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EXPLICIT BOUNDS FOR PRIMES IN RESIDUE CLASSES

ERIC BACH AND JONATHAN SORENSON

Abstract. Let E/K be an abelian extension of number fields, with E 6= Q.
Let ∆ and n denote the absolute discriminant and degree of E. Let σ denote
an element of the Galois group of E/K. We prove the following theorems,
assuming the Extended Riemann Hypothesis:

(1) There is a degree-1 prime p of K such that
(

p
E/K

)
= σ, satis-

fying Np ≤ (1 + o(1))(log ∆ + 2n)2.

(2) There is a degree-1 prime p of K such that
(

p
E/K

)
generates

the same group as σ, satisfying Np ≤ (1 + o(1))(log ∆)2.

(3) For K = Q, there is a prime p such that
(
p

E/Q

)
= σ, satisfying

p ≤ (1 + o(1))(log ∆)2.
In (1) and (2) we can in fact take p to be unramified in K/Q. A special case
of this result is the following.

(4) If gcd(m, q) = 1, the least prime p ≡ m (mod q) satisfies
p ≤ (1 + o(1))(ϕ(q) log q)2.

It follows from our proof that (1)–(3) also hold for arbitrary Galois extensions,
provided we replace σ by its conjugacy class 〈σ〉. Our theorems lead to explicit
versions of (1)–(4), including the following: the least prime p ≡ m (mod q) is
less than 2(q log q)2.

1. Introduction

In this paper, we present explicit versions of several useful theorems from analytic
number theory. All of our results will rely on the Extended Riemann Hypothesis
(ERH). This has been used by many authors as a heuristic assumption, in attempts
to explain the observed behavior of number-theoretic algorithms. Thus, our results
can be used to obtain explicit bounds on the running times of these algorithms.

The problems we will address involve the distribution of primes in residue classes,
and more generally, the distribution of prime ideals in cosets of generalized class
groups. This subject has a long history, going back to Euler’s statement that every
arithmetic progression beginning with 1 contains an infinite number of primes. The
generalization to arbitrary progressions was proved by Dirichlet [13, 14], in work
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that many consider to be the start of rigorous analytic number theory. We will not
review all of the history here, but only mention how the ERH has come into play.

Various authors have observed that if gcd(m, q) = 1, then the least prime p
congruent to m mod q is not very large. Thus, a search for p through the sequence
m,m+q,m+2q, . . . should terminate quickly. Linnik [21] proved that p ≤ qO(1); the
sharpest known estimate of the exponent is due to Heath-Brown [17]: p = O(q11/2).
(No explicit version of Linnik’s theorem seems to be known.) However, the available
data on primes in progressions [36] suggest this exponent is too large. In an attempt
to obtain realistic estimates, several authors have invoked the ERH. From work of
Chowla [10], Titchmarsh [34], Turán [35], and Wang, Hsieh, and Yu [37], we have
the bound p = q2+o(1), assuming the ERH.

In algebraic number theory, Dirichlet’s theorem generalizes to the theorem of
Chebotarev [33], which states that there are infinitely many prime ideals with each
possible Artin symbol, and estimates their density. It then becomes a problem to
estimate the least such prime ideal. This was done (assuming ERH) by Lagarias
and Odlyzko [23], and Lagarias, Montgomery, and Odlyzko [22]. Oesterlé [29] has
stated an explicit version of this theorem: if E/K is a Galois extension of number
fields, then the least prime ideal of K with a given Artin symbol must have norm no
larger than 70(log |∆|)2, if ∆ is the discriminant of E. (Oesterlé apparently never
published his proof.) We improve this result in two ways: our constant factor is
smaller, and we show that the least prime ideal can be taken to have degree 1, a
property that is important for applications.

In the design of algorithms, one frequently uses a prime with a given Artin
symbol not for its own sake, but because it has some group-theoretic property.
For example, to construct an irreducible polynomial of degree 3 over a finite field
of p elements, we can use a cubic nonresidue q mod p. Although there are two
possibilities for the power character of q, they are both equivalent as far as the
algorithmic problem is concerned. With this and similar applications in mind, we
will say that two elements of a group are equivalent if they generate the same
subgroup. As we will see, slightly sharper results can be obtained for the relaxed
problem of finding a prime with Artin symbol equivalent to a given one.

It is an interesting problem to give efficient constructions for numbers with given
group-theoretic properties modulo n. We will not go more deeply into this here,
except to note some cases in which our bounds do not lead to efficient constructions.
If G is a proper subgroup of the multiplicative group modulo p, the least prime
outside G is O(log p)2 [4] assuming ERH. Under the same assumption, the least
primitive root mod p is O(log p)6 [32]. In both cases, using the theorems of this
paper would lead to bounds of O(p log p)2.

It is also of interest to ask if the growth rates in our estimates are best possible.
We believe they are not, although proving this seems out of reach even with the
ERH. For one thing, a key step in our proof is to estimate an oscillatory sum by
taking the absolute value of each term; one would naturally expect lots of cancel-
lation, which we ignore. Also, simple probabilistic models suggest that the least
p ≡ m mod q is O(ϕ(q)(log q)2) [8, 18, 36]. In this case, replacing an ad hoc model
with a “name brand” heuristic like the ERH essentially squares the bound. All of
this suggests an interesting arena for more computational experiments.

The ERH is supported by computational evidence and probabilistic arguments.
For the first, we refer the reader to the references in [5] and the recent work of
Rumely [31]. An example of the second, based on ideas of Cramér, appears in [6].
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As possible applications of our results, we mention the following. Brent and
Kung’s construction of n-bit multipliers with low area-time complexity [9] uses a
prime congruent to 1 mod n. Bach and Shallit’s generalization of the “p±1” factor-
ing method [7] requires a prime in a certain residue class, with prescribed splitting
behavior. A similar device was used by Adleman and Lenstra [2] to construct ir-
reducible polynomials over finite fields. Finally, our results allow one to estimate
the least prime p for which ( pn ) takes a prescribed value; such primes are useful in
primality testing [25] and other contexts.

