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Abstract

I provide the details of the factorization of the Mersenne number 21061 − 1 by the
Special Number Field Sieve. Although this factorization is easier than the completed
factorization of RSA-768, it represents a new milestone for factorization using publicly
available software.

1 Introduction

The Number Field Sieve (NFS) is currently the fastest classical algorithm for factoring a large

integer into its prime cofactors [8]. Continued study of the practical implementations of the

NFS is of significant interest for the security assessment of common public-key cryptosystems,

chief among them being the RSA algorithm. The security of the RSA encryption algorithm

relies on the fact that integer factorization is difficult. Improvements to the NFS algorithm

are of significant practical importance, and factoring milestones are followed by the applied

cryptography community. Significant milestones include the factoring of a 512-bit RSA

modulus by the general NFS (GNFS) in 2000 [4], 21039 − 1 by the special NFS (SNFS) in

2007 [2], and a 768-bit RSA modulus in 2010 [7].

Using the SNFS, the complete factorization of the Mersenne number, 21061 − 1, has been

determined. Prior this this effort, this number had no known factors. Although easier than

the factorization of RSA-768, this represents a new largest factorization using SNFS, and

the largest factorization to date using publicly available software. NFS is comprised of five

basic steps: polynomial selection, sieving for relations, filtering of relations, linear algebra,

and square root. Each of these steps will be detailed below.
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2 Polynomial selection

Polynomial selection consists of finding two polynomials that share a common root modulo

the number being factored. For this SNFS factorization, selection of appropriate polynomials

is trivial. The polynomials f(x) = x6 − 2 and g(x) = x − 2177 share the common root 2177

modulo 21061 − 1.

3 Sieving

Sieving was by far the most computationally intensive step in this factorization. Although

sieving is somewhat memory intensive, requiring one to two gigabytes per process, the indi-

vidual sieving tasks do not need to interact. Taking advantage of the increasing amount of

memory in today’s typical home computer, I administer a distributed computing project to

provide the capacity computing required for the sieving. Using the Berkeley Open Infras-

tructure for Network Computing (BOINC) [1], the NFS@Home project distributes the NFS

sieving tasks to volunteer computers and collects the results [5].

The sieving binaries used are based on the gnfs-lasieve lattice sieve code written by Jens

Franke and Thorsten Kleinjung [6] adapted for use in the BOINC framework. Factor base

bounds of 250 million were used on both the algebraic and rational sides to reduce the

amount of memory required for the computation. A large prime bound of 233 was used on

both sides with up to two large primes allowed on the algebraic side and up to three large

primes on the rational side. Sieving was performed over a rectangular region of size 216×215

using the gnfs-lasieve4I16e binary. These sieving parameters turned out to be suboptimal,

requiring sieving over a significantly larger range of q than initially expected. Most of the

special-q between 20 million and 1.45 billion on the rational side, and between 20 million

and 1.07 billion on the algebraic side were sieved. The total computational effort expended

on sieving was approximately 3 CPU-centuries and yielded 671, 385, 523 unique relations.

4 Filtering

Filtering was performed using the MSIEVE software library [10]. Filtering started with

the set of approximately 671 million unique relations. Following the singleton and clique

removal steps, the matrix had approximate 282 million rows. Following the merge phase, a

final matrix of 90.3 million rows and columns with an average weight of 125.27 per column

was produced. Filtering required approximately 50 CPU-hours and 40 gigabytes of memory

to complete, and the final matrix in binary form requires approximately 40 gigabytes of
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storage.

5 Linear algebra

The MSIEVE software library uses the block Lanczos algorithm [9] for the linear algebra.

In collaboration with Jason Papadopoulos, the author of the MSIEVE library, and Ilya

Popovyan [11], a parallel version of MSIEVE utilizing MPI has been written and continues

to be optimized. The linear algebra was performed using a 24 × 24 MPI grid (576 total

cores), and was split between the Trestles cluster at the San Diego Supercomputing Center

and the Lonestar cluster at the Texas Advanced Computing Center due to allocation details.

On both clusters the nodes use DDR3 memory, and communication between nodes within

the cluster uses Infiniband interconnects. The linear algebra required approximately 35

CPU-years, and yielded 32 non-trivial dependencies.

6 Square root

MSIEVE uses a straightforward, but memory-intensive, algorithm for the algebraic square

root. This involves multiplying all the relations involved in a non-trivial dependency from

the linear algebra modulo the monic algebraic polynomial f(x). Because of the size of the

products, FFT-based multiplication is used. For 21061 − 1, this product completed in 9

CPU-hours, required 14 gigabytes of memory, and produced a fifth degree polynomial with

coefficients 4.03 gigabits in size. The algebraic square root, calculated using q-adic Newton

iteration, required 13.5 CPU-hours. Each dependency has a 50% chance of yielding the

factors, and the factors were found on the second dependency. The square root step required

a total of 45 CPU-hours.

7 Results

The number 21061 − 1 is the product of 143-digit and 177-digit prime numbers, P143 ·P177,

where

P143 = 468172263510722656207776706750069723016189792142528328750689763038394004

13682313921168154465151768472420980044715745858522803980473207943564433
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P177 = 527739642811233917558838216073534609312522896254707972010583175760467054

896492872702786549764052643493511382273226052631979775533936351462037464

331880467187717179256707148303247

The factorizations of P143 ± 1 and P177 ± 1 are

P143 − 1 = 24 · 3 · 13 · 29 · 1061 · 1717297 · 2130134834354231 · 5879064877797191·

113382740713189708770977555625503236436481111748875743652757880942902

361172061775595195662710371631

P143 + 1 = 2 · 71 · 229 · 307 · 180073 · 1695653 · 802019957507·

60854868590560169873679751115717379719685541·

314685977891584893863606411002767625028154365970917021388168776617403

P177 − 1 = 2 · 32 · 1061 · 749005237 · 495208476776963 · 662644764100955663·

2141325263036607091 · 775773368635591611966240530501981·

676800431849058805522047060741035975900358261557169622681838442743694

28448480629

P177 + 1 = 24 · 267493 · 140551319 · 4927926989 · 342953555423061833·

519102134515219689762106622868417209328766160609019137855695907861330

547801183552702820127130029750936928186728766149200994319755504407

These factors will be published in the fourth edition of the Cunningham book [3] and are

currently available in the factorization tables of the Cunningham project website [12].
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