THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Mon Sep 25 12:38:14 UTC 2023) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7e Phi(3,-465859^1048576) 11887192 L4561 2023 Generalized unique 8 2^37156667-1 11185272 G11 2008 Mersenne 45 9 2^32582657-1 9808358 G9 2006 Mersenne 44 10 10223*2^31172165+1 9383761 SB12 2016 11 2^30402457-1 9152052 G9 2005 Mersenne 43 12 2^25964951-1 7816230 G8 2005 Mersenne 42 13 2^24036583-1 7235733 G7 2004 Mersenne 41 14 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 15 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 16 202705*2^21320516+1 6418121 L5181 2021 17 2^20996011-1 6320430 G6 2003 Mersenne 40 18 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 19c 3*2^20928756-1 6300184 L5799 2023 20 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 21d 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 22 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 23 168451*2^19375200+1 5832522 L4676 2017 24 69*2^19374980-1 5832452 L4965 2022 25 3*2^18924988-1 5696990 L5530 2022 26 69*2^18831865-1 5668959 L4965 2021 27f 97139*2^18397548-1 5538219 L4965 2023 28 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 29 3*2^18196595-1 5477722 L5461 2022 30 3*2^17748034-1 5342692 L5404 2021 31 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 32 3622*5^7558139-1 5282917 L4965 2022 33 7*6^6772401+1 5269954 L4965 2019 34 2*3^10852677+1 5178044 L4965 2023 Divides phi 35 8508301*2^17016603-1 5122515 L4784 2018 Woodall 36 3*2^16819291-1 5063112 L5230 2021 37 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 38 69*2^15866556-1 4776312 L4965 2021 39 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 40 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 41 37*2^15474010+1 4658143 L4965 2022 42 93839*2^15337656-1 4617100 L4965 2022 43 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 44 6*5^6546983+1 4576146 L4965 2020 45 69*2^14977631-1 4508719 L4965 2021 46 192971*2^14773498-1 4447272 L4965 2021 47 4*5^6181673-1 4320805 L4965 2022 48 6962*31^2863120-1 4269952 L5410 2020 49 37*2^14166940+1 4264676 L4965 2022 50 99739*2^14019102+1 4220176 L5008 2019 51 69*2^13832885-1 4164116 L4965 2022 52 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 53 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 54 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 55 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 56 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 57 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 58 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 59 2^13466917-1 4053946 G5 2001 Mersenne 39 60 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 61 206039*2^13104952-1 3944989 L4965 2021 62 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 63 19249*2^13018586+1 3918990 SB10 2007 64 2293*2^12918431-1 3888839 L4965 2021 65 81*2^12804541+1 3854553 L4965 2022 66 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 67 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 68d 7*2^12286041-1 3698468 L4965 2023 69 69*2^12231580-1 3682075 L4965 2021 70 27*2^12184319+1 3667847 L4965 2021 71 3761*2^11978874-1 3606004 L4965 2022 72 3*2^11895718-1 3580969 L4159 2015 73 37*2^11855148+1 3568757 L4965 2022 74d 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 75 5897794^524288+1 3549792 x50 2022 Generalized Fermat 76 3*2^11731850-1 3531640 L4103 2015 77 69*2^11718455-1 3527609 L4965 2020 78 41*2^11676439+1 3514960 L4965 2022 79 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 80 81*2^11616017+1 3496772 L4965 2022 81 69*2^11604348-1 3493259 L4965 2020 82a 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 83 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 84 3*2^11484018-1 3457035 L3993 2014 85 193997*2^11452891+1 3447670 L4398 2018 86 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 87 9221*2^11392194-1 3429397 L5267 2021 88 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 89 5*2^11355764-1 3418427 L4965 2021 90a 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 91 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 92 146561*2^11280802-1 3395865 L5181 2020 93 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 94 6929*2^11255424-1 3388225 L4965 2022 95 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 96 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 97 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 98 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 99 9271*2^11134335-1 3351773 L4965 2021 100 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 101 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 102 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 103 27*2^10902757-1 3282059 L4965 2022 104 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 105 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 106 11*2^10797109+1 3250255 L4965 2022 107 7*2^10612737-1 3194754 L4965 2022 108 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 109 5*2^10495620-1 3159498 L4965 2021 110d Phi(3,-3^3304302+1)/3 3153105 L5123 2023 Generalized unique 111 5*2^10349000-1 3115361 L4965 2021 112 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 113b 52922*5^4399812-1 3075342 A1 2023 114 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 115c 177742*5^4386703-1 3066180 L5807 2023 116 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 117 475856^524288+1 2976633 L3230 2012 Generalized Fermat 118 2*3^6236772+1 2975697 L4965 2022 119b 15*2^9830108+1 2959159 A2 2023 120 9*2^9778263+1 2943552 L4965 2020 121 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 122 356926^524288+1 2911151 L3209 2012 Generalized Fermat 123 341112^524288+1 2900832 L3184 2012 Generalized Fermat 124 213988*5^4138363-1 2892597 L5621 2022 125 43*2^9596983-1 2888982 L4965 2022 126 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 127 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 128b 15*2^9312889+1 2803461 L4965 2023 129 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 130 27653*2^9167433+1 2759677 SB8 2005 131 90527*2^9162167+1 2758093 L1460 2010 132 6795*2^9144320-1 2752719 L4965 2021 133c 75*2^9079482+1 2733199 L4965 2023 134 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 135 57*2^9075622-1 2732037 L4965 2022 136 63838*5^3887851-1 2717497 L5558 2022 137 13*2^8989858+1 2706219 L4965 2020 138 4159*2^8938471-1 2690752 L4965 2022 139 273809*2^8932416-1 2688931 L1056 2017 140 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 141 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 142 2038*366^1028507-1 2636562 L2054 2016 143 64598*5^3769854-1 2635020 L5427 2022 144 8*785^900325+1 2606325 L4786 2022 145 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 146 75898^524288+1 2558647 p334 2011 Generalized Fermat 147 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 148 39*2^8413422+1 2532694 L5232 2021 149 31*2^8348000+1 2513000 L5229 2021 150 27*2^8342438-1 2511326 L3483 2021 151 3687*2^8261084-1 2486838 L4965 2021 152 273662*5^3493296-1 2441715 L5444 2021 153 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 154 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 155 102818*5^3440382-1 2404729 L5427 2021 156 11*2^7971110-1 2399545 L2484 2019 157 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 158 3177*2^7954621-1 2394584 L4965 2021 159 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 160 7*6^3072198+1 2390636 L4965 2019 161 3765*2^7904593-1 2379524 L4965 2021 162 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 163 5113*2^7895471-1 2376778 L4965 2022 164 861*2^7895451-1 2376771 L4965 2021 165a 75*2^7886683+1 2374131 A2 2023 166 28433*2^7830457+1 2357207 SB7 2004 167 2589*2^7803339-1 2349043 L4965 2022 168f 8401*2^7767655-1 2338302 L4965 2023 169 5*2^7755002-1 2334489 L4965 2021 170 2945*2^7753232-1 2333959 L4965 2022 171 2545*2^7732265-1 2327648 L4965 2021 172 5539*2^7730709-1 2327180 L4965 2021 173 4817*2^7719584-1 2323831 L4965 2021 174 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 175 9467*2^7680034-1 2311925 L4965 2022 176 45*2^7661004+1 2306194 L5200 2020 177 15*2^7619838+1 2293801 L5192 2020 178 3597*2^7580693-1 2282020 L4965 2021 179 3129*2^7545557-1 2271443 L4965 2023 180 7401*2^7523295-1 2264742 L4965 2021 181 45*2^7513661+1 2261839 L5179 2020 182 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 183d 9*2^7479919-1 2251681 L3345 2023 184 1875*2^7474308-1 2249995 L4965 2022 185 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 186 4*5^3189669-1 2229484 L4965 2022 187 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 188 3197*2^7359542-1 2215447 L4965 2022 189 109838*5^3168862-1 2214945 L5129 2020 190 101*2^7345194-1 2211126 L1884 2019 191 15*2^7300254+1 2197597 L5167 2020 192 422429!+1 2193027 p425 2022 Factorial 193 1759*2^7284439-1 2192838 L4965 2021 194e 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 195 737*2^7269322-1 2188287 L4665 2017 196 118568*5^3112069+1 2175248 L690 2020 197 6039*2^7207973-1 2169820 L4965 2021 198 502573*2^7181987-1 2162000 L3964 2014 199 402539*2^7173024-1 2159301 L3961 2014 200 3343*2^7166019-1 2157191 L1884 2016 201 161041*2^7107964+1 2139716 L4034 2015 202a 294*213^918952-1 2139672 L5811 2023 203 27*2^7046834+1 2121310 L3483 2018 204 1759*2^7046791-1 2121299 L4965 2021 205 327*2^7044001-1 2120459 L4965 2021 206 5*2^7037188-1 2118406 L4965 2021 207 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 208 33661*2^7031232+1 2116617 SB11 2007 209 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 210 207494*5^3017502-1 2109149 L5083 2020 211 15*2^6993631-1 2105294 L4965 2021 212 8943501*2^6972593-1 2098967 L466 2022 213 6020095*2^6972593-1 2098967 L466 2022 214 2^6972593-1 2098960 G4 1999 Mersenne 38 215 273*2^6963847-1 2096330 L4965 2022 216 6219*2^6958945-1 2094855 L4965 2021 217 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 218 238694*5^2979422-1 2082532 L5081 2020 219 4*72^1119849-1 2079933 L4444 2016 220 33*2^6894190-1 2075360 L4965 2021 221 2345*2^6882320-1 2071789 L4965 2022 222b 57*2^6857990+1 2064463 A2 2023 223 146264*5^2953282-1 2064261 L1056 2020 224 69*2^6838971-1 2058738 L5037 2020 225 35816*5^2945294-1 2058677 L5076 2020 226 127*2^6836153-1 2057890 L1862 2018 227 19*2^6833086+1 2056966 L5166 2020 228a 65*2^6810465+1 2050157 A2 2023 229 40597*2^6808509-1 2049571 L3749 2013 230 283*2^6804731-1 2048431 L2484 2020 231 1861709*2^6789999+1 2044000 L5191 2020 232 5781*2^6789459-1 2043835 L4965 2021 233 8435*2^6786180-1 2042848 L4965 2021 234 51*2^6753404+1 2032979 L4965 2020 235a 93*2^6750726+1 2032173 A2 2023 236 69*2^6745775+1 2030683 L4965 2023 237 9995*2^6711008-1 2020219 L4965 2021 238 39*2^6684941+1 2012370 L5162 2020 239 6679881*2^6679881+1 2010852 L917 2009 Cullen 240 37*2^6660841-1 2005115 L3933 2014 241 39*2^6648997+1 2001550 L5161 2020 242 304207*2^6643565-1 1999918 L3547 2013 243 69*2^6639971-1 1998833 L5037 2020 244 6471*2^6631137-1 1996175 L4965 2021 245 9935*2^6603610-1 1987889 L4965 2023 246d 554051*2^6517658-1 1962017 L5811 2023 247 1319*2^6506224-1 1958572 L4965 2021 248 3163*2^6504943-1 1958187 L4965 2023 249 322498*5^2800819-1 1957694 L4954 2019 250b 99*2^6502814+1 1957545 A2 2023 251 88444*5^2799269-1 1956611 L3523 2019 252 13*2^6481780+1 1951212 L4965 2020 253 21*2^6468257-1 1947141 L4965 2021 254a 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 255b 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 256b 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 257b 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 258c 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 259c 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 260d 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 261 138514*5^2771922+1 1937496 L4937 2019 262e 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 263 33*2^6432160-1 1936275 L4965 2022 264 15*2^6429089-1 1935350 L4965 