We now give a rough sketch indicating our argument, using the notation of [5].
Suppose for simplicity that (Z/(n))∗/G is cyclic of prime order, and we want a
prime belonging to a coset C that generates this group. Suppose there are no such
primes below x. Then the following sum, taken over all characters χ of (Z/(n))∗/G,
must vanish for every a > 0:∑

χ

∑
n<x

χ̄(C)Λ(n)χ(n)(n/x)a log(x/n) = 0.

If we evaluate this by residues and observe that
∏
χ L(s, χ) = ζK , we obtain an

estimate
x

(1 + a)2
≤
√
x

2a+ 1
[log ∆ +O(1)] + · · · ,

where ∆ is the discriminant of the nth cyclotomic field, and · · · indicates error
terms that asymptotically are small. Taking a arbitrarily close to 0 leads to the
estimate

x ≤ (1 + o(1))(log ∆)2.

After covering some notation and background in §2, we state and prove our
asymptotic results in §3, with the technical details deferred to §4. We conclude
with explicit bounds in §5.

2. Notation and background

This is a companion piece to [5], so we refer the reader to that paper (especially
§3) for undefined notation and terminology.

The complexity of a number field is measured by two invariants: its degree n and
its discriminant ∆. For convenience we will suppress the sign of the discriminant,
so that ∆ > 0 henceforth. Recall that n = r1 + 2r2, where r1 is the number of real
embeddings and 2r2 is the number of complex embeddings. We will use subscripts
such as K or E/K to signal that an invariant depends on a field or an extension.
(Note that the discriminant of an extension is an ideal.)

The discriminant of a field is a multiple of the discriminant of any subfield. More
precisely, if E/K is an extension of number fields, we have

∆E = ∆
nE/K
K N∆E/K .(2.1)

(See [20, §15].)
If K is an algebraic number field, we will say “prime of K” rather than “nonzero

prime ideal of the ring of algebraic integers of K.” Also, if E/K is an abelian
extension, and χ is a character of the Galois group of E/K, the Artin symbol
induces a function on the integral ideals of K; for simplicity, we will use the symbol
χ for both. We also write χ̂ for the primitive character induced by χ.

Suppose E/K is an abelian extension, with Galois group G. For each character
χ of G, there is an associated intermediate field Eχ (so that K ⊂ Eχ ⊂ E). A
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theorem due to Hecke (see [19]) states that ζE(s), the Dedekind zeta function of E,
is a product of Hecke L-functions:

ζE(s) =
∏
χ

L(s, χ̂).(2.2)

This, together with representations of ζ′/ζ and L′/L (i.e., (3.11) and (3.12) of
[5]), leads to the conductor-discriminant formula

∆E/K =
∏
χ

fχ,(2.3)

in which fχ denotes the conductor of Eχ/K.
As in [5], we will use the digamma function ψ(s) = Γ′(s)/Γ(s). We recall the

following identities:

2ψ(2s) = ψ(s) + ψ(s+ 1/2) + 2 log 2 (duplication formula),(2.4)

ψ(1 + s) = ψ(s) +
1

s
(recurrence relation).(2.5)

Differentiating these, we get

4ψ′(2s) = ψ′(s) + ψ′(s+ 1/2)(2.6)

and

ψ′(1 + s) = ψ′(s)− 1

s2
.(2.7)

For further properties of the digamma function and its derivative, see Abramowitz
and Stegun [1].

Finally, we recall a representation given in [5]. With the convention that zeros
in sums are restricted to the critical strip, we have

L′

L
(s, χ̂) =

∑
L(ρ,χ̂)=0

(
1

s− ρ −
1

2− ρ

)
− [ψχ̂(s)− ψχ̂(2)](2.8)

−Eχ̂
[

1

s
− 1

s− 1
+

3

2

]
+
L′

L
(2, χ̂),

where Eχ̂ is 1 if χ̂ is principal, 0 otherwise, and

ψχ̂(s) =
r2 + α(χ̂)

2
ψ
(s

2

)
+
r2 + β(χ̂)

2
ψ

(
s+ 1

2

)
− n logπ

2
.(2.9)

In this formula, α(χ̂) and β(χ̂) are nonnegative integers summing to r1. We will not
need their definitions here, except to note that for the principal character, α = r1
and β = 0. (We also write ψζK in this case.)

By combining (2.2) and (2.9), one can show

ψζE (s) =
∑
χ

ψχ̂(s).(2.10)

The remainder of the paper assumes that the zeta functions of E and Q are
zero-free in <(s) > 1/2. To make our results useful in other contexts, however, we
will explicitly indicate which lemmas and theorems make these assumptions. The
others hold unconditionally.
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In the sequel, let a be a real number with 0 < a < 1. We require the inequality

za log(1/z) ≤ 1

ea
(2.11)

which is valid for 0 < z ≤ 1.

3. Asymptotic bounds

In this section, we give asymptotic versions of our estimates. Our proofs will
rely upon analytic lemmas that are given in §4. Roughly speaking, we obtain our
bounds by taking linear combinations of the “explicit formulas” from [5].

Theorem 3.1 (ERH). Let E/K be an abelian extension of number fields, with
E 6= Q. Let ∆ denote the absolute value of E’s discriminant (we assume ∆→∞).
Let n denote the degree of E. Let σ ∈ G, the Galois group of E/K.

(1) There is a prime ideal p of K with
(

p
E/K

)
= σ, of residue degree 1, satisfying

Np ≤ (1 + o(1))(log ∆ + 2n)2.

