
Foundations of Distributed
Consensus and Blockchains

(Preliminary Draft)

Elaine Shi

2

Dedicated to the memory of my beloved mother, Honghua Ding (1952-2017),
the kindest and most talented person I’ve known.

献给我最爱的母亲丁虹华 (1952-2017)

4

Preface

This is a preliminary (read: still somewhat rough) draft. I will be continually
updating it as I teach this course in the next few years. Please always check
back for the latest version.

Acknowledgements: I would like to thank my student Andrew Miller
who first got me interested in distributed consensus about five years ago. I am
indebted to my colleague Rafael Pass, who, since I joined Cornell, blocked out
time from his busy life to discuss consensus with me, and who also suggested
to write this textbook. Thanks especially to Hubert Chan, my best friend
and collaborator, for discussing distributed consensus, research, life, universe,
and everything with me, throughout the past almost two decades, and for
always understanding that I meant “left” when I said “right”.

Many people have provided me valuable feedback on the first draft of the
textbook, including Elisaweta Masserova, Daniel Lavie, Tal Moran, Qixing
Huang, Joerg Kliewer, Krishna Podder, Ling Ren, Kartik Nayak, Bryan
Tantisujjatham, and Kai Zou. I am still working on addressing some of
this feedback. A few of the chapters benefited from scribe notes from the
students in my graduate-level course “CS6432 Distributed Consensus and
Blockchains”. Last but not the least, many thanks to Srini Devadas, Yan
Gao, Jacob Leshno, Bruce Maggs, and Dan Boneh for their moral support,
help, and/or for discussions about distributed consensus.

This book is in part supported by an NSF grant under the number
CNS-1561209.

If you have any comments or feedback about the book or exercises, please
do not hesitate to email me!

Elaine (Runting) Shi, Summer, 2020

6

Contents

1 Distributed Consensus: from Aircraft Control to Cryptocur-
rencies 1

2 Preliminaries 3

2.1 Negligible Function and Security Parameter 3

2.2 Collision Resistant Hash Functions 4

2.3 Random Oracles and Proof-of-Work 5

2.4 Digital Signatures . 6

2.5 Chernoff Bound ※ . 7

3 Byzantine Broadcast and the Dolev-Strong Protocol 9

3.1 Introduction . 9

3.1.1 The Byzantine Generals’ Problem 9

3.1.2 A Modern Variant . 10

3.1.3 Analogy to Reliable Distributed Systems 10

3.2 Problem Definition . 11

3.2.1 Synchronous Network 12

3.2.2 Definition of Byzantine Broadcast 12

3.3 A Näıve (Flawed) Protocol 13

3.4 The Dolev-Strong Protocol 14

3.4.1 Intuition . 15

3.4.2 Analysis . 16

3.4.3 Further Discussions 17

3.5 The Muddy Children Puzzle 17

3.6 Additional Exercises . 18

4 Byzantine Broadcast without Digital Signatures (Lower Bound) 21

4.1 Impossibility of Consensus with 1/3 Corruptions without Dig-
ital Signatures . 23

7

8 CONTENTS

4.2 Proving the Lower Bound . 24

4.3 Additional Exercises . 25

5 Byzantine Broadcast without Digital Signatures (Upper Bound) 27

5.1 Protocol . 27

5.2 Analysis . 29

5.3 Additional Exercises . 31

6 Blockchain and State Machine Replication 33

6.1 Modeling Network Delay More Generally 33

6.2 Defining a Blockchain Protocol 34

6.3 Construction of a Blockchain Protocol from Byzantine Broadcast 36

6.4 Discussions . 38

7 A Simple Blockchain Protocol — Streamlet 39

7.1 The Streamlet Protocol . 40

7.1.1 Epoch and Leader Rotation 40

7.1.2 Blocks and Blockchain 40

7.1.3 Votes and Notarization 41

7.1.4 Protocol . 41

7.2 Consistency . 43

7.3 Liveness . 45

7.4 The Partial Synchronous Model and Choosing the Epoch Length 46

7.5 Historical Anecdotes . 47

7.6 Additional Exercises . 48

8 Lower Bound for Partial Synchrony 49

8.1 Problem Definition . 49

8.2 Impossibility of Partial Synchronous Consensus under n/3
Corruptions . 51

8.3 Additional Exercises . 53

9 Round Complexity of Deterministic Consensus ※ 55

9.1 Weakly Valid Byzantine Agreement 55

9.2 Proving the Lower Bound for f = 2 56

9.2.1 Overview of the Proof 56

9.2.2 Sequence of Executions for f = 2 58

9.3 Extending the Argument for General Choices of f 60

CONTENTS 9

10 Round Complexity of Randomized Consensus ※ 65

10.1 Round Complexity of Randomized BB 65

10.2 Survey of Recent Results . 67

11 Communication Complexity of Consensus ※ 69

11.1 Communication Lower Bound for Deterministic Consensus . . 70

11.2 Communication-Efficient Randomized Consensus 72

11.3 Survey of Recent Results . 74

12 Asynchronous Consensus: The FLP Impossibility 77

12.1 Definitions: Asynchronous Consensus and Execution Model . 78

12.2 Impossibility of Asynchronous, Deterministic Consensus . . . 78

12.3 Proving the FLP Impossibility 78

12.3.1 Terminology . 79

12.3.2 Proof Roadmap . 79

12.3.3 Existence of a Bivalent Initial Configuration 80

12.3.4 One Bivalent Configuration Leads to Another 80

13 A Randomized Asynchronous Consensus Protocol ※ 85

13.1 Assumption: A Common Coin Oracle 85

13.2 Randomized Asynchronous Consensus 86

13.3 Consistency . 88

13.4 Liveness . 89

13.5 Termination . 91

13.6 Additional Exercises . 91

14 Bitcoin and Nakamoto’s Blockchain Protocol 93

14.1 Nakamoto’s Ingenious Idea in a Nutshell 94

14.2 Nakamoto’s Blockchain: Formal Description 96

14.3 Choosing the Mining Difficulty Parameter 99

14.4 Properties of Nakamoto’s Blockchain 101

14.4.1 Chain Growth Lower Bound 102

14.4.2 Chain Quality . 103

14.4.3 Consistency . 104

14.4.4 Liveness . 105

15 The Selfish Mining Attack and Incentive Compatibility 107

15.1 The Selfish Mining Attack . 108

15.2 Fruitchain: an Incentive-Compatible Blockchain ※ 110

10 CONTENTS

16 A Simple, Deterministic Longest-Chain-Style Protocol 113
16.1 Deterministic Longest-Chain-Style Consensus Protocol 114
16.2 Analysis . 115
16.3 Additional Exercises . 117

17 Analysis of Nakamoto’s Blockchain ※ 119
17.1 Ideal-World Protocol . 119
17.2 Notations . 121
17.3 Convergence Opportunities 121
17.4 Chain Growth Lower Bound 124
17.5 Chain Quality . 125
17.6 Consistency . 127

18 Proof of Stake (Brief Overview) 131

Chapter 1

Distributed Consensus: from
Aircraft Control to
Cryptocurrencies

Back in the 1970s, it became clear that computers were going to be used in
aircraft control. Since this was a mission-critical system, it was important
to replicate it on multiple machines. But how do we make sure that the
multiple machines share a consistent view and make consistent decision?

To understand this problem better, NASA sponsored the Software Imple-
mented Fault Tolerance (SIFT) project [WLG+89], whose goal was to build
a resilient aircraft control system that tolerated faults of its components.
The famous work of Lamport et al. [LSP82] which introduced the well-known
“Byzantine Generals” problem, came out of this project. This work laid the
foundation of distributed consensus. Since then, distributed consensus has
come a long way and has been deployed in many application settings.

In the past couple of decades, companies like Google and Facebook have
adopted distributed consensus as part of their computing infrastructure, e.g.,
to replicate mission-critical services such as Google Wallet and Facebook
Credit.

Starting in 2009, Bitcoin and various subsequent cryptocurrencies came
around and became popular. The cryptocurrencies achieved a new break-
through in distributed consensus, since they showed, for the first time, that
consensus is viable in a decentralized, permissionless environment where
anyone is allowed to participate.

In this course, you will learn the mathematical foundations of distributed
consensus as well as how to construct consensus protocols and prove them

1

secure. We will motivate distributed consensus with a modern narrative, and
yet we will cover the classical theoretical foundations of consensus. We will
cover both classical, permissioned consensus protocols, as well as modern,
permissionless consensus protocols such as Bitcoin.

A note on the terminology. Throughout this course, we will formally
define several consensus abstractions, including notably, Byzantine Broadcast,
and blockchains (i.e., state machine replication). On the other hand, we
use the term “consensus” in an informal and generic manner to refer to
any related abstraction that captures the act of reaching agreement in a
distributed system.

Although multiple fault models have been studied in the past (e.g., fail-
stop, crash, omission, and Byzantine faults), in this course, we focus on the
hardest case, i.e., Byzantine faults. A node or system component that exhibits
Byzantine fault can behave arbitrarily maliciously and need not follow the
prescribed consensus protocol. Multiple Byzantine nodes can collude with
each other and coordinate in their attack. Unless otherwise noted, whenever
we say a node/player is “corrupt” or “malicious”, we specifically mean
Byzantine faults.

Unless otherwise noted, we assume that corruption is static, i.e., the
adversary decides which set of nodes to corrupt a-priori before the protocol
execution starts.

The consensus protocols we will cover sometimes make use of crypto-
graphic primitives such as digital signatures or collision-resistant hashing.

Intended audience. Chapters and sections marked with “※” are meant as
more advanced contents: they are recommended to be taught in a graduate-
level course or in a special-topics course on distributed consensus. Other
chapters can be taught at the senior undergraduate level assuming a general
background of discrete mathematics.

2

Chapter 2

Preliminaries

We briefly review some simple cryptographic primitives and probability
tools that will become useful in constructing and reasoning about consensus
protocols. We will only cover the basic concepts and not go into detailed
constructions and proofs; and the reader could use this chapter for reference
purposes. For a more extensive course on cryptography, we refer the reader
to several other textbooks [BS,PS,KL07].

Throughout the course, we will use {0, 1}∗ to mean a string of arbitrary
length; we use {0, 1}` to mean a string of ` bits; and we use [n] to mean
{1, 2, . . . , n}.

2.1 Negligible Function and Security Parameter

In cryptographic schemes such as encryption and digital signatures, we often
need to choose a secret key of length λ. The longer the key length λ, the
more secure the scheme is. Ideally, we want the following desired property:
as we increase the key length a little, the probability that a polynomial-time
adversary can break the cryptographic scheme drops very sharply. This way,
we can get sufficient security with key lengths that are not too long.

We typically use a so-called negligible function to capture such a sharply
dropping function. We say that negl(λ) is a negligible function iff for any
fixed polynomial function p(λ), there exists λ0 such that for any λ > λ0,
negl(λ) < 1/p(λ). In other words, a negligible function is one that drops
off faster than any inverse-polynomial function. For example, exp(− log2 λ),
λ− log λ, and 2−λ are all negligible functions. If negl(λ) is a negligible function
and poly(λ) is a polynomial function in λ, then negl(λ) ·poly(λ) is a negligible
function in λ.

3

The parameter λ is often said to be a security parameter. Throughout
this textbook, we will use λ to denote the security parameter. For example,
λ may refer to the length of a secret key, or the length of a hash function’s
outcome depending on the context. We will assume that any adversary trying
to attack our consensus protocols (possibly controlling a subset of corrupt
players) is restricted to running in time that is polynomial in λ.

2.2 Collision Resistant Hash Functions

Later in our course, we will construct blockchain protocols where a dis-
tributed set of nodes jointly maintain an ever-growing, linearly-ordered log of
transactions. It will be convenient if we can use a short digest to “uniquely”
identify a blockchain (i.e., a linearly ordered log) or any prefix of it. For this
purpose, we can take a so-called hash function and hash the blockchain to
a short digest. For any function that maps a long string to a short digest,
obviously a “collision” must exist, i.e., there must exist two different inputs
that map to the same digest. However, if a hash function is cryptographically
secure, it is computationally infeasible for any polynomial-time adversary
to find such collisions. This way, the short “hash” cryptographically binds
to the blockchain. Below, we define a hash function more formally which
essentially conveys the above intuition.

Given a hash function h : {0, 1}∗ → {0, 1}λ, a collision is a pair (x, x′)
such that x 6= x′ but h(x) = h(x′). A collision-resistant hash family H is a
family of hash functions, such that if we draw a hash function from the family
at random, it is hard for a polynomial-time adversary to find a collision.

Formally, let H = {hs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ be a family of hash

functions indexed by s ∈ {0, 1}λ. We say that H is a collision-resistant hash
family, iff:

• hs can be computed in polynomial time;

• for any adversaryA running in time polynomial in λ, there is a negligible
function negl(·), such that for every λ,

Pr
[
s

$←{0, 1}λ : A(s) outputs a collision for hs

]
≤ negl(λ)

where
$← means “randomly sample”.

Note that since the domain is larger than the range, a collision must
exist by the pigeon-hole principle. However, the point here is that a compu-
tationally bounded adversary cannot find collisions except with negligible
probability.

4

In practice, we often use a single hash function, such as SHA256 [sha], as
a collision-resistant hash function. SHA256 is a function that hashes long
messages into 256-bit digests. It is commonly believed that finding collisions
for SHA256 is difficult.

2.3 Random Oracles and Proof-of-Work

In practice, hash functions such as SHA256 are believed to give random-
looking outcome for each distinct query. For this reason, we often pretend
that a cryptographic hash function (e.g., SHA256) is an idealized object
called a random oracle.

A random oracle H : {0, 1}∗ → {0, 1}λ captures a function that is chosen
completely at random. Whenever we query the function H with a fresh input
x ∈ {0, 1}∗ that has not been queried before, H generates a random answer
from {0, 1}λ and returns it. Whenever a repeat query x is made, H simply
returns the same answer it gave before for the input x.

We sometimes also use random oracles whose output range is not exactly
{0, 1}λ for some λ. For example, we sometimes use H : {0, 1}∗ → [n] whose
output range is [n].

Remark 1. A single deterministic function like SHA256 in fact cannot
realize a random oracle; nonetheless, we often pretend that it’s a random
oracle as a heuristic. If a cryptographic scheme employs random oracles and
is proven secure assuming the existence of random oracles, we often replace
the random oracle with a concrete hash function in practice and hope that it
is still secure. This heuristic has been adopted in various contexts, and we
have some empirical evidence why this could be a good approach (if used
carefully).

We often use cryptographic hash functions such as SHA256 as a Proof-
of-Work (PoW) random oracle. In this case, not only are we assuming that
every fresh invocation of the function returns a random answer, we are also
assuming that every invocation consumes some computational resources,
and that there is no obvious short-cut one can exploit to speed up the
computation. If one would like to learn the outcome of the function at
many places, there should be no better way than brute-force evaluating the
function at all of these inputs.

5

2.4 Digital Signatures

In our consensus protocols later, often times, when Alice says “I propose that
we agree on the bit 0”, Bob might later on want to convince Charles that
Alice indeed said this. If Bob is malicious, however, he could potentially alter
Alice’s message and try to convince Charles that Alice suggested to agree on
1. Digital signature schemes can help us here. Alice can cryptographically
sign the message she sends, producing a so-called “digital signature”. The
digital signature can ensure to a recipient (e.g., Charles), that the message
indeed was signed by Alice, and that the message was not altered by Bob.

Formally, a digital signature scheme consists of three algorithms, Gen,
Sign, and Vf:

• pk, sk← Gen(1λ): Gen takes in the security parameter λ and generates
a public- and secret-key pair denoted pk and sk respectively.

• σ ← Sign(sk,m): the signing algorithm Sign takes in a secret key sk, a
message m ∈ {0, 1}∗, and outputs a signature σ.

• {0, 1} ← Vf(pk,m, σ): the verification algorithm takes in the public
key pk, a message m, a signature σ, and outputs either 1 indicating
“accept” or 0 indicating “reject”.

A digital signature scheme (Gen, Sign,Vf) is said to be correct if for
every pk, sk pair in the support of the Gen algorithm, for any m ∈ {0, 1}∗,
Vf(pk,m,Sign(sk,m)) = 1.

A digital signature scheme is secure, iff, roughly speaking, no polynomial-
time adversary can forge signatures without the secret key, on any fresh
messages whose signatures it has not seen. More formally, a digital signature
scheme (Gen, Sign,Vf) is said to be secure, iff for every polynomial-time A,
there exists a negligible function negl(·), such that for every λ,

Pr

[
pk, sk

$←Gen(1λ), (m,σ)← ASign(sk,·)(pk) :
A did not query m
∧ Vf(pk,m, σ) = 1

]
≤ negl(λ)

In the above, the notation ASign(sk,·)(pk) means that A, who obtains the
public key pk, can interact with a signing oracle which uses the secret key
sk to sign any message that is queried by A, and gives the signature to A.
In other words, even if A can obtain signatures on messages of its choice, it
still cannot forge a signature on any fresh, unqueried message.

6

Ideal signatures. In our course, we often assume the ideal signature model
where the adversary simply cannot forge signatures. Formally, this means
that we often argue our consensus protocols secure, ignoring the negligible
probability with which the adversary can break the signature scheme.

2.5 Chernoff Bound ※

The Chernoff bound is often used to prove that the sum of independent
random variables is highly concentrated around its mean. In this course, we
will use the following version of Chernoff bound.

Theorem 1 (Chernoff bound). Let X :=
∑n

i=1 Xi where each Xi = 1 with
probability pi and Xi = 0 with probability 1 − pi. Further, all Xi’s are
independent. Let µ :=

∑n
i=1 pi. Then, we have the following:

• Upper tail: Pr [X ≥ (1 + δ)µ] ≤ exp(− δ·min{δ,1}·µ
3) for all δ > 0;

• Lower tail: Pr [X ≤ (1− δ)µ] ≤ exp(− δ2µ
2) for all 0 < δ < 1.

7

8

Chapter 3

Byzantine Broadcast and the
Dolev-Strong Protocol

3.1 Introduction

3.1.1 The Byzantine Generals’ Problem

In a seminal paper by Lamport et al. [LSP82], the problem of consensus is
illustrated with the following example.

“Imagine that several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. The generals
can communicate with one another only by messenger. After observing the
enemy, they must decide upon a common plan of action. However, some
of the generals may be traitors, trying to prevent the loyal generals from
reaching agreement.”

Suppose that there are n generals, and one of them is called the com-
manding general. The commanding general would like to propose an order
that is either ATTACK or RETREAT to all generals, such that

1. All loyal generals reach the same decision; and

2. If the commanding general is loyal, then all loyal generals will obey the
commanding general’s order.

Lamport et al. [LSP82] named this problem the Byzantine Generals
problem; and it is also commonly referred to as Byzantine Broadcast (BB).
Note that if the commanding general is guaranteed to be loyal, then the
problem is trivial: the commanding general could send its order to all other
generals, and all other generals could simply obey (assuming that they can

9

verify that the order indeed came from the commanding general). Of course,
even the commanding general can be a traitor, and in this case, it can
propose different orders to different generals; and thus the aforementioned
näıve solution would result in inconsistent decisions.

So is it still possible for the loyal generals to agree upon an attack plan by
communicating with each other despite the influence of corrupted generals?

3.1.2 A Modern Variant

Here is a more modern variant. Suppose that during the Covid-19 pandemic,
the program committee of the Blockchain’20 conference try to decide whether
next year’s Blockchain conference will be held virtually online or in person.
The chair of the program committee is called the program chair. The program
chair would like to convey a suggestion to the entire program committee,
that is either “virtual” or “physical”. Since the program committee are all
in quarantine, they decide to reach agreement over the Internet by sending
emails back and forth to each other. We may assume that an email sent
sometime today will be received and read by the recipient at the beginning
of tomorrow.

Now, there is a problem: a subset of the program committee are unhappy
with the Blockchain’20 conference since their papers had got rejected earlier
from the conference. These unhappy committee members may be secretly
plotting to disrupt agreement and prevent the next Blockchain’20 conference
from happening. Even the program chair herself may be secretly unhappy
with the Blockchain conference. While the happy committee members will
faithfully follow the protocol rules, the unhappy members can misbehave
arbitrarily, and send arbitrary messages.

Can we devise a protocol such that

• all the happy committee members can reach a common agreement; and
moreover,

• if the program chair is happy, then every happy committee member should
output the chair’s original suggestion?

3.1.3 Analogy to Reliable Distributed Systems

The above imaginary situations serve as an analogy with a computer system
in which one or more components can fail. More precisely, the problem of
distributed consensus in a distributed system is that while some of the nodes in
the system might act in an arbitrary manner, the correctly functioning nodes

10

still need to agree on a common value among themselves. Real-life consensus
protocols (e.g., Bitcoin) typically need to repeatedly reach consensus over
time, such that nodes jointly maintain an ever-growing, linearly-ordered log of
transactions, sometimes called a blockchain. In our course, we shall start with
Byzantine Broadcast which allows nodes to reach agreement once. This is
important for understanding the foundations of distributed consensus. Later
in our course, we will indeed cover how to define and construct “blockchains”,
i.e., a repeated consensus abstraction.

3.2 Problem Definition

Let us now formalize the problem more precisely. We will henceforth refer to
the generals (or committee members) as nodes, and refer to the commanding
general (or the program chair) as the designated sender, or simply sender for
short.

Consider a distributed network of n nodes numbered 1, 2, . . . , n respec-
tively. We often use the notation [n] := {1, 2, . . . , n} to denote the set of all
nodes. Without loss of generality, we may assume that the sender is named
node 1.

We refer to the nodes that follow the prescribed protocol throughout as
honest nodes. A subset of the nodes, however, can be corrupt. The corrupt
nodes need not follow the prescribed protocol, and they may send/transmit
arbitrary messages at arbitrary times, omit sending messages, stop or take
an incorrect step. All the corrupt nodes can form a coalition and share
information with each other, and perform a coordinated attack. For this
reason, it is often instructive to imagine that all the corrupt nodes are
controlled by a single adversary. We stress that a-priori, we do not know
which nodes are corrupt — had we known, the problem would also be
trivialized (see Exercise 4). In other words, our Byzantine Broadcast protocol
must work no matter which subset of nodes are corrupt, as long as the total
number of corruptions is upper bounded by f < n.

We assume that every pair of nodes can communicate with each other,
and moreover every node has a public and secret key pair corresponding to a
digital signature scheme, and all nodes’ public keys are common knowledge.
In the Dolev-Strong protocol below, every message will be signed by its
creator. We use the notation 〈m〉i a pair (m,σ) where σ is a valid signature
on the message m that can be verified under node i’s public key.

Remark 2. For simplicity, unless otherwise noted, we assume that the set
of corrupt nodes is chosen at the start of the protocol (but the protocol is

11

unaware of which nodes are corrupt). This model is often referred to as
the static corruption model. In the distributed systems and cryptography
literature, an alternative model, called adaptive corruption, is also extensively
studied. In the adaptive model, an adversary can decide which nodes to
corrupt in the middle of the protocol’s execution, after having observed
messages sent by honest nodes. The Dolev-Strong protocol is in fact also
secure against adaptive corruptions although we do not explicitly discuss it
in this chapter.

3.2.1 Synchronous Network

We assume that the protocol takes place in a synchronous network, i.e., when
honest nodes send messages, the honest recipients are guaranteed to receive
them within a bounded amount of time, say, one minute. No matter how
long the message delay is, we can define it as one round. Therefore, we shall
assume that the protocol execution proceeds in rounds. At the beginning
of each round, all nodes receive incoming messages from the network. They
then perform some local computation, and send out new messages. The
following is guaranteed by the network:

Synchrony assumption: If an honest node sends a message in round r to an
honest recipient, then the recipient will receive the message at the beginning
of round r + 1.

3.2.2 Definition of Byzantine Broadcast

At the beginning of a protocol, the designated sender receives an input bit
b ∈ {0, 1}. The nodes then run some protocol; at the end of the protocol,
every honest node outputs a bit. A Byzantine Broadcast (BB) protocol is
supposed to satisfy the following two requirements (no matter how corrupt
nodes behave):

• Consistency : If two honest nodes output b and b′ respectively, then
b = b′.

• Validity : If the sender is honest and receives the input bit b, then all
honest nodes should output b.

Note that consistency alone would be trivial to achieve without the validity
requirement: the protocol can simply require that every node output a canon-
ical bit 0. Therefore, the problem definition is only non-trivial/meaningful if
we required both properties simultaneously.

12

Remark 3. In this chapter, we shall assume that the signature scheme is
ideal, i.e., no signature forgery can happen. Moreover, our Dolev-Strong
protocol described below will be deterministic. Therefore, we may assume
that we want the above requirements to be satisfied deterministically. In later
chapters, we shall consider randomized protocols, in which case it may be
sufficient for the above properties to hold with all but negligible probability.

3.3 A Näıve (Flawed) Protocol

We first look at a natural but näıve approach. As mentioned earlier, it would
not work if everyone simply followed the bit heard from the designated sender:
if the designated sender is corrupt and sends different bits to different nodes,
then consistency can be violated.

What is the next most natural idea? Perhaps it would be a voting-based
approach. For convenience, we shall assume that all nodes sign all messages
before sending them, and only messages with valid signatures from purported
senders are viewed as valid. All invalid messages are discarded immediately
without being processed.

Now, imagine that the sender signs and sends its input bit to everyone
in the first round. In the second round, everyone votes on the bit they heard
from the sender. If no bit is heard or both bits are heard, they vote on
a canonical bit 0. Now, if a node hears majority nodes vote for b, then
it outputs b. We describe this simple voting-based protocol more formally
below where we use the notation 〈m〉i to denote the message m along with a
valid signature from node i ∈ [n]:

A näıve majority voting protocol

• Sender (i.e. node 1) receives the bit b as input.

• Round 1: Node 1 sends 〈b〉1 to every node (including itself).

• Round 2: Every node i ∈ [n] does the following: if a single bit 〈b′〉1
is received, send the vote 〈b′〉i. Else send the vote 〈0〉i.

• Round 3: If no bit or both bits received more than n/2 votes from
distinct nodes, then output 0. Else output the bit that received more
than n/2 votes from distinct nodes.

Does this protocol work? Keep in mind that corrupt nodes can behave
arbitrarily, including sending different votes to different nodes. It turns out

13

that this näıve protocol is not secure under even a single corrupt node. Below
we describe an attack in which the designated sender is the only corrupt
node, and everyone else is honest, and we show that consistency can be
violated.

The attack. Assume that n = 2k+ 1 is odd and only the sender, i.e., node
1, is corrupt. Let us divide the 2k honest nodes into two disjoint sets denoted
S0 and S1, each of size k. In the first round, the sender sends 〈0〉1 to the set
S0, and it sends 〈1〉1 to the set S1. In the second round, nodes in S0 votes
for 0, and nodes in S1 votes for 1. Now, the corrupt sender skillfully votes
for 0 to the set S0 and it votes for 1 instead to the set S1. Observe that
nodes in S0 receive majority votes for 0 whereas nodes in S1 receive majority
votes for 1, and thus they will output inconsistently.

So how can one design a secure Byzantine Broadcast protocol?

Exercise 1. Here is another simple idea. Round 1 and round 2 are the
same as the näıve majority voting protocol. In other words, in round
1, the sender signs its input bit and sends it to everyone. In round 2,
everyone votes for the bit it has heard from the sender. If no bit or both
bits were heard, vote for the canonical bit 0. In round 3, if some bit b
has gained the votes of very node, then output b; otherwise, output 0.

Does this protocol achieve Byzantine Broadcast? If so, please ex-
plain why. If not, please describe an explicit attack that either breaks
consistency or validity. In your attack, use as few corrupt nodes as
possible.

3.4 The Dolev-Strong Protocol

The celebrated Dolev-Strong protocol [DS83] solves the Byzantine Broadcast
problem.

Recall that the nodes are numbered 1, 2, . . . , n, and we will assume that
the designated sender is numbered 1. We denote the sender’s input as b.
We also assume that each node i maintains a set extri, also referred to as
the node’s “extracted set,” of the distinct valid bits that have been chosen
so far. For brevity, we will use the notation 〈b〉S to denote the message b
attached with a valid signature on b verifiable under the public keys of nodes
in S ⊆ [n]. In our protocol below, f denotes an upper bound on the number
of corrupt nodes.

14

The Dolev-Strong protocol

Initially, every node i’s extracted set extri = ∅.

• Round 0: Sender sends 〈b〉1 to every node.

• For each round r = 1 to f + 1:

For every message 〈b̃〉1,j1,j2,...,jr−1 node i receives with r signatures
from distinct nodes including the sender:

– If b̃ 6∈ extri: add b̃ to extri and send 〈b̃〉1,j1,...,jr−1,i to everyone —
note that here node i added its own signature to the set of r
signatures it received.