2021 265f 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 266f 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 267 398023*2^6418059-1 1932034 L3659 2013 268 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 269d Phi(3,3^2021560+1)/3 1929059 L5123 2023 Generalized unique 270 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 271 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 272 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 273 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 274b 55*2^6395254+1 1925166 A2 2023 275 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 276 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 277 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 278 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 279 631*2^6359347-1 1914357 L4965 2021 280 4965*2^6356707-1 1913564 L4965 2022 281 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 282 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 283 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 284 1995*2^6333396-1 1906546 L4965 2021 285 1582137*2^6328550+1 1905090 L801 2009 Cullen 286 18395930^262144+1 1904404 x50 2022 Generalized Fermat 287 17191822^262144+1 1896697 x50 2022 Generalized Fermat 288b 87*2^6293522+1 1894541 A2 2023 289 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 290 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 291 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 292 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 293 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 294 3303*2^6264946-1 1885941 L4965 2021 295 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 296 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 297 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 298 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 299 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 300 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 301 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 302a 8825*2^6199424-1 1866217 A2 2023 303 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 304 7*6^2396573+1 1864898 L4965 2019 305 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 306 69*2^6186659+1 1862372 L4965 2023 307 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 308 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 309 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 310 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 311 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 312 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 313 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 314 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 315 194368*5^2638045-1 1843920 L690 2018 316 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 317 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 318 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 319 66916*5^2628609-1 1837324 L690 2018 320e 521921*2^6101122-1 1836627 L5811 2023 321 3*2^6090515-1 1833429 L1353 2010 322 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 323 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 324 8349*2^6082397-1 1830988 L4965 2021 325 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 326b 71*2^6070943+1 1827538 L4965 2023 327 32*470^683151+1 1825448 L4064 2021 328 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 329 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 330 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 331 9999*2^6037057-1 1817340 L4965 2021 332 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 333 33*2^6019138-1 1811943 L4965 2022 334b 67*2^6018626+1 1811789 L4965 2023 335 1583*2^5989282-1 1802957 L4036 2015 336f 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 337 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 338 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 339 327926*5^2542838-1 1777374 L4807 2018 340 81556*5^2539960+1 1775361 L4809 2018 341 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 342 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 343 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 344 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 345 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 346 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 347c 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 348 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 349 7*2^5775996+1 1738749 L3325 2012 350 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 351 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 352 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 353 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 354 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 355 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 356 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 357 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 358 1243*2^5686715-1 1711875 L1828 2016 359 25*2^5658915-1 1703505 L1884 2021 360e 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 361 41*2^5651731+1 1701343 L1204 2020 362 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 363 9*2^5642513+1 1698567 L3432 2013 364 10*3^3550446+1 1693995 L4965 2020 365 2622*11^1621920-1 1689060 L2054 2015 366 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 367 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 368 301562*5^2408646-1 1683577 L4675 2017 369 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 370 171362*5^2400996-1 1678230 L4669 2017 371 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 372 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 373 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 374 252191*2^5497878-1 1655032 L3183 2012 375 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 376 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 377 258317*2^5450519+1 1640776 g414 2008 378 7*6^2104746+1 1637812 L4965 2019 379 5*2^5429494-1 1634442 L3345 2017 380 43*2^5408183-1 1628027 L1884 2018 381 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 382 2*296598^296598-1 1623035 L4965 2022 383 1349*2^5385004-1 1621051 L1828 2017 384 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 385 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 386 45*2^5308037+1 1597881 L4761 2019 387 5468*70^864479-1 1595053 L5410 2022 388f 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 389 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 390 7*2^5229669-1 1574289 L4965 2021 391 180062*5^2249192-1 1572123 L4435 2016 392 124125*6^2018254+1 1570512 L4001 2019 393 27*2^5213635+1 1569462 L3760 2015 394 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 395 308084!+1 1557176 p425 2022 Factorial 396 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 397 25*2^5152151-1 1550954 L1884 2020 398 53546*5^2216664-1 1549387 L4398 2016 399 773620^262144+1 1543643 L3118 2012 Generalized Fermat 400 39*2^5119458+1 1541113 L1204 2019 401 607*26^1089034+1 1540957 L5410 2021 402 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 403 223*2^5105835-1 1537012 L2484 2019 404 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 405 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 406 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 407 51*2^5085142-1 1530782 L760 2014 408 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 409 676754^262144+1 1528413 L2975 2012 Generalized Fermat 410 296024*5^2185270-1 1527444 L671 2016 411 5359*2^5054502+1 1521561 SB6 2003 412f 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 413c 53*2^5019181+1 1510926 L4965 2023 414 13*2^4998362+1 1504659 L3917 2014 415 525094^262144+1 1499526 p338 2012 Generalized Fermat 416 92158*5^2145024+1 1499313 L4348 2016 417 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 418 77072*5^2139921+1 1495746 L4340 2016 419 2*3^3123036+1 1490068 L5043 2020 420c 51*2^4923905+1 1482245 L4965 2023 421 519397*2^4908893-1 1477730 L5410 2022 422 306398*5^2112410-1 1476517 L4274 2016 423b 39*684^519468-1 1472723 L5410 2023 424 265711*2^4858008+1 1462412 g414 2008 425 154222*5^2091432+1 1461854 L3523 2015 426 1271*2^4850526-1 1460157 L1828 2012 427 333*2^4846958-1 1459083 L5546 2022 428f 156*532^534754-1 1457695 L5410 2023 429 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 430 361658^262144+1 1457075 p332 2011 Generalized Fermat 431 100186*5^2079747-1 1453686 L4197 2015 432 288465!+1 1449771 p3 2022 Factorial 433 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 434 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 435 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 436 653*10^1435026-1 1435029 p355 2014 437 197*2^4765318-1 1434506 L5175 2021 438 1401*2^4759435-1 1432736 L4965 2023 439 2169*2^4754343-1 1431204 L4965 2023 440 188*468^535963+1 1431156 L4832 2019 441 1809*2^4752792-1 1430737 L4965 2022 442 2427*2^4749044-1 1429609 L4965 2022 443b 303*2^4748019-1 1429299 L5545 2023 444 2259*2^4746735-1 1428913 L4965 2022 445b 309*2^4745713-1 1428605 L5545 2023 446 2223*2^4729304-1 1423666 L4965 2022 447 1851*2^4727663-1 1423172 L4965 2022 448 1725*2^4727375-1 1423085 L4965 2022 449 1611*2^4724014-1 1422074 L4965 2022 450 1383*2^4719270-1 1420645 L4965 2022 451 1749*2^4717431-1 1420092 L4965 2022 452 2325*2^4713991-1 1419057 L4965 2022 453 3267113#-1 1418398 p301 2021 Primorial 454 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 455 2337*2^4705660-1 1416549 L4965 2022 456 1229*2^4703492-1 1415896 L1828 2018 457 144052*5^2018290+1 1410730 L4146 2015 458 195*2^4685711-1 1410542 L5175 2021 459 9*2^4683555-1 1409892 L1828 2012 460 31*2^4673544+1 1406879 L4990 2019 461 34*993^469245+1 1406305 L4806 2018 462 79*2^4658115-1 1402235 L1884 2018 463 39*2^4657951+1 1402185 L1823 2019 464 4*650^498101-1 1401116 L4294 2021 465 11*2^4643238-1 1397755 L2484 2014 466e 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 467 68*995^465908-1 1396712 L4001 2017 468 7*6^1793775+1 1395830 L4965 2019 469 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 470f 6*10^1380098+1 1380099 L5009 2023 471 27*2^4583717-1 1379838 L2992 2014 472d Phi(3,-3^1444194+1)/3 1378111 L5123 2023 Generalized unique 473e 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 474 121*2^4553899-1 1370863 L3023 2012 475 9473*2^4543680-1 1367788 L5037 2022 476 27*2^4542344-1 1367384 L1204 2014 477 29*2^4532463+1 1364409 L4988 2019 478 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 479 145310^262144+1 1353265 p314 2011 Generalized Fermat 480 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 481 81*536^493229+1 1346106 p431 2023 482 303*2^4471002-1 1345909 L5545 2022 483 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 484 36772*6^1723287-1 1340983 L1301 2014 485 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 486e 20*634^476756-1 1335915 L4975 2023 487c 85*2^4432870+1 1334429 L4965 2023 488 151*2^4424321-1 1331856 L1884 2016 489 195*2^4373994-1 1316706 L5175 2020 490 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 491 49*2^4365175-1 1314051 L1959 2017 492 49*2^4360869-1 1312755 L1959 2017 493 13*2^4333087-1 1304391 L1862 2018 494 353159*2^4331116-1 1303802 L2408 2011 495 9959*2^4308760-1 1297071 L5037 2022 496 23*2^4300741+1 1294654 L4147 2019 497 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 498 141941*2^4299438-1 1294265 L689 2011 499c 87*2^4297718+1 1293744 L4965 2023 500a 435*2^4292968+1 1292315 L5783 2023 501e 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 502a 415*2^4280864+1 1288672 L5818 2023 503c 79*2^4279006+1 1288112 L4965 2023 504b 205*2^4270310+1 1285494 L5517 2023 505b 483*2^4270112+1 1285435 L5178 2023 506b 123*2^4266441+1 1284329 L5178 2023 507 612749*2^4254500-1 1280738 L5410 2022 508b 223*2^4252660+1 1280181 L5178 2023 509c 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 510 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 