(2) There is a degree-1 prime ideal p of K such that
(

p
E/K

)
is equivalent to σ,

satisfying Np ≤ (1 + o(1))(log ∆)2.

(3) For K=Q, there is a prime p with
(
p

E/Q

)
=σ, satisfying p≤(1+o(1))·(log ∆)2.

In cases (1) and (2) we can take p to be unramified in K/Q.

(Recall that σ and σ′ are equivalent if they generate the same subgroup of G.)
Before giving the proof, we note two facts.

Theorem 3.2. If Theorem 3.1 holds for cyclic extensions, then it holds for arbi-
trary abelian extensions.

Proof. This uses a trick from [12] (see also [26]). Let L be the subfield of E fixed
by σ. Then E/L is cyclic. Let P be a prime of L satisfying the conditions of the
theorem for E/L. Then P lies above some prime p of K, and we have Np = NP

(this is in fact a rational prime p). Then for any prime ℘ of E dividing P, we have
(for all integral x)

xσ ≡ xNP = xNp mod ℘.

If we replace ℘ by another prime divisor of p, then the same relation holds (in
general, the relation holds for some conjugate of σ, but E/K is abelian, so this

conjugate must equal σ). This shows that
(

p
E/K

)
= σ, as desired. Clearly, any

upper bound on NP is also an upper bound on Np.

If E/K is Galois, then the Artin symbol is no longer an element but a conjugacy
class. The above argument is still valid with this modification, so we have the
following result.

Corollary 3.3 (ERH). Theorem 3.1 holds for Galois extensions E/K, provided
we replace σ by its conjugacy class 〈σ〉.

Proof of Theorem 3.1. We give a proof of (1). A proof for (2) is obtained by sub-
stituting zero for p(x), and a proof for (3) is obtained by substituting zero for d(x)
and r(x).
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By Theorem 3.2, we may assume that E/K has a cyclic Galois group G. As in
[5], we consider

S(x, χ) =
∑
Na<x

Λ(a)χ(a)

(
Na

x

)a
log
( x

Na

)
.(3.1)

If µ = σ−1, we may sum this over all characters χ of G to obtain∑
χ

χ(µ)S(x, χ) = |G|
∑
Na<x

χ(a)=χ(σ)

Λ(a)

(
Na

x

)a
log
( x

Na

)
.(3.2)

Denote the contribution of proper prime powers, ramified primes, and powers of
primes of degree greater than 1 to the right-hand side above by p(x), r(x), and
d(x), respectively. If no primes < x meet the conditions of the theorem, then∑

χ

χ(µ)S(x, χ) ≤ p(x) + r(x) + d(x).

Let i(x) be the additional error incurred by using primitive characters in the left-
hand sum, so that ∑

χ

χ(µ)S(x, χ̂) ≤ i(x) + p(x) + r(x) + d(x).(3.3)

Let a = 1/ log log ∆; for sufficiently large ∆ we will have 0 < a < 1.
By a residue computation we have∑

χ

χ(µ)S(x, χ̂) = x(1 + o(1))− (1 + o(1))
√
x(log ∆− 2n)

−O(n(log log ∆)2)− logx(log ∆ + n log log ∆).

(See §4.2.) We also have the following bounds:

i(x) = O(log x log ∆ log logn log log ∆),

r(x) = O(log x log ∆ log log ∆),

d(x) ≤ 2n
√
x(1 + o(1)),

p(x) ≤ 2n
√
x(1 + o(1)).

By Minkowski’s Theorem, n ≤ O(log ∆).
Thus,

x(1 + o(1)) ≤
√
x(log ∆ + 2n) + log x(log ∆)1+o(1).

Dividing by
√
x, noting that we may assume x ≥ (log ∆)2, and then squaring both

sides completes the proof.

We give two applications of this result.

Corollary 3.4 (ERH). Let m and q be integers, with gcd(m, q) = 1. There is a
prime p ≡ m (mod q) satisfying p ≤ (1 + o(1))(ϕ(q) log q)2.

Proof. Let K be Q and E be Q(ω), where ω is a primitive qth root of unity.
Then the corollary follows immediately from the proof of Theorem 3.1 (note that
d(x) = r(x) = 0 since nK = 1).

Corollary 3.5 (ERH). Let K be a quadratic field, with discriminant D and class
number h. Each ideal class of K contains an unramified degree-1 prime p satisfying
Np ≤ (1 + o(1))(h log |D|)2.
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Proof. Take E to be the Hilbert class field of K. Then E/K is unramified, so
∆E = |D|h.

We do not know if the 2n term in Theorem 3.1 can be eliminated. Our proof does
show that the coefficient 2 can be replaced by any number larger than ψ(1)−log 2π−
4 = 1.584907.... In some cases, though, the 2n term is superfluous. This is so if E/Q
is abelian, for then n/ log ∆ = o(1). Ankeny [3] improved this and showed that if the
Galois group of E is solvable in r steps, then n/ log ∆ = O(1/ log log · · · logn), where
the log is iterated r times. To be able to disregard the 2n term, some condition on
E seems necessary, because Golod and Shafarevich’s examples of infinite class field
towers [15] imply that n/ log ∆ 6= o(1) (see Hasse [16, p. 46]). Alternatively, we can
bound n in terms of log ∆; for this purpose, the discriminant bounds surveyed by
Odlyzko [28] are useful.

4. Technical estimates

In this section we fill in the missing details from the proof of Theorem 3.1 by
giving estimates for p(x), r(x), d(x), i(x), and by evaluating

∑
χ S(x, χ̂)χ(µ) by

residues.

4.1. Handling imprimitive characters. In this subsection we bound the error
incurred by including imprimitive characters in the sum. First, we require two
lemmas.