• At the end of round f + 1: If |extri| = 1: node i outputs the bit
in extri; else node i outputs 0.

3.4.1 Intuition

So why is f + 1 rounds necessary for the Dolev-Strong protocol?

Suppose that all nodes have to output at the end of round f instead of
f + 1. We construct an attack as follows. In round 0, the corrupt sender
sends 〈1〉1 to all honest nodes. Thus, all honest nodes will add 1 to their
extracted sets in round 1. Now, recall that there can be f corrupt nodes,
including the sender. At the beginning of round f , the corrupt nodes make
a single honest node v receive the bit 0 along with all f signatures, but does
not deliver this message to every other honest node. In this case, v will end
up with 2 bits in its extracted set whereas all other honest nodes have only 1
bit in their extracted sets in round f ; and thus v will be inconsistent with
all other honest nodes.

The above attack is not possible if the algorithm is run for one more
round, i.e., if the nodes output at the end of round f + 1 instead. Intuitively,
this is because a bit b tagged with f + 1 signatures must have been signed
by at least 1 honest node, say, node i. However, when the honest node i
signed the bit b earlier, say, in round r < f + 1, it must have propagated a
batch of r + 1 signatures on b (including its own) to all other honest nodes,
and therefore all other honest nodes will have received b along with r + 1
signatures by the beginning of round r + 1 ≤ f + 1, and will have added the
bit b to their extracted sets (if not earlier).

15

3.4.2 Analysis

Equipped with the above intuition, we now formally prove that the Dolev-
Strong protocol satisfies both consistency and validity.

Lemma 1. Let r ≤ f . If by the end of round r, some honest node i has b̃ in
extri, then by the end of round r + 1 every honest node has b̃ in its extracted
set.

Proof. We know that node i has the bit b̃ in extri by the end of round r.
This bit b̃ must have been added to extri in some earlier round. Suppose
t ≤ r ≤ f is the round in which the bit b̃ first got added to extri. According
to the protocol, it must be that in round t, node i received 〈b̃〉1,j1,...,jt−1 with
t distinct signatures including one from the sender. Moreover, none of these
signatures must come from node i itself because if i had signed b̃ earlier,
it would have added b̃ to extri earlier. Therefore, node i then must have
sent 〈b̃〉1,j1,...,jt−1,i to every other node in round t. Now, by our synchrony
assumption, all other honest nodes will receive this message with t+1 distinct
signatures at the beginning of round t+ 1 ≤ f + 1 and will, therefore, add b̃
to their extracted sets in round t+ 1 (if it has not already been added).

The above lemma says that if some honest node has included some bit b̃
in round r < f + 1, then all honest nodes will have included the same bit
in the immediate next round. To prove consistency, we need to show that
if some honest node has included a bit b̃ in the final round f + 1, then all
honest nodes must have included it in the same round. The last round, i.e.,
round f + 1, is where the magic happens such that common knowledge is
reached.

Lemma 2. If some honest node i has b̃ in extri by the end of round f + 1,
then every honest node has b̃ in its extracted set by the end of round f + 1.

Proof. We consider the following two cases:

1. Case 1 (Node i first added b̃ to its extracted set in round
r < f + 1): By Lemma 1, once b̃ is in extri at the end of round
r, then every honest node will have b̃ in its extracted set by round
r + 1 ≤ f + 1.

2. Case 2 (Node i first added b̃ to its extracted set in round
f + 1): For this case to happen, node i must have received f + 1

16

distinct other nodes’ signatures on b̃ at the beginning of round f + 1.
Since at most f nodes are corrupt, at least one honest node must have
signed b̃ in an earlier round r < f +1. Thus, by Lemma 1, every honest
node, including node i, would have added b̃ to its extracted set by the
end of round r + 1 ≤ f + 1.

Using the two lemmas above, we now state the theorems that establish
the desired properties for the Dolev-Strong protocol.

Exercise 2. Prove that the Dolev-Strong protocol satisfies validity, that
is, if the sender is honest, then every honest node would output the
sender’s input bit.

Theorem 2 (The Dolev-Strong protocol [DS83]). The Dolev-Strong protocol
achieves Byzantine Broadcast in the presence of up to f ≤ n corrupt nodes.

Proof. By Lemma 2, all honest nodes must have the same extracted set at
the end of round f + 1, and thus consistency is achieved. Proving validity is
left as a homework exercise (see Exercise 2).

3.4.3 Further Discussions

Dolev and Strong [DS83] also proved that any deterministic protocol solving
Byzantine Broadcast (allowing ideal signatures) must incur at least f + 1
rounds. In practice, f + 1 rounds may be too expensive for large-scale
applications. Fortunately, this f + 1 round complexity lower bound can be
circumvented by using randomness in the protocol design. We will explore
randomized protocols later in the course.

3.5 The Muddy Children Puzzle

There is a cute puzzle called the “muddy children puzzle” that bears a remote
resemblance to the Dolev-Strong protocol.

There are n children playing in the playground, and k ≤ n of them acquire
mud on their forehead. After playing, the teacher gathers the children, and
declares, “one or more of you have mud on your forehead”. Every one can
see if others have mud on their forehead, but they cannot tell for themselves.

17

The teacher says, “at this moment, if you know you have mud on your
forehead, please step forward”. The teacher waits for a minute and no one
steps forward. The teacher says again, “second call: at this momement, if
you know that you have mud on your forehead, please step forward.”. This
goes on for multiple rounds until some children step forward. In each round,
the teacher calls for those who know that they have mud on their forehead
to step forward.

Question: in which round will some children step forward? Note that
the children do not communicate with each other. They know that at least
one of them has mud on their forehead, and they know the current round
number.

The puzzle can be solved by induction. The case k = 1 is easy. If Alice
is the only kid with mud, then she would step forward in the first round:
she sees that no one else has mud, so it must be herself. Now, consider the
case k = 2. Say, Alice and Bob are the two kids with mud. In this case, no
one steps forward in the first round, because Alice sees that Bob has mud,
and she cannot be sure if she has mud too; and the same reasoning applies
to Bob. However, knowing that no one stepped forward in the first round,
Alice and Bob now know that at least two kids have mud (otherwise the only
kid with mud would have stepped forward in the first round). Now, in the
second round, Alice sees only one other kid with mud, so she knows that she
must be the other. The same reasoning applies to Bob. Therefore, in the
second round, both Alice and Bob step forward.

This argument can be carried out inductively, and one can show that if k
kids have mud, then all k muddy kids will step forward in round exactly k.

In this puzzle, common knowledge is reached in round k. Therefore,
it is somewhat reminicient of the Dolev-Strong protocol in which common
knowledge is reached in round f + 1.

3.6 Additional Exercises

Exercise 3. In our lecture, we defined a one-bit version of Byzantine Broad-
cast, where the sender wants to distribute a single bit. We may considered
a multi-valued variant (called Multi-Valued Byzantine Broadcast) in which
the sender receives an `-bit value m ∈ {0, 1}`, and it wants to propagate this
value to every one else. Consistency requires that all honest nodes output
the same value; and validity requires that if the sender is honest, all honest
nodes output the sender’s input value m.

Please design a protocol for achieving Multi-Valued Byzantine Broadcast,

18

and prove it secure. Your protocol should be able to tolerate f < n number
of corruptions.

Exercise 4. Suppose that, as the protocol designer, we already know exactly
which subset of nodes are corrupt. Describe a 1-round protocol that achieves
Byzantine Broadcast. Here the set of corrupt nodes is provided as input to
the protocol. This exercise shows why the problem of Byzantine Broadcast
is trivialized if the set of corrupt nodes is known a-priori.

Exercise 5. In our description of the Dolev-Strong protocol earlier, the
protocol needs to be parametrized with the parameter f , i.e., the maximum
number of corruptions. What if we do not know an upper bound on f a-priori
and any number of nodes can potentially be corrupt? Can we set f = n− 2
in this case?

Exercise 6. In this problem, you are asked to help analyze two buggy
implementations of the Dolev-Strong protocol.

a) Lanie is asked to implement the Dolev-Strong protocol for her all-time
favorite course on distributed systems. Lanie is absent-minded when
implementing the Dolev-Strong protocol. She forgot to check that the
batch of r signatures expected in round r must contain the signature
from the designated sender. Describe an explicit attack that can break
Lanie’s implementation. In your attack, use as few corrupt nodes as
possible. Does your attack violate the consistency or validity property?

b) Another student, Elanna, also made a mistake in her implementation,
but a different mistake from Lanie. Elanna has a bug in implementing
the digital signature scheme. As a result, an attacker can efficiently
forge signatures of honest players even without their private signing keys.
Please describe an attack that breaks Elanna’s Byzantine Broadcast
implementation.

19

20

Chapter 4

Byzantine Broadcast without
Digital Signatures (Lower
Bound)

In the previous chapter, we learned the Dolev-Strong protocol [DS83], which
solves Byzantine Broadcast under any f < n number of corruptions. The
Dolev-Strong protocol relies on digital signatures and the existence of a
Public-Key Infrastructure. Typically, we call a Public-Key Infrastructure
(PKI) a setup assumption, because there needs to be a trusted channel for
distributing the nodes’ public keys. A natural question arises:

Can we achieve Byzantine Broadcast without digital signatures and without
a Public-Key Infrastructure (PKI)?

Even if we are happy to assume cryptographic hardness assumptions and
the existence of digital signatures, the above question is intriguing in the
following senses:

• First, setting up and managing a PKI is notoriously challenging in
practice. For example, the infrastructure for distributing and managing
certificates for the world-wide-web has suffered from numerous attacks
in the past.

• Second, even in scenarios where a PKI is feasible to set up, sometimes we
would like to deploy consensus protocols that achieve high-performance.
For example, in data center settings, we might hope to achieve micro-
second confirmation delay, in which case we cannot afford to spend
even millisecond on computing digital signatures.

21

Intuitively, digital signatures help us a lot in the design of consensus
protocols, because digital signatures enable non-repudiation. If a node i sends
to node j a message m along with its signature on m, node j can later on
convince others that node i indeed has signed m. Indeed, the Dolev-Strong
protocol critically relies on this ability to reach consensus.

To understand why non-repudiation might be useful, we can also look at
the following informal example. Suppose that Cranberry Melon University
(CMU) would like to elect a new president. In Cranberry Melon University,
no one wants to be a university president because it is too much work. The
current president is Far, and there are two running candidates, Mor and Les.
Far wants to get one of Mor or Les elected. He makes a proposal to Mor
and Les, and suppose that the proposal says “Mor”. When Mor hears the
proposal, not wanting to get herself elected, she relays to Les, “I heard that
Far suggested Les”. When Les hears the proposal, he relays to Mor honestly,
“I heard that Far suggested Mor”.

LM

F
“M”

LM

F
“M”

“He said L”

“He said M”

Round 1 Round 2

In the above, both Far and Les were honest, but Mor deviated from
the protocol to avoid getting herself elected. If the protocol did not use
any digital signature, then Mor’s message to Les is plausible and from Les’s
perspective, there are two possible interpretations:

• Interpretation 1: Far is corrupt and both Mor and Les are honest.
Far sent differing proposals to Mor and Les.

• Interpretation 2: Far is honest and proposed “Mor” to both recipients,
but Mor did not relay Far’s message honestly.

Les would not be able to tell these two scenarios apart without digital
signatures. Had digital signatures been used, however, Mor would not have
been able to relay a forged message from Far since she wouldn’t be able to
forge a signature on Far’s behalf. Therefore, the above scenario could have
been prevented with digital signatures.

22

4.1 Impossibility of Consensus with 1/3 Corrup-
tions without Digital Signatures

Although the above is not a formal proof that setup assumptions (e.g., PKI)
and digital signatures help in consensus, it does convey some degree of
intuition. In the remainder of this chapter, we will formally prove why setup
assumptions such as PKI and digital signatures do help with consensus.

The pairwise authenticated channels model. We consider how to
achieve BB in a network where every pair of nodes can communicate through
a pairwise channel. Moreover, we assume that when an honest node receives
a message, it knows which node sent the message, i.e., the authenticity of
the message-sender can be ascertained.

Like in the previous chapter, we shall consider a synchronous network,
where honest nodes’ messages can be delivered in exactly one round.

Impossibility of BB under 1/3 corruption without setup assump-
tions. The following theorem was first proven by Pease, Shostak, and
Lamport [PSL80], and later the proof was simplified by Fischer, Lynch, and
Merritt [FLM85].

Theorem 3 (Impossibility of BB under 1/3 corruption without setup as-
sumptions [PSL80,FLM85]). In a plain pairwise authenticated channel model
without any setup assumptions such as a PKI, Byzantine Broadcast (BB) is
impossible if at least n/3 nodes are corrupt.

It is interesting to contrast this impossibility result with the Dolev-Strong
protocol we learned earlier. With Dolev-Strong, we can achieve BB under
an arbitrary number of corruptions, but the protocol required a PKI and
digital signing. It turns out that without these assumptions, a result like
Dolev-Strong would have been impossible.

Remark 4 (A remark on the terminology). Due to historical reasons, in
the distributed systems literature, the problem of achieving BB assuming
the existence of a PKI and digital signatures is often referred to as “au-
thenticated broadcast”. Achieving BB in the plain, pairwise authenticated
channels model without setup is often referred to as “unauthenticated broad-
cast”. Unfortunately, the use of the term “authenticated” differs among
the distributed systems and cryptography communities. In this textbook,
we adopt the standard terminology from the cryptography community in
describing our modeling assumptions.

23

4.2 Proving the Lower Bound

We present a simplified proof of the lower bound suggested by Fischer et
al. [FLM85]. Our intuitive explanation earlier (recall the protocol between Far,
Mor, and Les) was a “triangle”, but that was not a formal proof. Interestingly,
we shall see that the formal proof relies on a “hexagon” argument rather
than a triangle.

Proof of Theorem 3. Suppose for the sake of contradiction that there
exists a protocol Π that achieves BB under the pairwise authenticated
channels model, for n = 3 and f = 1.

Although the protocol Π is meant to be executed among three nodes,
we can nonetheless imagine a hypothetical experiment where Π is executed
among six nodes, named F,L,M,F ′, L′,M ′ respectively1. The nodes F and
F ′ act as honest senders, each receiving the input bit 0 and 1 respectively.
The other nodes L,M,L′,M ′ also run honestly as non-senders.

L

M F

F’ M’

L’

0

1

The first thing to observe is that this hypothetical experiment is well-
defined. As far as each node is concerned, it has two neighbors and a pairwise
link with each of the two neighbors — just like in a 3-node execution. Now,
there are several ways to interpret this hypothetical experiment as we describe
shortly below. In all interpretations, there are only 3 nodes, and one of them
is corrupt and “simulating all the remaining nodes in its head” (see Remark 5
about “simulation”). By our assumption, the protocol Π satisfies consistency
and validity when 1 out of 3 nodes is corrupt, we can then apply the
consistency and validity properties of Π to the different interpretations. Since
all interpretations are in fact different ways to “explain” the same hypothetical
experiment, the conclusions we reach should be internally consistent, had
such a protocol Π existed (i.e., satisfying both consistency and validity when
1 out of 3 is corrupt). However, by applying consistency and validity rules

1Yes, indeed Π is intended as a 3-party protocol, but the 6-node execution is well-defined,
and thus we can reason about it as a thought experiment. This might be unintuitive at
first, but to me it is the elegant idea in the proof.

24

to each interpretation, we will in fact reach a contradiction, thus ruling out
the possibility that such a protocol Π could exist.

• Interpretation 1. There are in fact three nodes, F , L, and M . F
is corrupt and it is simulating all the nodes F,L′,M ′, and F ′ in its
head (see Remark 5 about “simulation”); whereas L and M are honest.
Using this interpretation, we conclude that L and M must output the
same bit in the hypothetical experiment.

• Interpretation 2. There are in fact three nodes, F , L, and M . L is
corrupt and it is simulating all the nodes L,L′, F ′, and M ′ in its head;
whereas F and M are honest. Using this interpretation, by validity,
we conclude that M should output F ’s input bit, that is 0.

• Interpretation 3. There are in fact three nodes, F ′, L, and M . M is
corrupt, and it is simulating all the nodes M,M ′, F , and L′ in its head;
whereas F ′ and L are honest. Using this interpretation, by validity, we
conclude that L should output the input bit of F ′, that is, 1.

Thus we have reached a contradiction about what L and M would output
in the hypothetical experiment.

Remark 5 (About “simulation”). What does it mean for a node F to
“simulate the nodes F,L′,M ′, and F ′ in its head”? This means that node
F acts as an “emulator” that emulates the execution of the (interactive)
programs of the simulated nodes — note also that because of this, F is not
running the honest protocol. In fact, the “simulation” technique is often used
in proofs in distributed systems theory, cryptography, as well as complexity
theory. You will see this simulation technique later in our course too.

Why is it that the above lower bound proof does NOT hold assuming the
existence of a PKI and digital signatures?

Answer: for example, in the first interpretation, F would not be able to
simulate L′ in its head because F does not know the secret signing key of L′.

4.3 Additional Exercises

Exercise 7. The above proof rules out the existence of a BB protocol, absent
a PKI and digital signatures, for the case when n = 3 and f ≥ 1. Please
argue that without any setup assumptions such as a PKI, no protocol can
achieve BB for n = 6 and f ≥ 2. Similarly, please show the same lower
bound for the case n = 4 and f ≥ 2.

25

Exercise 8. In the above proof, we have ruled out the existence of deter-
ministic BB protocol (allowing ideal signatures) that can defend against 1/3
corruptions without any setup assumptions such as a PKI.

However, often times, we may want to consider randomized protocols in
which nodes can flip random coins and use these random coins as inputs
during the protocol. A randomized protocol Π is said to achieve BB with
probability p iff regardless of the corrupt coalition’s strategy, it must be that
with probability p over the choice of the randomized execution, consistency
and validity are both respected.

Please prove that in the plain pairwise authenticated channels model with-
out setup, there does not exist a protocol that achieves BB with probability
greater than 2/3.

Exercise 9. We have shown that without a PKI and digital signatures, it is
impossible to achieve BB under 1/3 or more corruptions. Typically the PKI
is called a setup assumption because we essentially need a trusted distribution
channel to distribute the nodes’ public key a-priori. Digital signatures can
be viewed as a cryptographic hardness assumption.

Upon careful examination, our lower bound proof actually rules out the
existence of BB under 1/3 or more corruptions absent any setup assumption
such as PKI — and the impossibility still holds even if we allow the use of
cryptographic primitives such as digital signatures and encryption schemes,
and even if we assume that the adversary is indeed polynomially bounded
and cannot break cryptography!

Please reflect upon this and intuitively explain why.

26

Chapter 5

Byzantine Broadcast without
Digital Signatures (Upper
Bound)

Previously, we have learned that the Dolev-Strong protocol can achieve
Byzantine Broadcast (BB) under any number f ≤ n − 2 of corruptions;
however, the Dolev-Strong must rely on a Public-Key Infrastructure (PKI)
and digital signatures (see Chapter 3). We have also proven than when setup
assumptions such as PKI are not allowed, BB is impossible if there are at
least f ≥ n/3 corrupt nodes (see Chapter 4).

In this chapter, we will show that the 1/3 lower bound in Chapter 4
is tight: suppose that strictly fewer than n/3 nodes are corrupt, there
indeed exists a BB protocol that does not rely on any setup assumption or
cryptography.

5.1 Protocol

We assume that the n nodes are numbered 1, 2, . . . , n, and let [n] :=
{1, 2, . . . , n}.

The protocol works by voting. Every node locally maintains a sticky bit
whose value is chosen from the set {0, 1,⊥}. If a node’s sticky bit is either 0
or 1, it reflects its current belief of the bit that’s agreed upon. If the sticky
bit is ⊥, it roughly means that node currently does not have any belief. At
the end of the protocol, everyone outputs their local sticky bit.

Initially, the designated sender’s sticky bit is its input bit, and everyone
else’s sticky bit is set to ⊥. In the first iteration, the designated sender is

27

the leader, and in every other iteration r 6= 1, a random node Lr := H(r) is
chosen as the leader using a public hash function H : {0, 1}∗ → [n] — we
will think of this hash function as a random oracle1

In every iteration r, the following happens. The leader Lr proposes a bit
b to everyone: if the leader Lr’s sticky bit is not ⊥, it proposes the sticky
bit; else it proposes a random bit from {0, 1}. Now, everyone votes on a
bit: to vote on a bit, simply echo the corresponding bit to everyone. If the
node’s sticky bit is not ⊥, it votes on the sticky bit; else, it votes on the bit
b proposed by the leader Lr or chooses an arbitrary bit if Lr proposed no
bit or both bits. If a node hears 2n/3 nodes vote on the same bit b′ in the
current iteration, it updates its sticky bit to b′, else it updates its sticky bit
to ⊥. The protocol repeats for sufficiently many iterations and at the end,
everyone outputs their sticky bit.

The protocol is shown a little more formally below. Without loss of
generality, we assume that node 1 is the designated sender. We let L1 := 1
and for r 6= 1, let Lr := H(r) where H : {0, 1}∗ → [n] is a public hash
function.

Initially, the designated sender’s sticky bit is its input bit, and everyone
else’s sticky bit is set to ⊥.

For every iteration r = 1, 2, . . . , k:

• Round 0: leader Lr sends a proposed bit b to everyone where b is
chosen as follows:

– If Lr’s sticky bit is not ⊥, choose b to be the sticky bit;

– Else Lr chooses b ∈ {0, 1} at random.

• Round 1: everyone votes on a bit by sending the bit to everyone; the
bit voted on is chosen as follows:

– If the node has a non-⊥ sticky bit, choose the sticky bit;

– Else choose the bit proposed by Lr — if Lr proposed no bit or
both bits, pick a bit arbitrarily.

• Round 2: everyone tallies the votes it has received: if at least 2n/3

1Essentially, whenever a node wants to know what the outcome of H(m) is, H chooses a
random answer from [n] if the message m has not been queried before, otherwise it returns
the same answer previously returned for m. See also Chapter 2 on the notion of a “random
oracle”.

28

nodes voted on the same bit b′, update its sticky bit to be b′; else
update its sticky bit to be ⊥.

Output: Finally, everyone outputs its own sticky bit’s value.

5.2 Analysis

Henceforth in our analysis, we shall assume that strictly fewer than n/3
nodes are corrupt.

The following lemma (Lemma 3) says that at the end of any iteration,
it cannot be that some honest node’s sticky bit is 0, and another honest
node’s sticky bit is 1 — however, it is possible that some honest node’s sticky
bit is 0 (or 1) and another honest node’s sticky bit is ⊥. It is easiest to
understand why with an example. Suppose there are 4 nodes and 1 < 4/3
node is corrupt. For an honest node to have the sticky bit 0 at the end of an
iteration, it must be that it has received at least 3 votes on 0. This means
that at least two honest nodes voted on 0. Similarly, if another honest node
has the sticky bit 1 at the end of the same iteration, it must be that at least
two honest nodes voted on 1. However, since there are only 3 honest nodes,
this would imply that there is an honest node who voted on both 0 and
1 in the same iteration, but this is impossible because in our protocol, an
honest node votes on only one bit in any iteration. Below we formalize this
argument and prove it for general parameters.

Lemma 3. In any iteration, it cannot be that some honest node i sees at
least 2n/3 nodes vote on a bit b ∈ {0, 1}, and some honest node j sees at
least 2n/3 nodes vote on the other bit 1− b (note that j can be the same as i
or different).

As a direct corollary, we have that at the end of every iteration, it cannot
be that some honest node has a sticky bit b ∈ {0, 1}, and another honest node
has the sticky bit 1− b. Note that it is possible for an honest node to have a
sticky bit b ∈ {0, 1} and another honest node to have ⊥.

Proof. Suppose that in some iteration r, an honest node i heard that at least
2n/3 nodes, denoted the set Si, vote on b; and an honest node j heard that
at least 2n/3 nodes, denoted the set Sj , vote on 1− b. Now, |Si ∩ Sj | ≥ n/3,
and thus there must be an honest node in Si∩Sj ; but this honest node voted
on both b and 1− b which leads to a contradiction.

We say that some iteration r is lucky, iff 1) its leader Lr is honest, and
2) if Lr proposes the bit b in iteration r, then no honest node’s sticky bit at

29

the beginning of iteration r is 1− b. The following lemma (Lemma 4) shows
that if there is a lucky iteration, then all honest nodes will output a bit
b ∈ {0, 1} at the end of the protocol (i.e., their sticky bit cannot be ⊥ at the
end), and moreover they’ll all output the same bit. To complete our proofs,
it would then suffice to show that a lucky epoch must exist with extremely
high probability — we prove this in the subsequent Lemmas 5 and 6.

Lemma 4. Suppose that iteration r ≤ k is lucky and Lr proposes b ∈ {0, 1}
in iteration r. Then, every honest node’s sticky bit at the end of the protocol
must be b ∈ {0, 1}.

Proof. In iteration r, every honest node must vote on b ∈ {0, 1}. Thus, every
honest node will see at least 2n/3 nodes vote on b in Round 2 of the iteration.
By Lemma 3, no honest node can see at least 2n/3 nodes vote for 1− b in
iteration r. Thus, every honest node will set its sticky bit to b by the end of
iteration r, and thus in iteration r + 1, all honest nodes will vote on b too,
and so on.

Lemma 5. Suppose that the hash function H is chosen independently of the
choice of corrupt nodes. Then, for every 1 ≤ r ≤ k, even when conditioned
on whether the iterations prior to r are lucky or not, the r-th iteration is
lucky with probability at least 1/3.

Proof. The following statements hold even when conditioned on whether
previous iterations are lucky or not. In every iteration r, if Lr is honest
and its sticky bit is not ⊥ at the beginning of iteration r, the iteration is
guaranteed to be lucky due to Lemma 3. Conditioned on Lr being honest and
its sticky bit being ⊥ at the beginning of iteration r, due to Lemma 3, the
iteration is lucky with probability at least 1/2 (depending on Lr’s coin that
chooses the proposed bit). Therefore, no matter whether previous iterations
were lucky or not, conditioned on Lr being honest, iteration r is lucky with
probability at least 1/2.

Notice also that every iteration r has an honest leader with probability
2/3 since its leader is randomly chosen using the hash function H. We thus
conclude that even when conditioned up whether previous iterations are
lucky or not, iteration r is lucky with probability at least 1

2 ·
2
3 = 1

3 .

Lemma 6. There is a lucky iteration with probability 1− (2
3)k.

Proof. Imagine that for each iteration r = 1, 2, . . . , k sequentially, we flip
a coin which decides with probability at least 1/3 that iteration r is lucky.
Clearly, the probability that all iterations are unlucky is at most (2

3)k.

30

Remark 6. The probability that there isn’t a lucky iteration drops expo-
nentially fast w.r.t. k. For example, if k = 40, the probability that there
isn’t a lucky iteration is only 9× 10−8. Because of this exponentially sharp
tail, slightly informally, we can set k to be a reasonable parameter, such that
the failure probability (2

3)k is as small as the probability that encryption
schemes get cracked.

Combining Lemmas 4 and 5, we may conclude the following theorem:

Theorem 4 (Consistency). With probability 1− (2
3)k, all nodes output the

same decision.

Theorem 5 (Validity). If the designated sender (i.e., node 1) is honest,
then all honest nodes output node 1’s input bit.

Proof. Follows directly from Lemma 4 and the definition of the protocol.

5.3 Additional Exercises

Exercise 10. Suppose that we want to make sure that consistency is achieved
with probability at least 1 − δ for some small δ ∈ (0, 1). How should we
set the number of iterations k in the above protocol? Your answer should
express k as a function of δ.

Remark 7 (On the round complexity of the protocol). Dolev and Strong
proved that no deterministic protocol (even allowing ideal signatures) can
achieve BB in fewer than f + 1 rounds [DS83]. Notice that the protocol in
this section is randomized, and its round complexity is related to the failure
probability δ, and does not depend on n or f . In subsequent chapters, we
will see more examples how randomization can circumvent the f + 1 round
complexity lower bound that pertains to deterministic protocols.

31

32

Chapter 6

Blockchain and State
Machine Replication

So far in our lectures, we have considered single-shot consensus. In practice,
however, more often than not, it is not enough to reach consensus just
once. Practical applications of consensus often require reaching consensus
repeatedly over time. For example, in modern cryptocurrency systems such
as Bitcoin and Ethereum, the underlying core abstraction is for a distributed
set of nodes to maintain an ever-growing public ledger which records the
sequence of all transactions that have taken place so far.