511 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 512 3*2^4235414-1 1274988 L606 2008 513 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 514c 93*2^4232892+1 1274230 L4965 2023 515b 131*2^4227493+1 1272605 L5226 2023 516 45*436^481613+1 1271213 L5410 2020 517 109208*5^1816285+1 1269534 L3523 2014 518c 435*2^4216447+1 1269280 L5178 2023 519 1091*2^4215518-1 1269001 L1828 2018 520 191*2^4203426-1 1265360 L2484 2012 521c 269*2^4198809+1 1263970 L5226 2023 522c 545*2^4198333+1 1263827 L5804 2023 523c 53*2^4197093+1 1263453 L5563 2023 524 1259*2^4196028-1 1263134 L1828 2016 525c 329*2^4193199+1 1262282 L5226 2023 526c 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 527 325918*5^1803339-1 1260486 L3567 2014 528c 345*2^4173969+1 1256493 L5226 2023 529c 161*2^4164267+1 1253572 L5178 2023 530c 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 531c 177*2^4162494+1 1253038 L5796 2023 532d 237*2^4153348+1 1250285 L5178 2023 533 69*2^4151165+1 1249628 L4965 2023 534 133778*5^1785689+1 1248149 L3903 2014 535d 201*2^4146003+1 1248074 L5161 2023 536d 329*2^4136019+1 1245069 L5178 2023 537 81*2^4131975+1 1243851 L4965 2022 538d 459*2^4129577+1 1243130 L5226 2023 539d 551*2^4126303+1 1242144 L5226 2023 540d 363*2^4119017+1 1239951 L5226 2023 541d 105*2^4113039+1 1238151 L5178 2023 542f 204*532^454080-1 1237785 L5410 2023 543 17*2^4107544-1 1236496 L4113 2015 544e 261*2^4106385+1 1236148 L5178 2023 545 24032*5^1768249+1 1235958 L3925 2014 546 172*159^561319-1 1235689 L4001 2017 547 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 548d 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 549 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 550 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 551e 67*2^4100746+1 1234450 L5178 2023 552e 191*2^4099097+1 1233954 L5563 2023 553e 325*2^4097700+1 1233534 L5226 2023 554e 519*2^4095491+1 1232869 L5226 2023 555e 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 556f 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 557 64*425^467857-1 1229712 p268 2021 558e 381*2^4069617+1 1225080 L5226 2023 559 97*2^4066717-1 1224206 L2484 2019 560e 95*2^4063895+1 1223357 L5226 2023 561e 79*2^4062818+1 1223032 L5178 2023 562 1031*2^4054974-1 1220672 L1828 2017 563e 309*2^4054114+1 1220413 L5178 2023 564 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 565 37*2^4046360+1 1218078 L2086 2019 566f 141*2^4043116+1 1217102 L5517 2023 567 39653*430^460397-1 1212446 L4187 2016 568 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 569f 141*2^4024411+1 1211471 L5226 2023 570f 515*2^4021165+1 1210494 L5174 2023 571f 73*2^4016912+1 1209213 L5226 2023 572 40734^262144+1 1208473 p309 2011 Generalized Fermat 573f 235*2^4013398+1 1208156 L5178 2023 574 9*2^4005979-1 1205921 L1828 2012 575f 417*2^4003224+1 1205094 L5764 2023 576 12*68^656921+1 1203815 L4001 2016 577 67*688^423893+1 1202836 L4001 2017 578 221*2^3992723+1 1201932 L5178 2023 579 213*2^3990702+1 1201324 L5216 2023 580 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 581 163*2^3984604+1 1199488 L5756 2023 582 725*2^3983355+1 1199113 L5706 2023 583 (146^276995+1)^2-2 1199030 p405 2022 584 455*2^3981067+1 1198424 L5724 2023 585 138172*5^1714207-1 1198185 L3904 2014 586 50*383^463313+1 1196832 L2012 2021 587 339*2^3974295+1 1196385 L5178 2023 588 699*2^3974045+1 1196310 L5750 2023 589 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 590 29*2^3964697+1 1193495 L1204 2019 591 599*2^3963655+1 1193182 L5226 2023 592 683*2^3962937+1 1192966 L5226 2023 593 39*2^3961129+1 1192421 L1486 2019 594 165*2^3960664+1 1192281 L5178 2023 595 79*2^3957238+1 1191250 L5745 2023 596 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 597 163*2^3954818+1 1190522 L5178 2023 598 431*2^3953647+1 1190169 L5554 2023 599 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 600 341*2^3938565+1 1185629 L5554 2023 601 503*2^3936845+1 1185112 L5706 2023 602 717*2^3934760+1 1184484 L5285 2023 603 493*2^3929192+1 1182808 L5161 2023 604 273*2^3929128+1 1182788 L5554 2023 605 609*2^3928682+1 1182654 L5178 2023 606 609*2^3928441+1 1182582 L5527 2023 607 281*2^3926467+1 1181987 L5174 2023 608 153*2^3922478+1 1180786 L5554 2023 609 69*2^3920863+1 1180300 L5554 2023 610 273*2^3919321+1 1179836 L5706 2023 611 531*2^3918985+1 1179735 L5706 2023 612 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 613 555*2^3916875+1 1179100 L5302 2023 614 571*2^3910616+1 1177216 L5178 2023 615 421*2^3905144+1 1175569 L5600 2023 616 P1174253 1174253 p414 2022 617 567*2^3897588+1 1173294 L5600 2023 618 417*2^3895404+1 1172637 L5600 2023 619 539*2^3894953+1 1172501 L5285 2023 620 645*2^3893849+1 1172169 L5600 2023 621f 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 622 22478*5^1675150-1 1170884 L3903 2014 623 1199*2^3889576-1 1170883 L1828 2018 624 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 625 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 626 711*2^3886480+1 1169950 L5320 2023 627 375*2^3884634+1 1169394 L5600 2023 628 94*872^397354+1 1168428 L5410 2019 629 269*2^3877485+1 1167242 L5649 2023 630 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 631b 1365*2^3872811+1 1165836 L1134 2023 632 313*2^3869536+1 1164849 L5600 2023 633 159*2^3860863+1 1162238 L5226 2023 634 445*2^3860780+1 1162214 L5640 2023 635 397*2^3859450+1 1161813 L5226 2023 636 685*2^3856790+1 1161013 L5226 2023 637 27*2^3855094-1 1160501 L3033 2012 638 537*2^3853860+1 1160131 L5636 2022 639 164*978^387920-1 1160015 L4700 2018 640 175*2^3850344+1 1159072 L5226 2022 641 685*2^3847268+1 1158146 L5226 2022 642 655*2^3846352+1 1157871 L5282 2022 643 583*2^3846196+1 1157824 L5226 2022 644 615*2^3844151+1 1157208 L5226 2022 645 14772*241^485468-1 1156398 L5410 2022 646 525*2^3840963+1 1156248 L5613 2022 647 313*2^3837304+1 1155147 L5298 2022 648 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 649 431*2^3835247+1 1154528 L5161 2022 650 97*2^3833722+1 1154068 L5226 2022 651 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 652 125*392^444161+1 1151839 L4832 2022 653 255*2^3824348+1 1151246 L5226 2022 654 30*514^424652-1 1151218 L4001 2017 655 569*2^3823191+1 1150898 L5226 2022 656 24518^262144+1 1150678 g413 2008 Generalized Fermat 657 563*2^3819237+1 1149708 L5178 2022 658 345*2^3817949+1 1149320 L5373 2022 659 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 660 241*2^3815727-1 1148651 L2484 2019 661 351*2^3815467+1 1148573 L5226 2022 662 109*980^383669-1 1147643 L4001 2018 663 427*2^3811610+1 1147412 L5614 2022 664 569*2^3810475+1 1147071 L5610 2022 665 213*2^3807864+1 1146284 L5609 2022 666 87*2^3806438+1 1145854 L5607 2022 667 369*2^3805321+1 1145519 L5541 2022 668 123547*2^3804809-1 1145367 L2371 2011 669 2564*75^610753+1 1145203 L3610 2014 670 539*2^3801705+1 1144430 L5161 2022 671 159*2^3801463+1 1144357 L5197 2022 672 235*2^3801284+1 1144303 L5608 2022 673 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 674 519*2^3800625+1 1144105 L5315 2022 675 281*2^3798465+1 1143455 L5178 2022 676 166*443^432000+1 1143249 L5410 2020 677 85*2^3797698+1 1143223 L5161 2022 678 326834*5^1634978-1 1142807 L3523 2014 679 459*2^3795969+1 1142704 L5161 2022 680 447*2^3780151+1 1137942 L5596 2022 681 345*2^3779921+1 1137873 L5557 2022 682 477*2^3779871+1 1137858 L5197 2022 683 251*2^3774587+1 1136267 L5592 2022 684 439*2^3773958+1 1136078 L5557 2022 685 43*182^502611-1 1135939 L4064 2020 686 415267*2^3771929-1 1135470 L2373 2011 687 11*2^3771821+1 1135433 p286 2013 688 427*2^3768104+1 1134315 L5192 2022 689 1455*2^3768024-1 1134292 L1134 2022 690 711*2^3767492+1 1134131 L5161 2022 691 265*2^3765189-1 1133438 L2484 2018 692 297*2^3765140+1 1133423 L5197 2022 693 381*2^3764189+1 1133137 L5589 2022 694 115*2^3763650+1 1132974 L5554 2022 695 411*2^3759067+1 1131595 L5589 2022 696 405*2^3757192+1 1131031 L5590 2022 697 938237*2^3752950-1 1129757 L521 2007 Woodall 698 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 699 701*2^3744713+1 1127274 L5554 2022 700 207394*5^1612573-1 1127146 L3869 2014 701 684*10^1127118+1 1127121 L4036 2017 702 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 703 104944*5^1610735-1 1125861 L3849 2014 704 23451*2^3739388+1 1125673 L591 2015 705e 78*622^402915-1 1125662 L5645 2023 706 615*2^3738023+1 1125260 L5161 2022 707 347*2^3737875+1 1125216 L5178 2022 708 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 709 375*2^3733510+1 1123902 L5584 2022 710 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 711 629*2^3731479+1 1123290 L5283 2022 712 113*2^3728113+1 1122276 L5161 2022 713 303*2^3725438+1 1121472 L5161 2022 714 187*2^3723972+1 1121030 L5178 2022 715 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 716 105*2^3720512+1 1119988 L5493 2022 717 447*2^3719024+1 1119541 L5493 2022 718 177*2^3717746+1 1119156 L5279 2022 719 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 720 123*2^3716758+1 1118858 L5563 2022 721 313*2^3716716+1 1118846 L5237 2022 722 367*2^3712952+1 1117713 L5264 2022 723 53*2^3709297+1 1116612 L5197 2022 724 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 725 395*2^3701693+1 1114324 L5536 2022 726 589*2^3699954+1 1113800 L5576 2022 727 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 728 119*2^3698412-1 1113336 L2484 2018 729 391*2^3693728+1 1111926 L5493 2022 730 485*2^3688111+1 1110235 L5237 2022 731 341*2^3686613+1 1109784 L5573 2022 732 87*2^3686558+1 1109767 L5573 2022 733 675*2^3682616+1 1108581 L5231 2022 734 569*2^3682167+1 1108446 L5488 2022 735 330286*5^1584399-1 1107453 L3523 2014 736 34*951^371834-1 1107391 L5410 2019 737 45*2^3677787+1 1107126 L1204 2019 738 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 739 13*2^3675223-1 1106354 L1862 2016 740 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 741 463*2^3671262+1 1105163 L5524 2022 742 735*2^3670991+1 1105082 L5575 2022 743 475*2^3670046+1 1104797 L5524 2022 744 15*2^3668194-1 1104238 L3665 2013 745 273*2^3665736+1 1103499 L5192 2022 746 13*2^3664703-1 1103187 L1862 2016 747 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 748 609*2^3662931+1 1102655 L5573 2022 749 118*892^373012+1 1100524 L5071 2020 750 33300*430^417849-1 1100397 L4393 2016 751 655*2^3653008+1 1099668 L5574 2022 752 291*268^452750-1 1099341 L5410 2022 753 33*2^3649810+1 1098704 L4958 2019 754 295*2^3642206+1 1096416 L5161 2022 755 989*2^3640585+1 1095929 L5115 2020 756 567*2^3639287+1 1095538 L4959 2019 757 639*2^3635707+1 1094460 L1823 2019 758 753*2^3631472+1 1093185 L1823 2019 759 2*205731^205731-1 1093111 L4965 2022 760 65531*2^3629342-1 1092546 L2269 2011 761 1121*2^3629201+1 1092502 L4761 2019 762 215*2^3628962-1 1092429 L2484 2018 763 113*2^3628034-1 1092150 L2484 2014 764 1175*2^3627541+1 1092002 L4840 2019 765 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 766 951*2^3623185+1 1090691 L1823 2019 767 29*920^367810-1 1090113 L4064 2015 768 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 769 485*2^3618563+1 1089299 L3924 2019 770 95*2^3614033+1 1087935 L1474 2019 771 1005*2^3612300+1 1087414 L1823 2019 772 861*2^3611815+1 1087268 L1745 2019 773 1087*2^3611476+1 1087166 L4834 2019 774 485767*2^3609357-1 1086531 L622 2008 775 675*2^3606447+1 1085652 L3278 2019 776 669*2^3606266+1 1085598 L1675 2019 777 65077*2^3605944+1 1085503 L4685 2020 778 1365*2^3605491+1 1085365 L1134 2022 779 851*2^3604395+1 1085034 L2125 2019 780 1143*2^3602429+1 1084443 L4754 2019 781 1183*2^3601898+1 1084283 L1823 2019 782 189*2^3596375+1 1082620 L3760 2016 783 1089*2^3593267+1 1081685 L3035 2019 784a 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 785a 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 786a 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 787b 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 788b 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 789 19581121*2^3589357-1 1080512 p49 2022 790b 