Lemma 4.1. If n ≥ 2, then∑
d|n
d>1

ϕ(n/d) ≤ ϕ(n)(eγ log logn+ 2).

Proof. Since n =
∑
d|n ϕ(n/d), the sum is n − ϕ(n) = ϕ(n)[n/ϕ(n) − 1]. From

(3.41) of [30] we conclude that n/ϕ(n) ≤ eγ log logn+ 3 for n ≥ 2, which completes
the proof.

Lemma 4.2. Let E/K be a cyclic extension of degree n, with (primitive) char-
acter χ and conductor f. Let ∆ be the absolute value of E’s discriminant. Then
(N f)ϕ(n) ≤ ∆.

Proof. We first show that if χ and χ′ generate the same subgroup of the character
group, they must have the same conductor. (Here it is essential to interpret the
conductor as a “cycle” or “ray modulus.” See, e.g., [24].) By the definition of
conductors, if p ≡ 1 mod f, then χ(p) = 1; because χ′ is a power of χ, we have
χ′(p) = 1. Therefore f′, the conductor of χ′, is a multiple of f. By the same
argument, f is a multiple of f′, so they are equal.

Thus, there are ϕ(n) characters with the same conductor; from the conductor-
discriminant formula (2.3) we conclude

(N f)ϕ(n) ≤
∏
χ

N fχ ≤ ∆.

Now, we can estimate the contribution of imprimitive characters. Let

i(x) =
∑
χ

χ(µ)S(x, χ̂)−
∑
χ

χ(µ)S(x, χ).(4.1)

The next lemma gives a bound for this.
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Lemma 4.3. Assume the hypotheses of the previous lemma. If E/K is unramified
(in particular if E = K), then i(x) = 0. Otherwise,

|i(x)| ≤
eγ log lognE/K + 2

ea log 2
logx log ∆E ,

which is O((log x log ∆ log logn)/a).

Proof. By our hypothesis on E/K, the only possible imprimitive characters are the
χd with gcd(d, n) > 1. (Note that there are ϕ(n/d) for each d.) Thus the total
contribution of these will be at most

|i(x)| ≤
∑
d|n
d>1

ϕ(
n

d
)
∑

Np
k<x

p|f

Λ(pk)

(
Np

k

x

)a
log

(
x

Np
k

)

≤ 1

ea

∑
d|n
d>1

ϕ(n/d)

 ∑
Np

k<x
p|f

Λ(pk)

≤ 1

ea
(ϕ(n)(eγ log logn+ 2))ω(f) log x,

where ω(f) is the number of distinct primes dividing f. (Here we have observed that

k ≤ log x
logNp

and used Lemma 4.1 and (2.11).) This is at most

eγ log logn+ 2

ea log 2
logx(ϕ(n) logN f).

Applying Lemma 4.2 gives the result.

4.2. Residue computations. In this subsection we express the sum in (4.1) as a
contour integral and evaluate it by residues. Formally, we have∑

χ

S(x, χ̂)χ(µ) = − 1

2πi

∫ 2+i∞

2−i∞

xs

(s+ a)2

∑
χ

χ(µ)
L′

L
(s, χ̂)ds

= I1 + I1/2 + I≤0 + I−a,

where Ix is the contribution of poles with real part x (and integral, in the case of
I≤0). This is justified as in [5].

4.2.1. Residue at s = 1.

Lemma 4.4. We have

I1 =
x

(1 + a)2
.

Proof. Observe that only the principal character can contribute a pole at 1.

4.2.2. Residues at <(s) = 1/2. First, we require two lemmas.

Lemma 4.5. If s > 1, then

ψζE (s) ≤ nE
2

(ψ(s)− log 2π) .
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Proof. By (2.9), we have

ψζE (s) =
r1 + r2

2
ψ
(s

2

)
+
r1
2
ψ

(
s+ 1

2

)
− nE log π

2

=
nE
2

[
r1
nE

ψ
(s

2

)
+

2r2
nE

ψ( s2 ) + ψ( s+1
2 )

2

]
− nE logπ

2
,

where nE = r1 + 2r2. Since ψ is increasing,

ψ
(s

2

)
<
ψ( s2 ) + ψ( s+1

2 )

2
.

We use this inequality to bound the convex combination inside the brackets, and
apply the duplication formula.

Lemma 4.6 (ERH). If 0 < a < 1, then∑
ζE(ρ)=0

1

|ρ+ a|2
≤ 1

2a+ 1

(
log ∆E + nE(ψ(1 + a)− log 2π) +

2

a+ 1
+

2

a

)
,

where the sum is over zeros ρ of ζE with 0 < <(ρ) < 1.

Proof. We have the identity

1

|ρ+ a|2
=

1

2a+ 1

(
1

1 + a− ρ +
1

1 + a− ρ

)
.

Using (5.11) of [23], we have∑
ζE(ρ)=0

(
1

1 + a− ρ +
1

1 + a− ρ

)
= log ∆E +

2

1 + a
+

2

a
+2ψζE (1+a)+2

ζ′E
ζE

(1+a).

Using Lemma 4.5 and noting that ζ′E/ζE(1 + a) ≤ 0 completes the proof.

Lemma 4.7 (ERH). We have∣∣I1/2∣∣ ≤ √
x

2a+ 1

[
log ∆E + nE(ψ(1 + a)− log 2π) +

2

1 + a
+

2

a

]
.

Proof. Assuming the ERH, we get∣∣I1/2∣∣ ≤ √x∑
χ

∑
L(ρ,χ̂)=0

1

|ρ+ a|2

=
√
x
∑

ζE(ρ)=0

1

|ρ+ a|2
.

Now use Lemma 4.6.