In this section, we will define a repeated consensus abstraction called a
blockchain. The notion of a blockchain was classically called state machine
replication in the long line of work in the distributed systems literature. In
fact, before Bitcoin and Ethereum, state machine replication (or blockchain)
protocols have been deployed by companies like Google and Facebook for
more than a decade to replicate their computing infrastructue. The modern
name “blockchain” was born together with Bitcoin and became popularized
soon after.

6.1 Modeling Network Delay More Generally

So far in our textbook we have considered a “strongly” synchronous network
model, where honest nodes’ messages are delivered to honest recipients in
the immediate next round. Starting in this section, we often adopt a more
relaxed (i.e., general) model, where we assume that honest nodes’ messages
can take at most ∆ rounds to be delivered to an honest recipient. The
parameter ∆ is often called the (maximum) network delay. More precisely, if

33

an honest node sends a message m to an honest recipient in round r, then
the recipient will have received the message by the beginning of round r + ∆
if not earlier1.

Defining this more general network model will lend to our discussions
of various network timing assumptions in subsequent chapters. Note that
the protocols we learned so far in this course, such as Dolev-Strong [DS83],
are strongly synchronous protocols: essentially every ∆ delay is renamed to
be one round, and nodes only perform actions every ∆ amount of time. Of
course, not all consensus protocol must abide by this strongly synchronous
restriction, even in the case when ∆ is a-priori known.

6.2 Defining a Blockchain Protocol

In a blockchain protocol, a set of distributed nodes aim to agree on an
ever-growing, linearly-ordered log of transactions. Rather than agreeing
on one transaction at a time, often times the protocol would want to use
batching to improve throughput — a block is exactly a batch of transactions
(possibly attached with protocol metadata) and therefore a chain of blocks
would be called a blockchain.

Roughly speaking, a blockchain protocol must satisfy two important
security properties, consistency and liveness. Consistency requires that all
nodes have the same view of the linearly ordered log — but since their
network speeds may differ, we shall allow some nodes’ logs to potentially
grow a little faster than others. More specifically, in our formal definition
below, we shall require that honest nodes’ logs be prefixes of each other; but
we do not require that all honest nodes’ logs are exactly the same length in
the same round. Liveness requires that if some honest node receives some
transaction tx in some round r, then tx will appear in every honest node’s
“finalized log” by the end of round r + Tconf where Tconf is often called the
“confirmation time”2. Whenever a transaction appears in a node’s finalized
log, it is treated as having been confirmed, i.e., the transaction cannot be
undone later. Below we define a blockchain abstraction more formally.

We assume that there are in total n nodes. The nodes receive transactions
from an external environment, where transactions are represented as bit-
strings that possibly need to abide by certain validity rules (e.g., with valid

1Alternatively, one can also model time as continuous rather than consisting of discrete
rounds, this modeling choice is non-essential in understanding the results we shall present.

2tx ∈ {0, 1}∗ is a payload string. In some applications, there may be some validity or
well-formedness rule on tx.

34

signatures from the coin’s owner). The nodes each maintain a growing
linearly ordered log of transactions. Henceforth let LOGri denote node i’s
log in round r — LOGri is also called a finalized log, i.e., every transaction
or event contained in LOGri cannot be undone later. A blockchain protocol
must satisfy the following two requirements:

• Consistency: for any honest nodes i and j, and for any round numbers t
and r, it must be that LOGti � LOGrj or LOGti � LOGrj . Here LOG � LOG′

means that the former log is a prefix of the latter or they are the same.

• Tconf-liveness: If an honest node receives some transaction tx as input in
some round r, then by the end of round r + Tconf , all honest nodes’ local
logs must include tx.

Clarifications on the definition. We make some further clarifications
regarding the above definition:

• In the above consistency definition, the two honest nodes i and j
are allowed to be the same, or different; and consistency must hold
regardless.

• As we stipulated earlier, each (honest) node’s local log is growing over
time and can never shrink — this requirement is baked into the syntax
and not reflected in the above consistency or liveness notions.

• The confirmation time Tconf can be a function of the number of nodes
n, the maximum network delay ∆, and possibly other parameters. It
is straightforward why Tconf might be a function of ∆ since this is the
maximum delay it takes for honest nodes to deliver messages to each
other. Why can Tconf also depend on n? For example, jumping slightly
ahead, we shall see how to construct a blockchain protocol through
sequential composition of one-shot Byzantine Broadcast (BB) — in
this case, if we instantiate the BB protocol with Dolev-Strong, then,
as we have learned, the number of rounds will depend on n.

• If the blockchain protocol is deterministic (possibly in the ideal signa-
ture model), we would require that the above consistency and liveness
properties hold deterministically. However, we will encounter random-
ized blockchain constructions later. If the protocol is randomized, we
often require that regardless of corrupt nodes’ strategy, the consistency
and liveness properties must hold with probability 1− δ over the choice

35

of the randomized execution. The term δ ∈ (0, 1) is often referred to
as the failure probability, and we typically want δ to be tiny.

• Note that the blockchain definition itself does not specify how the
application-layer should process the messages included in the blockchain.
The application layer can specify application-dependent validity rules
for the format of the message to be included in each block: for example,
a typical rule is that the message needs to be a set of transactions with
valid signatures.

Rules for dealing with double-spending are also application-specific
decisions and therefore we do not include them in the blockchain
abstraction. For example, if two or more transactions spending the
same coin both appear in a node’s finalized log, the application level
can say, only the first one of them will be treated as valid, and the later
ones will be discarded by the application semantics. In this case, when
is it safe for a merchant to ship the goods to a buyer? The merchant
should make sure that the corresponding transaction tx∗ appears in
the finalized log; and morever, there is no transaction before tx∗ in the
finalized log that spends the same coin.

6.3 Construction of a Blockchain Protocol from
Byzantine Broadcast

In the remainder, we will show that assuming the existence of a PKI and
digital signatures, we can construct a blockchain protocol by sequential
composition of Byzantine Broadcast (BB). For convenience, we shall assume
that the n nodes are numbered 0, 1, . . . , n − 1. Here we will rely on the
Multi-Valued variant of BB (see Exercise 3 of Chapter 3), and we assume
that each BB instance runs in R number of rounds.

The blockchain construction is described below, where a new instance of
BB is run every r rounds. Each instance of BB agrees on a block, and all
blocks are sequentially concatenated to form a log.

Blockchain from sequential composition of BB

• In every round kR that is a multiple of R, i.e., where k = 0, 1, 2, . . .,
spawn a new BB protocol whose designated sender is defined to be
Lk := (k mod n). Henceforth, the BB protocol spawned in round
kR is denoted BBk.

36

The designated sender Lk := (k mod n) of BBk collects every trans-
action tx it has received as input, but that have not been included in
its current log, i.e., tx /∈ LOGkRLk , and inputs the concatenation of all
such transactions into BBk.

• At any time, suppose BB0,BB1, . . . ,BBk′ have finished and their out-
puts are m1,m2, . . . ,mk′ respectively. The node’s current output log
is defined as the concatenation m1||m2|| . . . ||mk′ where “||” denotes
concatenation.

Theorem 6. Suppose that the BB protocol adopted realizes Multi-Valued
Byzantine Broadcast for a network of n nodes and tolerating up to f cor-
ruptions, then the above blockchain construction satisfies consistency and
O(Rn)-liveness also for the same n and f , where R denotes the round
complexity of BB.

Proof. Consistency of the blockchain is guaranteed due to consistency of
the BB protocol. For liveness, observe that if a transaction tx is input to
some honest node i in round r, then, it takes at most (n+ 1) additional BB
instances till the i becomes the designated sender again (note that the extra
+1 is because in the worse case, the current BB instance has already started
and i is the sender of the current BB instance). The next time i becomes
the designated sender again in a BB instance, either tx is already included
in i’s log, or i will input tx (along with other transactions) into the BB, and
by validity of the BB, every honest node’s output in this BB will include tx.

What is the confirmation time of the above blockchain protocol?

Answer: in the above, since it takes at most O(n) instances till the honest
node i becomes the designated sender again in a BB instance, and every
honest node’s log includes tx after that BB instance, it is easy to see that
the confirmation time is O(Rn).

Obviously, this is not the best approach to construct a blockchain proto-
col. However, it helps us to understand the relationship between BB and
blockchains from a feasibility (but not necessarily efficiency) perspective.

Remark 8. The above construction of a blockchain protocol from BB does
not require introducing any additional assumptions beyond those already
used by the BB. That is, if the underlying BB requires a PKI and signatures,
then the blockchain would require the same. If the underlying BB does not
rely on setup assumptions, the blockchain protocol would need no setup

37

too. However, in the next section, our construction of BB from blockchain
requires the existence of a PKI and digital signatures.

6.4 Discussions

If blockchain is implied by BB from a feasibility perspective in the PKI setting,
do we really need blockchain as a separate abstraction?

The answer is yes, and there are many reasons we care about blockchain as
a separate abstraction. First, in practice, it is rarely a good idea to implement
blockchains by sequentially composing BB. Although there are indeed better
ways to sequentially compose BB than what’s described above, the sequential
composition approach makes it difficult to perform cross-instance pipelining,
thereby making it difficult for performance optimizations. Not surprisingly,
almost all blockchain protocols that have been deployed in practice (e.g.,
variants of PBFT [CL99] and Paxos [Lam98], and Bitcoin [Nak08,GKL15])
are “direct blockchain constructions” where there is no clear boundary that
separates the blockchain into independent one-shot instances.

Besides performance concerns, the blockchain abstraction also seems
useful for defining additional properties such as fairness and incentive com-
patibility [PS17a].

38

Chapter 7

A Simple Blockchain
Protocol — Streamlet

In this section, we shall construct an extremely simple blockchain protocol
called Streamlet which defends against f < n/3 number of corruptions. The
Streamlet protocol was recently introduced by Chan and Shi [CS20a,CS20b]
as a “unified blockchain protocol for pedagogy and implementation”1

The entire protocol is very natural and works assuming the existence of
a PKI and digital signatures. Informally speaking, it works as follows where
each epoch is assumed to be 1 second long (or any suitable parameter whose
choice will be discussed later):

• Propose-vote. In every epoch:

– The epoch’s designated leader proposes a block extending from the
longest notarized chain it has seen (if there are multiple, break ties
arbitrarily).

– Every node casts votes on the first proposal from the epoch’s leader, as
long as the proposed block extends from (one of) the longest notarized
chain(s) it has seen. A vote is a signature on the proposed block.

– When a block gains votes from at least 2n/3 distinct nodes, it becomes
notarized. A chain is notarized if all blocks in it are.

1The Streamlet protocol in some sense subsumes classical candidates such as
Paxos [Lam98], PBFT [CL99], and RAFT [OO14], and is much simpler than these classical
protocols. For this reason, we do not seperately cover these classical consensus protocols.
See also Section 7.5 for more historical notes.

39

• Finalize. If in any notarized chain, there are three adjacent blocks with
consecutive epoch numbers, the prefix up to the second of the triple is
considered final. When a block becomes final, the block and its entire
prefix appears in the node’s local finalized log.

In this chapter, we will prove that this extremely simple protocol

1. achieves consistency no matter what the actual network delays are,
and even if the network can get partitioned at times;

2. achieves liveness when network conditions are good, i.e., during a period
of time in which honest nodes can send messages back and forth to
each other within a 1-second round-trip time.

The conditions under which liveness holds are often referred to as a period
of synchrony [DLS88]. Obviously, if the network is partitioned and nodes
cannot deliver messages to each other, the protocol cannot make progress.
The Streamlet protocol guarantees consistency nonetheless no matter how
bad or adversarial the network conditions are.

7.1 The Streamlet Protocol

We now describe the protocol more formally and prove its security.

7.1.1 Epoch and Leader Rotation

Epochs: The protocol runs sequentially in synchronized epochs that are 1
second long. The 1 second can be replaced with other reasonable parameters,
and we will explain how to choose the parameter later. Every player starts
epoch 1 at the same time, and then after 1 second, every player enters epoch
2 at the same time, and so on.

Epoch leader: We assume that the n nodes are numbered 1, 2, . . . , n
respectively, and let [n] := {1, 2, . . . , n}. Every epoch e will elect a random
leader using a public hash function H : {0, 1}∗ → [n] which is modeled as a
random oracle. Specifically, epoch e’s leader is computed as H(e).

7.1.2 Blocks and Blockchain

Block: Each block is a tuple of the form (h, e, txs) where

• h is called the parent hash, i.e., a hash of the prefix of the chain;

40

• e is called the epoch number of the block, which records the epoch in
which the block is voted on; and

• tx is a payload string (e.g., it may record a set of transactions to be
confirmed). In some applications, we may require that tx satisfies certain
validity or well-formedness rules.

A special block of the form (⊥, e = 0,⊥) is called the genesis block which
is the first block of every valid blockchain.

Blockchain: A blockchain chain is a sequence of blocks starting with the
genesis block chain[0] := (⊥, e = 0,⊥), and with strictly increasing epoch
numbers. For a blockchain chain to be valid, it must be that for every
non-genesis block chain[`] where ` > 0, chain[`] contains a parent hash equal
to H∗(chain[0..` − 1]), where H∗ denotes a hash function that was chosen
from a collision-resistant hash family during a setup phase.

In a valid blockchain, we often say that a block chain[`] extends from the
parent chain chain[0..`− 1].

Remark 9 (The hash-chain data structure). Assuming that the adversary
did not find any hash collisions during the lifetime of the protocol. Then,
the hash-chained data structure guarantees that given a block, its prefix is
uniquely determined.

Remark 10 (A practical optimization). Although we write H∗(chain[0..`])
for conceptual simplicity, in practice, H∗ is typically implemented as an
incremental hash (rather than having to hash the entire prefix chain for every
block). In other words, each block’s parent hash h may be computed simply
as a hash of the parent block, which contains a hash of its own parent, and
so on.

7.1.3 Votes and Notarization

A vote on a block is simply the node’s signature on the block. A collection
of at least 2n/3 signatures from distinct nodes on the same block is called a
notarization on the block.

A valid blockchain is considered to be notarized by a node i if i has
observed a notarization for every block (except the genesis block).

7.1.4 Protocol

Although not explicitly stated, we shall make an implicit echoing assumption:

41

Implicit echoing: upon observing a new transaction or message, a node
always echos the transaction or message to everyone else.

We use the notation 〈m〉i to denote a message m, along with node i’s
signature on m. With this in mind, we now describe the Streamlet protocol.

The Streamlet blockchain protocol
For each epoch e = 1, 2, . . .:

• Propose: At the beginning of epoch e, epoch e’s leader L does the
following: let chain be (any one of) the longest notarized chain(s)
that the leader has seen so far, let h := H∗(chain), and let txs be
the set of unconfirmed pending transactions.

The leader L sends to everyone the proposed block 〈(h, e, txs)〉L
extending from the parent chain chain.

• Vote: During the epoch e, every node i does the following. Upon
receiving the first valid proposal 〈(h, e, txs)〉L from epoch e’s leader
L, vote for the proposed block iff it extends from one of the longest
notarized chains it has seen at the time.

To vote for the proposed block (h, e, txs), node i simply sends to
everyone 〈(h, e, txs)〉i.

Finalize: On seeing three adjacent blocks in a notarized blockchain
with consecutive epoch numbers, a node can finalize the second of the
three blocks, and its entire prefix chain.

Note that when a block is finalized by a node i, the block and its entire
prefix chain shows up the i’s local log; all the transactions contained in the
block and its prefix are confirmed and can never be undone later on.

Basically the entire protocol follows a propose-vote paradigm, with a
somewhat natural but also “magical” finalization rule. We give an example
of the finalization rule below to aid understanding.

Example. To aid understanding, we illustrate the finalization rule in the
following figure. In this example, all blocks are notarized, and in the top
chain, we have three adjacent blocks with consecutive epoch numbers 5, 6,
and 7. In this case, we can finalize the entire prefix chain2 “⊥ - 2 - 5 - 6”.

2When we refer to the example in the figure, we often use the block’s epoch number to
name the block.

42

epoch

1

epoch

2

epoch

3

epoch

5
epoch

6
epoch

7

epoch

X

To argue consistency, we will later prove that there cannot be a conflicting
block notarized at the same height (i.e., distance from the genesis block) as
the block with epoch 6, and thus the bottom chain “⊥ - 1 - 3” basically
cannot grow further.

7.2 Consistency

For simplicity, henceforth we shall assume that both the signature scheme
and the collision-resistant hash function H∗ are ideal, i.e., there are no
signature forgeries and no hash collisions.

We give a proof for the above example — and the full, formal proof
basically follows by changing the parameters in our argument to general
ones.

In the above example, we want to show that there cannot be any other
conflicting block notarized at the same height as the block 6.

Suppose for the sake of contradiction that indeed some other conflicting
block got notarized at the same height as block 6, e.g., the block with epoch
number X. The following lemma says that X must either be greater than 7
or smaller than 5 (see also Remark 9). We will use the term “in honest view”
to mean that some honest node observes it at some time in the protocol.

Lemma 7 (Unique notarization per epoch). Suppose that f < n/3. Then,
for each epoch e, there can be at most one notarized block with the epoch e
in honest view.

Proof. Suppose that two blocks B and B′, both of epoch e, got notarized in
honest view. It must be that at least 2n/3 nodes, denoted the set S, signed
the block B, and at least 2n/3 nodes, denoted the set S′, signed the block
B′. Since there are only n nodes in total, S ∩ S′ must have size at least n/3,
and thus at least one honest node is in S ∩ S′. According to our protocol,
every honest node votes for at most one block per epoch. This means that
B = B′.

43

Because of Lemma 7, the conflicting block notarized at the same height
as block 6 must have epoch either greater than 7 or smaller than 5. We will
therefore consider the two cases one by one, and the proof for both cases are
almost the same.

Case 1: X < 5. Since block X got notarized, it means that more than
n/3 honest nodes, denoted S, voted for block X and not only so, at the time
of the voting (that is, during epoch X < 5), they must have observed block 3
notarized. Now the honest nodes in S will not vote for block 5 during epoch
5, since it fails to extend a longest notarized chain seen, which is block 3 or
longer. Since f < n/3, this means that block 5 can never get notarized in
honest view. This leads to a contradiction.

Case 2: X > 7. Since block 7 is notarized, more than n/3 honest nodes
(denoted the set S) must have seen a notarized block 6 by the time they vote
for block 7 (i.e., by the end of epoch 7). As a result, by in epoch X > 7,
the set S of nodes must have seen block 6 notarized and will not vote for
block X, since block X now fails to extend the longest notarized chain seen
(which is block 6 or longer). Therefore block X cannot gain 2n/3 votes, and
it cannot be notarized, which is a contradiction.

The above consistency proof was for our specific example earlier, but it
can easily be generalized to the following statement.

Theorem 7 (Consistency). If some honest node sees a notarized chain with
three adjacent blocks B0,B1,B2 with consecutive epoch numbers e, e+ 1, and
e+ 2, then there cannot be a conflicting block B 6= B1 that also gets notarized
in honest view at the same height as B1.

Exercise 11. Please prove Theorem 7 by generalizing the parameters
of the argument above. Your proof should not rely on network timing
assumptions — see the paragraph below.

The consistency proof holds regardless of network timing. By ex-
amining the entire proof, it is not hard to see that the consistency proof
holds no matter what the actual network message delays are. Of course, if
the network is partitioned and honest nodes’ messages are being held up,
then we cannot guarantee progress. As explained in the following section,
liveness ensues during “periods of synchrony”, i.e., during a period of time in
which honest nodes can deliver messages back and forth within a round-trip
time of 1 second (i.e., equal to the epoch length).

44

7.3 Liveness

A period of synchrony is a duration of time in which honest nodes can deliver
messages to each other back and forth in a round-trip-time of at most 1
second (or whatever the epoch duration is). Another way to state it is that
the network’s maximum delay ∆ is half a second (i.e., half the epoch length)
during a period of synchrony.

Chan and Shi [CS20a] prove the following liveness theorem:

Theorem 8 (Liveness [CS20a]). If after some point of time, the network
enters a period of synchrony, and moreover, there are 5 consecutive epochs
e, e+1, . . . , e+4 all with honest leaders, then, by the beginning of epoch e+5,
every honest node’s log must grow by at least one new block (that was not
there at the beginning of epoch e), and moreover, this new block was proposed
by an honest leader.

Discussion. Recall that earlier in our protocol, we need a notarized chain
to have three adjacent blocks with consecutive epoch numbers to finalize
blocks. You might wonder why in the liveness theorem above, we require
5 consecutive epochs with honest leaders (during a period of synchrony) to
make progress. At a very high level, we first need a couple honest leaders to
“undo” the damage that corrupt leaders have done, so that the next three
honest leaders could make sure to have three consecutive blocks notarized.
The proof by Chan and Shi [CS20a] formalizes this very informal intuition.

Confirmation time and how randomization helps. Since the epoch
leaders are randomly chosen by a hash function, with Θ(1) probability, any
fixed 5 consecutive epochs would all have honest leaders. In other words,
during a period of synchrony, transactions can be confirmed in expected
constant number of rounds. This is really interesting because Dolev and
Strong [DS83] showed that any deterministic consensus protocol must incur at
least f +1 number of rounds. Therefore, we can conclude that randomization
critically helps with the round efficiency of consensus protocols. In fact, we
will explore the round complexity of consensus more in later chapters.

Reading assignment. We won’t have time to go over the full liveness
proof. Please read the proof by Chan and Shi [CS20a] as a homework
assignment.

45

7.4 The Partial Synchronous Model and Choosing
the Epoch Length

Although we did not make it explicit, Streamlet is in fact what’s commonly
referred to a partially synchronous protocol. The partially synchronous
model was first proposed by Dwork, Lynch, and Stockmeyer in a ground-
breaking work [DLS88]. Unlike a synchronous protocol which relies on
network synchrony to achieve consistency, a partially synchronous must
safeguard consistency no matter how long the network delay is. When
deploying a partially synchronous protocol, we still need to choose a delay
parameter ∆ and the protocol needs to be preconfigured with this parameter.
But no matter what the choice is and whether the actual network respects
the ∆-bound, consistency must be guaranteed nonetheless — for this reason,
partially synchronous protocols are said to be arbitrarily partition tolerant.
A partially synchronous consensus protocol must also respect liveness during
periods of synchrony, i.e., when the ∆-bound is indeed respected. In practice,
we often choose ∆ based on what we believe to be the network’s performance
under normal conditions (without having to worry about what ∆ might be
in worst-case scenarios, e.g., during outages or attacks).

Remark 11 (Two ways to define partial synchrony [DLS88]). Dwork et
al. [DLS88] in fact proposed two ways to model a partially synchronous
network.

• The “period of synchrony” model. This is the model we have adopted
so far, i.e., consistency should hold regardless of the network delay
and liveness is required to hold only during sufficiently long periods of
synchrony. We stress that the protocol does not know a-priori when
the period of synchrony will begin.

• The “unknown-∆” model. Another partially synchronous model intro-
duced by Dwork et al. [DLS88] is the “unknown-∆” model: in this case
the protocol is not preconfigured any ∆ parameter. In other words, we
want a universal protocol that works regardless of the actual ∆; that
is, both consistency and liveness should always hold even though the
protocol does not know the actual ∆, but the confirmation delay Tconf ,
of course, may depend on the actual ∆ (i.e., the faster the network,
the faster the confirmation).

Without going into details, Dwork et al. [DLS88] showed that the above
two models are equivalent from a feasibility perspective, i.e., it is possible to

46

construct one type of partially synchronous protocol from another. For this
reason, both models are referred to as the partially synchronous model.

In the distributed consensus literature, the “unknown-∆” model is
adopted more often in theoretical explorations, whereas the “period-of-
synchrony” model is used more often for practical constructions since it
typically results in simpler and cleaner protocols. Please read the elegant
work of Dwork et al. [DLS88] to learn about the two definitional approaches.

Remark 12 (Resilience of partially synchronous consensus). It turns out
that Streamlet achieves optimal resilience under partial synchrony. In the
later chapters, we will prove that no partially synchronous consensus protocol
can tolerate n/3 or more corruptions. This elegant lower bound was first
described by Dwork et al. [DLS88] as well.

7.5 Historical Anecdotes

Historically, Paxos [Lam98], PBFT [CL99], and their numerous variants [KAD+07,
GKQV10,Bur06,JRS11,BSA14] have been the mainstream practical approach
for distributed consensus. As mentioned in the previous chapter, almost
all practical implementations have adopted direct blockchain constructions,
rather than composition of single-shot consensus. Partly, the latter makes it
difficult to perform cross-instance pipelining and performance optimization.

The classical mainstream approach [CL99, Lam98, KAD+07, GKQV10,
Bur06, JRS11, BSA14] typically adopts a simple normal path that follows
a natural propose-vote paradigm. However, when the leader misbehaves,
the classical approach would go through a complicated recovery path (often
called view change) to rotate the leader. It is often difficult to precisely
understand the recovery path construction and implement it correctly, and
flaws have been demonstrated later on in well-known protocols.

For decades, researchers have made it a top priority to simplify these
consensus protocols, and various attempts have been made [OO14,Lam01,
VRA15]. Very recently, due to interests in decentralized cryptocurrencies,
various blockchain projects made independent efforts to simplify consensus
protocols [BZ17, CPS18b, CPS18a, YMR+18, HMW, Shi19b]. Nonetheless,
this line of work is difficult to navigate partly due to the use of disparate
terminology.

Inspired the proposals of various blockchain projects, a couple very
recent efforts [Shi19b,CS20a] called for a unified protocol for pedagogy and
implementation. The Streamlet protocol presented in this chapter is the
arguably (among the) simplest and most natural candidate(s) known to date.

47

7.6 Additional Exercises

Exercise 12. The Dolev-Strong protocol we learned earlier worked in a
synchronous model, and consistency holds when the network always guar-
antees the delivery of honest messages within one round. Show that the
Dolev-Strong protocol is not consistent under partial synchrony. For example,
you can demonstrate a counter-example in which one or more honest nodes
drop offline for some number of rounds and then come back online. The
messages sent by or destined for these nodes will be delivered late due to the
outage. Show that these honest nodes might not be consistent with other
honest nodes.

Exercise 13. Consider an execution of the Streamlet protocol where n = 99.
Suppose that strictly fewer than n/3 nodes are corrupt. For each of the
following scenarios, please answer whether such a scenario can possibly occur
during the execution. If so, please provide an explanation of how such a
scenario can occur. If not, please say why. For each scenario, if it is possible
to occur, please also state which blocks are considered final by the relevant
nodes.

a) The two notarized chains ⊥− 1− 3− 5 and ⊥− 2− 4− 6 will both be in
honest view.

b) An honest node P observes a notarized chain of the form ⊥− 3− 4− 5,
and another honest node Q observes a notarized chain of the form
⊥− 1− 2− 4− 5− 6.

c) An honest node P observes a notarized chain of the form ⊥− 3− 4− 5,
and another honest node Q observes a notarized chain of the form
⊥− 1− 2− 7− 8− 9.

Exercise 14. As a software engineer, Victor is given a task to implement
a consensus protocol for a core service of his company. Victor decided to
implement the Streamlet protocol. However, his manager told him that
it is ok to assume that strictly less than 1

4 of the nodes can be corrupt.
(Recall that in the original protocol, we assume that strictly less than 1

3
can be corrupt.) Being an expert on Streamlet, Victor wants to modify
the protocol to make use of this stronger assumption in order to maximize
system efficiency. What is the minimum number of votes we need to notarize
a block in this case? (Recall that in the original protocol, we need 2

3 fraction
of the nodes to vote to get a notarization.) Please prove consistency3.

3Thanks to Yiwen (Victor) Song for suggesting this exercise.

48

Chapter 8

Lower Bound for Partial
Synchrony

In the last chapter, we learned about the partially synchronous model, and
studied a partially synchronous blockchain protocol, called Streamlet, that
resists fewer than n/3 faults. One natural question arises:

Can a partially synchronous consensus protocol tolerate n/3 or more
malicious corruptions?

It turns out that the answer is NO, i.e., no partially synchronous protocol
can achieve consensus under at least n/3 corruptions. We shall prove it in
this lecture.

8.1 Problem Definition

In the last lecture, we mentioned that Dwork et al. [DLS88] suggested two
partially synchronous models: 1) the unknown-∆ model; and 2) the period-
of-synchrony model. They also showed that the two models are equivalent
from a feasibility perspective.

In this lecture, we will prove our lower bound using the unknown-∆
model; and the same lower bound in fact applies to the period-of-synchrony
model too. We leave it as a homework exercise (see Exercise 18) to prove
the same lower bound for the period-of-synchrony model.

