordb: http://factordb.com/helper.php?id=1100000002320890755

The helper file for the 2342nd minimal prime in base 16 (90354291) in factordb: http://factordb.com/helper.php?id=1100000000633424191

The helper file for the 25240th minimal prime in base 26 (518854P) in factordb: http://factordb.com/helper.php?id=1100000003850155314

The helper file for the 35277th minimal prime in base 36 (OZ3932AZ) in factordb: http://factordb.com/helper.php?id=1100000000840634476

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 151st minimal prime in base 9 (30115811) in factordb: http://factordb.com/index.php?id=1100000002376318436&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 3187th minimal prime in base 13 (715041) in factordb: http://factordb.com/index.php?id=1100000002320890782&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N−1 for the 2342nd minimal prime in base 16 (90354291) in factordb: http://factordb.com/index.php?id=1100000000633424203&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N+1 for the 25240th minimal prime in base 26 (518854P) in factordb: http://factordb.com/index.php?id=1100000003850159350&open=ecm

Factorization status (and ECM efforts for the prime factors between 1024 and 10100) of N+1 for the 35277th minimal prime in base 36 (OZ3932AZ) in factordb: http://factordb.com/index.php?id=1100000000840634478&open=ecm

(in the tables below, Φ is the cyclotomic polynomial (https://en.wikipedia.org/wiki/Cyclotomic_polynomial, https://mathworld.wolfram.com/CyclotomicPolynomial.html, http://www.numericana.com/answer/polynomial.htm#cyclotomic, https://stdkmd.net/nrr/repunit/repunitnote.htm#cyclotomic, https://oeis.org/A013595, https://oeis.org/A013596, https://oeis.org/A253240))

(for the prime factors > 1024 (other than the ultimate prime factor (https://stdkmd.net/nrr/records.htm#BIGFACTOR, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Largest penultimate prime factor (ultimate factor shown also):")) of each algebraic factor) in the tables below, "ECM" means the elliptic-curve factorization method (https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization, https://www.rieselprime.de/ziki/Elliptic_curve_method, https://mathworld.wolfram.com/EllipticCurveFactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#ecm, http://factordb.com/listecm.php?c=1, http://www.loria.fr/~zimmerma/ecmnet/, http://www.loria.fr/~zimmerma/records/ecmnet.html, http://www.loria.fr/~zimmerma/records/factor.html, http://www.loria.fr/~zimmerma/records/top50.html, https://stdkmd.net/nrr/records.htm#largefactorecm, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Elliptic curve method:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=ecm&maxrows=10000, http://maths-people.anu.edu.au/~brent/factors.html, http://maths-people.anu.edu.au/~brent/ftp/champs.txt, https://www.alpertron.com.ar/ECM.HTM, https://www.alpertron.com.ar/ECMREC.HTM, https://homes.cerias.purdue.edu/~ssw/cun/press/tech.html, https://homes.cerias.purdue.edu/~ssw/cun/press/nontech.html, https://kurtbeschorner.de/ecm-efforts.htm, http://www.rechenkraft.net/yoyo//y_factors_ecm.php, http://www.rechenkraft.net/yoyo/y_status_ecm.php, http://www.wraithx.net/math/ecmprobs/ecmprobs.html), "P−1" means the Pollard P−1 method (https://en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1_algorithm, https://www.rieselprime.de/ziki/P-1_factorization_method, https://mathworld.wolfram.com/Pollardp-1FactorizationMethod.html, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "Pollard p-1:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=p-1&maxrows=10000, http://www.numericana.com/answer/factoring.htm#p-1, http://factordb.com/listecm.php?c=2), "P+1" means the Williams P+1 method (https://en.wikipedia.org/wiki/Williams%27s_p_%2B_1_algorithm, https://www.rieselprime.de/ziki/P%2B1_factorization_method, https://mathworld.wolfram.com/WilliamspPlus1FactorizationMethod.html, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "p+1:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=p%2b1&maxrows=10000, http://www.numericana.com/answer/factoring.htm#p+1, http://factordb.com/listecm.php?c=3), "SNFS" means the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://www.rieselprime.de/ziki/SNFS_polynomial_selection, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGSNFS, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (sections "Special number field sieve by size of number factored:" and "Special number field sieve by SNFS difficulty:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=snfs&maxrows=10000, https://stdkmd.net/nrr/wanted.htm#smallpolynomial), "GNFS" means the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGGNFS, https://homes.cerias.purdue.edu/~ssw/cun/champ.txt (section "General number field sieve by size of number factored:"), http://mklasson.com/factors/viewlog.php?sort=2&order=desc&method=gnfs&maxrows=10000, https://stdkmd.net/nrr/wanted.htm#suitableforgnfs))