4.2.3. Residues at s = 0, −1, −2, . . . .

Lemma 4.8. We have

|I≤0| ≤ nE
(

1

a2
+

1

x(1− a)2
+

3

x2

)
= Oa(nE).
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Proof. For k = 0, 1, 2, . . . we have a term

− x−k

(a− k)2

∑
χ

χ̂(µ) Res−k
L′

L
(s, χ̂).

All of the residues are nonnegative because they come from zeros of L-functions
in the left half-plane. (Recall L is always analytic there, even for the principal
character.) Therefore, the absolute value of this is at most

x−k

(a− k)2

∑
χ

Res−k
L′

L
(s, χ̂) =

x−k

(a− k)2
Res−k

ζ′E
ζE

(s)

≤ nEx
−k

(a− k)2
.

(Here we used the fact that Res−k ζ
′
E/ζE(s) ≤ nE ; see [5, §2].) Summing over all

values of k ≥ 0 and noting that x ≥ 1, we obtain the bound.

4.2.4. Residue at s = −a. Since there is a double pole at s = −a, we have

I−a = −
∑
χ

χ(µ)
d

ds

(
xs
L′

L
(s, χ̂)

)
s=−a

= −(log x)x−a
∑
χ

χ(µ)
L′

L
(−a, χ̂)− x−a

∑
χ

χ(µ)

(
L′

L

)′
(−a, χ̂).

We write A1 for the first term and A2 for the second, so that I−a = A1 +A2.

Lemma 4.9. The absolute value of A1 is at most

logx

xa

 ∑
ζE(ρ)=0

2 + a

|ρ+ a|2
+
nE
2

(
ψ

(
−a
2

)
− ψ

(
1− a

2

)
+ 4− 2 log 2

)
+

1

a

 .

Proof. Using (2.9), we get a representation for
∑
χ χ(µ)L

′

L (−a, χ̂). We now estimate
each term of this. First, since the ρ are closer to −a than 2,∣∣∣∣∣∣
∑
χ

χ(µ)
∑

L(ρ,χ̂)=0

(
1

−a− ρ −
1

2− ρ

)∣∣∣∣∣∣ ≤
∑

ζE(ρ)=0

∣∣∣∣ 1

ρ+ a
+

1

2− ρ

∣∣∣∣ ≤ ∑
ζE(ρ)=0

2 + a

|ρ+ a|2
.

Second, (2.9) implies∑
χ

χ(µ)(ψχ̂(−a)− ψχ̂(2)) =
∑
χ

χ(µ)

(
r2 + α(χ̂)

2

(
ψ

(
−a
2

)
− ψ(1)

)
+
r2 + β(χ̂)

2

(
ψ

(
1− a

2

)
− ψ

(
3

2

)))
.

Since 0 < a < 1, we have ψ(−a/2)− ψ(1) > 0 and ψ((1 − a)/2)− ψ(3/2) < 0, so
the absolute value of this sum is bounded by∑

χ

(
nK
2

(
ψ

(
−a
2

)
− ψ(1)

)
− nK

2

(
ψ

(
1− a

2

)
− ψ

(
3

2

)))

≤ nE
2

(
ψ

(
−a
2

)
− ψ(1)− ψ

(
1− a

2

)
+ ψ

(
3

2

))
.



EXPLICIT BOUNDS FOR PRIMES IN RESIDUE CLASSES 1727

Third, we have

−
∑
χ

χ(µ)Eχ̂

[
1

−a −
1

−a− 1
+

3

2

]
=

1

a
− 1

a+ 1
− 3

2
,

which is at most 1/a in absolute value. Finally,∣∣∣∣∣∑
χ

χ(µ)
L′

L
(2, χ̂)

∣∣∣∣∣ ≤∑
χ

∑
a

Λ(a)

Na
2 ≤ −nE/K

ζ′K
ζK

(2) ≤ −nE
ζ′

ζ
(2) < nE .

(Here we have used the special value ζ′

ζ (2) = −0.569960... .) Combining these four

estimates and observing that ψ(3/2)−ψ(1) + 2 = 4− 2 log 2, we get the result.

Recall that we can use Lemma 4.6 to bound
∑
ζE(ρ)=0

1
|ρ+a|2 .

Lemma 4.10. We have

|A2| ≤
1

xa

 ∑
ζE(ρ)=0

1

|ρ+ a|2
+ nE

(
ψ′(2− a) +

1

(1− a)2
+

1

a2

)
+

1

a2
+

1

(1 + a)2

 .

Proof. Differentiating (2.9) with respect to s, we get a representation for∑
χ χ(µ)(L

′

L )′(−a, χ̂). This is straightforward to estimate, once we observe that∣∣∣∣∣∑
χ

χ(µ)ψ′χ̂(−a)

∣∣∣∣∣ ≤∑
χ

ψ′χ̂(−a) = ψ′ζE (−a) =
nE
4

(
ψ′
(
−a
2

)
+ ψ′

(
1− a

2

))
.

(Note that ψ′ is always positive.) We apply (2.6) and (2.7) (twice) to get the
result.

In the next two subsections, we let Ψ(x) =
∑
n<x Λ(n). (This is usually denoted

by ψ(x), but we use Ψ to avoid confusion with the digamma function.)

4.3. Prime powers. Next we derive a bound on p(x), the contribution of prime
powers to the sum (3.2). Thus,

p(x) ≤ |G|
∑

Np
k<x
k>1

Λ(pk)

(
Npk

x

)a
log

(
x

Npk

)
.

Lemma 4.11. We have

p(x) ≤ 2nE(
√
x+O(x1/3)).

Proof. Since (Np
k/x)a ≤ 1, we have

p(x) ≤ nE/K
∑

Np
k<x

k>1

Λ(pk) log

(
x

Np
k

)
.

Noticing that, for a fixed rational prime p,∑
p|p

Λ(pk) log

(
x

Np
k

)
≤ nKΛ(pk) log

(
x

pk

)
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and that nE/KnK = nE , this gives us the upper bound

p(x) ≤ nE
∑
pk<x
k>1

Λ(pk) log

(
x

pk

)
.