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 791 1101*2^3589103+1 1080431 L1823 2019 792b 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 793b 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 794b 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 795b 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 796b 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 797b 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 798 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 799b 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 800b 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 801b 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 802c 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 803c 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 804 275*2^3585539+1 1079358 L3803 2016 805c 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 806c 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 807c 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 808c 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 809c 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 810c 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 811c 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 812d 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 813d 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 814d 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 815d 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 816d 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 817d 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 818d 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 819d 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 820 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 821e 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 822e 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 823 651*2^3579843+1 1077643 L3035 2018 824e 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 825e 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 826e 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 827e 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 828e 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 829e 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 830e 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 831e 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 832 583*2^3578402+1 1077210 L3035 2018 833e 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 834e 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 835e 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 836e 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 837e 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 838f 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 839 309*2^3577339+1 1076889 L4406 2016 840f 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 841f 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 842f 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 843f 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 844f 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 845f 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 846f 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 847f 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 848f 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 849f 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 850f 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 851f 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 852f 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 853f 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 854f 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 855f 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 856 1185*2^3574583+1 1076060 L4851 2018 857 251*2^3574535+1 1076045 L3035 2016 858 1485*2^3574333+1 1075985 L1134 2022 859f 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 860f 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 861f 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 862f 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 863f 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 864f 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 865 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 866 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 867 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 868 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 869 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 870 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 871 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 872 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 873 1019*2^3571635+1 1075173 L1823 2018 874 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 875 119*2^3571416-1 1075106 L2484 2018 876 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 877 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 878 35*2^3570777+1 1074913 L2891 2014 879 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 880 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 881 33*2^3570132+1 1074719 L2552 2014 882 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 883 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 884 5*2^3569154-1 1074424 L503 2009 885 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 886 81*492^399095-1 1074352 L4001 2015 887 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 888 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 889 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 890 22934*5^1536762-1 1074155 L3789 2014 891 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 892 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 893 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 894 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 895 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 896 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 897 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 898 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 899 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 900 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 901 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 902 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 903 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 904 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 905 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 906 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 907 265*2^3564373-1 1072986 L2484 2018 908 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 909 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 910 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 911 771*2^3564109+1 1072907 L2125 2018 912 381*2^3563676+1 1072776 L4190 2016 913 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 914 555*2^3563328+1 1072672 L4850 2018 915 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 916 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 917 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 918 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 919 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 920 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 921 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 922 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 923 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 924 1183*2^3560584+1 1071846 L1823 2018 925 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 926 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 927 415*2^3559614+1 1071554 L3035 2016 928 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 929 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 930 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 931 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 932 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 933 1103*2^3558176-1 1071121 L1828 2018 934 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 935 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 936 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 937 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 938 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 939 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 940 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 941 1379*2^3557072-1 1070789 L1828 2018 942 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 943 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 944 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 945 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 946 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 947 146520528^131072+1 1070321 L5469 2023 Generalized Fermat 948 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 949 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 950 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 951 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 952 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 953 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 954 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 955 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 956 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 957 681*2^3553141+1 1069605 L3035 2018 958 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 959 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 960 599*2^3551793+1 1069200 L3824 2018 961 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 962 621*2^3551472+1 1069103 L4687 2018 963 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 964 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 965 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 966 773*2^3550373+1 1068772 L1808 2018 967 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 968 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 969 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 970 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 971 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 972 1199*2^3548380-1 1068172 L1828 2018 973 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 974 191*2^3548117+1 1068092 L4203 2015 975 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 976 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 977 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 978 867*2^3547711+1 1067971 L4155 2018 979 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 980 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 981 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 982 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 983 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 984 351*2^3545752+1 1067381 L4082 2016 985 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 986 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 987 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 988 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 989 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 990 93*2^3544744+1 1067077 L1728 2014 991 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 992 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 993 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 994 1159*2^3543702+1 1066764 L1823 2018 995 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 996 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 997 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 998 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 999 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 1000 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 1001 178658*5^1525224-1 1066092 L3789 2014 1002 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 1003 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 1004 