We will prove our lower bound for a one-shot consensus abstraction.
Recall that in earlier lectures we considered Byzantine Broadcast (BB) as a
one-shot consensus abstraction when studying the feasibility of consensus
in a synchronous network. Unfortunately, BB is unrealizable in a partially

49

synchronous network even if at most one node can be corrupt (see Exercise 17).
Instead we consider an agreement version of the problem henceforth referred
to as Byzantine Agreement (BA). In BB, there is a designated sender who
receives an input bit and wants to broadcast this input bit to everyone else.
In BA, everyone receives an input bit, and they would like to run a protocol
to agree on a bit. The following requirements must be satisfied — note that
the key difference from BB is that the new validity requirement:

• Consistency. If two honest nodes output b1 and b2 respectively, it must
be that b1 = b2.

• Validity. If all honest nodes receive the same input bit b, then all
honest nodes’ must output b.

• T -liveness. Every honest node must have produced an output after T
rounds where T may be a function of n, the actual network delay ∆,
and other parameters. Here the actual network delay is determined
a-posteriori from the actual execution trace since there is no a-priori
promised ∆.

There are a few important things to note about the definition:

1. First, always keep in mind that a partially synchronous protocol is
unaware of ∆ and in this sense, it must a universal protocol that works
for all ∆.

2. Related to the above point, the confirmation delay T is a function
of the actual delay ∆ (and other parameters) determined a-posteriori
from the actual execution trace.

3. Recall that when we defined synchronous Byzantine Broadcast earlier
in Chapter 3, we did not define a liveness property. This is because
in the synchronous setting, we may assume that the protocol always
terminates and outputs after an a-priori fixed number of rounds T (n,∆)
where ∆ is a-priori known. In the partially synchronous setting, since
∆ (or GST) is unknown, we cannot know a-priori how long the protocol
needs to run to get any output — it depends on the actual network
delay.

4. In the above, we implicitly required that the security properties, in-
cluding consistency, validity, and liveness to hold deterministically.
Sometimes, the BA protocol may be randomized, and in such cases we
say that a protocol achieves BA with probability 1− δ iff regardless of

50

the corrupt nodes’ strategy, with probability 1− δ over the choice of
the randomized execution, the above security properties are respected.
We often want the failure probability δ ∈ (0, 1) to be tiny.

Given a partially synchronous blockchain protocol, one can construct a
partially synchronous BA protocol as below — as long as fewer than n/3
nodes are corrupt: nodes run a blockchain protocol, and each node signs
its input bit and posts the signed bit to the blockchain (by inputting the
signed bit to the blockchain protocol). As soon as at least 2n/3 bits signed
by distinct nodes have appeared in a node’s finalized chain, the node outputs
the majority bit among the first d2n/3e bits (signed by distinct nodes). In
the case of a tie, output the canonical bit 0.

Exercise 15. Prove that as long as fewer than n/3 nodes are corrupt, the
above BA protocol indeed satisfies consistency, validity, and T -liveness in
the unknown-∆ partially synchronous model for some appropriate choice
of T , as long as the underlying blockchain protocol satisfies consistency
and liveness (defined in Chapter 6) in the unknown-∆ model.

Therefore, the existence of a partially synchronous blockchain protocol
implies the existence of a partially synchronous BA protocol, as long as fewer
than n/3 nodes are corrupt.

It turns out the reverse direction is true — and this time without imposing
a constraint on the number of corrupt nodes f . In other words, given a
partially synchronous BA protocol resilient against f corrupt nodes, we
can construct a partially synchronous blockchain protocol resilient against
f corrupt nodes. Informally, we can divide the execution into epochs and
have a leader propose a block of transactions during each epoch; then nodes
invoke a BA instance per epoch to agree on a block, and the input to the
BA is what the epoch’s leader has proposed. The log of each node is formed
by concatenating all the BAs’ outputs sequentially. Because of the above,
proving a resilience lower bound for partially synchronous BA is equivalent to
proving the same resilience lower bound for a partially synchronous blockchain
protocol.

8.2 Impossibility of Partial Synchronous Consen-
sus under n/3 Corruptions

We now prove the main theorem of this lecture stated below.

51

Theorem 9 (Impossibility of partially synchronous consensus under n/3
corruptions [DLS88]). Let T be an arbitrary function on n and ∆. Suppose
that at least n/3 nodes are corrupt, then, no partially synchronous protocol
can realize BA with liveness parameter T .

Proof. We prove that no partially synchronous protocol can achieve BA for
n = 3 and f = 1. Suppose that this is not true and there exists a partially
synchronous protocol Π that achieves BA for n = 3 and f = 1.

Consider an execution of the protocol with three nodes named P , Q0,
and Q1. Among the three, Q0 and Q1 are honest and receive the input bits
0 and 1 respectively. Now, P is corrupt, and instead of following the honest
protocol, it simulates the actions of two nodes named P0 and P1 in its head.
Both the simulated P0 and P1 run the honest protocol, P0 interacts with Q0

and P1 interacts with Q1. Furthermore, P0 is given the input bit 0 and P1 is
given the input bit 1.

Now, imagine that the message delay between Q0 and Q1 are more than
T (n = 3,∆ = 1) + 5. However, messages between P0 and Q0 are always
delivered in the immediate next round, and so are messages between P1 and
Q1.

P0

Q0

P1

Q1
long delay

P

Since P is the only corrupt node, by consistency, we know that Q0 and
Q1 must output the same bit.

However, before round T (n = 3,∆ = 1) + 5, P0 and Q0’s joint view is
identically distributed as the case when Q1 has crashed but both P0 and
Q0 are honest, receive the input bit 0, and moreover, the actual network
delay ∆ = 1 between P0 and Q0. By T -liveness, P0 and Q0 will produce an
output in T (n = 3,∆ = 1) rounds1. By validity, Q0 must output 0. With a
symmetric argument, we conclude that Q1 must output 1. This leads to a
contradiction since earlier we concluded that Q0 and Q1 must produce the
same output bit.

Remark 13. The above lower bound holds even when allowing setup (e.g.,
PKI, random oracles) and making cryptographic hardness assumptions.

1Note that here T takes in the actual ∆ which is 1 in this case.

52

Remark 14. The above lower bound rules out the existence of any partially
synchronous protocol that achieves BA with probability 1 under n/3 cor-
ruptions. We can in fact generalize the above impossibility proof and rule
out any randomized, partially synchronous protocol that achieves BA with
probability more than 2/3, assuming that at least n/3 nodes are corrupt.
This is left as a homework exercise (see Exercise 16).

8.3 Additional Exercises

Exercise 16. Theorem 9 rules out the existence of any deterministic, par-
tially synchronous protocol that achieves BA in the presence of at least n/3
corrupt nodes.

Prove that there does not exist a randomized, partially synchronous
protocol that achieves BA with probability more than 2/3 in the presence of
at least n/3 corrupt nodes.

Exercise 17. Recall that in Byzantine Broadcast (BB), a designated sender
has an input bit b, and it would like to propagate this input bit to everyone
else. Consistency and liveness are defined in the same manner as the BA
definition earlier in this lecture. Validity requires that if the designated
sender is honest, then all honest nodes must output the sender’s input bit.

A partially synchronous BB is unaware of ∆, but its liveness parameter
may depend on the network’s actual ∆.

Prove that there does not exist a partially synchronous BB protocol even
for f = 1. You may choose to prove it for either the unknown-∆ model or
the period-of-synchrony model.

Exercise 18. Prove the equivalent of Theorem 9 but now for the partially
synchronous protocols in the period-of-synchrony model. Note that in the
period-of-synchrony model (see Chapter 7), T -liveness is redefined such that
honest nodes are only required to produce an output if the network eventually
enters a period of synchrony, and moreover honest nodes must have produced
an output T rounds after the start of the period of synchrony.

Exercise 19. Prove that BA is impossible if at least n/2 nodes are corrupt,
even in the synchronous model. In other words, unlike the BB abstraction,
we need to assume honest majority to construct BA even under synchrony.

53

54

Chapter 9

Round Complexity of
Deterministic Consensus ※

In this lecture, we will prove that any deterministic Byzantine Broadcast
protocol (allowing ideal signatures) must incur at least f + 1 rounds. This is
a celebrated result first proven by Dolev and Strong [DS83], and it shows
that the Dolev-Strong protocol achieves optimal round complexity. We will
present a re-exposition [lec] of Dolev and Strong’s proof [DS83].

9.1 Weakly Valid Byzantine Agreement

To rule out a deterministic BB protocol with fewer than f + 1 rounds, we
actually prove a round complexity lower bound for a weaker abstraction
called weakly valid Byzantine Agreement (BA). Recall that in Chapter 8
we defined the agreement version of single-shot consensus, called Byzantine
Agreement (BA). In BA, every node receives an input bit, and would like to
agree on an output bit. We want consistency, i.e., all honest nodes’ outputs
be the same; and validity, i.e., if all honest nodes receive the same input bit
b, then they must all output b. Henceforth, this notion of validity is referred
to as strong validity.

We now define a more relaxed version, called weakly valid BA. The only
difference from the earlier (strongly valid) BA is that the validity condition
is weakened: we now require only the following:

Weak validity: if all nodes are honest and receive the same input bit b,
then they must all output b too.

As it turns out, if there is an R-round BB protocol that tolerates f

55

corruptions, then there is an R-round weakly valid BA protocol also tolerating
f corruptions. Proving this is straightforward and left as a homework exercise.
This tells us that proving a round complexity lower bound for weakly valid
BA would immediately lead to the same round complexity lower bound for
BA.

Exercise 20. Prove that if there is a deterministic R-round BB protocol
that tolerates f corruptions, then there is a deterministic R-round weakly
valid BA protocol also tolerating f corruptions.

9.2 Proving the Lower Bound for f = 2

For simplicity, we will focus on the special case when f = 2 and later on
argue why the proof readily extends to more general choices of f .

More concretely, we begin by proving the following statement:

Lemma 8. Suppose that n ≥ 4. Then, no 2-round deterministic protocol
can realize weakly valid BA in the presence of 2 corruptions.

9.2.1 Overview of the Proof

Simplifying assumptions. Since we are concerned about the round com-
plexity of the protocol, without loss of generality, we may assume that in
every round, everyone sends a message to everyone else (but not the node
itself).

Proof idea: constructing a sequence of executions. Suppose for the
same of reaching a contradiction, that there exists a 2-round protocol Π that
realizes BB in the presence of 2 corruptions.

We will consider a sequence of executions (depicted in Figure 9.1) of this
protocol Π and reach a contradiction. Specifically, in the first execution, all
nodes are honest and receive the input 0 whereas in the last execution, all
nodes are honest and receive the input 1. We want to conclude that the
nodes’ outputs in the first execution must be equal to their outputs in the
last execution, thereby reaching a contradiction.

In every execution in this sequence, every node runs the honest protocol;
however, a network adversary may erase some of the messages. The messages
erased are denoted by dashed lines in Figure 9.1. Alternatively, instead of
viewing the attack as being conducted by a network-only adversary, we can
imagine that a subset of the nodes are corrupt: corrupt nodes suppress a

56

0

0

0

0

R1 R2

(a) Execution 0.

7→

0

0

0

0

R1 R2

(b) Execution 1.

7→

0

0

0

0

R1 R2

(c) Execution 2.

7→

0

0

0

0

R1 R2

(d) Execution 3.

7→ 0

0

0

0
R1 R2

(e) Execution 4.

n−1
==⇒

0

0

0

0

R1 R2

(f) Execution 4 +
(n− 1).

n−1
==⇒

0

0

0

0

R1 R2

(g) Execution 4 +
2(n− 1).

7→

0

0

0

0

R1 R2

(h) Execution 5+
2(n− 1).

n−1
==⇒

0

0

0

0

R1 R2

(i) Execution 5 +
3(n− 1).

n−1
==⇒

0

0

0

0

R1 R2

(j) Execution 5 +
4(n− 1).

7→

0

0

0

0

R1 R2

(k) Execution 6 +
4(n− 1).

n−1
==⇒

0

0

0

0

R1 R2

(l) Execution 6 +
5(n− 1).

n−1
==⇒

0

0

0

0

R1 R2

(m) Execution
6 + 6(n− 1).

7→

1

0

0

0

R1 R2

(n) Execution 7+
6(n− 1).

.

1

1

1

1

R1 R2

(o) Final execu-
tion.

Figure 9.1: Sequence of executions. Dashed lines denote communication that
is dropped. The arrow 7→ denotes a single transition to the next execution in

this sequence (also called a “small step”); the arrow
n−1
==⇒ denotes a collection

of n− 1 transitions (also called a “big step”).

57

subset to all of the messages it ought to send but otherwise follow the honest
protocol. Thus, if a node i’s message is partially or completely being erased
in some round (i.e., there exist dashed edges outgoing from i) then node i is
treated as corrupt.

Invariants. The sequence of executions in Figure 9.1 are constructed with
two important invariants in mind.

1. Neighboring constraint: for any pair of adjacent executions, there exists
at least one node that is honest in both executions, and moreover its view
has not changed in between these executions.

2. Corruption constraint: in every execution, for each round, there is at
most one node whose outgoing messages can be erased. In other words, in
Figure 9.1, only one node can have outgoing dashed edges in each round.
Recall that one way to interpret the missing messages is that their sender
is corrupt and dropped the messages — thus by construction, the total
number of corrupt nodes is upper bounded by f .

The corruption constraint makes sure that in every execution, at most f
nodes are corrupt and thus consistency and weak validity should be respected
in all executions. Now, if we also have the neighboring constraint, we can
then make sure that honest nodes’ outputs are consistent in any two adjacent
executions — therefore, the honest nodes’ outputs must be consistent in the
first and last executions as well.

9.2.2 Sequence of Executions for f = 2

We now walk through the sequence of executions (Figure 9.1) for the special
case f = 2, at the end of which we will reach the contradiction we need.

Notation. We first introduce some notation that will help us:

1. The n nodes are numbered 1, 2, . . . , n, and we use the notation [n] :=
{1, 2, . . . , n}.

2. We use the notation i
r−→ j to denote the r-th round message from node i

to node j where r ∈ {1, 2} and i, j ∈ [n].

3. Similarly, for S, S′ ⊆ [n], S
r−→ S′ denotes the set of all round-r messages

from any node in S to any node in S′.

4. We use ∗ to denote wildcard, i.e., ∗ := [n]. We use j ∈ [n] to denote a
singleton set {j} whenever convenient.

58

Sequence of executions. We now go over the sequence of executions in
Figure 9.1.

• To start with, in Execution 0, everyone receives the input bit 0 and no
message is erased. In this case, everyone should output 0 due to weak
validity.

• In Execution 1, message 2
2−→ 1 is erased. Now, observe nodes 3 and 4

are honest in both Execution 0 and Execution 1, and moreover, their
views have not changed in between the two executions. Since these
nodes output 0 in Execution 0, they must output 0 in Execution 1 as
well. Since only one node is corrupt in Execution 2, by the consistency
requirement, all honest nodes (i.e., everyone except node 2) should
output 0 in Execution 1.

• In Executions 2 and 3, we erase the messages 2
2−→ 3 and 2

2−→ 4 one by
one. In both Executions 2 and 3, only node 2 is corrupt. Moreover, we
respect the neighboring constraint as we remove the edges one by one.
We thus conclude in a similar fashion that in both Executions 3 and 4,
every honest node should output 0.

• In Execution 4, we erase the message 1
1−→ 2 and therefore in Execution

4, only 1 and 2 are corrupt. Since in Execution 3, node 2 does not

send any second-round messages, erasing 1
1−→ 2 does not change node

3 or 4’s view in these two adjacent executions. Therefore by a similar
argument, we conclude that all honest nodes output 0 in Execution 4.

• Now, we restore the messages 2
2−→ ∗ one by one, leading to Execution

4 + (n− 1). It is not hard to verify that each step respects both the
neighboring and the corruption constraints. Thus all honest nodes
must output 0 in these executions.

• Now one by one, we erase the second-round message 3
2−→ ∗ leading to

Execution 4 + 2(n− 1). Both above constraints are respected in each
step.

• At this moment, we may erase the message 1
1−→ 3, leading to Execution

5 + 2(n− 1).

• We now continue this process as shown in Figure 9.1. When we reach
Execution 7 + 6(n− 1), node 1 no longer sends any message and thus
we can flip its input to 1 without affecting any honest nodes’ views.

59

• At this moment, we follow the reverse process that reverses the steps
taken from Execution 0 to Execution 7 + 6(n − 1) to add back all
edges. At this point, we have flipped node 1’s input in comparison
with Execution 0, and everything else remains unchanged.

• Now, using the procedure we took to flip the input of node 1, we
can flip the input of every other node too, eventually reaching the
final execution where all nodes are honest and receive the input 1.
Since in all steps we respect the neighboring constraint as well as the
corruption constraint, we may conclude that even in the final execution
all honest nodes must output 0. However, this violates the weak validity
requirement and thus we have reached a contradiction.

Exercise 21. How many executions are there in the above sequence?

9.3 Extending the Argument for General Choices
of f

Given the above example for f = 2, we are now ready to generalize the proof
to arbitrary choices of f ≤ n− 2, leading to the following theorem:

Theorem 10 (Round complexity lower bound for deterministic consen-
sus [DS83]). Suppose that n ≥ f + 2. Then, no deterministic protocol of f
or fewer rounds can realize weakly valid BA in the presence of f corruptions.

To prove the above theorem. we define a recursive algorithm that gen-
erates a sequence of executions that respects both the neighboring and
corruption constraints, where each execution can be described as a commu-
nication graph G with f rounds similar to Figure 9.1.

Remark 15. Recall that earlier in Section 9.2, we ignored self-destined
messages and assume that nodes do not send messages to themselves. Here,
it is a little simpler to describe our recursive algorithm that generates a
sequence of executions, assuming that nodes can send messages to themselves
too.

Our recursive algorithm in Figure 9.1 makes use of the following recursive
function calls:

• Delete(i, r): Suppose that currently the graph G has a complete set
of edges in any round r′ ≥ r (henceforth this is said to be the input

60

Delete(i, r):

If r = f :

For j ∈ [n]: DeleteOne(i, j, f)

Else:

For j ∈ [n]:

– Delete(j, r + 1)
– DeleteOne(i, j, r)
– Restore(j, r + 1)

Delete(i, r + 1)

Restore(i, r):

If r = f :

For j ∈ [n]: RestoreOne(i, j, f)

Else:

Restore(i, r + 1)

For j ∈ [m]:

– Delete(j, r + 1)
– RestoreOne(i, j, r)
– Restore(j, r + 1)

Main():

For i ∈ [m]:

– Delete(i, 1)

– Flip i’s input bit and output

– Restore(i, 1)

DeleteOne(i, j, r):

Delete i
r−→ j and output

RestoreOne(i, j, r):

Restore i
r−→ j and output

Figure 9.2: Recursive algorithm for defining a sequence of execu-
tions. All algorithms modify a global graph. Initially, when Main is invoked,
the graph is a complete communication graph of R rounds with all-0 inputs.
Whenever output is called, the current graph’s state is output as the next
execution in the sequence.

assumption for Delete). Delete(i, r) removes from G all edges i
r′−→ ∗

for any round r′ ≥ r. The sequence of intermediate graphs encountered
during the process are output.

• Restore(i, r): Suppose that in the current graph G, all edges {i r′−→ ∗}r′≥r
are missing but all other edges in round r′ ≥ r are complete (henceforth
this is said to be the input assumption for Restore). Now, Restore(i, r)

restores in G all edges i
r′−→ ∗ for any r′ ≥ r. The sequence of intermediate

graphs encountered during the process are output.

Through mechanical checking, it is easy to verify the syntactic correctness
of the above recursive algorithm, that is,

1. Delete or Restore do realize their intended functionalities described
earlier;

61

2. If Delete or Restore is invoked upon a graph that satisfies its respec-
tive input assumption, then all recursive calls it makes to Delete and
Restore will satisfy the respective input assumptions.

3. Suppose that the Main function is invoked for the complete communi-
cation graph with all-0 input. Then, the calls to Delete and Restore
made by Main satisfy the respective input assumptions. Furthermore,
the final graph G is the complete communication graph with all-1 input.

It remains to prove that the sequence of graphs generated by the above
algorithm respect the two invariants, i.e., the neighboring constraint and the
corruption constraint. If this is true, then we can conclude that honest nodes’
output are the same in all executions, thus leading to a contradiction. We
now prove that indeed both constraints are satisfied. Recall that the above
recursive algorithm outputs a graph only inside DeleteOne, RestoreOne, and
inside the Main function.

Lemma 9 (Corruption constraint). The sequence of graphs output by the
above recursive algorithm respects the corruption constraint.

Proof. It suffices to prove that whenever DeleteOne(i, j, r) is called, all nodes
other than i must have complete round-r edges. The proof is done through
mechanical checking.

Last round: DeleteOne(i, j, f) can only be invoked from within Delete(i, f).
By the input assumption of Delete, when Delete(i, f) is invoked, all last-
round edges are complete. Therefore, whenever DeleteOne(i, j, f) is called,
all nodes other than i must have complete last-round edges.

All other rounds r < f : DeleteOne(i, j, r) can only be invoked from
within Delete(i, r). DeleteOne(i, j, r) must be invoked upon a graph G
that satisfies the following 1) edges in rounds r + 1 and greater are all
complete, except that outgoing edges from j in rounds r + 1 and greater are
all missing; and 2) except for node i, all other nodes must have complete
round-r messages.

Lemma 10 (Neighboring constraint). The sequence of graphs output by the
above recursive algorithm respects the neighboring constraint.

Proof. Last round: Since n ≥ f + 2, and the corruption constraint is satis-
fied, there are at least 2 honest nodes. However, each time DeleteOne(i, j, f)
RestoreOne(i, j, f) is invoked, it removes or restores only one last-round edge.
So there must be one honest node whose view is unaffected by the operation.

62

All other rounds r < f : DeleteOne(i, j, r) can only be invoked from
within Delete(i, r). The line Delete(j, r+1) deletes all edges in rounds r+1
or greater outgoing from j. At this moment, DeleteOne(i, j, r) obviously
does not affect any honest nodes’ view. A similar argument holds for
RestoreOne(i, j, r).

Inside Main: the line Delete(i, 1) deletes all edges outgoing from i. Obvi-
ously at this moment, changing i’s input bits do not affect any honest nodes’
view.

We leave the following natural questions as homework exercises.

Exercise 22. How many executions are there in the above sequence
generated by our recursive algorithm?

Exercise 23. Exactly where would the above proof break if the com-
munication graph had f + 1 rounds?

63

64

Chapter 10

Round Complexity of
Randomized Consensus ※

We know by now that any deterministic BB protocol (possibly in the ideal
signature model) must incur at least f + 1 rounds where f denotes the maxi-
mum number of corruptions. We also learned in Chapter 7 that randomized
protocols can achieve blockchain or BB in expected constant number of
rounds assuming PKI and digital signatures. In this lecture, we prove a
2n/(n − f) − 1 lower bound on the round complexity of randomized BB
protocols — the proof is due to the elegant work of Garay et al. [GKKO07].
To help understand the result, we may consider a couple interesting special
cases of the statement:

• The lower bound is constant when a constant fraction of the nodes are
corrupt. Although asymptotically, a constant-round lower bound seems
trivial, in this case the statement does provide a concrete constant as
the lower bound which is interesting.

• In the special case when f = n− 2 nodes are corrupt, we get a linear
round complexity lower bound.

10.1 Round Complexity of Randomized BB

We will state and prove our lower bound for the synchronous model, assuming
that when honest nodes send messages, the messages are delivered to honest
recipients in the immediate next round. Note that a lower bound for a
synchronous network makes the result stronger.

65

Theorem 11 (Round complexity lower bound for randomized BB [GKKO07]).
Suppose that f ≤ n−2 and δ < n−f

4n . No randomized protocol that terminates
in fewer than 2n/(n− f)− 1 rounds can achieve Byzantine Broadcast with
probability 1− δ in the presence of f corruptions.

Proof. For simplicity we shall assume that the number of honest nodes
h = n− f is an even number, and that n is divisible by h/2.

Suppose for the sake of reaching a contradiction, that there is a protocol
that defends against f corruptions, completes in fewer than 2n/h−1 number
of rounds, and achieves BB with probability 1 − δ. Let us consider the
following execution of the protocol:

• We partition the n nodes into disjoint sets of h/2 nodes each, denoted
S1, S2, . . . , Sd respectively where d = 2n/h.

• All nodes execute the honest protocol; however, there is a network
adversary that drops certain messages such that only the following
messages get delivered (within one round): 1) messages between nodes
in the same set; and 2) messages between nodes in adjacent sets. All
other messages are dropped. For example, when a node in S1 sends a
message to a recipient in S1 or S2, the message will be delivered in the
immediate next round. However, if a node in S1 sends a message to a
recipient in S3, the message gets dropped.

• The designated sender is in S1.

Now, for every i ∈ [d − 1], we can interpret the execution in the fol-
lowing way: the h nodes in Si ∪ Si+1 are honest, and all other nodes are
corrupt and they are ignoring certain incoming messages and dropping cer-
tain outgoing messages. Note that in this interpretation, we no longer have
a network adversary that drops messages; instead, the messages could have
been ignored/dropped by corrupt nodes themselves.

Clearly, there are d − 1 interpretations in total. Under the first inter-
pretation, and due to the validity properties of BB, we conclude that with
probability 1− δ, nodes in S1 and S2 must all output the designated sender’s
input (recall that the designated sender is in S1). For i > 1, consider the
i-th interpretation: due to the consistency property of BB, we may conclude
that with probability 1− δ, nodes in Si ∪ Si+1 agree on their outputs.

By the union bound, with probability at least 1− (d− 1) · δ > 1/2, the
nodes in Sd must output the designated sender’s input bit. Recall that the
designated sender is in S1, and it takes d rounds for any information to
propagate from anyone in S1 to anyone in Sd. Since BB completes in at most

66

d− 1 rounds, by the time the protocol terminates, the view of nodes in Sd is
independent of the designated sender’s input — in other words, information
in S1 cannot possibly propagate to Sd in fewer than d− 1 rounds. Therefore,
one of the two input bits, denoted b′, must cause the nodes in Sd to output
differently from b′ with probability at least 1/2. Thus we have reached a
contradiction.

Remark 16. The above round complexity lower bound holds even allowing
trusted setup (e.g., PKI, random oracles) and cryptographic assumptions.

10.2 Survey of Recent Results

Although for the honest majority setting, it is long known how to construct
expected constant round BB [FM97,KK09]; for the corrupt majority setting,
say, when 51% of the nodes are corrupt, it was not known for a very long time
how to construct BB with sublinear (in n) round complexity. Fortunately, a
couple recent works made progress along this front:

1. Chan et al. [CPS20] showed that assuming trusted setup and stan-
dard cryptographic assumptions, there is a protocol that completes in
Θ(log 1

δ ·
n

n−f) number of rounds and achieves BB with 1− δ probability
in the presence of f < n corruptions.

2. Wan et al. [WXSD20] showed a BB protocol that completes in expected
O((n

n−f)2) number of rounds and tolerates any f < n corruptions,
assuming PKI and digital signatures. Their protocol achieves expected
constant number of rounds even when, say, 99% of the nodes are
corrupt.

67

68

Chapter 11

Communication Complexity
of Consensus ※

In the previous couple of chapters, we proved lower bounds on the round
complexity of Byzantine Broadcast (BB). Besides the protocol’s round com-
plexity, another important metric is the protocol’s communication complexity,
i.e., the total number of bits sent by the union of the honest nodes.

We will assume a pairwise channel model, i.e., every pair of nodes have
dedicated links for sending messages to each other. The communication
complexity of a protocol is the total number of bits honest nodes send over
all pairwise channels. This means that if an honest node sends the same
message m to all nodes, it is counted as sending n · |m| total bits where n is
the number of nodes and |m| denotes the length of the message m.

Moreover, in some protocols, the amount of information an node sends
may depend on other nodes’ behavior, including what corrupt nodes send.
For deterministic protocols, we define communication complexity as the total
number of bits honest nodes send under the worst-case scenario (assuming
that at most f nodes are corrupt). For randomized protocols, communication
complexity is typically stated in the following way parametrized with a failure
probability δ ∈ (0, 1): the union of honest nodes send at most C bits with
1− δ probability no matter which (up to f) nodes are corrupt and no matter
what corrupt nodes’ strategy is.

In this lecture, we will first prove a quadratic lower bound on the com-
munication complexity of deterministic BB protocols [DR85]. We will then
discuss the communication complexity of randomized BB protocols.

69

11.1 Communication Lower Bound for Determin-
istic Consensus

Dolev and Reischuk proved the following elegant result:

Theorem 12 (Dolev and Reischuk [DR85]). Any deterministic Byzantine
Broadcast protocol that tolerates up to f ≤ n − 2 corruptions must incur
communication complexity at least bf/2c2.