Using integration by parts, we obtain

nE

∫ x

1

log(x/t)d(Ψ(t) − θ(t)) = nE

∫ x

1

Ψ(t)− θ(t)
t

dt.

Asymptotically, this is 2nE(
√
x+O(x1/3)).

From Theorems 2, 4, and 5 in [11], we easily obtain the explicit bound Ψ(t) −
θ(t) < 1.001

√
t+ (4/3)t1/3 for t > 0. Hence,

p(x) ≤ 2nE(1.001
√
x+ 2x1/3).(4.2)

For values of a near 1 it is better to use the bound

p(x) ≤ nE
ea

(1.001
√
x+ (4/3)x1/3),(4.3)

which is derived by using (2.11) to bound (Np
k/x)a log(x/Np

k).

4.4. Primes of degree exceeding 1. We now estimate d(x), the contribution to
(3.2) by primes of degree greater than 1. We have

d(x) ≤ |G|
∑

Np
k<x

deg p>1

Λ(pk)

(
Npk

x

)a
log

(
x

Npk

)
.

We now prove the following.

Lemma 4.12 (RH). If nK > 1, then

d(x) ≤ 2nE(
√
x+O(x1/4)).

If nK = 1, then d(x) = 0.

Proof. Observe that for a rational prime p, if p | p and deg p > 1, then Np ≥ p2.
As in the previous lemma, we have

d(x) ≤ nE
∑
p2k<x

Λ(pk) log

(
x

p2k

)
= 2nE

∑
pk<
√
x

Λ(pk) log

(√
x

pk

)

= 2nE

∫ √x
1

log(
√
x/t)dΨ(t) = 2nE

∫ √x
1

(Ψ(t)/t)dt.

If we assume the RH, this is 2nE(
√
x+O(x1/4)).

Noting that Ψ(t) < 1.04t (see (3.35) of [30]) gives the explicit bound

d(x) ≤ 2nE(1.04
√
x).(4.4)

Using (2.11), we also have

d(x) ≤ nE
ea

(1.04
√
x).(4.5)
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4.5. Ramified primes. Recall that r(x) denotes the part of (3.2) contributed by
primes ramified in K/Q. Therefore,

r(x) ≤ |G|
∑

Np
k<x

p ramified

Λ(pk)

(
Npk

x

)a
log

(
x

Npk

)
,

and we have the following bound.

Lemma 4.13. If nK > 1, then

r(x) ≤ logx

ea log 2
log ∆E .

If nK = 1, then r(x) = 0.

Proof. Since the ramified primes are exactly those dividing the different DK/Q (see,
e.g., [24, p. 62]), using (2.11), we have

r(x) ≤ nE/K
log x

ea log 2

∑
Np<x

p ramified

logNp ≤
nE/K logx

ea log 2
logNDK/Q

=
nE/K logx

ea log 2
log ∆K ≤

logx

ea log 2
log ∆E .

5. Explicit bounds

In this final section, we give explicit versions of Theorem 3.1 and Corollary 3.4,
and discuss the computer algorithms used in their derivation.

5.1. An explicit version of the main result.

Theorem 5.1 (ERH). Let E/K be a Galois extension of number fields, with E 6=
Q. Let ∆ denote the absolute value of E’s discriminant. Let n denote the degree of
E. Let σ ∈ G, the Galois group of E/K.

Then there is a prime ideal p of K with
(

p
E/K

)
= σ, of residue degree 1, satis-

fying

Np ≤ (4 log ∆ + 2.5n+ 5)2.

The following tables provide more precise bounds. In each table, across the top
are the ranges for n, and along the left side the ranges for log ∆. Each triple of the
form (A,B,C) in the table corresponds to the bound Np ≤ (A log ∆ + Bn+ C)2.
(For smaller n, better bounds may be possible using explicit computations.)

The three tables correspond directly to the three cases in Theorem 3.1: Table 1
gives the most general bounds. Table 2 gives bounds for the norm of a prime ideal
with Artin symbol equivalent to σ. Better bounds are possible in this case since
p(x) is zero. Table 3 is valid only when K = Q. Better bounds are possible in this
case because d(x) and r(x) are zero. The dashes in the tables indicate combinations
of ∆ and n that are not possible, owing to Minkowski’s Theorem.



1730 ERIC BACH AND JONATHAN SORENSON

Table 1. Bounds for Np, deg p = 1,
(

p
E/K

)
= σ

n = deg(E/Q)
log ∆E 2 3–4 5–9

1–5 (3.798, 2.59, 4.7) — —
5–10 (3.039, 2.12, 4.6) (3.075, 1.98, 4.6) —
10–25 (2.614, 1.97, 4.9) (2.77, 1.9, 4.7) (2.879, 1.81, 4.6)
25–100 (2.111, 1.86, 5.3) (2.229, 1.8, 5.2) (2.371, 1.74, 5)

100–1000 (1.574, 1.89, 6.3) (1.641, 1.82, 6.1) (1.725, 1.75, 5.9)
1000–10000 (1.163, 2.77, 9.8) (1.183, 2.61, 9.4) (1.21, 2.44, 8.9)

10000–100000 (1.042, 3.17, 17.9) (1.047, 3.25, 17) (1.054, 3.36, 16)
100000+ (1.011, 2.23, 45.7) (1.013, 2.26, 42.9) (1.014, 2.3, 39.6)

n = deg(E/Q)
log ∆E 10–14 15–49 50+

1–5 — — —
5–10 — — —
10–25 (2.373, 1.67, 4.7) — —
25–100 (2.359, 1.7, 4.9) (2.249, 1.6, 4.7) —