For the number 32319+1, it is the product of Φd(3) with positive integers d dividing 4638 but not dividing 2319 (i.e. d = 2, 6, 1546, 4638), and the factorization of Φd(3) for these positive integers d are: (since 6 and 4638 are == 6 mod 12, thus for these two positive integers d, Φd(3) has Aurifeuillean factorization (https://en.wikipedia.org/wiki/Aurifeuillean_factorization, https://www.rieselprime.de/ziki/Aurifeuillian_factor, https://mathworld.wolfram.com/AurifeuilleanFactorization.html, http://www.numericana.com/answer/numbers.htm#aurifeuille, http://pagesperso-orange.fr/colin.barker/lpa/cycl_fac.htm, http://list.seqfan.eu/oldermail/seqfan/2017-March/017363.html, http://myfactorcollection.mooo.com:8090/source/cyclo.cpp, http://myfactorcollection.mooo.com:8090/LCD_2_199, http://myfactorcollection.mooo.com:8090/LCD_2_998, https://stdkmd.net/nrr/repunit/repunitnote.htm#aurifeuillean, https://www.unshlump.com/hcn/aurif.html, https://www.ams.org/journals/mcom/2006-75-253/S0025-5718-05-01766-7/S0025-5718-05-01766-7.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_138.pdf), https://maths-people.anu.edu.au/~brent/pd/rpb127.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_164.pdf), https://www.jams.jp/scm/contents/Vol-2-3/2-3-16.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_167.pdf)), and ΦdL(3) and ΦdM(3) are their Aurifeuillean L and M factors, respectively)

from currently known prime factorization
Φ2(3) 22
Φ6L(3) 1 (empty product (https://en.wikipedia.org/wiki/Empty_product))
Φ6M(3) 7
Φ1546(3) 1182691 × 454333843 × 7175619780295897339 × 219067434459114063477547 × 650663511671253931884619 × (288-digit composite with no known proper factor, SNFS difficulty is 370, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=3&Exp=773&c0=%2B&LM=&SA=)
Φ4638L(3) 18553 × 2957658597967379799686737984695290731543 × (325-digit composite with no known proper factor, SNFS difficulty is 370, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=3&Exp=2319&c0=%2B&LM=L&SA=)
Φ4638M(3) 4639 × 6716055901 × (356-digit composite with no known proper factor, SNFS difficulty is 370, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=3&Exp=2319&c0=%2B&LM=M&SA=)

For the number 131504−1, it is the product of Φd(13) with positive integers d dividing 1504 (i.e. d = 1, 2, 4, 8, 16, 32, 47, 94, 188, 376, 752, 1504), and the factorization of Φd(13) for these positive integers d are:

from currently known prime factorization
Φ1(13) 22 × 3
Φ2(13) 2 × 7
Φ4(13) 2 × 5 × 17
Φ8(13) 2 × 14281
Φ16(13) 2 × 407865361
Φ32(13) 2 × 2657 × 441281 × 283763713
Φ47(13) 183959 × 19216136497 × 534280344481909234853671069326391741
Φ94(13) 498851139881 × 3245178229485124818467952891417691434077
Φ188(13) 36097 × 75389 × 99886248944632632917 × (74-digit prime)
Φ376(13) 41737 × 553784729353 × 188172028979257 × 398225319299696783138113 × 7663511503164270157006126605793 × 8935170451146532986983277856738508374630999814576686938913 × (62-digit prime)
Φ752(13) 13537 × 1232912541076129 × (391-digit composite with no known proper factor, SNFS difficulty is 422, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=13&Exp=376&c0=%2B&LM=&SA=)
Φ1504(13) 4513 × 9426289921 × (807-digit composite with no known proper factor, SNFS difficulty is 838, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=13&Exp=752&c0=%2B&LM=&SA=)