Proof. Suppose for the sake of reaching a contradiction that there is a BB
protocol that has communication complexity smaller than bf/2c2.

Without loss of generality, we may assume that if a node receives no mes-
sage during the protocol execution, it outputs either 0 or 1 (see Remark 19).
Therefore, either at least n/2 nodes output 0 when receiving nothing during
the entire protocol, or at least n/2 nodes output 1 when receiving nothing.
Without loss of generality, suppose that it is the former case (if it’s the other
case, we can simply do a symmetric argument).

We can choose bf/2c nodes that are not the designated sender and would
output 0 if nothing is received during the protocol — call this set of nodes
V . We will number the n nodes as 1, 2, . . . , n, and let U := {1, 2, . . . , n}\V .
The designated sender is in U . Consider the following execution:

• The designated sender in U receives the input bit 1.

• Nodes in U behave honestly.

• Nodes in V are corrupt and perform the following message omission
attack: they drop all messages they would send to nodes in V and send
messages only to those in U . Furthermore, every node in V ignores the
first bf/2c messages they receive from nodes in U . Otherwise, nodes
in V follow the honest protocol.

Since the protocol has smaller than bf/2c2 communication complexity,
it means that at least one node in V , denoted p, receives fewer than bf/2c
messages from nodes in U , and thus p will ignore all messages it receives from
nodes in U . Since at most bf/2c nodes are corrupt in the above execution,
by validity, all nodes in U output 1.

Now we will view the same execution with a different interpretation to
reach a contradiction. The alternative interpretation is the following:

• Everyone in V is corrupt except p. Everyone in V \{p} drops all
messages to everyone in V and send messages only to nodes in U ; it

70

also ignores the first bf/2c messages received from nodes in U as well as
any message from p. Otherwise these nodes follow the honest behavior.

• The up to bf/2c nodes in U that ever need to send message to p are
corrupt but all other nodes in U are honest. The corrupt nodes in U
drop all messages they would have sent to p but otherwise follow the
honest protocol.

In this alternative interpretation, at most bf/2c · 2 − 1 ≤ f nodes are
corrupt. By consistency, the honest node p should output 1 since all honest
nodes in U output 1 (this was concluded in the earlier interpretation).
However, notice that p does not receive any message at all in the alternative
interpretation, and by construction, nodes in V output 0 if they receive no
message in the protocol. Thus we have reached a contradiction.

Remark 17. In the above proof, in the second interpretation, the designated
sender may be corrupt too. This is why we use consistency rather than
validity in the second interpretation.

Remark 18. In fact, the above proof shows something stronger: any deter-
ministic BB must incur at least bf/2c2 message complexity, where message
complexity is defined as the total number of messages the union of honest
nodes send in the worst case. Again, if a node sends the same message to all
n nodes, it is counted n times towards the message complexity.

Remark 19. A (deterministic) protocol defines a “program” to be executed
by every node. For each node, we can test what its output would be if it does
not receive any messages at all during the entire duration of the protocol.
There are three possible behaviors: it outputs 0, 1, or nothing. Without loss
of generality, we may assume that every node should either output 0 or 1
if no message is received — if a node outputs nothing when no message is
received, it means that protocol guarantees that the node receives a message
(otherwise the protocol would not be well-defined). In this case we can simply
redefine its output to be 0.

Exercise 24. We can tighten the above proof and show that in fact,
any deterministic BB protocol that tolerates f ≤ n− 2 corruptions must
incur at least df/2e · bf/2c communication complexity. Please describe
the tightened proof.

71

11.2 Communication-Efficient Randomized Consen-
sus

We now describe a random committee election technique that allows us to
improve not just the communication complexity of Byzantine Broadcast, but
also its round complexity. The technique works assuming that 1

2 + ε fraction
of the nodes are honest, for an arbitrarily small constant ε ∈ (0, 1

2).
Without loss of generality, we assume that the nodes are numbered

1, 2, . . . , n, and that 1 is the designated sender. Let [n] := {1, 2, . . . , n}. We
will use a public hash function H : {0, 1}∗ → [n] (modeled as a random
oracle) to elect a small committee of size k. The designated sender is always
elected. The remaining k − 1 committee members are computed as H(2),
H(3), . . ., H(k). Note that a node can be elected multiple times into the
committee, and therefore the committee is a multi-set.

We now run a Byzantine Broadcast protocol, say, the Dolev-Strong
protocol, among the committee. This will allow all committee members to
agree on a bit. Finally, everyone who is outside the committee contacts all
committee members and asks each committee member what the outcome
is. It then outputs the bit that is the majority vote among the committee
members (and in the presence of a tie, outputs a bit arbitrarily).

We describe the protocol more formally below. Let δ ∈ (0, 1) be an
intended failure probability for the BB protocol, and recall that 1

2 + ε fraction
of the nodes are honest, where ε ∈ (0, 1

2) is an arbitrarily small constant.

• At the beginning of the protocol, a public hash function H is
chosen and we elect a committee which is a multiset of size k :=
d16 log(1

δ)/ε2e+ 1 whose members are elected as follows:

– first, the designated sender, i.e., node 1, is elected;

– for i = 2 to k, elect the node H(k).

This step is done locally by all nodes and does not incur any
communication.

• The committee members run a possibly inefficient Byzantine Broad-
cast protocol, say, the Dolev-Strong protocol. (?)

At the end of the protocol, every committee member has an output
b. Let R(k) denote the round complexity of Dolev-Strong when
run among k nodes. This step continues for R(k) rounds.

72

• In the (R(k) + 1)-st round: for each node i outside the committee,
every committee member send its output bit to i. If more than
k/2 committee members return the same bit b′ to i, node i outputs
b′; else it outputs an arbitrary bit. (?)

(?): If a node is elected µ times into the committee, it acts as µ nodes
in the steps marked (?).

Lemma 11. Suppose that the hash function is chosen at random after an
adversary picks which nodes to corrupt, and moreover suppose that 1

2 + ε
fraction of nodes are honest where ε ∈ (0, 1

2) is an arbitrarily small constant.
Then,

Pr [majority in the committee are honest] ≥ 1− δ

Proof. Let X be the number of honest nodes among the k − 1 randomly
elected committee members. Clearly, E[X] = (1

2 + ε) · (k − 1).
Now, given that k = 16 log(1

δ)/ε2 + 1, it is not difficult to verify that
(1− ε/2) ·E[X] > k/2. We have that

Pr [X ≤ k/2] ≤Pr [X ≤ (1− ε/2) ·E[X]]

≤ exp(−(ε/2)2 ·E[X]/2) (F)

≤ exp(−ε2 · (k − 1)/16) = δ

where the inequality marked F is due to the Chernoff bound.

Theorem 13. The above protocol achieves Byzantine Broadcast with proba-
bility 1− δ.

Proof. Due to Lemma 11, it suffices prove that consistency and validity
hold for every execution where the majority of the committee are honest.
Henceforth we may focus only on executions where the majority of the
committee are honest.

We first prove consistency. The honest committee members output
consistent decision due to the consistency property of the inefficient BB (i.e.,
Dolev-Strong). Let b be the bit output by the honest committee members.
It remains to show that any honest node outside the committee will output b
too. Since the majority of the committee are honest, b must be the majority
vote among the committee.

Due to the above argument, to prove validity, we just need to show that
the honest committee members’ output satisfies validity. This follows from
the validity of the inefficient BB among the committee.

73

Efficiency of the protocol. The communication and round efficiency
of the above protocol depends only on the protocol’s failure probability δ
and the honest margin ε away from a half. In particular, the efficiency
measures do not depend on the total number of nodes n. Here, by employing
randomness, we circumvented the bf/2c2 communication complexity lower
bound [DR85] (described earlier in this chapter) as well as the f + 1 round
complexity lower bound [DS83] (described in Chapter 9) for deterministic
protocols.

Exercise 25. It turns out that the random committee election technique
does not work for a corrupt majority setting. Please explain why.

Exercise 26. In Lemma 11, we assumed that the adversary decides
which nodes to corrupt prior to the start of the protocol execution, and
specifically in this case, before the hash function H is randomly chosen.
This is commonly referred to as the static corruption model. Unless
otherwise noted, most of this course assumes the static corruption model
for simplicity.

However, now let us consider a stronger adversary. Suppose that the
adversary is adaptive, i.e., it is allowed to corrupt nodes in the middle of
the protocol execution, after having observed the messages nodes have
sent so far during the protocol. Of course, the adversary must still abide
by the corruption budget, say, at most (1

2 − ε)n nodes can be corrupt.
Is our protocol in this section secure in the presence of such an

adaptive adversary? Please explain why.

11.3 Survey of Recent Results

In Exercise 26, we showed why the protocol in this section does not defend
against an adaptive adversary. Therefore, a natural question arises:

Is there a BB protocol with sub-quadratic communication complexity, secure
even in the presence of adaptive corruptions?

It turns out that the answer to the above question is somewhat subtle,
and it depends on the precise power of the adaptive adversary. Abraham et
al. [ACD+19] recently showed that BB with sub-quadratic communication is
possible (assuming trusted setup and standard cryptographic assumptions),

74

provided that the adversary is weakly adaptive; but it is impossible if the
adversary is strongly adaptive. The difference in power between a weakly
adaptive and a strongly adaptive adversary is explained briefly below:

• A weakly adaptive adversary can observe the messages honest nodes
send in a round, adaptively corrupt a subset of the nodes (subject to
a total corruption budget); and moreover, the newly corrupt nodes
can send additional messages of the adversary’s choice in the same
round. However, the adversary cannot perform “after-the-fact message
removal” and retroactively erase the messages a newly corrupt node
already sent prior to being corrupt in the same round.

• By contrast, a strongly adaptive adversary can examine the messages
honest nodes would have sent in some round, adaptively corrupt a
subset of the nodes in the same round, erase the messages they would
have sent and make the newly corrupt send arbitrary other messages
instead.

We refer the readers to Abraham et al. [ACD+19] to a detailed description
of the results.

75

76

Chapter 12

Asynchronous Consensus:
The FLP Impossibility

So far in this course, we have assumed a round-based execution model in which
nodes are invoked every round to perform some action, including receiving
messages, performing local computation, and sending new messages. Based
on this round-based execution model, we consider two types of networks,
synchronous and partially synchronous networks, depending on whether there
is an a-priori known bound on the maximum network delay.

We can implement the round-based execution model if nodes have syn-
chronized clocks. If, say, every second is a round, then nodes can register
timeout callbacks such that they are invoked every second. Having synchro-
nized local clocks can be a strong assumption depending on the application
scenario.

Remark 20. In the partially synchronous model, it is known that this the
assumption on having synchronized clocks can be relaxed: if nodes have clocks
with bounded drift, it is possible to synchronize their clocks and avoid the drift
using a standard clock synchronization procedure [DLS88,CPS18a,CL99].

In this lecture, we will look at a new model called the asynchronous
model where we remove the assumption for nodes to have local clocks. In
an asynchronous consensus protocol, every node can only be invoked upon
receiving some message from the network, at which point it performs some
computation and decides some messages to send. The node’s program is not
allowed to register any timeout callbacks. For example, an asynchronous
protocol cannot say, if no message is received in three seconds, perform some
action (whereas this is allowed in synchronous and partially synchronous
protocols).

77

12.1 Definitions: Asynchronous Consensus and Ex-
ecution Model

Suppose that there are n nodes, each node starts with an input bit. The n
nodes run a weakly valid Byzantine Agreement protocol at the end of which
each node outputs a bit. We want the following guarantees:

• Consistency. If two honest nodes output b and b′ respectively, it must
be that b = b′.

• Weak validity. If all nodes are honest and they all receive the same
input bit b, then they must all output b too.

• Liveness. All honest nodes output eventually (assuming that messages
are delivered eventually).

12.2 Impossibility of Asynchronous, Determinis-
tic Consensus

The question we want to answer is, can we achieve consensus in such an
asynchronous network model?

In this lecture, we will show that no deterministic protocols can accomplish
this purpose. Not only so, perhaps somewhat surprisingly at first sight, the
impossibility holds even if we are guaranteed that there is at most one node
crash during the entire execution (and there is no malicious behavior at all).
This result is also known as the FLP impossibility, since it was proven by
Fischer, Lynch, and Paterson [FLP85] in 1985. The FLP impossibility result
is arguably one of the most famous theorems in distributed computing!

Theorem 14 (Impossibility of deterministic, asynchronous consensus un-
der a single crash fault [FLP85]). There does not exist a deterministic,
asynchronous protocol that realizes weakly valid Byzantine Agreement in the
presence of one crash fault.

In the above, “one crash fault” means that at most one node can crash and
stop participating altogether, at an unannounced time, during the protocol’s
execution. Otherwise all nodes follow the honest protocol.

12.3 Proving the FLP Impossibility

The proof we present below is mostly faithful to Fischer, Lynch, and Pater-
son’s original and beautiful proof [FLP85].

78

Suppose that there exists an asynchronous protocol Π that realizes
weakly valid Byzantine Agreement. We will reason about Π below and reach
a contradiction.

12.3.1 Terminology

Configuration, event, schedule. A configuration defines the state of the
execution; it consists of: 1) all nodes’ internal states; and 2) an event buffer
that stores the set of pending messages to be delivered and their recipients.
We assume that each event in the event buffer is of the form e := (p,m) where
m denotes a message and p denotes the node that is supposed to receive m.
In an asynchronous protocol, a node is invoked only upon receiving a message.
Suppose the execution is in configuration C, at this point delivering the event
e := (p,m) means that we make node p receive m; and node p may now
perform computation, update its internal state (including possibly outputting
a bit), and add new events to the event buffer representing messages p wants
to send. After these actions, the execution enters a new configuration C ′.
Henceforth, if e is an event in the event buffer of C, we say that e can be
applied or is applicable to C, and we use the notation C ′ := e(C) to denote
that the configuration C ′ is reached after applying e to C.

A schedule σ is a sequence of events.

Valency. Let C be a configuration and let V be the set of output values of
configurations reachable from C. C is bivalent if |V | = 2. C is univalent if
|V | = 1, let us say 0-valent or 1-valent according to the corresponding output
value. Due to the liveness definition, V cannot be empty.

Recall that the initial configuration is determined by all nodes’ input
bits. A schedule σ from some configuration C is said to be deciding, iff after
applying σ to C, some node has output a bit.

12.3.2 Proof Roadmap

Suppose that there is an asynchronous, weakly valid BA protocol Π that
tolerates a single crash fault. At a very high level, the proof will contain two
major steps.

1. First, we show that some initial configuration must be bivalent for Π.

2. Next, we show that one bivalent configuration must lead to yet another.

Now, if both of the above are true, then essentially we can start with a
bivalent configuration, and keep extending it into a new bivalent configuration.

79

We can do this for infinitely long, leading to an infinite execution path that
remains bivalent throughout. Thus Π cannot satisfy liveness on this particular
execution path, leading to a contradiction.

12.3.3 Existence of a Bivalent Initial Configuration

Lemma 12. The protocol Π must have a bivalent initial configuration.

Proof. Suppose not. Then Π must have both 0-valent and 1-valent initial
configurations by weak validity. Let us call two initial configurations adjacent
if they differ only in the input bit of a single node p. Any two initial
configurations are joined by a chain of initial configurations, each adjacent to
the next. Hence, there must exist a 0-valent initial configuration C0 adjacent
to a 1-valent initial configuration C1. Let p be the node in whose input value
they differ. Now consider some deciding schedule from C0, denoted σ, which
does not involve p. Note that in this schedule, only node p is prevented from
receiving messages, i.e., it is as if p has crashed. By liveness of Π under one
crash fault, such a deciding schedule σ must exist. Now, σ can be applied
to C1 also, and corresponding configurations in the two runs are identical
except for the internal state of the node p. It is easily shown that both runs
eventually result in the same output value. However, since C0 is 0-valent
and C1 is 1-valent, a successor of C0 cannot have the same output value as a
successor of C1. Thus we have reached a contradiction.

12.3.4 One Bivalent Configuration Leads to Another

We say that a schedule σ does not involve a node p if no message is delivered
to p in σ. The following lemma roughly says that two schedules that do
not involve a common node, and both applicable to the same starting
configuration, can be applied commutatively, and yet lead to the same
configuration.

Lemma 13 (Commutativity). Suppose that from some configuration C, the
schedules σ1 and σ2 lead to configurations C1 and C2, respectively. If the
sets of nodes involved in σ1 and σ2, respectively, are disjoint, then σ2 can
be applied to C1 and σ1 can be applied to C2, and both lead to the same
configuration C3 (see Figure 12.1).

Proof. The result follows at once from the system definition, since σ1 and
σ2 do not interact.

80

Figure 12.1: Two schedules that do not involve a common node are commu-
tative — see Lemma 13.

This above commutativity lemma will be a key idea we use to prove that
“one bivalent configuration leads to another” — let us now prove this. The
following lemma says, informally, that if a protocol starts from a bivalent
configuration and there is a message e that is applicable to that configuration,
then the set of configurations reachable through any sequence of messages
where e is applied last contains a bivalent configuration. More intuitively, it
says that if you delay a pending message for an arbitrarily amount of time,
there will be one configuration in which you receive that message and end
up in a bivalent state [flp].

Lemma 14. Let C be a bivalent configuration of protocol Π, and let e = (p,m)
be an event that is applicable to C. Let C be the set of configurations reachable
from C without applying e, let D = e(C) = {e(E)|E ∈ C} (note that e must
be applicable to every configuration in C). Then, D contains a bivalent
configuration.

Proof. Suppose that D contains no bivalent configurations, so every configu-
ration D ∈ D is univalent. We proceed to derive a contradiction.

First, we show that D must contain both 0-valent and 1-valent configu-
rations. To prove this, let Eb be a b-valent configuration reachable from C
where b ∈ {0, 1}. Note that for either bit b ∈ {0, 1}, Eb must exist since C is
bivalent. If Eb ∈ C, let Fb = e(Eb) ∈ D. Otherwise, e was applied in reach

81

(a) Case 1 of Lemma 14. (b) Case 2 of Lemma 14.

Figure 12.2: Graphical illustration of Lemma 14.

Eb and so there exists Fb ∈ D from which Eb is reachable. In either case, Fb
is b-valent since Fb is not bivalent (since Fb ∈ D and D contains no bivalent
configurations), and one of Eb and Fb is reachable from the other. Since
Fb ∈ D for b ∈ {0, 1}, D contains both 0-valent and 1-valent configurations.

Call two configurations neighbors if one results from the other in a single
step. By an easy induction, there exist neighbors C0, C1 ∈ C, such that
Db = e(Cb) is b-valent for b ∈ {0, 1}. Without loss of generality, assume
C1 = e′(C0) where e′ = (p′,m′).

Case 1. If p′ 6= p, then D1 = e′(D0) by Lemma 13. This is impossible,
since any successor of a 0-valent configuration is 0-valent. (See Figure 12.2a.)

Case 2. If p′ = p, then consider any finite deciding schedule σ from C0

which does not involve p. Let A := σ(C0). By Lemma 13, for either b ∈ {0, 1},
σ is applicable to Db, and it leads to an b-valent configuration Eb = σ(Db).
Also by Lemma 13, e(A) = E0 and e(e′(A)) = E1 (see Figure 12.2b). Hence,
A is bivalent. But this is impossible since the schedule σ which leads to A is
deciding (by assumption), so A must be univalent.

In each case, we reached a contradiction, so D contains a bivalent config-
uration.

Finishing the proof of Theorem 14. We now show that given the
protocol Π, we can construct an infinite schedule that traverses only bivalent
states. First, there must be an bivalent initial configuration C according

82

to Lemma 12. By the liveness of Π, there must exist events in the event
buffer, and let e be an event that is applicable to C. By Lemma 14 there is
a bivalent configuration C ′ reachable from C in which e is applied the last.
Now, we can apply the same argument to C ′ to extend the schedule, and this
can go on infinitely. This means that there is a schedule that cause nodes to
loop forever and not output a decision, and thus Π cannot satisfy liveness.

Discussions. The proof of FLP’s impossibility shows that for any asyn-
chronous protocol that preserves consistency and weak validity, there must
exist a run in which nodes loop forever without outputting a decision, thus
violating liveness. One natural question is why the proof works only for
deterministic protocols but not randomized ones. The reason is that in a
probabilistic protocol, the never-ending run could be an extremely rare run,
i.e., with very high probability, the never-ending run does not happen.

Indeed, we can use randomness to overcome the FLP impossibility and
design consensus protocols in the asynchronous setting. We will discuss this
in the next lecture.

Does the FLP impossibility suggest that we cannot have practical consen-
sus protocols in the real world? Of course not! Clearly, we have had many
successful applications of distributed consensus in the past. To get around
this impossibility, we can rely on (somewhat) synchronized clocks and/or
randomness. Nonetheless, for decades, the FLP impossibility has provided
guidance and served as an important sanity check for designers of consensus
protocols.

83

84

Chapter 13

A Randomized Asynchronous
Consensus Protocol ※

In the previous lecture, we learned that asynchronous deterministic consensus
is not possible, even when we are promised that there is at most one crash
fault. One way to overcome this impossibility is to rely on randomness.

In this lecture, we will learn a randomized asynchronous consensus
protocol that is secure in the presence of f < n/3 corruptions.

13.1 Assumption: A Common Coin Oracle

Our protocol will make use of a Public-Key Infrastructure and digital sig-
natures; not only so, we introduce a new assumption called a CommonCoin.
Imagine that there is a trusted oracle, called CommonCoin, that tosses a
random coin for the participants of the consensus protocol whenever needed.
More specifically, CommonCoin allows nodes to query a random coin for each
epoch number e. Once at least 2n/3 nodes have queried CommonCoin(e),
the oracle flips a random coin b and returns b to every CommonCoin(e) query
in the past, and it returns the same b upon receiving every CommonCoin(e)
query in the future too. Note that the messages between the nodes and the
CommonCoin oracle can also be delayed arbitrarily.

We stress that the coin flips are unpredictable in advance: specifically,
the adversary cannot predict the outcome of the e-th coin flip until more
than n/3 honest nodes have called CommonCoin(e).

One might wonder how to realize such a CommonCoin functionality. One
straightforward approach is to rely on a trusted service that provides a public
random beacon. In fact, it is also known how to realize such a CommonCoin

85

through either Verifiable Secret Sharing or threshold signatures schemes.
For simplicity, we do not plan to go into the details on how to realize
CommonCoin; we shall just assume CommonCoin as given in our lecture.

13.2 Randomized Asynchronous Consensus

Recall that in Byzantine Agreement (BA), every node is given an input bit.
They would like to agree on a bit through a consensus protocol. We say
that an asynchronous protocol realizes BA with probability 1 − δ iff with
1− δ probability over the choice of the randomized execution, the following
properties hold:

• Consistency. If two honest nodes output b and b′ respectively, it must
be that b = b′.

• Validity. If all honest nodes receive the same input bit b, then they
must all output b too.

• Liveness. All honest nodes output eventually (assuming that messages
are delivered eventually).

Note that here we would like to achieve the standard validity notion;
whereas in the previous lecture, we used a weak validity notion for proving
the FLP impossibility (since using a weak notion makes the impossibility
result stronger).

Protocol. We will present a variant of the protocol by Cachin et al. [CKS05].
We assume that there are n nodes numbered 1, 2, . . . , n, and node i’s public
key is pki. The notation {m}pki−1 denotes the message m along with a
signature from node i on m. In the protocol below, a pre-vote means a
message of the form {pre, e, b}pk−1

i
signed by some node i whereas a properly

justified pre-vote means the pre-vote as well as a justification for why the
pre-vote was cast. The same terminology is used for main-votes too. The
protocol is parametrized with E, i.e., the total number of epochs. As we will
show later, the protocol’s success probability is related to the parameter E.

A Randomized Asynchronous Consensus Protocol

Epoch 0: Initially, every node i does the following: send an epoch-0
pre-vote of the form {pre, 0, b}pk−1

i
to everyone where b denotes its input

bit.

86

For each epoch e = 1, 2, 3, . . . , E: every node i performs the following
and moves onto the next epoch:

• Pre-vote. If e = 1, wait to collect at least 2n/3 epoch-0 pre-votes
from distinct nodes. If among them, more than n/3 epoch-0 pre-
votes contain the bit b (breaking ties arbitrarily), send the pre-vote
{pre, e, b}pk−1

i
to everyone and attach a justification that contains a

set of at least 2n/3 epoch-0 pre-votes among which more than n/3
are for the bit b.

Else, if e > 1, wait to receive at least 2n/3 properly justified main-
votes of epoch e−1 from distinct nodes, and let b∗ := CommonCoin(e).

– If among them there is a main-vote for b ∈ {0, 1}, then send the
pre-vote {pre, e, b}pk−1

i
to everyone and attach to the pre-vote a

justification that contains at least 2n/3 epoch-(e − 1) pre-votes
for b (this can be found in the justification for the epoch-(e− 1)
main-vote for b).

– Else, it must be that all main-votes received are signed abstain

votes. In this case, let b := b∗ and send the pre-vote {pre, e, b}pk−1
i

to everyone; attach to the pre-vote a justification containing at
least 2n/3 epoch-(e− 1) abstain votes.

• Main-vote. Wait to receive at least 2n/3 properly justified epoch-e
pre-votes from distinct nodes, and based on these pre-votes, set v as
follows:

v =

0 if all pre-votes are for 0

1 if all pre-votes are for 1

abstain o.w.

Now, send to everyone {main, e, v}pk−1
i

tagged with a justification

for the main-vote. A proper justification contains the set of at least
2n/3 pre-votes that triggered the main-vote (no need to include the
justifications for the pre-votes).

Output. At any time, if at least 2n/3 main-votes for the same epoch
e and the same bit b have been received from distinct nodes, output b
and continue participating in the protocol.

87

13.3 Consistency

We will assume that the signatures are ideal in our proofs.

Fact 1. As long as messages are eventually delivered, honest nodes do not
get stuck while waiting to collect messages, i.e., they can always advance
epochs eventually.

Proof. Follows from the fact that honest nodes always wait for 2n/3 messages
from distinct nodes before moving onto the next action item, and moreover,
CommonCoin always waits for 2n/3 epoch-e queries before giving everyone
answers. Since there are fewer than n/3 corrupt nodes, when all honest
nodes have completed a common action item , they are guaranteed to move
onto the next.

Henceforth, we use the term “in honest view” to mean “in the union of
honest nodes’ views”.

Lemma 15 (Consistency within an epoch). The following must be true for
every epoch e:

1. Suppose v, v′ ∈ {0, 1, abstain} and v 6= v′. It cannot be that for both v
and v′, there is at least 2n/3 epoch-e main-votes in honest view.

2. Suppose b, b′ ∈ {0, 1} and b 6= b′. It cannot be that for both b and b′,
there is at least 2n/3 epoch-e pre-votes in honest view.

3. If there is a collection of at least 2n/3 epoch-e main-votes for the bit
b ∈ {0, 1} in honest view, then, some honest node has seen at least
2n/3 epoch-e pre-votes for b.

Exercise 27. The above Lemma 15 has a simple proof. Please prove it
yourself. Hint: similar to the proof of Lemma 7 of Chapter 7.

Lemma 16 (Consistency across epochs). If there is a collection of at least
2n/3 epoch-e main-votes for the bit b ∈ {0, 1} in honest view, then for any
e′ > e, all honest nodes’ main-votes must be for the bit b.

Proof. Consider the epoch e+ 1, we claim that

1. only pre-votes for the same bit b can be properly justified; and

2. all honest nodes will indeed cast a properly justified pre-vote for b.

88

To see the first claim, note that an epoch-(e+ 1) pre-vote for 1− b can only
be justified either with at least 2n/3 epoch-e abstain votes, or with at least
2n/3 epoch-e pre-votes for 1− b. Both are ruled out by the fact that there
are at least 2n/3 epoch-e main-votes for b in honest view, and by Lemma 15.
To see the second claim, notice that by the first claim, all epoch-(e + 1)
pre-votes in honest view must be for the bit b and thus an honest node can
only cast a main-vote for b in epoch e+ 1. By Fact 1, every honest node will
indeed cast a main-vote in epoch e+ 1.

The second claim above means that there is a collection of at least 2n/3
properly justified epoch-(e + 1) main-votes for the bit b in honest view.
Therefore by induction, the proof extends to all epochs e′ > e.

Theorem 15 (Consistency). The above protocol satisfies consistency.

Proof. Let e be the smallest epoch such that there exists a bit b ∈ {0, 1}
and at least 2n/3 epoch-e main-votes for b in honest view. Now, if some
honest node outputs b′ ∈ {0, 1}, it must be due to observing at least 2n/3
main-votes of the same epoch e′ for the bit b′. By the definition of e, it
must be that e′ ≥ e. If e′ > e, by Lemma 16, all honest nodes must cast
main-votes for b in epoch e′, and now by Lemma 15, it must be that b′ = b.
If e′ = e, it holds by Lemma 15 that b′ = b.