100–1000 (1.742, 1.72, 5.8) (1.796, 1.65, 5.6) (1.743, 1.48, 4.9)
1000–10000 (1.219, 2.38, 8.7) (1.239, 2.23, 8.3) (1.336, 1.37, 5.2)

10000–100000 (1.057, 3.39, 15.6) (1.062, 3.45, 15.1) (1.196, 1.29, 5.3)
100000+ (1.015, 2.31, 38.5) (1.016, 2.34, 36.6) (1.019, 2.41, 32.9)

Table 2. Bounds for Np, deg p = 1,
(

p
E/K

)
equivalent to σ

n = deg(E/Q)
log ∆E 2 3–4 5–9

1–5 (4.251, 0.58, 4.9) — —
5–10 (3.231,−0.02, 4.7) (3.316,−0.1, 4.6) —
10–25 (2.717,−0.15, 4.9) (2.93,−0.18, 4.8) (3.133,−0.21, 4.7)
25–100 (2.151,−0.23, 5.3) (2.293,−0.25, 5.2) (2.486,−0.27, 5)

100–1000 (1.582,−0.21, 6.3) (1.653,−0.24, 6.1) (1.749,−0.26, 5.9)
1000–10000 (1.164, 0.23, 9.8) (1.184, 0.16, 9.4) (1.211, 0.08, 8.9)

10000–100000 (1.042, 0.4, 17.9) (1.047, 0.44, 17) (1.054, 0.5, 15.9)
100000+ (1.011,−0.03, 41.2) (1.012, 0, 37.4) (1.014, 0.01, 36)

n = deg(E/Q)
log ∆E 10–14 15–49 50+

1–5 — — —
5–10 — — —
10–25 (2.58,−0.28, 4.8) — —
25–100 (2.57,−0.27, 5) (2.509,−0.29, 5) —

100–1000 (1.787,−0.27, 5.8) (1.884,−0.29, 5.6) (2.192,−0.31, 5.3)
1000–10000 (1.222, 0.06, 8.7) (1.243, 0, 8.4) (1.331,−0.12, 7.5)

10000–100000 (1.057, 0.52, 15.6) (1.062, 0.55, 15) (1.096, 0, 8.5)
100000+ (1.014, 0.02, 35) (1.016, 0.04, 33.4) (1.019, 0.08, 30.2)
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Table 3. Bounds for p, K = Q,
(
p

E/Q

)
= σ

n = deg(E/Q)
log ∆E 2 3–4 5–9

1–5 (3.29, 1.48, 4.9) — —
5–10 (2.662, 0.75, 4.8) (2.808, 0.58, 4.7) —
10–25 (2.301, 0.52, 5) (2.524, 0.45, 4.9) (2.736, 0.35, 4.7)
25–100 (1.881, 0.34, 5.5) (2.035, 0.27, 5.3) (2.231, 0.21, 5.1)

100–1000 (1.446, 0.23, 6.8) (1.527, 0.17, 6.4) (1.629, 0.11, 6.1)
1000–10000 (1.125, 0.63, 10.9) (1.148, 0.5, 10.2) (1.178, 0.37, 9.5)

10000–100000 (1.032, 0.44, 20.2) (1.038, 0.5, 18.7) (1.046, 0.56, 17.3)
100000+ (1.008,−0.06, 47.7) (1.01,−0.03, 41.9) (1.012, 0, 37.8)

n = deg(E/Q)
log ∆E 10–14 15–49 50+

1–5 — — —
5–10 — — —
10–25 (2.303, 0.19, 4.8) — —
25–100 (2.297, 0.19, 5) (2.228, 0.1, 4.9) —

100–1000 (1.667, 0.09, 6) (1.745, 0.04, 5.8) (1.755, 0, 5.7)
1000–10000 (1.189, 0.32, 9.2) (1.212, 0.24, 8.8) (1.257, 0, 7.3)

10000–100000 (1.049, 0.59, 16.8) (1.054, 0.63, 16) (1.095, 0, 8.2)
100000+ (1.012, 0, 37.8) (1.014, 0.02, 35.9) (1.017, 0.07, 31.8)

5.2. An explicit bound for primes in arithmetic progressions. Next, we
present our explicit bound for primes in arithmetic progressions. First, we observe
that, for this case, a better bound for i(x) is possible.

Lemma 5.2. Let K = Q and E = Q(ω), where ω is a primitive qth root of unity.
Then

i(x) ≤ logx

ea log 2
log ∆.

Proof. For each χ, we let χ̂ be a primitive character inducing χ, whose conductor
is q̂. Using (2.11), we have

|S(x, χ)− S(x, χ̂)| ≤ 1

ea

∑
pk<x
p|q

Λ(p) ≤ 1

ea

∑
p|q

log p

⌊
logx

log p

⌋
≤ ω(q) log x

ea
.

Noting ω(q) ≤ log2 q, ∆ ≤ qϕ(q), and summing over all ϕ(q) characters χ completes
the proof.

Theorem 5.3 (ERH). Let m and q be integers, with gcd(m, q) = 1. There is a
prime p ≡ m (mod q) satisfying p < 2(q log q)2.

Proof. First, assume q ≥ 1000. Then by (3.41) from [30] we obtain that n = ϕ(q) >
170.

Let E = Q(ω), where ω is a primitive qth root of unity. Then we have

∆ =
qϕ(q)∏

p|q p
ϕ(q)/(p−1)

,

from which we obtain that ∆ ≥ (q/2)ϕ(q)/2 ≥ 22170.
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We improved our program using the bound for i(x) from the lemma
above. Using the lower bounds for ∆ and n given above, we obtain that p ≤
(1.1 log ∆ + 0.7n+ 11)2 ≤ (1.1q log q + 0.7q + 11)2. Since q is at least 1000, this is
at most (1.3q log q)2 < 2(q log q)2.