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 1005 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 1006 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 1007 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 1008 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 1009 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 1010 1085*2^3539671+1 1065551 L3035 2018 1011 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 1012 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 1013 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 1014 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 1015 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 1016 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 1017 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 1018 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 1019 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 1020 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 1021 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 1022 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 1023 465*2^3536871+1 1064707 L4459 2016 1024 1019*2^3536312-1 1064539 L1828 2012 1025 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 1026 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 1027 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 1028 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 1029 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 1030 1179*2^3534450+1 1063979 L3035 2018 1031 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 1032 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 1033 447*2^3533656+1 1063740 L4457 2016 1034 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 1035 1059*2^3533550+1 1063708 L1823 2018 1036 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 1037 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 1038 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 1039 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 1040 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 1041 345*2^3532957+1 1063529 L4314 2016 1042 553*2^3532758+1 1063469 L1823 2018 1043 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 1044 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 1045 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 1046 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 1047 543131*2^3529754-1 1062568 L4925 2022 1048 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 1049 141*2^3529287+1 1062424 L4185 2015 1050 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 1051 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 1052 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 1053 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 1054 13*2^3527315-1 1061829 L1862 2016 1055 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 1056 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 1057 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 1058 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 1059 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 1060 1393*2^3525571-1 1061306 L1828 2017 1061 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 1062 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 1063 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 1064 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 1065 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 1066 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 1067 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 1068 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 1069 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 1070 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 1071 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 1072 1071*2^3523944+1 1060816 L1675 2018 1073 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 1074 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 1075 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 1076 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 1077 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 1078 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 1079 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 1080 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 1081 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 1082 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 1083 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 1084 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 1085 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 1086a 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 1087 329*2^3518451+1 1059162 L1823 2016 1088 135*2^3518338+1 1059128 L4045 2015 1089 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 1090 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 1091 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 1092 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 1093 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 1094 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 1095 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 1096 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 1097 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 1098 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 1099 599*2^3515959+1 1058412 L1823 2018 1100 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 1101 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 1102 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 1103 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 1104 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 1105 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 1106 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 1107 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 1108 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 1109 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 1110 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 1111 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 1112 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 1113 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 1114 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 1115 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 1116 1135*2^3510890+1 1056887 L1823 2018 1117 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 1118 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 1119 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 1120 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 1121 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 1122 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 1123 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 1124 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 1125 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 1126 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 1127 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 1128 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 1129 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 1130 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 1131 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 1132 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 1133 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 1134 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 1135 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 1136 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 1137 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 1138 428639*2^3506452-1 1055553 L2046 2011 1139 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 1140 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 1141 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 1142 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 1143 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 1144 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 1145 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 1146 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 1147 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 1148 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 1149 104*383^408249+1 1054591 L2012 2021 1150 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 1151 555*2^3502765+1 1054441 L1823 2018 1152 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 1153e 8300*171^472170+1 1054358 L5780 2023 1154 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 1155 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 1156 643*2^3501974+1 1054203 L1823 2018 1157 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 1158 1159*2^3501490+1 1054057 L2125 2018 1159 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 1160 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 1161 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 1162 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 1163 1189*2^3499042+1 1053320 L4724 2018 1164 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 1165 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 1166 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 1167 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 1168 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 1169 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 1170 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 1171 609*2^3497474+1 1052848 L1823 2018 1172 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 1173 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 1174 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 1175 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 1176 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 1177 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 1178 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 1179 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 1180 87*2^3496188+1 1052460 L1576 2014 1181 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 1182 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 1183 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 1184 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 1185 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 1186 783*2^3494129+1 1051841 L3824 2018 1187 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 1188 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 1189 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 1190 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 1191 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 1192 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 1193 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 1194 51*2^3490971+1 1050889 L1823 2014 1195 1485*2^3490746+1 1050823 L1134 2021 1196 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 1197 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 1198 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 1199 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 1200 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 1201 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 1202 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 1203 753*2^3488818+1 1050242 L1823 2018 1204 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 1205 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 1206 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 1207 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 1208 699*2^3487253+1 1049771 L1204 2018 1209 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 1210 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 1211 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 1212 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 1213 249*2^3486411+1 1049517 L4045 2015 1214 195*2^3486379+1 1049507 L4108 2015 1215 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 