13.4 Liveness

An epoch e+ 1 is said to be lucky iff:

(a) either there is a collection of at least 2n/3 epoch-e pre-votes from dis-
tinct nodes for some bit b ∈ {0, 1} in honest view and CommonCoin(e+1)
returns the same b; or

(b) there isn’t a collection of at least 2n/3 epoch-e pre-votes from distinct
nodes for either bit b in honest view.

Lemma 17. In a lucky epoch e + 1, let b = CommonCoin(e + 1). There
cannot be a properly justified epoch-(e+ 1) pre-vote for 1− b in honest view.
Moreover, all honest nodes must cast pre-votes and main-votes for the bit b
in epoch e+ 1.

Proof. A proper justification for an epoch-(e + 1) pre-vote for 1 − b must
contain at least 2n/3 epoch-e pre-votes for 1− b. This is not possible if epoch
e + 1 is type-(a) lucky because in this case there is at least 2n/3 epoch-e

89

pre-votes for b and recall also Lemma 15 holds. This is also not possible if
epoch e+ 1 is type-(b) lucky by definition.

By Fact 1, all honest nodes must cast pre-votes and main-votes for the
bit b in epoch e+ 1.

Lemma 18. For any e > 1, the probability that both epochs e and e+ 1 are
unlucky is at most 1/2, even when conditioned on whether epochs before e
are lucky or not.

Proof. The following statements hold even when conditioned on whether
epochs before e are lucky or not.

Note that CommonCoin(e) can only be decided when more than n/3
honest nodes have called CommonCoin(e) — let S denote a set of more than
n/3 honest nodes that are the first to call CommonCoin(e). Each i ∈ S must
have collected at least 2n/3 main-votes of epoch e− 1.

• Case 1: Among all these main-votes collected by S, there is at least
one main-vote is for a bit b ∈ {0, 1}. This main-vote must carry a
set of at least 2n/3 epoch-(e− 1) pre-votes for b as justification. By
Lemma 15, there cannot be 2n/3 epoch-(e− 1) pre-votes for 1− b in
honest view. Only at this moment, is the coin CommonCoin(e) actually
flipped, and there is 1/2 probability that it is not equal to b.

• Case 2: All these main-votes collected by S are abstain votes. In this
case, the set S will cast a pre-vote for b∗ := CommonCoin(e) in epoch
e. It is not hard to see that there cannot be at least 2n/3 epoch-e
pre-votes for 1 − b∗ in honest view then. Note also at this moment
(i.e., when CommonCoin(e) is first flipped), no honest node has called
CommonCoin(e + 1) yet. When CommonCoin(e + 1) is flipped in the
future, it has 1/2 probability of being b, and if it turns out to be b∗, it
means that epoch e+ 1 will be lucky.

Theorem 16 (Liveness). Recall that E is the total number of epochs. The
above protocol achieves liveness with 1− 2b(E−1)/2c probability.

Proof. Lemma 17 shows that once there is a lucky epoch, all honest nodes
will eventually output. Lemma 18 shows that the probability that there
isn’t a lucky epoch is at most 1− 2b(E−1)/2c. The theorem now follows in a
straightforward manner.

90

Exercise 28. Prove that the above protocol satisfies validity.

13.5 Termination

So far in our protocol, all nodes continue to participate forever even after
outputting a bit. A standard “early termination” technique can allow nodes
to terminate after outputting: basically, when outputting a bit b, a node i
also sends a special message {terminate, b}pk−1

i
attached with a justification

consisting of at least 2n/3 main-votes for b from the same epoch that triggered
i to output b. This special message can serve as node i’s pre-vote for b and
main-vote b in all epochs.

13.6 Additional Exercises

Exercise 29. Prove that no asynchronous protocol can realize Byzantine
Agreement with probability more than 2/3 under n/3 or more corruptions.
This means that our protocol earlier in this section achieves optimal resilience.

Exercise 30. Suppose that I want the protocol to achieve Byzantine Agree-
ment with 1− negl(λ) probability for a negligible function negl(·) and some
security parameter λ. How should I set the number of epochs E as a function
of λ?

91

92

Chapter 14

Bitcoin and Nakamoto’s
Blockchain Protocol

Back in the 1970s, the study of distributed consensus was motivated by
the need to build reliable aircraft control systems replicated on multiple
computers [WLG+89]. Later on, distributed consensus protocols became
widely deployed in companies such as Google and Facebook. These companies
need to replicate their mission-critical infrastructure such as Google Wallet
or Facebook Credit, and thus the challenge of achieving consistency naturally
arises. In all of these classical scenarios, consensus is typically deployed on a
small scale, involving three to dozens of machines. Participation is closed,
i.e., only a preconfigured, known set of nodes can join the protocol — such
environments are often referred to as permissioned environments.

Bitcoin [Nak08] came around in 2009 and gained popularity rapidly. As
the Wikipedia page explains it [wik]:

“Bitcoin is a cryptocurrency. It is a decentralized digital currency without
a central bank or single administrator that can be sent from user to user
on the peer-to-peer bitcoin network without the need for intermediaries.
. . . Bitcoin was invented in 2008 by an unknown person or group of people
using the name Satoshi Nakamoto [Nak08] and started in 2009 when its
source code was released as open-source software”.

At the core of Bitcoin is a blockchain protocol (defined in Chapter 6) that
allows a set of distributed nodes to agree on an ever-growing, linearly-ordered
log of transactions. In fact, the term “blockchain” was popularized due to
Bitcoin.

Bitcoin is not just an empirical success, it is also a scientific break-
through! Specifically, Bitcoin’s blockchain protocol, often called Nakamoto’s

93

blockchain [Nak08], is the first to demonstrate the feasibility of reaching
consensus in a permissionless environment. In a permissionless environment,
anyone is free to join the consensus protocol at any time. Since there is no
a-priori knowledge of the identities of the participants, participants must
communicate through unauthenticated channels.

To reach consensus in such a permissionless environment, one big chal-
lenge is the so-called “Sybil attack”. Since the communication channel is
unauthenticated, anyone can impersonate anyone else; and a single machine
can also impersonate many machines, e.g., in an attempt to outnumber the
honest players and disrupt the consensus. Exactly because of this reason,
the classical insight had always been that consensus is impossible in such
a permissionless environment without even authenticated communication
channels. Indeed, with some effort, one can formalize this intuition and math-
ematically prove that absent any other assumptions, consensus is impossible
in such a permissionless environment [PS17b].

Of course, the mathematical impossibility did not stop Bitcoin. Nakamoto’s
blockchain protocol circumvented this impossibility by leveraging Proof-of-
Work (PoW). The idea is that players need to solve computational puzzles
to cast votes. Roughly speaking, a player’s voting power is proportional
to its computational power. Moreover, the blockchain protocol guarantees
consistency and liveness as long as the majority of the mining power in the
system is honest.

In this lecture, we will describe how Nakamoto’s blockchain works, and
prove its security.

14.1 Nakamoto’s Ingenious Idea in a Nutshell

Block format and notations. In Nakamoto’s protocol, each honest node
maintains a blockchain denoted chain at any point of time. The first block in
the blockchain, denoted chain[0], is a canonical block called the genesis. Every
other block chain[i] where i > 0 is of the format chain[i] := (h−1, η, txs, h),
containing the hash of the previous block denoted h−1, a puzzle solution η,
a payload string txs which may contain a set of transactions to be confirmed,
and a hash h of the present block. We will use the notation:

• We use chain[−`] to denote the `-th to last block in chain. For example
chain[−1] denotes the last block and chain[−2] denotes the second to last
block, and so on;

• We use chain[: `] to denote the prefix chain[0..`].

94

• We use chain[: −`] to denote the prefix of chain except for the last ` blocks.

• We use |chain| to denote the length of chain, i.e., the total number of
non-genesis blocks in chain.

• We often use the notation “ ” to denote a wildcard field that we do not
care about.

Remark 21 (Bitcoin’s genesis block). Bitcoin’s genesis block embedded the
message “The Times 03/Jan/2009 Chancellor on brink of second bailout for
banks”. According to Bitcoin’s Wiki page [gen], “this was probably intended
as proof that the block was created on or after January 3, 2009, as well as a
comment on the instability caused by fractional-reserve banking.”.

Mining. Given some blockchain chain, let its last block be (, , , h∗). To
“mine” a new block off chain, let txs be the outstanding transactions — a
miner would try random puzzle solutions η ∈ {0, 1}λ and check if

H(h∗, η, txs) < Dp

where H denotes a Proof-of-Work (PoW) oracle (implemented as a hash
function), Dp is some appropriate difficulty parameter. In Bitcoin, Dp is
chosen such that in expectation it takes all miners combined 10 minutes to
mine a new block. We will elaborate on how to choose Dp later in Section 14.3.
If some puzzle solution η produces a hash outcome that is smaller than Dp,
then the tuple (h∗, η, txs,H(h∗, η, txs)) forms a valid block extending from
chain; and chain is often said to be the parent chain of the newly mined block.
Nodes propagate any new block they have mined.

Roughly speaking, we assume that the PoW function H behaves like a
random function, and there is no algebraic shortcut one can exploit when
evaluating H. In other words, there is no better way to find puzzle solutions
than brute-force trying many different solutions. This is why mining is a
computationally expensive process.

Because each block contains a hash of the previous block, the entire chain
is bound together by the cryptographic hash. In other words, assuming that
no hash collisions are found, then a block uniquely binds to its entire prefix.

Longest chain. One of the most beautiful ideas in Nakamoto’s construc-
tion is the longest chain idea. Miners always try to mine a block off the
longest chain it has seen. At any time, all but the last K blocks in the longest
chain are considered final. In other words, if a transaction tx is embedded
K blocks deep in the present longest chain (i.e., at least K blocks away from

95

tx

K blocks

main chain

attack chain
(tx removed)

Figure 14.1: The adversary aims to undo transaction tx by mining a longer
fork than the main chain. If the adversary has only minority of the mining
power, statistically speaking, it is extremely unlikely that the adversary can
win the race against the main chain. Let K be how deep tx is embedded in
the main chain: as K increases, our confidence in tx’s finality increases very
sharply.

the end), we may treat the transaction as finalized. Moreover, the larger the
K, the more confident we are about tx’s finality.

To intuitively understand why, it helps to look at Figure 14.1. Suppose
tx is contained in the block chain[−K] where chain denotes the longest chain
observed thus far. Imagine that tx corresponds to the payment the adversary
made to a Ferrari dealer to purchase a Ferrari. Once the car has been shipped
to the adversary, the adversary may want to undo tx and reverse its payment.
Can the adversary succeed in such an attack?

Informally, to undo tx, the adversary would have to mine an attack fork
off some prefix chain′ � chain[: −K]; not only so, the attack fork must be
longer than the main chain for it to win — but keep in mind that the main
chain is growing too. Thus the adversary must, within a fixed time window,
mine at least K more blocks than the honest nodes, to win this race. If
the adversary controls only minority of the mining power, it is statistically
unlikely that it can succeed; and further, the larger the K, the exponentially
smaller the adversary’s chance of success!

The above is not a formal proof why Nakamoto’s blockchain preserves
consistency, but we will formally prove it in Chapter 17.

14.2 Nakamoto’s Blockchain: Formal Description

We will formally describe a stripped-down version of the full Nakamoto
consensus protocol implemented in Bitcoin. One simplification we make is

96

to pretend that the total mining power in the system is known and fixed. In
the Bitcoin’s implementation, this assumption is not true, and therefore the
protocol relies on a difficulty adjustment mechanism to adjust the difficulty of
the computational puzzles being solved based on how much mining power is
present in the recent past. Our description will omit this difficulty adjustment
mechanism, and the resulting simplified protocol is often called the “barebone”
Nakamoto’s blockchain.

We will assume a synchronous network where honest nodes’ messages
must be delivered within at most ∆ delay to honest recipients (see Chapter 6).

Modeling PoW puzzles. We will use (H,H.ver) to denote a PoW scheme
where H : {0, 1}∗ → {0, 1}λ is the PoW’s work function; and H.ver : {0, 1}∗ →
{0, 1}λ is the corresponding verification function. Recall that H requires the
caller to expend work and evaluate a hash function, and H.ver is used to
check if a purported puzzle solution is correct.

Without loss of generality, we may assume that all nodes have equal
computational power and we use n to denote the total number of nodes — if
a node has more computational power, it can be viewed as multiple nodes.
This way, saying that “the majority of nodes are honest” equates to saying
that “the majority of the computational power is honest”. Every node can
only query the PoW function H at a bounded rate. We may assume that in
every round, each node can invoke H at most once — this is without loss
of generality since we can always rename the time it takes to evaluate H as
one round. However, we do not impose any limit on calls to the verification
function H.ver.

Remark 22. In Nakamoto’s protocol, H.ver is only called when messages
(specifically, blocks) are received from the network. In practice, since the
network has limited bandwidth, H.ver is called significantly fewer times than
H (even when an adversary may flood the network with fake blocks). This is
why we do not charge calls to H.ver.

Barebone Nakamoto’s blockchain. Nodes always try to mine blocks
off the longest valid chain they have observed thus far. Once a block is mined,
the miner propagates it to others. At any time, the longest chain a node
has observed with the last K blocks removed is considered as the current
finalized log. We now describe the protocol more formally.

Although not explicitly noted below, we make an implicit echoing assump-
tion: whenever a node hears a fresh message from the network previously

97

unseen or receives a new transaction as input, it echos the message or trans-
action to everyone else. This assumption makes sure that if any honest node
sees a message in round r, then all honest nodes will have observed it by
round r + ∆.

Nakamoto’s blockchain

• Nodes that are newly spawned start with initial chain containing only
a special genesis block: chain := (0, 0,⊥,H(0, 0,⊥)).

• Whenever a node hears a message chain′ from the network, if incoming
message chain′ is a valid blockchain and it is longer than its current
local blockchain chain, replace chain by chain′. We define what it
means for a chain to be valid later. Checking the validity of chain′

can be done using only H.ver queries.

• In every round, try to mine a new block off the longest chain seen so
far (denoted chain) as follows. Let txs be the outstanding transactions
observed so far that are not contained in the current chain. Now
parse chain[−1] := (, , , h−1), pick a random solution η ∈ {0, 1}λ,
and issue query h = H(h−1, η, txs). If h < Dp, then append the newly
mined block (h−1, η, txs, h) to chain and send chain||(h−1, η, txs, h) to
everyone. The parameter Dp determines how difficult it is to mine a
block, and how to choose Dp will be explained in Section 14.3 below.

• At any time, a node’s finalized log is defined to be chain[: −K], i.e.,
the longest chain observed so far removing the last K blocks. We
need to choose K to be sufficiently large such that the probability
of breaking consistency is extremely small (see Theorem 17 for a
rigorous statement).

Valid chain. We say a block chain[i] = (h−1, η, txs, h) is valid with
respect to a predecessor block chain[i− 1] = (h′−1, , , h

′) if the following
conditions hold: h−1 = h′, h = H(h−1, η, txs), and h < Dp. A chain of
blocks chain is valid iff:

1. chain[0] = (0, 0,⊥,H(0, 0,⊥)) is the genesis block, and

2. for all i ∈ [`] where ` := |chain|, chain[i] is valid with respect to
chain[i− 1].

98

14.3 Choosing the Mining Difficulty Parameter

How should we choose the mining difficulty parameter? In Bitcoin, the
difficulty parameter is chosen such that on average, all miners combined take
10 minutes to mine the next block. Of course, 10 minutes seem awfully long,
especially given that one also has to wait for a transaction to be embedded
K blocks deep for it to be confirmed. In practice, many consider K = 6 to be
secure enough — this means it could easily take an hour for a transaction to
confirm! From a confirmation delay perspective, it seems desirable to make
the puzzles less difficult such that blocks are confirmed more frequently —
but would this be safe?

It turns out that we cannot arbitrarily lower the puzzles’ difficulty; doing
so could break the consistency of the consensus protocol. One way to think
of the matter is the following: since the network delay can be up to ∆,
whenever a new block is mined, there is a ∆ gap in which the new block is
being propagated on the network to the honest nodes, and during this ∆ gap,
the honest nodes are not doing any useful work1! On the other hand, the
adversary may not need to suffer from the same ∆ delay (e.g., the adversary
controls a mining farm where blocks are transmitted over dedicated links).
This gives the adversary an advantage when it tries to mine an attack fork
like in Figure 14.1. One can think of the advantage in terms of the honest
mining power that is discounted by the network’s delay ∆.

To understand how much honest mining power is discounted by ∆, we
give an informal back-of-the-envelope calculation — this calculation is only
to convey intuition and it should not be interpretted as a formal proof. Let
p be the probability that a single node mines a block in any fixed round.
Suppose that there are n nodes, 51% of which are honest. The probability
that the honest nodes combined can mine a block in a round is roughly
1 − (1 − p)0.51n ≈ 0.51pn � 1. The expected number of rounds till a new
honest block is mined is roughly 1

0.51pn . Now, it takes ∆ rounds to propagate
the block. Suppose that all of the honest nodes’ work is wasted during the
∆ rounds, then roughly speaking, every 1

0.51pn rounds, we end up wasting ∆
rounds. In this sense the discount ratio is roughly

1
0.51pn
1

0.51pn + ∆
=

1

1 + 0.51pn∆
≈ 1− 0.51pn∆

1Let us ignore the tiny probability that honest nodes mine two consecutive blocks
during the ∆ interval.

99

Exercise 31. With the above back-of-the-envelope calculation, the term
(1− 0.51pn∆) · (0.51n) can be regarded as the discounted honest mining
power. Now, suppose that 0.49n > (1 + ε) · (1− 0.51pn∆) · (0.51n), i.e.,
the corrupt mining power exceeds the discounted honest mining power
by some constant ε ∈ (0, 1) margin. Describe how the adversary can
succeed in mining an attack fork like in Figure 14.1 with probability
almost 1, despite the fact that it controls only 49% of the mining power.

The above exercise suggests that for Nakamoto’s consensus protocol
to maintain consistency, more precisely speaking, we need not just honest
majority in mining power, but a slightly more stringent condition, that is,

the honest mining power, even when discounted by the network delay ∆,
must exceed the corrupt mining power!

Setting the puzzles to be more difficult makes the discount factor smaller.

Formal requirements on the mining difficulty. We will formally ar-
ticulate a set of requirements on the mining difficulty — under this set
of parameters, we shall be able to formally state and prove the security
properties of Nakamoto’s blockchain.

Our goal is to set the Dp parameter, called the mining difficulty parameter,
in the protocol formally described in Section 14.2. Dp can be chosen in the
following way:

• first, choose an appropriate probability p ∈ (0, 1) as described below;

• once p is fixed, we choose Dp such that the probability that any player
mines a block in a round is p ∈ (0, 1). This can be achieved2 by setting
Dp := p · 2λ such that for all (h, txs), Prη[H(h, η, txs) < Dp] = p.

We choose the parameter p ∈ (0, 1) such that it satisfies the following
conditions where n is the total number of nodes, and ∆ denotes the maximum
network delay:

1. ν := 2pn∆ < 0.5; and

2. Honest mining power, even when discounted by the network delay, must
outnumber corrupt mining power by an appropriate constant margin.

2For simplicity, we shall assume that p · 2λ is an integral number.

100

Formally, let φ ∈ (0, 1) be an arbitrarily small constant, and let ρ denote
the fraction of corrupt nodes. We require that

1− ρ
ρ
≥ 1 + φ

1− ν
(14.1)

Note that the second requirement can be equivalently interpreted as
(1−ρ) · (1−ν) ≥ (1+φ) ·ρ, where 1−ρ is the fraction of honest mining power
and ρ is the fraction of corrupt mining power. The term 1− ν = 1− 2pn∆
is the discount in the honest mining power. The constant 2 here differs from
our earlier back-of-the-envelope calculation — but it turns out that this is
the constant needed for the formal proofs we present in Chapter 173.

If ∆ = 0, i.e., all messages are received instantly without any delay, then
no discount would be incurred — in this case, Equation (14.1) simply boils
down to requiring that the honest mining power exceed the corrupt mining
power by an arbitrarily small constant margin φ ∈ (0, 1). The larger the
network delay ∆, the more disadvantageous it is to the honest nodes, and
thus the more honest fraction we will need to ensure consistency.

14.4 Properties of Nakamoto’s Blockchain

To state the formal guarantees attained by Nakamoto’s blockchain, we
shall assume that Nakamoto’s blockchain protocol is executed for poly(λ)
number of rounds where λ is the security parameter. This is a reasonable
assumption for cryptographic protocols, where we typically assume that the
adversary is polynomially bounded in the security parameter λ. We say
that negl(λ) is a negligible function if for any fixed polynomial function p(λ),
there exists λ0 such that for any λ > λ0, negl(λ) < 1/p(λ). In other words,
a negligible function is one that drops off very sharply as we increase the
security parameter λ. If a protocol’s failure probability is negligible in the
security parameter λ, then by increasing the security parameter λ a little,
we can make the failure probability extremely small.

Nakamoto’s blockchain, when instantiated with appropriate parameters
stated in Section 14.3, satisfies the following theorem, which we shall prove
in Chapter 17. Below we will state the theorem formally first, and then we
will give intuitive explanations for each property.

Theorem 17. Suppose that K = ω(log λ) and let ε ∈ (0, 1) be an arbitrarily
small constants. There exists a negligible function negl(·), such that with 1−

3It is possible that the constant 2 can be tightened with tighter proofs, but doing so is
beyond the scope of this course.

101

negl(λ) probability over the choice of the randomized execution of Nakamoto’s
blockchain, the following properties hold:

• Chain growth lower bound. Let α := (1−ρ)np denote the expected
number of honest nodes that mine a block in each round. For any round
r0 and any duration t ≥ K

α , let chainr0 be some honest node’s longest
chain in round r0 and let chainr0+t be some honest node’s longest chain
in round r0 + t (the two honest nodes can be the same or different). It
must be that

|chainr0+t| − |chainr0 | ≥ (1− ε)(1− 2pn∆)αt

• Chain quality. Let chain be the longest chain of some honest node
sometime during the protocol execution: it must be that for any K
consecutive blocks chain[j..j + K] in this longest chain, more than
µ := 1− 1+ε

1+φ fraction of the blocks are mined by honest nodes.

• Consistency. Let chainr denote some honest node’s longest chain in
round r and let chaint denote some honest node’s longest chain in round
t ≥ r (note that the two honest nodes can be the same or different). It
must hold that

chainr[: −K] � chaint

where chain � chain′ means that the former is a prefix of the latter or
they are the same chain.

Below we elaborate on these properties and provide some intuition for
each of them.

14.4.1 Chain Growth Lower Bound

Intuitively, chain growth lower bound says that honest nodes’ chains must
grow steadily over time. Of course, the corrupt nodes could completely stop
mining, and therefore we can only guarantee that honest nodes’ chains grow
at a rate proportional to the honest nodes’ total mining power which is α.
However, keep in mind that the network has maximum delay ∆, and every
time a block is mined, ∆ rounds can be wasted just transmitting the block
to others. For this reason, the actual chain growth rate we can guarantee is
only (1− 2pn∆)α, where the honest mining power α is further discounted
by the factor 1− 2pn∆.

Why do we care about chain growth? Because chain growth is necessary
for achieving liveness (see Section 6), i.e., transactions submitted must be

102

included in honest nodes’ finalized logs fairly soon. It is not hard to see why
chain growth is necessary for liveness, but it turns out that chain growth
alone is not sufficient for ensuring liveness. For example, it could be that
although the blockchain grows, every block is mined by corrupt players, and
corrupt players may not include outstanding transactions in their mined
blocks or they may selective drop certain transactions. For this reason, we
also need chain quality which ensures that every now and then, some block
mined by honest nodes makes its way into the blockchain.

14.4.2 Chain Quality

Chain quality says that in every window of consecutive K blocks in honest
nodes’ longest chains, it must be that more than µ := 1 − 1+ε

1+φ fraction of
them are mined by honest nodes. Chain quality is necessary for ensuring
liveness, that is, transactions submitted must be included in honest nodes’
finalized logs fairly soon. If (non-zero) chain quality holds, intuitively, it
means that every now and then, an honest block makes its way into the
blockchain. Since honest miners always include all outstanding transactions
in the blocks they mine, liveness can be ensured (see also Exercise 33).

Does Nakamoto’s blockchain achieve ideal chain quality? Although
liveness only needs non-zero chain quality, it is natural to ask if the protocol
provides fairness. If Nakamoto’s protocol were completely “fair”, the fraction
of honest blocks ought to be 1−ρ. Henceforth the expression 1−ρ is referred
to as “ideal chain quality”. Does Nakamoto’s protocol provide ideal chain
quality?

To understand this, let us try to gain some intuition about the chain
quality parameter µ in Theorem 17. For simplicity, let us assume that
∆ = 0, and moreover, equality is taken in Equation (14.1). In this case, we
simply have that

1− ρ
ρ

= 1 + φ

Since we can take ε ∈ (0, 1) to be very small, for a back-of-the-envelope
calculation, we simply ignore ε. In this case, the chain quality parameter in
Theorem 17 would roughly be

µ ≈ 1− 1

1 + φ
=

1− 2ρ

1− ρ

For example,

103

• Suppose that the fraction of honest mining power 1− ρ = 2/3. Then, the
chain quality µ guaranteed by Theorem 17 is roughly 1/2, whereas ideal
chain quality would be 2/3.

• Suppose that the fraction of honest mining power 1− ρ is sightly greater
than 1/2. Then, the chain quality µ guaranteed by Theorem 17 is slightly
greater than 0, whereas ideal chain quality ought to be 1/2.

Is this mismatch due to looseness of the theorem, or is it that Nakamoto’s
blockchain is inherently not fair?

It turns out that Nakamoto’s blockchain is not fair! A well-known attack,
called the selfish mining attack [mtg,ES14], shows that if a coalition with
roughly ρ < 1/2 fraction of mining power deviates from the honest protocol,
it can, in the best-case scenario, control roughly ρ/(1 − ρ) fraction of the
blocks! We will further explain the selfish mining attack in Chapter 15.

14.4.3 Consistency

The consistency property in Theorem 17 is stated w.r.t. nodes’ longest chains,
but not w.r.t. nodes’ finalized logs. Recall that in Nakamoto’s consensus,
at any time, a node’s finalized log is its longest chain but chopping off the
trailing K blocks. If we want to prove that Nakamoto’s blockchain realizes
the blockchain abstraction defined earlier in Chapter 6, we need to prove
the consistency property defined in Chapter 6, which is stated w.r.t. nodes’
finalized logs. In other words, we want to prove that, with extremely high
probability over the choice of the randomized execution, the following should
hold: if LOGri and LOGtj are the finalized logs of two honest nodes i and

j in rounds r and t respectively, it must be that either LOGri � LOGtj or

LOGri � LOGtj . We leave this as a homework exercise.

Exercise 32. Recall that in the Nakamoto’s blockchain, a node’s final-
ized log is always its longest chain but removing the trailing K blocks.
Suppose that with 1 − negl(λ) probability over the choice of the ran-
domized execution of Nakamoto’s blockchain, the consistency property
stated in Theorem 17 is satisfied.

Prove that with 1− negl(λ) probability over the choice of the ran-
domized execution of Nakamoto’s blockchain, the following holds: if
LOGri and LOGtj are the finalized logs of two honest nodes i and j in

rounds r and t respectively, it must be that either LOGri � LOGtj or

104

LOGri � LOGtj .

14.4.4 Liveness

In Exercise 32, we proved that Nakamoto’s blockchain satisfies consistency
as defined in Chapter 6. To prove that Nakamoto’s protocol realizes a
blockchain, we also need to show that it satisfies the liveness property as
defined in Chapter 6.

Exercise 33. Suppose that with 1− negl(λ) probability over the choice
of the randomized execution of Nakamoto’s blockchain, chain growth
lower bound and chain quality as stated in Theorem 17 are satisfied.

Prove that with 1−negl(λ) probability over the choice of the random-
ized execution of Nakamoto’s blockchain, the following holds: suppose
that an honest node receives some transaction tx as part of its input in
some round r, then, by round r + Θ(K/α+ ∆), tx must appear in every
honest node’s finalized log.

Combining Exercise 32 and 33, we may conclude that Nakamoto’s protocol
indeeed satisfies the blockchain abstraction defined earlier in Chapter 6.

105

106

Chapter 15

The Selfish Mining Attack
and Incentive Compatibility

Traditionally, consensus was deployed by a single organization like Google or
Facebook to replicate their mission-critical computing infrastructure (e.g.,
Facebook Credit, Google Wallet, etc.). In such settings, consensus is used to
achieve fault tolerance, and incentive for participation is a non-issue. Further,
if nodes fail or get compromised with somewhat independent probability,
honest majority would be a very reasonable assumption.