For the number 163543+1 = 214172+1, it is the product of Φd(2) with positive integers d dividing 28344 but not dividing 14172 (i.e. d = 8, 24, 9448, 28344), and the factorization of Φd(2) for these positive integers d are:

from currently known prime factorization
Φ8(2) 17
Φ24(2) 241
Φ9448(2) 107083633 × 7076306353 × 2428629073416562046689 × (1382-digit composite with no known proper factor, SNFS difficulty is 1423, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=2&Exp=4724&c0=%2B&LM=&SA=)
Φ28344(2) 265073089 × (2834-digit composite with no known proper factor, SNFS difficulty is too large to handle for the script, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=2&Exp=14172&c0=%2B&LM=&SA=)

For the number 261886−1, it is the product of Φd(26) with positive integers d dividing 1886 (i.e. d = 1, 2, 23, 41, 46, 82, 943, 1886), and the factorization of Φd(26) for these positive integers d are:

from currently known prime factorization
Φ1(26) 52
Φ2(26) 33
Φ23(26) 13709 × 1086199 × 1528507873 × 615551139461
Φ41(26) 83 × 2633923 × (49-digit prime)
Φ46(26) 47 × 1157729 × 378673381 × 629584013567417
Φ82(26) 9677 × 1532581 × (47-digit prime)
Φ943(26) 384118835398327 × (1231-digit composite with no known proper factor, SNFS difficulty is 1335, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=26&Exp=943&c0=-&LM=&SA=)
Φ1886(26) (1246-digit composite with no known proper factor, SNFS difficulty is 1335, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=26&Exp=943&c0=%2B&LM=&SA=)

For the number 363933−1 = 67866−1, it is the product of Φd(6) with positive integers d dividing 7866 (i.e. d = 1, 2, 3, 6, 9, 18, 19, 23, 38, 46, 57, 69, 114, 138, 171, 207, 342, 414, 437, 874, 1311, 2622, 3933, 7866), and the factorization of Φd(6) for these positive integers d are:

from currently known prime factorization
Φ1(6) 5
Φ2(6) 7
Φ3(6) 43
Φ6(6) 31
Φ9(6) 19 × 2467
Φ18(6) 46441
Φ19(6) 191 × 638073026189
Φ23(6) 47 × 139 × 3221 × 7505944891
Φ38(6) 1787 × 48713705333
Φ46(6) 113958101 × 990000731
Φ57(6) 47881 × 820459 × 219815829325921729
Φ69(6) 11731 × 1236385853432057889667843739281
Φ114(6) 457 × 137713 × 190324492938225748951
Φ138(6) 24648570768391 × 816214079084081564521
Φ171(6) 19 × 25896916098621777025320461067950269867 × (46-digit prime)
Φ207(6) 399097 × (98-digit prime)
Φ342(6) 62174327387790051073 × (65-digit prime)
Φ414(6) 4811469913 × 61040960263 × 25280883279243199352415750302719 × (51-digit prime)
Φ437(6) 989723472495640900314985156529340457 × (273-digit composite with no known proper factor, SNFS difficulty is 341, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=6&Exp=437&c0=-&LM=&SA=)
Φ874(6) (309-digit prime, for its ECPP primality certificate see http://factordb.com/cert.php?id=1100000000019287760, and for its certificate chain see http://factordb.com/certchain.php?fid=1100000000019287760&action=all&fr=0&to=100)
Φ1311(6) 100745107 × 1719861571 × 2376829061449 × (587-digit composite with no known proper factor, SNFS difficulty is 682, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=6&Exp=1311&c0=-&LM=&SA=)
Φ2622(6) 41953 × 266030354191322260711 × (592-digit composite with no known proper factor, SNFS difficulty is 682, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=6&Exp=1311&c0=%2B&LM=&SA=)
Φ3933(6) 7867 × (1845-digit composite with no known proper factor, SNFS difficulty is too large to handle for the script, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=6&Exp=3933&c0=-&LM=&SA=)
Φ7866(6) (1849-digit composite with no known proper factor, SNFS difficulty is too large to handle for the script, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSNFS?Number=&Base=6&Exp=3933&c0=%2B&LM=&SA=)

For the files in this page:

  • File "certificate b n": The primality certificate for the nth minimal prime in base b (local copy from factordb (http://factordb.com/, https://www.rieselprime.de/ziki/Factoring_Database)), after downloading these files, these files should be renamed to ".out" files, e.g. file "certificate9_149" is the primality certificate for the 149th minimal prime in base 9, i.e. the primality certificate for the prime 763292 in base 9, which equals the prime (31×9330−19)/4.