1216 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 1217 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 1218 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 1219 59912*5^1500861+1 1049062 L3772 2014 1220 495*2^3484656+1 1048989 L3035 2016 1221 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 1222 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 1223 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 1224 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 1225a Phi(3,-3*2^1742059) 1048825 A3 2023 Generalized unique 1226 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 1227 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 1228 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 1229 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 1230 323*2^3482789+1 1048427 L1204 2016 1231a 3801*2^3482723+1 1048408 L5517 2023 1232 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 1233 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 1234 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 1235a 8235*2^3482277+1 1048274 L5820 2023 1236a 9155*2^3482129+1 1048230 L5226 2023 1237 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 1238a 4325*2^3481969+1 1048181 L5434 2023 1239 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 1240 1149*2^3481694+1 1048098 L1823 2018 1241 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 1242a 6127*2^3481244+1 1047963 L5226 2023 1243 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 1244a 8903*2^3481217+1 1047955 L5226 2023 1245a 3595*2^3481178+1 1047943 L5214 2023 1246b 3799*2^3480810+1 1047832 L5226 2023 1247b 6101*2^3480801+1 1047830 L5226 2023 1248 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 1249c 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 1250 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 1251 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 1252b 5397*2^3480379+1 1047703 L5226 2023 1253b 5845*2^3479972+1 1047580 L5517 2023 1254 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 1255 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 1256 701*2^3479779+1 1047521 L2125 2018 1257 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 1258 813*2^3479728+1 1047506 L4724 2018 1259b 7125*2^3479509+1 1047441 L5812 2023 1260b 1971*2^3479061+1 1047306 L5226 2023 1261b 1215*2^3478543+1 1047149 L5226 2023 1262 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 1263b 5985*2^3478217+1 1047052 L5387 2023 1264b 3093*2^3478148+1 1047031 L5261 2023 1265b 2145*2^3478095+1 1047015 L5387 2023 1266b 6685*2^3478086+1 1047013 L5237 2023 1267b 9603*2^3478084+1 1047012 L5178 2023 1268b 1315*2^3477718+1 1046901 L5316 2023 1269 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 1270 197*2^3477399+1 1046804 L2125 2015 1271b 8303*2^3477201+1 1046746 L5387 2023 1272 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 1273c 5925*2^3477009+1 1046688 L5810 2023 1274 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 1275c 7825*2^3476524+1 1046542 L5174 2023 1276 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 1277c 8197*2^3476332+1 1046485 L5174 2023 1278c 8529*2^3476111+1 1046418 L5387 2023 1279c 8411*2^3476055+1 1046401 L5783 2023 1280c 4319*2^3475955+1 1046371 L5803 2023 1281 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 1282 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 1283c 6423*2^3475393+1 1046202 L5174 2023 1284c 2281*2^3475340+1 1046185 L5302 2023 1285c 7379*2^3474983+1 1046078 L5798 2023 1286 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 1287 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 1288 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 1289d 4737*2^3474562+1 1045952 L5302 2023 1290d 2407*2^3474406+1 1045904 L5557 2023 1291 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 1292 491*2^3473837+1 1045732 L4343 2016 1293d 2693*2^3473721+1 1045698 L5174 2023 1294 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 1295d 3375*2^3473210+1 1045544 L5294 2023 1296d 8835*2^3472666+1 1045381 L5178 2023 1297d 5615*2^3472377+1 1045294 L5174 2023 1298d 1785*2^3472229+1 1045249 L875 2023 1299d 8997*2^3472036+1 1045191 L5302 2023 1300d 9473*2^3471885+1 1045146 L5294 2023 1301d 7897*2^3471568+1 1045050 L5294 2023 1302 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 1303 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 1304 1061*2^3471354-1 1044985 L1828 2017 1305e 1913*2^3471177+1 1044932 L5189 2023 1306 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 1307e 7723*2^3471074+1 1044902 L5189 2023 1308e 4195*2^3470952+1 1044865 L5294 2023 1309 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 1310e 5593*2^3470520+1 1044735 L5387 2023 1311e 3665*2^3469955+1 1044565 L5189 2023 1312e 3301*2^3469708+1 1044490 L5261 2023 1313e 6387*2^3469634+1 1044468 L5192 2023 1314 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 1315e 8605*2^3469570+1 1044449 L5387 2023 1316e 1359*2^3468725+1 1044194 L5197 2023 1317 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 1318e 7585*2^3468338+1 1044078 L5197 2023 1319e 1781*2^3468335+1 1044077 L5387 2023 1320f 6885*2^3468181+1 1044031 L5197 2023 1321f 7287*2^3467938+1 1043958 L5776 2023 1322 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 1323f 3163*2^3467710+1 1043889 L5517 2023 1324f 6099*2^3467689+1 1043883 L5197 2023 1325f 6665*2^3467627+1 1043864 L5174 2023 1326f 4099*2^3467462+1 1043814 L5774 2023 1327f 5285*2^3467445+1 1043809 L5189 2023 1328 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 1329 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 1330f 5935*2^3466880+1 1043639 L5197 2023 1331 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 1332 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 1333f 8937*2^3466822+1 1043622 L5174 2023 1334 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 1335f 8347*2^3466736+1 1043596 L5770 2023 1336f 8863*2^3465780+1 1043308 L5766 2023 1337f 3895*2^3465744+1 1043297 L5640 2023 1338 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 1339 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 1340 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 1341 8561*2^3465371+1 1043185 L5197 2023 1342 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 1343 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 1344 9971*2^3465233+1 1043144 L5488 2023 1345 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 1346 3801*2^3464980+1 1043067 L5197 2023 1347 3099*2^3464739+1 1042994 L5284 2023 1348 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 1349 641*2^3464061+1 1042790 L1444 2018 1350 6717*2^3463735+1 1042692 L5754 2023 1351 6015*2^3463561+1 1042640 L5387 2023 1352 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 1353 1667*2^3463355+1 1042577 L5226 2023 1354 2871*2^3463313+1 1042565 L5189 2023 1355 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 1356 6007*2^3463048+1 1042486 L5226 2023 1357 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 1358 9777*2^3462742+1 1042394 L5197 2023 1359 5215*2^3462740+1 1042393 L5174 2023 1360 8365*2^3462722+1 1042388 L5320 2023 1361 3597*2^3462056+1 1042187 L5174 2023 1362 2413*2^3461890+1 1042137 L5197 2023 1363 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 1364 453*2^3461688+1 1042075 L3035 2016 1365 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 1366 4401*2^3461476+1 1042012 L5197 2023 1367 9471*2^3461305+1 1041961 L5594 2023 1368 7245*2^3461070+1 1041890 L5449 2023 1369 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 1370 4365*2^3460914+1 1041843 L5197 2023 1371 4613*2^3460861+1 1041827 L5614 2023 1372 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 1373 5169*2^3460553+1 1041734 L5742 2023 1374 8395*2^3460530+1 1041728 L5284 2023 1375 5835*2^3460515+1 1041723 L5740 2023 1376 8059*2^3460246+1 1041642 L5350 2023 1377 571*2^3460216+1 1041632 L3035 2018 1378 6065*2^3460205+1 1041630 L5683 2023 1379 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 1380 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 1381 6237*2^3459386+1 1041383 L5509 2023 1382 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 1383 4029*2^3459062+1 1041286 L5727 2023 1384 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 1385 7055*2^3458909+1 1041240 L5509 2023 1386 7297*2^3458768+1 1041197 L5726 2023 1387 2421*2^3458432+1 1041096 L5725 2023 1388 7907*2^3458207+1 1041028 L5509 2023 1389 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 1390 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 1391 7839*2^3457846+1 1040920 L5231 2023 1392 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 1393 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 1394 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 1395 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 1396 5327*2^3457363+1 1040774 L5715 2023 1397 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 1398 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 1399 6059*2^3457001+1 1040665 L5197 2023 1400 8953*2^3456938+1 1040646 L5724 2023 1401 8669*2^3456759+1 1040593 L5710 2023 1402 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 1403 4745*2^3456167+1 1040414 L5705 2023 1404 8213*2^3456141+1 1040407 L5703 2023 1405 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 1406 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 1407 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 1408 1155*2^3455254+1 1040139 L4711 2017 1409 37292*5^1487989+1 1040065 L3553 2013 1410 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 1411 5525*2^3454069+1 1039783 L5651 2023 1412 4235*2^3453573+1 1039633 L5650 2023 1413 6441*2^3453227+1 1039529 L5683 2023 1414 4407*2^3453195+1 1039519 L5650 2023 1415 9867*2^3453039+1 1039473 L5686 2023 1416 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 1417 4857*2^3452675+1 1039363 L5600 2023 1418 8339*2^3452667+1 1039361 L5651 2023 1419 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 1420 7079*2^3452367+1 1039270 L5650 2023 1421 5527*2^3452342+1 1039263 L5679 2023 1422 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 1423 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 1424 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 1425 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 1426 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 1427 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 1428 3719*2^3451667+1 1039059 L5294 2023 1429 6725*2^3451455+1 1038996 L5685 2023 1430 8407*2^3451334+1 1038959 L5524 2023 1431 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 1432 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 1433 1623*2^3451109+1 1038891 L5308 2023 1434 8895*2^3450982+1 1038854 L5666 2023 1435 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 1436 2899*2^3450542+1 1038721 L5600 2023 1437 6337*2^3449506+1 1038409 L5197 2023 1438 4381*2^3449456+1 1038394 L5392 2023 1439 2727*2^3449326+1 1038355 L5421 2023 1440 2877*2^3449311+1 1038350 L5517 2023 1441 7507*2^3448920+1 1038233 L5284 2023 1442 3629*2^3448919+1 1038232 L5192 2023 1443 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 1444 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 1445 1273*2^3448551-1 1038121 L1828 2012 1446 1461*2^3448423+1 1038082 L4944 2023 1447 3235*2^3448352+1 1038061 L5571 2023 1448 4755*2^3448344+1 1038059 L5524 2023 1449 5655*2^3448288+1 1038042 L5651 2023 1450 4873*2^3448176+1 1038009 L5524 2023 1451 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 1452 8139*2^3447967+1 1037946 L5652 2023 1453 1065*2^3447906+1 1037927 L4664 2017 1454 1717*2^3446756+1 1037581 L5517 2023 1455 6357*2^3446434+1 1037484 L5284 2023 1456 1155*2^3446253+1 1037429 L3035 2017 1457 9075*2^3446090+1 1037381 L5648 2023 1458 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 1459 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 1460 1483*2^3445724+1 