Excitingly, with cryptocurrencies such as Bitcoin and Ethereum, con-
sensus moved to a large-scale, decentralized setting. Many new challenges
arose in this new setting, such as scalability, incentives, and governance. One
particularly intriguing issue is incentives. In Bitcoin and Ethereum’s Proof-
of-Work-based consensus, it is rather costly for nodes to participate and
contribute to maintaining a global public ledger. To incentivize participation,
Bitcoin gives rewards to the miner of each block. Roughly speaking, for a
miner to receive mining rewards, it needs to include a public key pk inside
any block it mines, so that the rewards for mining the block can be credited
to pk. In Bitcoin, the per-block mining reward includes two parts:

1. Block reward: when Bitcoin started first, a fixed block reward of 50
bitcoins was given to the miner of each block. After every 210,000
blocks are mined (approximately every 4 years), the block reward halves
and will keep on halving until the block reward per block becomes 0
(approximately by year 2140).

2. Transaction fees: every transaction in Bitcoin can specify a fee to pay
to the miner that includes the transaction.

107

Since miners make some money for mining each block, to maximize one’s
payoff, a selfish miner should want to mine as many blocks as possible. When
everyone participates honestly in the protocol, it is not hard to see that all
hashpower is “equal”, that is, a miner with ρ fraction of the mining power
gains ρ fraction of the rewards in expectation. However, selfish miners need
not follow the honest protocol. If by deviating, they can increase their own
payoff, they will have strong incentives to deviate!

It turns out that the Nakamoto’s consensus protocol is indeed vulnerable
to a well-known incentive attack called the selfish-mining attack. The attack
was first suggested on the Bitcoin forum [mtg], and later Eyal and Sirer
extended the analysis in an elegant work [ES14]. Alarmingly, these analyses
showed that, if all blocks had equal rewards, then a miner who wields 1/3
of the mining power could, in the best case, reap close to 1/2 of the mining
rewards. Similarly, a miner who wields 49% of the mining power could, in
the best case, reap 96% of the rewards!

The big problem seems to be the following: if everyone has incentives
to deviate, then honest majority is no longer an assumption that one can
take for granted; and without honest majority, Nakamoto’s consensus will
no longer provide the desired consistency and liveness guarantees!

It is therefore desirable to have protocols that are incentive compatible.
What we want, is for the protocol to not just incentivize participation, but
also incentivize honest participation. In other words, we want honest behavior
to be an equilibrium that reinforces itself. If all other miners’ are behaving
honestly, it should be that everyone’s best response is to behave honestly
too!

In this lecture, we will first describe the selfish mining attack for Nakamoto’s
consensus, we will then informally survey a work called by Pass and Shi [PS17a]
which shows how to introduce a simple tweak to Nakamoto’s protocol, and
prove that the new protocol, called Fruitchain, defends against selfish mining
attacks and achieves incentive compatibility.

15.1 The Selfish Mining Attack

When honest miners mine a block, they are supposed to release the block
immediately and send it to others. In a selfish mining attack [mtg, ES14],
when a selfish miner mines a block B, it withholds the block B until some
honest miner also mines a block, denoted B′, which is at the same length as
B. When this happens, the selfish miner immediately releases the withheld
block B. If it can make B transmit faster than B′, it can potentially convince

108

withholdsB B

(a) A selfish miner mines a block B
and withholds it.

releases
races w/B

B’

B

B’

(b) When an honest miner mines an equal-
length block B′, the selfish miner immedi-
ately releases B and races with B′.

Figure 15.1: The selfish mining attack.

other honest nodes to mine off B rather than B′ from now on. In this attack,
effectively, the selfish miner’s block B successfully erased honest nodes’ work
in mining B′. In fact, the selfish miner can perform the same attack with
every block it mines. For every block the selfish miner mines, it can use the
block to erase roughly one block worth of work from honest nodes.

We can do an informal back-of-the-envelope calculation to gain more
intuition. For simplicity, let’s assume that the network’s delay ∆ = 0.
Suppose that the selfish miner controls ρ < 1/2 fraction of the mining power.
During a very long window in which a total of T blocks are mined, the number
of blocks mined by the selfish miner is roughly ρT whereas the number of
blocks mined by honest nodes is roughly (1−ρ)T . Recall that every block the
selfish miner mines, it can erase one block mined by honest nodes. Therefore,
in the final blockchain, there would only be (1− ρ)T − ρT = 1− 2ρT blocks
mined by honest nodes during this time window; and the total number of
blocks (during this time window) that make their way into the blockchain is
1− 2ρT + ρT = 1− ρT . Hence, the fraction of the blocks in the chain mined
by honest nodes (i.e., the chain quality) is roughly,

1− 2ρ

1− ρ

The fraction of blocks controlled by the selfish miner is therefore 1− 1−2ρ
1−ρ .

For example, if ρ = 1/3, then the selfish miner controls roughly 1/2 of the
blocks; and if ρ = 49%, then the selfish miner controls roughly 96% of the
blocks.

Interestingly, the above calculation also matches the chain quality guaran-
tee stated in Theorem 17 of Chapter 14 (assuming that ∆ = 0). This means
that the above simple attack is in fact optimal for Nakamoto’s consensus.

Discussion: tie-breaking. In the above selfish mining attack, we assumed
that in the event of equal-length forks (e.g., B and B′), the protocol breaks

109

ties by picking the block that arrives first. Furthermore, we assumed that
the selfish miner can always successfully race against honest block B′ and
propagate its own withheld block B ahead of B′. If the selfish miner colludes
with a network relay whose job is to deliver blocks to miners, such an attack
would be feasible. In practice, if the selfish miner does not have so much
influence over the network transmission, its advantage will be discounted.

One näıve idea is to introduce a better tie-breaking rule in Nakamoto’s
consensus. For example, a natural idea is to pick a random fork if equal-
length forks are encountered. Indeed, random tie-breaking mitigates the
advantage of the selfish miner; but even with random tie-breaking, one can
show that a selfish miner that controls a constant fraction of the mining
power can improve its gains by a constant (multiplicative) factor with the
aforementioned selfish mining attack.

Discussion: has there been a real-world selfish mining attack? It
is natural to ask if a selfish mining attack has taken place on real-world
cryptocurrencies such as Bitcoin and Ethereum. To the best of my limited
knowledge, no one seems to know a conclusive answer, partly due to the
difficulty of measuring decentralized systems like Bitcoin. It is quite possible
that an attack has taken place stealthily. On the other hand, for Bitcoin,
big stake-holders now dominate the mining game — to profit in mining, one
would need to invest significantly in dedicated ASICs capable of fast hash
computations. Since the big stake-holders have vested interest in the health
and longer-term prosperity of Bitcoin, it is also possible that this deters
them from launching selfish mining attacks.

15.2 Fruitchain: an Incentive-Compatible Blockchain
※

No matter whether selfish mining has actually taken place in the real world, it
seems reassuring if we could design the consensus protocol to discourage selfish
mining attacks. In other words, the consensus protocol should incentivize
honest behavior, and that honest behavior should be an equilibrium that
reinforces itself.

A recent work by Pass and Shi, called Fruitchain [PS17a], aims to achieve
this goal. Fruitchain is obtained by making a somewhat small tweak to
Nakamoto’s protocol. Pass and Shi show that Fruitchain provably defends
against any form of selfish-mining attacks. More specifically, an adversary
controlling minority of the mining power, cannot increase its gains by more

110

than a δ ∈ (0, 1) factor, no matter how it deviates from the prescribed protocol
— moreover, this holds even when δ is an arbitrarily small constant. In other
words, Fruitchain achieves a coalition-resistant Nash equilibrium.

At a very high level, in Fruitchain, any mining attempt by calling the
hash function H can result in either a fruit or a block. Typically, it should
be much easier to mine fruits than blocks. In Fruitchain, the fruits contain
transactions whereas the blocks contain fruits. The very high-level idea is
that although an adversary can perform a selfish-mining attack and erase
honest nodes’ effort in mining blocks, it cannot erase honest nodes’ efforts in
mining fruits; and in Fruitchain, the mining rewards are distributed to the
fruits rather than blocks. All honest fruits mined, can be picked up by some
honest block in the near future since non-zero chain quality holds for the
underlying blockchain. Moreover, we require a fruit to refer to some recently
stabilized block, and this provides a timestamping mechanism for measuring
how “fresh” the fruit is. To prevent an adversary from accumulating many
fruits and releasing them altogether to outnumber honest fruits during some
time-frame, we require that only relatively fresh fruits can be included in
a block. This makes sure that fairness holds for every sufficiently long
time-window, and not in aggregate across the entire duration of the protocol

— note that this is important because rewards are distributed to miners
periodically and not just at the very end of time.

We refer the curious reader to the Fruitchain work [PS17a] to find out
further details.

111

112

Chapter 16

A Simple, Deterministic
Longest-Chain-Style
Protocol

Our discussions in the past couple of lectures have focused on Nakamoto’s
blockchain. Our next big goal is to prove Nakamoto’s blockchain secure,
i.e., we eventually would like to prove Theorem 17 of Chapter 17. As we
have explained, Nakamoto’s blockchain departs significantly from classical
consensus protocols, and arguably one of the most novel ideas is the longest
chain idea.

In this lecture, we take a slight detour: instead of directly diving into
the formal proofs for Nakamoto’s blockchain, we will start with a warmup
that helps to illustrate why the “longest chain” idea works. We will describe
a simple deterministic longest-chain-style protocol [Shi19a] that is inspired
by Nakamoto, and we will go over its proof which is also simple. Unlike
Nakamoto’s consensus, our deterministic longest-chain protocol is described
for a permissioned setting where everyone’s public key is well-known; further,
the protocol secures only against fewer than n/3 corruptions. The proofs
for this protocol can be viewed as a simplified, deterministic variant of
the analysis of Nakamoto’s blockchain. The proofs for the latter involve
stochastic reasoning and are somewhat more complicated — we shall dedicate
the next chapter to formally analyzing Nakamoto’s blockchain.

113

16.1 Deterministic Longest-Chain-Style Consensus
Protocol

To make things simplest possible, rather than constructing a blockchain, we
describe a protocol for a one-shot abstraction, namely, weakly valid Byzantine
Broadcast. There are n nodes numbered 0, 1, . . . , n − 1 respectively, and
suppose that all of their public keys pk0, pk1, . . . , pkn−1 are well-known.
Without loss of generality, we may assume that node 0 is the designated
sender and it wants to broadcast a bit to everyone else. We assume a
synchronous network where honest nodes’ messages can be delivered to
honest recipients in the immediate next round.

A weakly valid Byzantine Broadcast is defined in almost the same way
as in Chapter 3, except that we weaken the validity requirement and only
require the following:

Weak validity: if all nodes are honest, then everyone outputs the desig-
nated sender’s input bit.

Our protocol goes round by round, and in each round i, the node i
mod n is eligible to vote on either bit. Nodes always pick the bit that has
gained more votes so far to vote on — henceforth this bit is said to be the
more popular bit. At the end of the protocol, everyone outputs their more
popular bit.

To formalize the protocol, we first define a few notions below.

Leader. In every round r ∈ {0, 1, . . . , n− 1}, node r is the leader. Thus
each round has a unique leader.

Valid votes. A valid vote for a bit b ∈ {0, 1} is a tuple (b, r, σ) where
r ∈ {0, 1, . . . , n− 1} is a round number (also called the vote’s timestamp),
and σ is a valid signature under pkr for the tuple (b, r). This means that in
round r, only node r’s vote counts as valid.

More popular bit. At any time, a node’s more popular bit is the bit for
which it has seen more valid votes, breaking ties arbitrarily. Two votes with
the same (b, r) but different σ are treated as the same vote.

Protocol. We now present the protocol below.

114

A deterministic longest-chain-style protocol

• Round 0: let b be the sender’s input bit. The sender signs (b, 0), and
let σ be the resulting signature. The sender sends the vote (b, 0, σ)
to everyone.

• For each round r = 1, 2, . . . , n− 1:

– Receive all messages from the network and discard every vote
whose timestamp is r or greater (discarded votes do not contribute
to the node’s view in the protocol).

– If the current node is the leader of this round, perform the following
steps (otherwise skip). Let b̃ ∈ {0, 1} be the more popular bit.
Now, sign (b̃, r) and let σ be the resulting signature. Send to
everyone the resulting vote (b̃, r, σ), as well as all valid votes the
node has seen for b̃ so far. If there are multiple most popular bits,
break ties arbitrarily.

• At the beginning of round n: every node outputs its more popular
bit b̃ ∈ {0, 1} breaking ties arbitrarily.

Resemblance to longest chain. In our protocol, in every round, the
round’s leader votes on the more popular bit seen thus far. This is akin to
Bitcoin’s idea of having nodes vote on the longest chain seen so far. Here, to
make the protocol and proofs even simpler, we don’t do the chaining like in
Nakamoto’s protocol.

Remark 23. The protocol above has linear round complexity and secures
only against fewer than n/3 corruptions. In a purely theoretical sense, this
seems to be a step backwards in comparison with Dolev and Strong’s protocol
in Chapter 3. However, we are interested in formally analyzing this protocol,
because its proofs nicely capture the core ideas in the analysis of Nakamoto’s
blockchain, but removes the probabilistic reasoning in the latter.

16.2 Analysis

We formally analyze this simple, longest-chain-style protocol. We will assume
the ideal signature model in the analysis.

Lemma 19 (Vote growth lemma). Suppose that the number of corrupt nodes
is strictly less than n/3. At the beginning of round n, every honest node’s

115

more popular bit has strictly more than 2n/3 votes.

Proof. A round r is said to be an honest-leader round if its leader (r mod n)
is honest. We prove that if round r is the i-th honest-leader round, then at
the beginning of round r + 1, every honest node must have observed at least
i votes for its more popular bit.

We can prove this by induction. The base case is obvious: the statement
holds trivially for the 0-th honest-leader round.

Now, we prove the inductive step. Suppose that the statement holds for
every i ≤ k − 1, we now show that it holds for the k-th honest-leader round
too. Let t denote the k-th honest-leader round. By the induction hypothesis,
in round t, the honest leader (t mod n) must have seen at least k − 1 votes
for its more popular bit b̃ at the time. The honest leader (t mod n) now
creates a new vote on b̃ and shares all votes on b̃ it has seen with others as
well as the new one. Thus, by the beginning of the next round, every honest
node must have seen at least k votes for its more popular bit1.

The lemma follows by observing that there are strictly more than 2n/3
honest-leader rounds.

Theorem 18 (Consistency). At the beginning of round n, if some honest
node has seen strictly more than 2n/3 votes for the bit b̃, then no honest
node can have seen strictly more than 2n/3 votes for the bit 1− b̃.

Note that if the above statement holds, then the protocol satisfies consis-
tency.

Proof. Suppose that the theorem is not true, i.e., there are strictly more
than 2n/3 votes for both bits in the union of the honest nodes’ views. The
total number of distinct votes must exceed 4n/3.

Note that an honest-leader round increases the total number of votes by
exactly 1, and a corrupt-leader round increases the total number of votes by
at most 2. Let f < n/3 denote the number of corrupt nodes; then the total
number of votes can be at most n− f + 2f = n+ f < 4n/3. Thus we have
reached a contradiction.

Theorem 19 (Weak validity). If all nodes are honest, then they all output
the input bit of the designated sender.

Proof. The proof should be straightforward. Suppose that everyone is honest
and the designated sender receives the input bit b. In round 0, the designated

1Note that at the beginning of the next round, an honest node’s more popular bit may
not be b̃; but since every honest node will have seen k votes on b̃, for 1− b̃ be the more
popular bit, it must have gained k votes or more.

116

sender casts a vote for b. Henceforth, in every round, the leader of the round
will create a new vote for b and distribute all votes thus far including the
new one. At the end of the protocol, everyone will output b.

Resemblance to the proof for Nakamoto’s blockchain. In the above
consistency proof, the core idea is to argue that every honest node’s more
popular bit must accumulate votes fairly quickly, such that at the end of
the protocol, every honest node’s more popular bit must have many votes

— we call this property vote growth. To show consistency, we argue that
it cannot be the case that both bits gain votes that quickly, because every
honest node casts exactly 1 vote when it is the leader, and every corrupt
node can cast at most 2 votes when it is the leader. This imposes an upper
bound on the total number of distinct votes there can be.

In our analysis of the Nakamoto’s protocol in the next lecture, we will use
a similar strategy to prove consistency: we will show that in all likelihood,
honest nodes chains grow steadily over time — this property will be called
chain growth. To prove consistency, at a very high level, we will argue
that in all likelihood, it cannot be the case that two parallel chains both
grow quickly since the total computation power in the system is bounded.

In this sense, understanding the simple protocol in this lecture will help
understand the analysis for Nakamoto’s blockchain.

16.3 Additional Exercises

Exercise 34. Describe the simplest modification you can think about to the
above protocol, such that it achieve the strong validity notion, that is, if the
designated sender is honest, everyone should output its input bit. Prove that
your modified protocol realizes Byzantine Broadcast as defined in Chapter 3.

117

118

Chapter 17

Analysis of Nakamoto’s
Blockchain ※

In this lecture, we will present a formal analysis of the barebone Nakamoto’s
blockchain protocol. Specifically we will prove Theorem 17 of Chapter 14.

17.1 Ideal-World Protocol

Nakamoto’s blockchain relies on a PoW hash function. Because the hash
function’s outcome is random and sufficiently long, it should be the case
that except with negligible probability, the adversary is never able to predict
future hash values, or cause hash collisions. Assuming that this is the case,
we may abstract away the details of the hash function, and imagine that
mining is performed in an idealized world. This ideal-world protocol captures
the core stochastic process we care about, and our proofs will be presented
for this ideal-world protocol. For convenience, we refer to the protocol in
Chapter 14 as the real-world protocol.

In the ideal world, we shall imagine that every block contains only the
payload string txs; and the other fields h−1, η, and h (see Chapter 14) are now
abstracted away. Instead of calling the PoW hash function H to mine blocks,
all nodes mine blocks by calling a so-called “ideal functionality” henceforth
denoted Ftree. One can think of Ftree as a trusted party that internally
maintains a valid tree of blocks; initially, tree contains only the genesis block.
Ftree answers two types of requests from nodes:

• Upon receiving mine(chain, txs): Ftree checks if chain is a valid blockchain
in tree. If so, Ftree flips a coin that comes up heads with probability p.

119

If the coin flip is successful, Ftree records chain||txs in the set tree, and
returns success.

• Upon receiving verify(chain): Ftree checks if chain is a valid blockchain
in tree; if so, return true; else return false.

Honest nodes play according to the following rules in the idealized protocol.
Just like the real-world protocol in Chapter 14, here we also make an implicit
echoing assumption, that is, whenever a node hears a fresh message from the
network previously unseen or receives a new transaction as input, it echos
the message or transaction to everyone else. This assumption makes sure
that if any honest node sees a message in round r, then all honest nodes will
have observed it by round r + ∆.

• Every node maintains the longest blockchain seen thus far denoted chain.

• In every round, every honest node first receives all incoming messages on
the network. For any received message chain′: If Ftree.verify(chain′) = 1
and chain′ is longer than the current local chain, then let chain := chain′

and broadcast chain′.

• Let txs be the outstanding transactions observed so far but not contained in
chain. Now, query Ftree.mine(chain, txs): if this mining query is successful,
the node propagates chain||txs to everyone and replaces its chain with
chain := chain||txs.

• The finalized log at any point of time is chain but removing the last K
blocks.

We will prove Theorem 17 of Chapter 14 for the above ideal-world protocol;
and we claim that the same guarantees extend to real-world protocol of
Chapter 14. The fact that this should hold is not surprising; nonetheless
formally proving this statement requires a bit of (somewhat tedious) work —
and we refer the reader to Pass et al. [PSS17] for a formal statement and
proof relating the security of the ideal-world protocol to the security of the
real-world protocol.

Garay et al [GKL15] and Pass et al. [PSS17] first presented formal analyses
of Nakamoto’s consensus. Pass and Shi [PS17b] presented a simplified proof
for pedagogical purposes. Our proof below is mostly faithful that of Pass
and Shi [PS17b], but with simpler notations.

120

17.2 Notations

In our proofs below, we adopt the same notations as Chapter 14, and we
often use negl(·) to denote an appropriate negligible function. Any time
we use the phrase “with negligible probability”, unless otherwise stated, it
means negligible in the security parameter λ.

Recall that α := p · (1−ρ)n denotes the expected number of honest nodes
that mine a block in each round; and we shall use β := p · ρn to denote the
expected number of corrupt nodes that mine a block in each round.

17.3 Convergence Opportunities

We now define a useful pattern called convergence opportunities which
we shall later use in both our chain growth lower bound proof as well as
consistency proof. Intuitively, a convergence opportunity is a ∆-period of
silence in which no honest node mines a block, followed by a round in which
a single honest node mines a block, followed by another ∆-period of silence
in which no honest node mines a block. We formalize this notion below.

Convergence opportunity. Given an execution, we say that [T −∆, T +
∆] is a convergence opportunity iff

• For any t ∈ [max(0, T −∆), T), no honest node mines a block in round t;

• A single node honest mines a block in round T ;

• For any t ∈ (T, T + ∆], no node honest in round t mines a block.

Henceforth let NH := (1 − ρ)n denote the number of honest nodes. Let
T denote the round in which a single honest node mines a block during
a convergence opportunity. For convenience, we often use T to refer to
the convergence opportunity. We say that a convergence opportunity T is
contained within a window [t′ : t] if T ∈ [t′ : t].

Henceforth, let C[t′ : t] be a random variable denoting the number of
convergence opportunities contained within the window [t′ : t].

Many convergence opportunities. We now show that convergence op-
portunities happen sufficiently often.

Lemma 20 (Number of convergence opportunities). For any positive con-
stant η and any κ that is a super-logarithmic function in λ, except with

121

some negl(λ) probability over the choice of the execution, the following holds:
for any t0, t1 ≥ 0 such that t := t1 − t0 > κ

α , we have that

C[t0 : t1] > (1− η)(1− 2pn∆)αt

where α := p · (1 − ρ)n denotes the expected number of honest nodes that
mine a block in each round.

Proof. It suffices to prove the lemma for any fixed choice of t0 and t — if we
can do so, the lemma then follows by taking a union bound over polynomially
many choices of t0 and t. We now focus on the coins Ftree flips for honest
nodes upon their mine queries — henceforth we refer to these coins as honest
coins for short.

• Let X denote the total number of heads in all the honest coins during
[t0, t1]. Due to the Chernoff bound, for any constant 0 < ε < 1, it holds
that

Pr[X < (1− ε) · αt] ≤ exp(−Ω(αt))

Henceforth, let L := (1− ε) · αt for a sufficiently small constant ε.

• Let Yi = 1 iff after the i-th heads in the honest coin sequence during
[t0, t1], there exists a heads in the next NH∆ coin flips. Notice that all
of the Yi’s are independent — to see this, another way to think of Yi is
that Yi = 0 iff the i-th coin flip and the (i+ 1)-th coin flip are at least
NH∆ apart from each other.

Let Y :=
∑L

i=1 Yi. We have that

E[Y] ≤ (1− (1− p)NH∆) · L ≤ pNH∆ · L = α∆L

By Chernoff bound, it holds that for any ε0 > 0,

Pr[Y > α∆L+ ε0L] ≤ exp(−Ω(L)) = exp(−Ω(αt))

More concretely, the inequality above arises from the Chernoff bound (see
Section 2.5 of Chapter 2); there are 2 cases:

– If δ := ε0
α∆ < 1, we have that Pr[Y > α∆L+ε0L] ≤ exp(−δ2α∆L/3) =

exp(− ε20L
3α∆) ≤ exp(− ε20L

3) = exp(−Ω(L)). In the above, the step

exp(− ε20L
3α∆) ≤ exp(− ε20L

3) follows because α∆ < 2pn∆ < 1 by our
assumption.

122

– If δ := ε0
α∆ ≥ 1, we have that Pr[Y > α∆L+ε0L] ≤ exp(−δα∆L/3) =

exp(−ε0L/3).

• Let Zi = 1 iff before the i-th heads in the honest coin sequence during
[t0, t1], there exists a heads in the previous NH∆ coin flips. Similarly as
before, all of the Zi’s are independent. Let Z :=

∑L
i=1 Zi. We have that

E[Z] ≤ (1− (1− p)NH∆) · L ≤ pNH∆ · L = α∆L

By the Chernoff bound, it holds that for any ε0 > 0,

Pr[Z > α∆L+ ε0L] ≤ exp(−Ω(L)) = exp(−Ω(αt))

• Observe that for any fixed execution,

C[t0 : t1] ≥ X−Y − Z

Recall that our parameter choices (see Section 14.3 of Chapter 14) imply
that α∆ ≤ pn∆ < 1

4 . For any execution where the aforementioned
relevant bad events do not happen, we have that for any η > 0, there
exist sufficiently small positive constants ε0 and ε such that the following
holds:

X−Y − Z ≥ (1− 2α∆− 2ε0)L

=(1− 2α∆− 2ε0) · (1− ε) · αt ≥ (1− η)(1− 2α∆) · αt
≥(1− η)(1− 2pn∆) · αt

The proof concludes by observing that there are at most exp(−Ω(αt)) =
exp(−Ω(κ)) fraction of bad executions that we could have ignored in the
above.

The above lemma bounds the number of convergence opportunities for
any fixed window. By taking a union bound, we can conclude that except for
a negligible probability mass of bad executions, in all good executions, it must
hold that any sufficiently long window has many convergence opportunities.

123

17.4 Chain Growth Lower Bound

To prove the chain growth lower bound, we observe that for any fixed
execution, whenever there is a convergence opportunity, the shortest honest
chain must grow by at least 1 (see Fact 2). Since earlier, we proved that
except with negligible probability over the choice of the execution, there are
many convergence opportunities, it naturally follows that honest chains must
grow rapidly. We now formalize this intuition.

Fact 2. For any fixed execution, any t0, any t1 ≥ t0, and any honest chains
chaint0 and chaint1 in rounds t0 and t1 respectively, it holds that

C[t0 + ∆ : t1 −∆] ≤ |chaint1 | − |chaint0 |

Proof. By definition, if t is a convergence opportunity in the execution, then
the shortest honest chain at the end of round t+ ∆ must be longer than the
longest honest chain at the beginning of round t−∆. The remainder of the
proof is straightforward.

Lemma 21 (Chain growth lower bound). For any positive constant ε′, and
any κ that is a super-logarithmic function in λ, except with some negl(λ)
probability over the choice of the execution, the following holds: for any t0
and any t ≥ κ

α , let chaint0 be any honest chain at time t0 and let chaint0+t

be any honest chain at time t0 + t, then

|chaint0+t| − |chaint0 | > (1− ε′)(1− 2pn∆)αt

Proof. It suffices to prove the above lemma for any fixed t0 and t since if
so, we can take a union bound over the polynomially many choices of t0
and t. Ignore the negligible probability mass of executions where bad events
pertaining to Lemma 20 take place. For every remaining good execution,
due to Fact 2 and Lemma 20, it holds that for every positive constant ε′,
there is a sufficiently small positive constant ε such that for sufficiently large
λ and thus sufficiently large κ(λ),

|chaint0+t| − |chaint0 |
>(1− ε)(1− 2pn∆)α(t− 2∆)

=(1− ε)(1− 2pn∆)αt− 2(1− ε)(1− 2pn∆)α∆

≥(1− ε′)(1− 2pn∆)αt

where the last inequality is due to the fact α∆ < 2pn∆ < 0.5, and moreover
αt = Θ(κ).

124

17.5 Chain Quality

Intuitively, we will prove chain quality by comparing the number of adver-
sarially mined blocks with the honest chain growth lower bound. If corrupt
nodes mine fewer blocks than the minimum honest chain growth, we can
thus conclude that there cannot be too many corrupt blocks in an honest
node’s chain. We formalize this intuition below. Below, if an honest node
called Ftree.mine(chain[: −2], chain[−1]) and the query was successful, we say
that chain[−1] is mined by an honest node (or an honest block). Otherwise,
we say that chain[−1] is mined by the adversary (or is an adversarial block).

Fact 3 (Total block upper bound). For any positive constant ε and any κ
that is a super-logarithmic function in λ, except with some negl(λ) probability
over the choice of the execution, the following holds: for any r and t such
that np(t−r) ≥ κ, the total number of blocks successfully mined during (r, t]
by all nodes (honest and corrupt alike) is upper bounded by (1 + ε)np(t− r).

