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Introduction 
 
The reciprocal of every prime p (other than two and five) has a period, that is the decimal 
expansion of 1/p repeats in blocks of some set length.  This period is the period of p.  For 
example, 
    __    ______      ______ 
 1/11  =  .09, 1/7  =  .142857, and 1/13  =  .076923, 
 
showing that the period of 11 is two, and that the periods of 7 and 13 are both six.  Samuel Yates 
defined a unique-prime (or unique-period prime, see references [1,2 and 3]) to be a prime which 
has a period that it shares with no other prime.  For example: 3, 11, 37 and 101 are the only 
primes with periods one, two, three and four respectively−so they are unique-primes.  But 41 and 
271 both have period five, 7 and 13 both have period six, 239 and 4649 both have period seven, 
and each of 353, 449, 641, 1409 and 69857 each have period thirty-two, showing that these 
primes are not unique-primes. 
 As we would expect from any object labeled "unique", unique-primes are extremely rare.  
For example, even though there are over 1047 primes below 1050, only eighteen of these primes 
are unique-primes!  These eighteen primes are listed in table one. 

 
--------------------------- 

Insert Table 1 Near Here 
--------------------------- 

 



In a letter dated 2/16/91, Samuel Yates announced the discovery of the twenty-ninth unique 
prime.  In this article we show where to look for new unique primes, then give the results of our 
recent searches. The results include finding over a dozen new unique-primes, and the discovery 
of unique-primes with record lengths and record periods.  We end by suggesting several possible 
avenues for further research. 
 
 

How do You Find Unique Primes? 
 
First, if a prime p has period n (so p is not 2 or 5), then   
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is an integer if and only if the decimal parts cancel out, that is, if and only if n divides m.  So if p 
has period n, then p divides 10m−1 for all m divisible by n, and in particular, the period of p is 
the smallest integer n for which p is a factor of 10n−1.  For example, since  101−1 = 32, the only 
prime with period one is three.  Next, it helps in our search to know we don't have to try all 
exponents because Fermat's (little) theorem states that p divides 10p−1−1, so it follows that the 
period of p must divide p−1.  Finally, recall that the repunits Rn are written as n ones, that  is, Rn 

= (10n−1)/9.  Obviously these repunits are closely related to the unique-primes.  In fact, we can 
pull all these facts together as follows:  (i) The reciprocals of the primes two and five have 
terminating expansions, so two and five have no period.  (ii) The only prime with period 
one is three.  (iii) If p is a prime greater than five, then the period of p is the least n dividing 
p−1 such that p divides Rn.  For example, let p=23.  Since p−1 = 22, we know the period of 23 
is either 2, 11 or 22.  A quick check shows 23 does not divide R2(=11) or R11, so 23 has period 
22.  (Primes p with period p−1 are often called full period primes.) 
 Back to the original question (how do you find unique-primes?): If we take Rm and divide 
out any factor it has in common with Rn (for each n that divides m), then what is left over is the 
product of the primes with period exactly m.  If this quotient is the power of a single prime−then 
it is a unique-prime.  We can make this more precise by introducing the cyclotomic polynomials 
Φn(x): 
 

 Φn(x)   =    Π  
 
 

d|n
 (xd − 1)µ(n/d)

,          so          9Rn   =   10n − 1   =   Π  
 
 

d|n
 Φd(10).  

where µ is the Möbius µ-function1.  For example:   Φ1 = x−1, Φ2 = x+1,  Φ3 = x2+x+1 and  
Φ4 = x2+1.  These polynomials are usually used as the first step in factoring any number of the 

                                                 
1Let m be a positive integer, then  µ(m) = 0  if m has a square factor;  µ(m) = 1  if m is a product of an even number 
of distinct primes (or m is one); and  µ(m) = −1 otherwise (that is, if m is the product of an odd number of distinct 
primes).  For example:  µ(1) = 1, µ(2) = µ(3) = − 1, µ(4) = 0, µ(5) = − 1, and  µ(6) = 1. 



form  bn+1, see [4, section IIIC1].  Finally, the integers Φn(10) and Φnm(10) may not be 
relatively prime, but any factor that they have in common must divide nm.  Now we have shown 

why: (iv) p is a unique-prime of period n if and only if  Qn = 
ΦΦΦΦn(10)

gcd(ΦΦΦΦn(10),n)   is a power of p.  

Other than for p=3 (with period n=1 and Q1 = 32), we have found no case where this quotient Qn 
is a true power (a power greater than one).  In fact, there is good reason to believe that  n = 1  is 
the only case in which this happens. 
 

 
The Repunit Connection 

 
As indicated above, the first connection between repunits and unique-primes is through 
factorization.  Most factorization tables of 10n−1 and Rn are organized in terms of  Φn(10), 
making unique-primes are easy to spot: just ignore factors of Rn that divide n (so what's left is 
Qn) and look for the values of n with a single prime left.  As a by product of our extending Yates' 
repunit factorization tables [5] we discovered twenty-three new unique probable-primes 
(probable-primes are positive integers p which satisfy Fermat's congruence ap = 1 (mod p), see 
[4]). 
 Unfortunately, finding large probable-primes N is easy, but proving these large numbers are 
prime is usually not.  For a large N, the primality tests based on partial factorizations of N+1 and 
N−1 are by far the easiest and fastest (see reference [4, 6 or 7]), so it is very fortunate that  
Φn(10)−1  is often divisible by  Φm(10)  (for certain other m's with  m < n), making these tests 
easier than usual.  Because of this we were able to complete the primality proofs for fifteen new 
unique-primes (for more mathematical details see [8]).  These new primes (and probable primes) 
are each marked with an asterisk in Table 2. 
 