1037270 L5650 2023 1461 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 1462 2223*2^3445682+1 1037257 L5647 2023 1463 8517*2^3445488+1 1037200 L5302 2023 1464 2391*2^3445281+1 1037137 L5596 2023 1465 6883*2^3444784+1 1036988 L5264 2023 1466 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 1467 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 1468 8037*2^3443920+1 1036728 L5626 2023 1469 1375*2^3443850+1 1036706 L5192 2023 1470 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 1471 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 1472 943*2^3442990+1 1036447 L4687 2017 1473 7743*2^3442814+1 1036395 L5514 2023 1474 5511*2^3442468+1 1036290 L5514 2022 1475 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 1476 6329*2^3441717+1 1036064 L5631 2022 1477 3957*2^3441568+1 1036019 L5476 2022 1478 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 1479 4191*2^3441427+1 1035977 L5189 2022 1480 2459*2^3441331+1 1035948 L5514 2022 1481 4335*2^3441306+1 1035940 L5178 2022 1482 2331*2^3441249+1 1035923 L5626 2022 1483 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 1484 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 1485 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 1486 2363*2^3440385+1 1035663 L5625 2022 1487 5265*2^3440332+1 1035647 L5421 2022 1488 6023*2^3440241+1 1035620 L5517 2022 1489 943*2^3440196+1 1035606 L1448 2017 1490 6663*2^3439901+1 1035518 L5624 2022 1491 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 1492 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 1493 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 1494 5745*2^3439450+1 1035382 L5178 2022 1495 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 1496 5109*2^3439090+1 1035273 L5594 2022 1497 543*2^3438810+1 1035188 L3035 2017 1498 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 1499 3325*2^3438506+1 1035097 L5619 2022 1500 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 1501 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 1502 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 1503 4775*2^3438217+1 1035011 L5618 2022 1504 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 1505 6963*2^3437988+1 1034942 L5616 2022 1506 74*941^348034-1 1034913 L5410 2020 1507 7423*2^3437856+1 1034902 L5192 2022 1508 6701*2^3437801+1 1034886 L5615 2022 1509 5741*2^3437773+1 1034877 L5517 2022 1510 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 1511 5601*2^3437259+1 1034722 L5612 2022 1512 7737*2^3437192+1 1034702 L5611 2022 1513 113*2^3437145+1 1034686 L4045 2015 1514 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 1515 6387*2^3436719+1 1034560 L5613 2022 1516 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 1517 2921*2^3436299+1 1034433 L5231 2022 1518 9739*2^3436242+1 1034416 L5178 2022 1519 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 1520 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 1521 1147*2^3435970+1 1034334 L3035 2017 1522 4589*2^3435707+1 1034255 L5174 2022 1523 7479*2^3435683+1 1034248 L5421 2022 1524 2863*2^3435616+1 1034227 L5197 2022 1525 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 1526 9863*2^3434697+1 1033951 L5189 2022 1527 4065*2^3434623+1 1033929 L5197 2022 1528 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 1529 9187*2^3434126+1 1033779 L5600 2022 1530 9531*2^3434103+1 1033772 L5601 2022 1531 1757*2^3433547+1 1033604 L5594 2022 1532 1421*2^3433099+1 1033469 L5237 2022 1533 3969*2^3433007+1 1033442 L5189 2022 1534 6557*2^3433003+1 1033441 L5261 2022 1535 7335*2^3432982+1 1033435 L5231 2022 1536 7125*2^3432836+1 1033391 L5594 2022 1537 2517*2^3432734+1 1033360 L5231 2022 1538 911*2^3432643+1 1033332 L1355 2017 1539 5413*2^3432626+1 1033328 L5231 2022 1540 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 1541 3753*2^3432413+1 1033263 L5261 2022 1542 2691*2^3432191+1 1033196 L5585 2022 1543 3933*2^3432125+1 1033177 L5387 2022 1544 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 1545 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 1546 1435*2^3431284+1 1032923 L5587 2022 1547 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 1548 6783*2^3430781+1 1032772 L5261 2022 1549 8079*2^3430683+1 1032743 L5585 2022 1550 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 1551 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 1552 6605*2^3430187+1 1032593 L5463 2022 1553 3761*2^3430057+1 1032554 L5582 2022 1554 6873*2^3429937+1 1032518 L5294 2022 1555 8067*2^3429891+1 1032504 L5581 2022 1556 3965*2^3429719+1 1032452 L5579 2022 1557 3577*2^3428812+1 1032179 L5401 2022 1558 8747*2^3428755+1 1032163 L5493 2022 1559 9147*2^3428638+1 1032127 L5493 2022 1560 3899*2^3428535+1 1032096 L5174 2022 1561 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 1562 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 1563 8891*2^3428303+1 1032026 L5532 2022 1564e 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 1565 2147*2^3427371+1 1031745 L5189 2022 1566 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 1567 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 1568 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 1569 1127*2^3427219+1 1031699 L3035 2017 1570 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 1571 3021*2^3427059+1 1031652 L5554 2022 1572 3255*2^3426983+1 1031629 L5231 2022 1573 1733*2^3426753+1 1031559 L5565 2022 1574 2339*2^3426599+1 1031513 L5237 2022 1575 4729*2^3426558+1 1031501 L5493 2022 1576 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 1577 5445*2^3425839+1 1031285 L5237 2022 1578 159*2^3425766+1 1031261 L4045 2015 1579 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 1580 3405*2^3425045+1 1031045 L5261 2022 1581 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 1582 1695*2^3424517+1 1030886 L5387 2022 1583 4715*2^3424433+1 1030861 L5557 2022 1584 5525*2^3424423+1 1030858 L5387 2022 1585 8615*2^3424231+1 1030801 L5261 2022 1586 5805*2^3424200+1 1030791 L5237 2022 1587 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 1588 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 1589 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 1590 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 1591 2109*2^3423797+1 1030669 L5197 2022 1592 4929*2^3423494+1 1030579 L5554 2022 1593 2987*2^3422911+1 1030403 L5226 2022 1594 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 1595 4843*2^3422644+1 1030323 L5553 2022 1596 5559*2^3422566+1 1030299 L5555 2022 1597 7583*2^3422501+1 1030280 L5421 2022 1598 1119*2^3422189+1 1030185 L1355 2017 1599 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 1600 2895*2^3422030+1 1030138 L5237 2022 1601 2835*2^3421697+1 1030037 L5387 2022 1602 3363*2^3421353+1 1029934 L5226 2022 1603 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 1604 9147*2^3421264+1 1029908 L5237 2022 1605 9705*2^3420915+1 1029803 L5540 2022 1606 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 1607 8919*2^3420758+1 1029755 L5226 2022 1608 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 1609 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 1610 5489*2^3420137+1 1029568 L5174 2022 1611 9957*2^3420098+1 1029557 L5237 2022 1612 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 1613 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 1614 7213*2^3419370+1 1029337 L5421 2022 1615 7293*2^3419264+1 1029305 L5192 2022 1616 975*2^3419230+1 1029294 L3545 2017 1617 4191*2^3419227+1 1029294 L5421 2022 1618 2393*2^3418921+1 1029202 L5197 2022 1619 999*2^3418885+1 1029190 L3035 2017 1620 2925*2^3418543+1 1029088 L5174 2022 1621 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 1622 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 1623 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 1624 7383*2^3418297+1 1029014 L5189 2022 1625 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 1626 907*2^3417890+1 1028891 L3035 2017 1627 5071*2^3417884+1 1028890 L5237 2022 1628 3473*2^3417741+1 1028847 L5541 2022 1629 191249*2^3417696-1 1028835 L1949 2010 1630 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 1631 3299*2^3417329+1 1028723 L5421 2022 1632 6947*2^3416979+1 1028618 L5540 2022 1633 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 1634 8727*2^3416652+1 1028519 L5226 2022 1635 8789*2^3416543+1 1028486 L5197 2022 1636 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 1637 7917*2^3415947+1 1028307 L5537 2022 1638 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 1639 2055*2^3415873+1 1028284 L5535 2022 1640 4731*2^3415712+1 1028236 L5192 2022 1641 2219*2^3415687+1 1028228 L5178 2022 1642 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 1643 5877*2^3415419+1 1028148 L5532 2022 1644 3551*2^3415275+1 1028104 L5231 2022 1645 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 1646 2313*2^3415046+1 1028035 L5226 2022 1647 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 1648 7637*2^3414875+1 1027984 L5507 2022 1649 2141*2^3414821+1 1027967 L5226 2022 1650 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 1651 3667*2^3414686+1 1027927 L5226 2022 1652 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 1653 6159*2^3414623+1 1027908 L5226 2022 1654 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 1655 4577*2^3413539+1 1027582 L5387 2022 1656 5137*2^3413524+1 1027577 L5261 2022 1657 8937*2^3413364+1 1027529 L5527 2022 1658 8829*2^3413339+1 1027522 L5531 2022 1659 7617*2^3413315+1 1027515 L5197 2022 1660 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 1661 3141*2^3413112+1 1027453 L5463 2022 1662 8831*2^3412931+1 1027399 L5310 2022 1663 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 1664 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 1665 5421*2^3412877+1 1027383 L5310 2022 1666 9187*2^3412700+1 1027330 L5337 2022 1667 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 1668 8243*2^3412577+1 1027292 L5524 2022 1669 1751*2^3412565+1 1027288 L5523 2022 1670 9585*2^3412318+1 1027215 L5197 2022 1671 9647*2^3412247+1 1027193 L5178 2022 1672 3207*2^3412108+1 1027151 L5189 2022 1673 479*2^3411975+1 1027110 L2873 2016 1674 245*2^3411973+1 1027109 L1935 2015 1675 177*2^3411847+1 1027071 L4031 2015 1676 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 1677 9963*2^3411566+1 1026988 L5237 2022 1678 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 1679 9785*2^3411223+1 1026885 L5189 2022 1680 5401*2^3411136+1 1026858 L5261 2022 1681 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 1682 9431*2^3411105+1 1026849 L5237 2022 1683 8227*2^3410878+1 1026781 L5316 2022 1684 4735*2^3410724+1 1026734 L5226 2022 1685 9515*2^3410707+1 1026730 L5237 2022 1686 6783*2^3410690+1 1026724 L5434 2022 1687 8773*2^3410558+1 1026685 L5261 2022 1688 4629*2^3410321+1 1026613 L5517 2022 1689 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 1690 113*2^3409934-1 1026495 L2484 2014 1691 5721*2^3409839+1 1026468 L5226 2022 1692 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 1693 6069*2^3409493+1 1026364 L5237 2022 1694 1981*910^346850+1 1026347 L1141 2021 1695 5317*2^3409236+1 1026287 L5471 2022 1696 7511*2^3408985+1 1026211 L5514 2022 1697 7851*2^3408909+1 1026188 L5176 2022 1698 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 1699 6027*2^3408444+1 1026048 L5239 2022 1700 59*2^3408416-1 1026038 L426 2010 1701 2153*2^3408333+1 1026014 L5237 2022 1702 9831*2^3408056+1 1025932 L5233 2022 1703 3615*2^3408035+1 1025925 L5217 2022 1704 6343*2^3407950+1 1025899 L5226 2022 1705 8611*2^3407516+1 1025769 L5509 2022 1706 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 1707 7111*2^3407452+1 1025750 L5508 2022 1708 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 1709 6945*2^3407256+1 1025691 L5507 2022 1710 6465*2^3407229+1 1025682 L5301 2022 1711 1873*2^3407156+1 1025660 L5440 2022 1712 7133*2^3406377+1 1025426 L5279 2022 1713 7063*2^3406122+1 1025349 L5178 2022 1714 3105*2^3405800+1 1025252 L5502 