Proof. For any fixed choice of r and t, as long as np(t− r) ≥ κ, the above
statement holds by a straightforward application of the Chernoff bound. The
fact then holds by applying a union bound over all possible choices of r and
t.

Upper bound on adversarial blocks. Given a fixed execution, let A[t0 :
t1] denote the number of blocks mined by corrupt nodes during the window
[t0 : t1]; let At denote the maximum number of adversarially mined blocks
in any t-sized window.

Recall that β := p · ρn denotes the expected number of corrupt nodes
that mine a block in each round.

Fact 4 (Upper bound on adversarially mined blocks). For any constant
0 < ε < 1, for any κ that is a super-logarithmic function in λ, except with
negl(λ) probability over the choice of the execution, the following holds: for
any t ≥ κ

β , At ≤ (1 + ε)βt.

Proof. It suffices to prove that for any fixed t0, for any positive constant ε,
except with negligible probability, it holds that A[t0 : t0 + t] ≤ (1 + ε)βt —
if we can show this, the rest of the proof follows by taking a union bound
over the choice of t0. To prove the above for any fixed t0, it suffices to apply
the Chernoff bound in a straightforward manner.

125

Lemma 22 (Chain quality). For any positive constant ε and any κ that is
a super-logarithmic function in λ, except with negl(λ) over the choice of the
execution, the following holds for µ := 1 − 1+ε

1+φ : for any honest chain and
any consecutive K ≥ κ blocks chain[j + 1..j +K] blocks in chain, at least µ
fraction of these K blocks are mined by honest nodes.

Proof. Consider a fixed execution. Let r be any round, let i be any node
honest in round r. Consider an arbitrary honest chain chain := chainri
belonging to i in round r, and an arbitrary sequence of K blocks chain[j +
1..j + K] ⊂ chainri , such that chain[j] is not adversarial (either an honest
block or genesis); and chain[j +K + 1] is not adversarial either (either an
honest block or chain[j + K] is end of chainri). Note that if a sequence of
blocks is not sandwiched between two honest blocks (including genesis or
end of chain), we can always expand the sequence to the left and right to
find a maximal sequence sandwiched by honest blocks (including genesis or
end of chain). Such an expansion will only worsen chain quality.

As we argued above, without loss of generality we may assume that
chain[j + 1..j +K] is sandwiched between two honest blocks (or genesis/end-
of-chain). By definition of the ideal-world protocol, all blocks in chain[j +
1..j +K] must be mined between r′ and r′ + t, where r′ denotes the round
in which the honest (or genesis) block chain[j] was mined, and r′ + t denotes
the round in which chain[j+K+ 1] is mined (or let r′+ t := r if chain[j+K]
is end of chainri).

We ignore the negligible probability mass of executions where bad events
related to chain growth lower bound, adversarial block upper bound, or total
block upper bound take place.

• Now, due to chain growth lower bound, for any positive constant ε0, we
have that

t <
K

(1− ε0)(1− 2pn∆)α

• Due to total block upper bound (Fact 3), it holds that t ≥ Θ(κ
np). Due

to the adversarial block upper bound (Fact 4), for any positive constant
ε′′ > 0, there exist sufficiently small positive constants ε′ and ε0, such

126

that

A[r′ : r′ + t] ≤ A

[
r′ : r′ +

K

(1− ε0)(1− 2pn∆)α

]
≤ (1 + ε′)βK

(1− ε0)(1− 2pn∆)α
≤ (1 + ε′)(1− 2pN∆)K

(1− ε0)(1− 2pn∆)(1 + φ)

≤(1 + ε′′)K

1 + φ

• Therefore, the fraction of honest blocks in this length K sequence is lower
bounded by

1− 1 + ε′′

1 + φ

17.6 Consistency

Fact 5 (Adversary must expend work to deny a convergence opportunity).
Consider a fixed execution: let t denote a convergence opportunity in which
a single honest node mines a block denoted B∗ at length `. It holds that for
any honest chain chain in round t′ ≥ t+ ∆, chain must be at least ` in length;
moreover, if chain[`] is either mined by a corrupt node, or chain[`] = B∗.

Proof. By the definition of a convergence opportunity, no honest node will
mine blocks at length ` after t+ ∆, and no honest node could have mined a
block at length ` before t−∆ since otherwise the honest block mined during
the convergence opportunity must be at length at least `+ 1. Finally, since
B∗ is the only honest block mined during [t−∆, t+ ∆], it holds that there is
no other honest block at length ` in the execution.

Lemma 23 (Consistency). For any κ that is a super-logarithmic function
in λ, except with negligible probability over the choice of the execution, the
following holds: for any round r and any round t ≥ r, let chainr be any
honest chain in round r and let chaint be any honest chain in round t; then
it must hold that

chainr[: −κ] � chaint

Proof. Suppose for the sake of reaching a contradiction that chainr[: −κ]
is not a prefix of chaint. Let chainr[: −`] be the longest common prefix of
chainr and chaint where ` > κ. Let chainr[: i] � chainr[: −`] be the longest

127

prefix that ends at an honestly mined block, i.e., chainr[i] is the first honest
block to the left of chainr[−`] (and including chainr[−`]); and let s− 1 be the
round in which chainr[i] was mined. It holds that all blocks in chainr[i+ 1 :]
and chaint[i+ 1 :] must be mined in or after round s.

Henceforth, let τ := r − s. By total block upper bound, it must be that
τ > κ

2pn , which is large enough to make sure that our failure probabilities
later will be negligibly small.

Case 1: when t − r ≤ φ
2 τ . Observe that all convergence opportunities

that come in or after round s must be at length greater than i and moreover
they must be at different lengths. Combining this observation and Fact 5, it
must be the case that C[s : r −∆] ≤ A[s : t], since otherwise, there must be
an honest block B mined during a convergence opportunity between [s, r−∆],
and B must appear in both chainr and chaint. Below we prove that except
with negligible probability over the choice of the execution, it must be that
C[s : r−∆] > A[s : t] — if we can do so, then we reach a contradiction, and
thus we can conclude the proof.

Below we ignore the negligible probability mass of executions where
relevant bad events take place. By Lemma 20, for any positive constant εc,
it holds that1

C[s : r −∆] > (1− εc)(1− 2pn∆)α(τ −∆)

By Fact 4, for any positive constant εa, it holds that

A[s : t] < (1 + εa)β · (1 +
φ

2
)τ

Thus for any positive constants φ, and as long as 0 < 2pn∆ < 0.5, there
exist sufficiently small constants εc, εa, ε1 such that the following holds for
sufficiently large κ:

C[s : r −∆] > (1− εc)(1− ν)α(τ −∆) (17.1)

>(1− ε1)(1− ν)ατ (17.2)

>(1− ε1)(1 + φ)βτ (17.3)

>(1 + εa)β · (1 +
φ

2
)τ > A[s : t] (17.4)

where (17.2) stems from the fact that ατ = Θ(κ) and α∆ = O(1); and (17.3)
stems from our parameter choices, i.e., the discounted honest mining power
exceeds the corrupt mining power by a constant margin (see Equation (14.1)
of Chapter 14).

1The choice of εc affects the choice of the negligible function.

128

Case 2: when t− r > φ
2 τ . By Fact 5, for every length `′ corresponding to

the length of some convergence opportunity during [s, r−∆], either chainr[`′]
or chaint[`′] must be mined by a corrupt node. Also, recall that except with
negl(λ) probability,

C[s : r −∆] > A[s : r +
φ

2
τ]

This means that except with negligible probability, there must be some `∗

corresponding to the length of a convergence opportunity during [s, r −∆],
such that if chainr[`∗] or chaint[`∗] is mined by a corrupt node, it must be
mined after r+ φ

2 τ . This means that chainr[`∗] cannot be mined by a corrupt

node. By Fact 5, chaint[`∗] must be mined by a corrupt node after r + φ
2 τ ,

since otherwise it must be that chaint[`∗] = chainr[`∗].
However, by chain growth lower bound, for an arbitrarily small consant

ε, except with negl(λ) probability, in any round r + φ
2 τ or later, even the

shortest honest chain must have length more than

˜̀ := `∗ + (1− ε) · 1

2
φτ · (1− 2pn∆)α

Note that this also means that chaint must have length at least ˜̀, since it is
an honest node’s longest chain in round t > r + φ

2 τ . Moreover, since honest
nodes always mine off the longest chain, no honest node will mine off any
chain whose length is smaller than ˜̀ in round r + φ

2 τ or later. This means

that all blocks in chaint[`∗ : ˜̀] must be mined by corrupt nodes. However,
due to chain quality, this cannot happen except with negligible probability.

129

130

Chapter 18

Proof of Stake (Brief
Overview)

Nakamoto’s consensus first showed how to achieve consensus in a permission-
less, decentralized environment with open enrollment. This was amazing, but
the community soon realized that Proof-of-Work (PoW) based approaches
are undesirable partly due to the enormous energy waste induced by the pro-
tocol. According to the bitcoin energy consumption tracker at Digiconomist,
as of June, 2019 Bitcoin consumed 66.7 terawatt-hours per year. That’s
comparable to the total energy consumption of the Czech Republic, a country
of 10.6 million people!

To avoid the enormous waste, many blockchain projects put their hope
on a new paradigm called Proof-of-Stake (PoS). In PoW-based consensus,
nodes have voting power proportional to their mining power, and consistency
and liveness are guaranteed if the (super-)majority of the mining power is
honest. Analogously, in PoS, nodes have voting power proportional to the
amount of cryptocurrency they hold, and we hope to guarantee consistency
and liveness as long as, roughly speaking, the (super-)majority of the stake
participating in consensus behaves honestly. Of course, as we discussed in
Chapter 15, honest majority shouldn’t be taken for granted in a decentralized
setting and a good protocol ought to incentivize honest behavior.

So how can we construct PoS consensus protocols for decentralized
cryptocurrencies? Various academics [KRDO17, DPS19] and blockchain
projects (e.g., Ethereum, Dfinity, Algorand) have such attempts. In this
lecture, we will give an informal overview of how to construct PoS consensus.

Interestingly, while PoS also supports “open enrollment”, at any snapshot
of time, it actually employs a “permissioned” consensus instance! This is

131

because at any snapshot of time, the set of consensus nodes are well-defined,
and their public keys are known (since players have to demonstrate possession
of the cryptocurrency to become an eligible participant).

At a very high level, PoS consensus systems start with an initial consensus
committee whose identities are well-known. Then, during the life-time of the
system, the consensus committee is reconfigured periodically to reflect the
latest stake distribution (since cryptocurrencies may switch hands over time).
Reconfiguration of the consensus committee requires common knowledge —
therefore, typically, when the current committee is running consensus, we
use this opportunity to not only agree on transactions, but also to reach
agreement on the next consensus committee.

Bootstrapping the initial consensus committee. For bootstrapping
the system, we need to assume that there is an initial set of consensus nodes
whose identities are publicly known. This initial set of consensus nodes
can be established in multiple ways in practice. One approach that has
been adopted by several blockchain projects is through an initial coin sale
such that interested parties can become stake-holders and participate in
consensus. Another approach is to bootstrap the cryptocurrency system
with PoW, and when miners have mined some cryptocurrency, the system
then transitions to PoS (e.g., Ethereum has adopted this approach). To
enable such transition, miners can “stake in” the cryptocurrencies they mined
through PoW or purchased through an online exchange. A stake-in operation
can be accomplished by sending an explicit message to the blockchain — at
this moment, the blockchain is sill running PoW — indicating that the player
is willing to “freeze” their coins and become a PoS participant. Typically,
cryptocurrency that is staked in will be frozen for a while and cannot be
spent when the corresponding stake-holder is participating in consensus. The
concern here is that if a player has sold all of its stake, it may be incentivized
to engage in a history-rewriting attack, and it is no longer incentivized to
participate honestly and protect the robustness of the cryptocurrency system.

Committee reconfiguration. As mentioned, since cryptocurrencies switch
hands, we need to periodically reconfigure the consensus committee to allow
old stake-holders to exit and allow new ones to join. At any time, any
player can purchase cryptocurrencies and bid to become a member of the
next consensus committee. Such bidding can take various forms, and one
common approach is to use the same stake-in mechanism mentioned earlier,
i.e., players send explicit stake-in messages to the current blockchain to

132

indicate their intent to lock up their cryptocurrencies, and participate in the
next consensus period. Effectively, the current consensus protocol is not just
used for confirming transactions, but also to agree on the next consensus
committee.

Choice of permissioned consensus protocol. As mentioned, interest-
ingly, PoS is in some sense returning to our classical roots, since it adopts
permissioned consensus protocols at any snapshot of time. Indeed, the com-
munity’s joint push towards the PoS paradigm has created much momentum
for perfecting permissioned consensus protocols. Many elegant works have
appeared in the past decade [BZ17,CPS18b,CPS18a,YMR+18,HMW,Shi19b,
CS20a,PS17c,KRDO17,DPS19,CM16]. At a very high level, most of these
recent protocols aim to achieve one or more of the following goals:

• Simplicity. As mentioned in Chapter 7, it turns out that the classical
mainstream approaches such as PBFT [CL99], Paxos [Lam98] and their
numerous variants [KAD+07,GKQV10,Bur06,JRS11,BSA14,OO14]
have been viewed as too complicated, and thus many projects focused on
developing simpler, and more streamlined consensus approaches [BZ17,
CPS18b,CPS18a,YMR+18,HMW,Shi19b,CS20a]. One of the simplest
approaches, called Streamlet, was described in Chapter 7.

• Robustness. As we have learned in this course, synchronous consensus
can tolerate more faults than partially synchronous protocols, since the
latter is subject to a 1/3 resilience lower bound which we learned in
Chapter 8. Several blockchain projects preferred synchronous consensus
protocols for this reason; but it turns out that all classical synchronous
protocols lack in terms of robustness. As a recent work by Guo et
al. [GPS19] pointed out, alarmingly, all classical synchronous consensus
protocols are underspecified and unimplementable in practice: if a node
ever experiences even a short-term outage and receives messages out
of sync, it is treated as faulty and will no longer enjoy consistency and
liveness. Classical synchronous protocols provide no way for such nodes
to join back and continue to participate! Since blockchain protocols
have been running for more than a decade, no one can guarantee 100%
up time for so long (e.g., even Gmail has outages every now and then).
Thus, if classical synchronous protocols are adopted, everyone will
eventually experience some (possibly short-term) outage and become
faulty! Note that in partially synchronous protocols, nodes that suffer
from short-term outages are not penalized since a short-term outage

133

can be viewed as a really long network delay. However, as mentioned,
the drawback with partial synchrony is the 1/3 resilience barrier.

Realizing that this is a problem, several works [PS17c,GPS19,CPS18b]
suggested new modeling techniques, and showed that it is possible for
consensus protocols to support sporadic participation (i.e., allow nodes
to come and go), and still be able to achieve security under honest
majority (as opposed to the 1/3 resilience of partially synchronous pro-
tocols). Interestingly, notice that Bitcoin’s Nakamoto consensus allows
sporadic participation and achieves security under honest majority —
but it requires PoW.

• Performance. As mentioned earlier, multiple blockchain projects
found synchronous consensus desirable due to its better resilience.
However, besides lack of robustness, classically, synchronous consensus
protocols are also considered slow because the protocol’s performance
typically depends on an a-priori determined network delay parameter.
For example, if the network’s average delay is expected to be 1 second,
one might want to conservatively set this delay parameter to be 10
seconds — since consistency can be violated if the network violates
synchrony assumptions. We say that a protocol is responsive if it con-
firms transactions as fast as the network makes progress, independent
of any a-priori configured delay parameter. Classically, most partially
synchronous or asynchronous protocols are responsive; but again they
can defend only against 1/3 corruptions. Recent works [PS18] proposed
a new notion of performance called optimistic responsiveness which
aims to achieve responsiveness almost all the time in practice, without
being subject to the 1/3 lower bound pertaining to partial synchrony
or asynchrony. For example, a couple recent works [PS18, CPS18b],
constructed protocols that guarantee consistency and (slower) liveness
as long as the majority of nodes are honest; but assuming that a desig-
nated leader and 3/4 of the nodes are honest and online, the protocols
can confirm transactions at raw network speed.

134

Bibliography

[ACD+19] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak,
Rafael Pass, Ling Ren, and Elaine Shi. Communication com-
plexity of byzantine agreement, revisited. In Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing,
PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019,
pages 317–326, 2019.

[BS] Dan Boneh and Victor Shoup. A graduate course in applied
cryptography. http://toc.cryptobook.us/book.pdf.

[BSA14] Alysson Neves Bessani, João Sousa, and Eduardo Ad́ılio Pelinson
Alchieri. State machine replication for the masses with BFT-
SMART. In DSN, pages 355–362, 2014.

[Bur06] Mike Burrows. The chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06, pages
335–350, 2006.

[BZ17] Vitalik Buterin and Vlad Zamfir. Casper. https://arxiv.org/
abs/1710.09437, 2017.

[CKS05] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random
oracles in constantinople: Practical asynchronous byzantine agree-
ment using cryptography. J. Cryptol., 18(3):219–246, July 2005.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance. In OSDI, 1999.

[CM16] Jing Chen and Silvio Micali. Algorand: The efficient and demo-
cratic ledger. https://arxiv.org/abs/1607.01341, 2016.

135

http://toc.cryptobook.us/book.pdf
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437

[CPS18a] T-H. Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple
partially synchronous blockchain. Cryptology ePrint Archive,
Report 2018/981, 2018. https://eprint.iacr.org/2018/981.

[CPS18b] T-H. Hubert Chan, Rafael Pass, and Elaine Shi. Pili: An
extremely simple synchronous blockchain. Cryptology ePrint
Archive, Report 2018/980, 2018. https://eprint.iacr.org/

2018/980.

[CPS20] T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. Sublinear-round
byzantine agreement under corrupt majority. In Public-Key
Cryptography - PKC 2020 - 23rd IACR International Conference
on Practice and Theory of Public-Key Cryptography, Edinburgh,
UK, May 4-7, 2020, Proceedings, Part II, pages 246–265, 2020.

[CS20a] Benjamin Chan and Elaine Shi. Streamlet: Textbook streamlined
blockchains. https://eprint.iacr.org/2020/088, 2020.

[CS20b] Benjamin Chan and Elaine Shi. Streamlet: Textbook streamlined
blockchains (blog post). https://decentralizedthoughts.

github.io/2020-05-14-streamlet/, 2020.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus
in the presence of partial synchrony. J. ACM, 1988.

[DPS19] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly
reconfigurable consensus and applications to provably secure
proofs of stake. In Financial Crypto, 2019.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information ex-
change for byzantine agreement. J. ACM, 32(1):191–204, January
1985.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algo-
rithms for byzantine agreement. Siam Journal on Computing -
SIAMCOMP, 12(4):656–666, 1983.

[ES14] Ittay Eyal and Emin Gun Sirer. Majority is not enough: Bitcoin
mining is vulnerable. In FC, 2014.

[FLM85] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy
impossibility proofs for distributed consensus problems. In Pro-
ceedings of the Fourth Annual ACM Symposium on Principles of

136

https://eprint.iacr.org/2018/981
https://eprint.iacr.org/2018/980
https://eprint.iacr.org/2018/980
https://eprint.iacr.org/2020/088
https://decentralizedthoughts.github.io/2020-05-14-streamlet/
https://decentralizedthoughts.github.io/2020-05-14-streamlet/

Distributed Computing, PODC ’85, pages 59–70. Association for
Computing Machinery, 1985.

[flp] A brief tour of flp impossibility.
https://www.the-paper-trail.org/post/

2008-08-13-a-brief-tour-of-flp-impossibility/.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faulty process. J.
ACM, 32(2):374–382, April 1985.

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic
protocol for synchronous byzantine agreement. In SIAM Journal
of Computing, 1997.

[gen] https://en.bitcoin.it/wiki/Genesis_block.

[GKKO07] Juan Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Os-
trovsky. Round complexity of authenticated broadcast with a
dishonest majority. In 48th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), 11 2007.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bit-
coin backbone protocol: Analysis and applications. In Eurocrypt,
2015.

[GKQV10] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko
Vukolić. The next 700 bft protocols. In Proceedings of the 5th
European Conference on Computer Systems, EuroSys ’10, pages
363–376, New York, NY, USA, 2010. ACM.

[GPS19] Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with
a chance of partition tolerance. In Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part I, pages 499–529, 2019.

[HMW] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity
technology overview seriesconsensus system. https://dfinity.
org/tech.

[JRS11] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab:
High-performance broadcast for primary-backup systems. In

137

https://www.the-paper-trail.org/post/2008-08-13-a-brief-tour-of-flp-impossibility/
https://www.the-paper-trail.org/post/2008-08-13-a-brief-tour-of-flp-impossibility/
https://en.bitcoin.it/wiki/Genesis_block
https://dfinity.org/tech
https://dfinity.org/tech

Proceedings of the 2011 IEEE/IFIP 41st International Conference
on Dependable Systems&Networks, DSN ’11, pages 245–256, 2011.

[KAD+07] Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen
Clement, and Edmund L. Wong. Zyzzyva: speculative byzantine
fault tolerance. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles 2007, SOSP 2007, Stevenson,
Washington, USA, October 14-17, 2007, pages 45–58, 2007.

[KK09] Jonathan Katz and Chiu-Yuen Koo. On expected constant-
round protocols for byzantine agreement. J. Comput. Syst. Sci.,
75(2):91–112, February 2009.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern
Cryptography (Chapman & Hall/Crc Cryptography and Network
Security Series). Chapman & Hall/CRC, 2007.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Ro-
man Oliynykov. Ouroboros: A provably secure proof-of-stake
blockchain protocol. In Crypto, 2017.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 1998.

[Lam01] Leslie Lamport. Paxos made simple. ACM SIGACT News
(Distributed Computing Column) 32, 4 (Whole Number 121,
December 2001), pages 51–58, December 2001.

[lec] Lecture notes for 6.852: Distributed algorithms fall,
2009. MIT Open Courseware, https://ocw.mit.edu/

courses/electrical-engineering-and-computer-science/

6-852j-distributed-algorithms-fall-2009/

lecture-notes/MIT6_852JF09_lec05.pdf.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzan-
tine generals problem. ACM Trans. Program. Lang. Syst., 1982.

[mtg] mtgox. https://bitcointalk.org/index.php?topic=2227.

msg29606#msg29606.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008.

138

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-852j-distributed-algorithms-fall-2009/lecture-notes/MIT6_852JF09_lec05.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-852j-distributed-algorithms-fall-2009/lecture-notes/MIT6_852JF09_lec05.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-852j-distributed-algorithms-fall-2009/lecture-notes/MIT6_852JF09_lec05.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-852j-distributed-algorithms-fall-2009/lecture-notes/MIT6_852JF09_lec05.pdf
https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606
https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606

[OO14] Diego Ongaro and John Ousterhout. In search of an understand-
able consensus algorithm. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference, USENIX
ATC’14, page 305–320, USA, 2014. USENIX Association.

[PS] Rafael Pass and Abhi Shelat. A course in cryptogra-
phy. https://www.cs.cornell.edu/courses/cs4830/2010fa/
lecnotes.pdf.

[PS17a] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In
PODC, 2017.

[PS17b] Rafael Pass and Elaine Shi. Rethinking large-scale consensus
(invited paper). In CSF, 2017.

[PS17c] Rafael Pass and Elaine Shi. The sleepy model of consensus. In
Asiacrypt, 2017.

[PS18] Rafael Pass and Elaine Shi. Thunderella: Blockchains with
optimistic instant confirmation. In Eurocrypt, 2018.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in
the presence of faults. J. ACM, 27(2):228–234, April 1980.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the
blockchain protocol in asynchronous networks. In Eurocrypt,
2017.

[sha] https://en.wikipedia.org/wiki/SHA-2.

[Shi19a] Elaine Shi. Analysis of deterministic longest-chain protocols. In
CSF, 2019.

[Shi19b] Elaine Shi. Streamlined blockchains: A simple and elegant
approach (A tutorial and survey). In Advances in Cryptology -
ASIACRYPT 2019 - 25th International Conference on the Theory
and Application of Cryptology and Information Security, Kobe,
Japan, December 8-12, 2019, Proceedings, Part I, pages 3–17,
2019.

[VRA15] Robbert Van Renesse and Deniz Altinbuken. Paxos made mod-
erately complex. ACM Comput. Surv., 47(3), February 2015.

[wik] https://en.wikipedia.org/wiki/Bitcoin.

139

https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Bitcoin

[WLG+89] J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N.
Levitt, P. M. Milliar-Smith, R. E. Shostak, and C. B. Weinstock.
SIFT: Design and Analysis of a Fault-Tolerant Computer for
Aircraft Control, page 560–575. IEEE Computer Society Press,
Washington, DC, USA, 1989.

[WXSD20] Jun Wan, Hanshen Xiao, Elaine Shi, and Srini Devadas. Expected
constant round byzantine broadcast under dishonest majority.
https://eprint.iacr.org/2020/590, 2020.

[YMR+18] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta,
and Ittai Abraham. Hot-stuff the linear, optimal-resilience, one-
message BFT devil. CoRR, abs/1803.05069, 2018.

140

https://eprint.iacr.org/2020/590

	Distributed Consensus: from Aircraft Control to Cryptocurrencies
	Preliminaries
	Negligible Function and Security Parameter
	Collision Resistant Hash Functions
	Random Oracles and Proof-of-Work
	Digital Signatures
	Chernoff Bound

	Byzantine Broadcast and the Dolev-Strong Protocol
	Introduction
	The Byzantine Generals' Problem
	A Modern Variant
	Analogy to Reliable Distributed Systems

	Problem Definition
	Synchronous Network
	Definition of Byzantine Broadcast

	A Naïve (Flawed) Protocol
	The Dolev-Strong Protocol
	Intuition
	Analysis
	Further Discussions

	The Muddy Children Puzzle
	Additional Exercises

	Byzantine Broadcast without Digital Signatures (Lower Bound)
	Impossibility of Consensus with 1/3 Corruptions without Digital Signatures
	Proving the Lower Bound
	Additional Exercises

	Byzantine Broadcast without Digital Signatures (Upper Bound)
	Protocol
	Analysis
	Additional Exercises

	Blockchain and State Machine Replication
	Modeling Network Delay More Generally
	Defining a Blockchain Protocol
	Construction of a Blockchain Protocol from Byzantine Broadcast
	Discussions

	A Simple Blockchain Protocol — Streamlet
	The Streamlet Protocol
	Epoch and Leader Rotation
	Blocks and Blockchain
	Votes and Notarization
	Protocol

	Consistency
	Liveness
	The Partial Synchronous Model and Choosing the Epoch Length
	Historical Anecdotes
	Additional Exercises

	Lower Bound for Partial Synchrony
	Problem Definition
	Impossibility of Partial Synchronous Consensus under n/3 Corruptions
	Additional Exercises

	Round Complexity of Deterministic Consensus
	Weakly Valid Byzantine Agreement
	Proving the Lower Bound for f = 2
	Overview of the Proof
	Sequence of Executions for f = 2

	Extending the Argument for General Choices of f

	Round Complexity of Randomized Consensus
	Round Complexity of Randomized BB
	Survey of Recent Results

	Communication Complexity of Consensus
	Communication Lower Bound for Deterministic Consensus
	Communication-Efficient Randomized Consensus
	Survey of Recent Results

	Asynchronous Consensus: The FLP Impossibility
	Definitions: Asynchronous Consensus and Execution Model
	Impossibility of Asynchronous, Deterministic Consensus
	Proving the FLP Impossibility
	Terminology
	Proof Roadmap
	Existence of a Bivalent Initial Configuration
	One Bivalent Configuration Leads to Another

	A Randomized Asynchronous Consensus Protocol
	Assumption: A Common Coin Oracle
	Randomized Asynchronous Consensus
	Consistency
	Liveness
	Termination
	Additional Exercises

	Bitcoin and Nakamoto's Blockchain Protocol
	Nakamoto's Ingenious Idea in a Nutshell
	Nakamoto's Blockchain: Formal Description
	Choosing the Mining Difficulty Parameter
	Properties of Nakamoto's Blockchain
	Chain Growth Lower Bound
	Chain Quality
	Consistency
	Liveness

	The Selfish Mining Attack and Incentive Compatibility
	The Selfish Mining Attack
	Fruitchain: an Incentive-Compatible Blockchain

	A Simple, Deterministic Longest-Chain-Style Protocol
	Deterministic Longest-Chain-Style Consensus Protocol
	Analysis
	Additional Exercises

	Analysis of Nakamoto's Blockchain
	Ideal-World Protocol
	Notations
	Convergence Opportunities
	Chain Growth Lower Bound
	Chain Quality
	Consistency

	Proof of Stake (Brief Overview)