--------------------------- 
Insert Table 2 Near Here 
--------------------------- 

    
 A second and more direct connection between unique-primes and repunits is that when a 
repunit is prime, then it is unique!  This is because (in this special case only) Rn = Φn(10).  
Currently only five repunit primes are known:  R2, R19, R23, R317, and R1031. The second 
author has used his special processors2 to search up through  n=16518, see [9] and [10].  Two 
facts the reader might find useful if they'd like to extend these search limits are (1) for Rn to be 
prime, n must be prime, and (2) any divisor of Rp (p and odd prime) has the form 2kp+1 (for 
some integer k).  

 

                                                 
2A custom built processor for number theory which, for this type of calculation, is over 70 times as fast as a PC 
based on the Intel 486 processor.   For information on an early version see [ 10].  These are now available as add-in 
boards for many IBM compatibles.  Contact the second author for further information. 



 
What is Next? 

 
Other than showing where to search for new unique-primes, we have not even addressed the 
most basic of questions about these primes: are there infinitely many of them?  Are there 
infinitely many repunit primes?  Are there infinitely n such that Φn(10) is a power (greater than 
one) of a prime?  We join others in conjecturing that the answers are yes, yes and no; but we are 
unable to prove any of these conjectures. 
 Above we just looked at the unique-primes in base ten.  Other than the fact we have ten 
fingers, what is so special about ten?  If we were switch to any other base, then the set of unique-
primes would be different.  For example, in base two (binary), all of the Mersenne Primes are 
repunit primes, so all Mersenne Primes are unique-primes base two,  but what other primes are 
unique base two?  More generally, are there infinitely many unique-primes base b for every base 
b?  Are there infinitely many repunit primes base b for every base b?  Are there infinitely 
occasions that Φn(b) is a power (greater than one) of a prime? (In binary such a prime would be a 
Wieferich prime.)  Again, it seems the answers to these last three questions should be yes, yes 
and no, but... 
 Another direction that the reader might wish to pursue would be to generalize the notion of 
unique.  For example, define bi-unique primes to be pairs of primes which have a period shared 
by no other primes.  Since the average number of  factors of Φn(10) should go to infinity (as n 
does), these should also become very rare (as should tri-unique...). See table three (an updated 
extension of Yates' table in [3]). 
 We would be pleased to hear of the readers' discoveries in any of these areas. 
 

--------------------------- 
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           Table 1.  The Seventeen Unique Primes less than 1050 
period   prime 

1  3 
2  11 
3  37 
4  101 

10  9091 
12  9901 
9  333667 

14  909091 
24  99990001 
36  9999990000 01 
48 
38 

 9999999900 000001 
9090909090 90909091 

19  1111111111 111111111 
23  1111111111 1111111111 111 
39  9009009009 0099099099 0991 
62  9090909090 9090909090 9090909091 

120  1000099999 9989998999 9000000010 001 
150  1000009999 9999989999 8999990000 0000010000 1 

 
 
                                                   Table 2.    
The Known Unique-Prime and [Probable-Prime] Periods and Lengths  
# period n digits  # period n digits  # period n digits 
1 1 1 19 120 33 37* 1452 441 
2 2 2 20 134 66 38* 1521 936 
3 3 2 21 150 41 39* 1752 577 
4 4 3 22 196 84 40* 1812 601 
5 9 6 23 294 84 41* 1836 577 
6 10 4 24 317 317 42* 1844 920 
7 12 4 25 320 128 43* [ 1862 757 ]  
8 14 6 26* 385 241 44* [ 2134 961 ] 
9 19 19 27 586 292 45* 2232 721 
10 23 23 28 597 396 46* 2264 1128 
11 24 8 29 654 217 47* [ 2667 1513 ] 
12 36 12 30* 738 241 48* 3750 1001 
13 38 18 31* 945 433 49* [ 3903 2600 ] 
14 39 24 32 1031 1031 50*  [ 3927 1920] 
15 48 16 33* 1172 584 51* [ 4274 2136 ] 
16 62 30 34* 1282 640 52* [ 4354 1861 ] 
17 93 60 35* 1404 433    
18 106 52 36* [ 1426 661 ]    
* New. 



 
 
 
 
 
 
  Table 3. 
  Number of Primes with Period Lengths in Given Range 

Period 
Range 

Exactly 
One 

Exactly 
Two 

Probably 
Two 

Three 
or More 

Not Yet 
Known 

1-100 17 32 0 51 0 
101-201 5 16 0 77 1 
201-300 1 5 0 87 5 
301-400 3 4 0 84 8 
401-500 0 3 2 83 12 
501-600 2 4 0 75 19 
601-700 1 4 1 73 21 
Totals 29 68 3 530 66 

 