We wrote a second program to find the smallest prime p ≡ m (mod q) for each
pair m and q with gcd(m, q) = 1 for all values of q ≤ 1000. From this, we have
p ≤ 1.56(q log q)2, which completes the proof.

5.3. The program. We conclude with a discussion of the methods used to derive
the explicit bounds stated in Theorems 5.1 and 5.3.

The inputs to the program are an upper and lower limit for n, denoted as n+

and n−, an upper and lower limit for ∆, denoted as ∆+ and ∆−, and an indication
of which case of which theorem applies for the bound sought.

The program was written in Turbo C++ on a CompuAdd 486/33MHz computer.
All values were represented as 80-bit floating-point numbers (the long double

data type in Turbo C++). Values of the digamma and trigamma functions were
computed using methods from McCullagh [27].

In essence, the program consists of three layers; we elaborate below.

The bottom layer: applying the technical estimates. First, we wrote a set of func-
tions to compute triples of the form (v0, v1, v2) for bounding the absolute values
of each of p(x), d(x), i(x), r(x), I≤0, I1/2, A1, and A2. The bound is of the form
≤ v0 log ∆ + v1n+ v2, where each of the vi is a function of x and a, and for i(x),
v0 depends on n+ as well. These functions take x, a, and an upper bound for n
as input, and use the results of §4 to calculate their values. When more than one
bound applies (equations (4.2) and (4.3) for p(x), for example), the smaller of the
two is returned.

As an example, suppose x = 100 and a = 0.5. Then the function for computing
I1/2 would return the triple( √

x

2a+ 1
,

√
x(ψ(1 + a)− log 2π)

2a+ 1
,

2
√
x

(a+ 1)(2a+ 1)
+

2
√
x

a(2a+ 1)

)
≤ (5,−9.01, 26.7).

Adding together the triples returned by these functions provides an upper bound
on the absolute value of I1 = x/(1 + a)2. Define

T (x, a) = (t0, t1, t2) =
(1 + a)2

√
x

Σ,

where Σ is the vector sum of the triples returned by the functions mentioned above.
We have the inequality

√
x ≤ T (x, a).

The middle layer: optimizing a. Given a value for x, an optimal value for a is found
that minimizes the maximum bound for the ranges of n and ∆ that were specified.
The value that is minimized is

t0 log ∆+ + t1n∗ + t2 = (log ∆+, n∗, 1) · T (x, a),

where n∗ = n+ if t1 is positive, n∗ = n− if t1 is negative, and the “·” indicates
dot-product. The optimal value for a is found using the Fibonacci unimodal mini-
mization algorithm. Let opt(x) denote this optimal value for a, given x.

The top layer: finding x. Let val(x) = (log ∆−, n∗, 1) ·T (x, opt(x)), where n∗ = n−
if t1 > 0 and n∗ = n+ if t1 < 0. Note that the + and − subscripts have been
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inverted (but T (x, a) still uses n+ when estimating i(x)). We explain the reason
for this below.

Because the coefficients of T (x, opt(x)) are decreasing functions of x, val(x) must
also be decreasing. The correct value for x must satisfy x ≤ (val(x))2 for the bound
to be valid. Since val(x) is decreasing, we wish to maximize x. When x is optimal,
we have x = (val(x))2.

The choice for ∆ and n in the definition of val(x) insure that other values for ∆
and n from the ranges specified will only increase val(x), so the bound is still valid.

Once x is found, then T (x, opt(x)) = (t0, t1, t2) provides a bound of the form

Np ≤ (t0 log ∆ + t1n+ t2)2,

where ∆ and n must come from the specified ranges.

In order to find x, we may assume x ≥ (log ∆−)2 and x ≤
(
val((log ∆−)2)

)2
. This

provides an interval for search by bisection for the zero of the function (val(x))2−x.

Additional remarks. We conclude with some additional remarks.

1. If no upper limit for ∆ is specified, 1000n+ is used. Note that ∆+ is used
only in the middle layer, and so the only effect is that the leading coefficient
is stressed when optimizing a.

2. If no upper limit for n is specified, Minkowski’s Theorem is used to bound n
in terms of log ∆+ (see below).

If ∆+ was not given, Minkowski’s Theorem is used with
√
x instead, since

we assume x ≥ (log ∆)2. This means that n+ changes every time x does,
and it affects the leading coefficient for the bound for i(x). So if n is chosen
to be larger, x can also be made larger, and the result is that i(x)’s leading
coefficient will decrease. So the explicit bound derived this way is valid.

3. Finally, we note that in several instances, we rely on an explicit version of
Minkowski’s Theorem. This is obtained by noting that 0 <

∑
1/|ρ + a|2,

where the sum is over ρ satisfying ζE(ρ) = 0 and <(ρ) = 1/2. Then from
Lemma 4.6 we have

nE <
1

log 2π − ψ(1 + a)

(
log ∆E +

2

a+ 1
+

2

a

)
,

which can be minimized by optimizing a.
(This technique is due to Stark and Odlyzko.)
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35. P. Turán. Über die Primzahlen der arithmetischen Progression. Acta Sci. Math., 8:226–235,
1936/37.

36. S. S. Wagstaff, Jr. Greatest of the least primes in arithmetic progressions having a given
modulus. Math. Comp., 33:1073–1080, 1979. MR 81e:10038

37. Y. Wang, S.-K. Hsieh, and K.-J. Yu. Two results on the distribution of prime numbers.
Zhongguo Kexue Jishu Daxue Xuebao, 1:32–38, 1965. In Chinese. MR 34:7482

Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706

E-mail address: bach@cs.wisc.edu

Department of Mathematics and Computer Science, Butler University, Indianapolis,

Indiana 46208

E-mail address: sorenson@butler.edu