2022 1715 953*2^3405729+1 1025230 L3035 2017 1716 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 1717 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 1718 373*2^3404702+1 1024921 L3924 2016 1719 7221*2^3404507+1 1024863 L5231 2022 1720 6641*2^3404259+1 1024788 L5501 2022 1721 9225*2^3404209+1 1024773 L5250 2022 1722 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 1723 833*2^3403765+1 1024639 L3035 2017 1724 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 1725 2601*2^3403459+1 1024547 L5350 2022 1726 8835*2^3403266+1 1024490 L5161 2022 1727 7755*2^3403010+1 1024412 L5161 2022 1728 3123*2^3402834+1 1024359 L5260 2022 1729 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 1730 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 1731 1417*2^3402246+1 1024182 L5497 2022 1732 5279*2^3402241+1 1024181 L5250 2022 1733 6651*2^3402137+1 1024150 L5476 2022 1734 1779*2^3401715+1 1024022 L5493 2022 1735 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 1736 8397*2^3401502+1 1023959 L5476 2022 1737 4057*2^3401472+1 1023949 L5492 2022 1738 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 1739 4095*2^3401174+1 1023860 L5418 2022 1740 5149*2^3400970+1 1023798 L5176 2022 1741 4665*2^3400922+1 1023784 L5308 2022 1742 24*414^391179+1 1023717 L4273 2016 1743 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 1744 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 1745 1725*2^3400371+1 1023617 L5197 2022 1746 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 1747 9399*2^3400243+1 1023580 L5488 2022 1748 1241*2^3400127+1 1023544 L5279 2022 1749 1263*2^3399876+1 1023468 L5174 2022 1750 1167*2^3399748+1 1023430 L3545 2017 1751 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 1752 7679*2^3398569+1 1023076 L5295 2022 1753 6447*2^3398499+1 1023054 L5302 2022 1754 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 1755 2785*2^3398332+1 1023004 L5250 2022 1756 611*2^3398273+1 1022985 L3035 2017 1757 2145*2^3398034+1 1022914 L5302 2022 1758 3385*2^3397254+1 1022679 L5161 2022 1759 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 1760 4463*2^3396657+1 1022500 L5476 2022 1761 2889*2^3396450+1 1022437 L5178 2022 1762 8523*2^3396448+1 1022437 L5231 2022 1763 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 1764 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 1765 3349*2^3396326+1 1022400 L5480 2022 1766 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 1767 4477*2^3395786+1 1022238 L5161 2022 1768 3853*2^3395762+1 1022230 L5302 2022 1769 2693*2^3395725+1 1022219 L5284 2022 1770 8201*2^3395673+1 1022204 L5178 2022 1771 255*2^3395661+1 1022199 L3898 2014 1772 1049*2^3395647+1 1022195 L3035 2017 1773 9027*2^3395623+1 1022189 L5263 2022 1774 2523*2^3395549+1 1022166 L5472 2022 1775 3199*2^3395402+1 1022122 L5264 2022 1776 342924651*2^3394939-1 1021988 L4166 2017 1777 3825*2^3394947+1 1021985 L5471 2022 1778 1895*2^3394731+1 1021920 L5174 2022 1779 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 1780 555*2^3393389+1 1021515 L2549 2017 1781 1865*2^3393387+1 1021515 L5237 2022 1782 4911*2^3393373+1 1021511 L5231 2022 1783 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 1784 5229*2^3392587+1 1021275 L5463 2022 1785 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 1786 609*2^3392301+1 1021188 L3035 2017 1787 9787*2^3392236+1 1021169 L5350 2022 1788 303*2^3391977+1 1021090 L2602 2016 1789 805*2^3391818+1 1021042 L4609 2017 1790 6475*2^3391496+1 1020946 L5174 2022 1791 67*2^3391385-1 1020911 L1959 2014 1792 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 1793 4639*2^3390634+1 1020687 L5189 2022 1794 5265*2^3390581+1 1020671 L5456 2022 1795 663*2^3390469+1 1020636 L4316 2017 1796 6945*2^3390340+1 1020598 L5174 2022 1797 5871*2^3390268+1 1020577 L5231 2022 1798 7443*2^3390141+1 1020539 L5226 2022 1799 5383*2^3389924+1 1020473 L5350 2021 1800 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 1801 9627*2^3389331+1 1020295 L5231 2021 1802 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 1803 8253*2^3388624+1 1020082 L5226 2021 1804 3329*2^3388472-1 1020036 L4841 2020 1805 4695*2^3388393+1 1020012 L5237 2021 1806 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 1807 7177*2^3388144+1 1019937 L5174 2021 1808 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 1809 9611*2^3388059+1 1019912 L5435 2021 1810 1833*2^3387760+1 1019821 L5226 2021 1811 9003*2^3387528+1 1019752 L5189 2021 1812 3161*2^3387141+1 1019635 L5226 2021 1813 7585*2^3387110+1 1019626 L5189 2021 1814 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 1815 453*2^3387048+1 1019606 L2602 2016 1816 5177*2^3386919+1 1019568 L5226 2021 1817 8739*2^3386813+1 1019537 L5226 2021 1818 2875*2^3386638+1 1019484 L5226 2021 1819 7197*2^3386526+1 1019450 L5178 2021 1820 1605*2^3386229+1 1019360 L5226 2021 1821 8615*2^3386181+1 1019346 L5442 2021 1822 3765*2^3386141+1 1019334 L5174 2021 1823 5379*2^3385806+1 1019233 L5237 2021 1824 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1825 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1826 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1827 173198*5^1457792-1 1018959 L3720 2013 1828 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1829 2109*2^3384733+1 1018910 L5261 2021 1830 7067*2^3384667+1 1018891 L5439 2021 1831 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1832 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1833 2077*2^3384472+1 1018831 L5237 2021 1834 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1835 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1836 9165*2^3383917+1 1018665 L5435 2021 1837 5579*2^3383209+1 1018452 L5434 2021 1838 8241*2^3383131+1 1018428 L5387 2021 1839 7409*2^3382869+1 1018349 L5161 2021 1840 4883*2^3382813+1 1018332 L5161 2021 1841 9783*2^3382792+1 1018326 L5189 2021 1842 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1843 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1844 8877*2^3381936+1 1018069 L5429 2021 1845 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1846 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1847 6675*2^3381688+1 1017994 L5197 2021 1848 2445*2^3381129+1 1017825 L5231 2021 1849 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1850 3381*2^3380585+1 1017662 L5237 2021 1851 7899*2^3380459+1 1017624 L5421 2021 1852 5945*2^3379933+1 1017465 L5418 2021 1853 1425*2^3379921+1 1017461 L1134 2020 1854 4975*2^3379420+1 1017311 L5161 2021 1855 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1856 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1857 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1858 9065*2^3378851+1 1017140 L5414 2021 1859 2369*2^3378761+1 1017112 L5197 2021 1860 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1861 621*2^3378148+1 1016927 L3035 2017 1862 7035*2^3378141+1 1016926 L5408 2021 1863 2067*2^3378115+1 1016918 L5405 2021 1864 1093*2^3378000+1 1016883 L4583 2017 1865 9577*2^3377612+1 1016767 L5406 2021 1866 861*2^3377601+1 1016763 L4582 2017 1867 5811*2^3377016+1 1016587 L5261 2021 1868 2285*2^3376911+1 1016555 L5261 2021 1869 4199*2^3376903+1 1016553 L5174 2021 1870 6405*2^3376890+1 1016549 L5269 2021 1871 1783*2^3376810+1 1016525 L5261 2021 1872 5401*2^3376768+1 1016513 L5174 2021 1873 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1874 2941*2^3376536+1 1016443 L5174 2021 1875 1841*2^3376379+1 1016395 L5401 2021 1876 6731*2^3376133+1 1016322 L5261 2021 1877 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1878 8121*2^3375933+1 1016262 L5356 2021 1879 5505*2^3375777+1 1016214 L5174 2021 1880 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1881 3207*2^3375314+1 1016075 L5237 2021 1882 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1883 5307*2^3374939+1 1015962 L5392 2021 1884 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1885 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1886 208003!-1 1015843 p394 2016 Factorial 1887 6219*2^3374198+1 1015739 L5393 2021 1888 3777*2^3374072+1 1015701 L5261 2021 1889 9347*2^3374055+1 1015696 L5387 2021 1890 1461*2^3373383+1 1015493 L5384 2021 1891 6395*2^3373135+1 1015419 L5382 2021 1892 7869*2^3373021+1 1015385 L5381 2021 1893 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1894 4905*2^3372216+1 1015142 L5261 2021 1895 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1896 2839*2^3372034+1 1015087 L5174 2021 1897 7347*2^3371803+1 1015018 L5217 2021 1898 9799*2^3371378+1 1014890 L5261 2021 1899 4329*2^3371201+1 1014837 L5197 2021 1900 3657*2^3371183+1 1014831 L5360 2021 1901 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1902 179*2^3371145+1 1014819 L3763 2014 1903 5155*2^3371016+1 1014781 L5237 2021 1904 7575*2^3371010+1 1014780 L5237 2021 1905 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1906 9195*2^3370798+1 1014716 L5178 2021 1907 1749*2^3370786+1 1014711 L5362 2021 1908 8421*2^3370599+1 1014656 L5174 2021 1909 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1910 4357*2^3369572+1 1014346 L5231 2021 1911 6073*2^3369544+1 1014338 L5358 2021 1912 839*2^3369383+1 1014289 L2891 2017 1913 65*2^3369359+1 1014280 L5236 2021 1914 8023*2^3369228+1 1014243 L5356 2021 1915 677*2^3369115+1 1014208 L2103 2017 1916 1437*2^3369083+1 1014199 L5282 2021 1917 9509*2^3368705+1 1014086 L5237 2021 1918 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1919 4851*2^3368668+1 1014074 L5307 2021 1920 7221*2^3368448+1 1014008 L5353 2021 1921 5549*2^3368437+1 1014005 L5217 2021 1922 715*2^3368210+1 1013936 L4527 2017 1923 617*2^3368119+1 1013908 L4552 2017 1924 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1925 1847*2^3367999+1 1013872 L5352 2021 1926 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1927 6497*2^3367743+1 1013796 L5285 2021 1928 2533*2^3367666+1 1013772 L5326 2021 1929 6001*2^3367552+1 1013738 L5350 2021 1930 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1931 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1932 777*2^3367372+1 1013683 L4408 2017 1933 9609*2^3367351+1 1013678 L5285 2021 1934 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1935 2529*2^3367317+1 1013667 L5237 2021 1936 5941*2^3366960+1 1013560 L5189 2021 1937 5845*2^3366956+1 1013559 L5197 2021 1938 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1939 9853*2^3366608+1 1013454 L5178 2021 1940 61*2^3366033-1 1013279 L4405 2017 1941 7665*2^3365896+1 1013240 L5345 2021 1942 8557*2^3365648+1 1013165 L5346 2021 1943 369*2^3365614+1 1013154 L4364 2016 1944 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1945 8201*2^3365283+1 1013056 L5345 2021 1946 9885*2^3365151+1 1013016 L5344 2021 1947 5173*2^3365096+1 1012999 L5285 2021 1948 8523*2^3364918+1 1012946 L5237 2021 1949 3985*2^3364776+1 1012903 L5178 2021 1950 9711*2^3364452+1 1012805 L5192 2021 1951 7003*2^3364172+1 1012721 L5217 2021 1952 6703*2^3364088+1 1012696 L5337 2021 1953 7187*2^3364011+1 1012673 L5217 2021 1954 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1955 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1956 2345*2^3363157+1 1012415 L5336 2021 1957 6527*2^3363135+1 1012409 L5167 2021 1958 9387*2^3363088+1 1012395 L5161 2021 1959 8989*2^3362986+1 1012364 L5161 2021 1960 533*2^3362857+1 1012324 L3171 2017 1961 619*2^3362814+1 1012311 L4527 2017 1962 2289*2^3362723+1 1012284 L5161 2021 1963 7529*2^3362565+1 1012237 L5161 2021 1964 7377*2^3362366+1 1012177 L5161 2021 1965 4509*2^3362311+1 1012161 L5324 2021 1966 7021*2^3362208+1 1012130 L5178 2021 1967 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1968 104*873^344135-1 1012108 L4700 2018 1969 4953*2^3362054+1 1012083 L5323 2021 1970 8575*2^3361798+1 1012006 L5237 2021 1971 2139*2^3361706+1 1011978 L5174 2021 1972 6939*2^3361203+1 1011827 L5217 2021 1973 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1974 3^2120580-3^623816-1 1011774 CH9 2019 1975 8185*2^3360896+1 1011735 L5189 2021 1976 2389*2^3360882+1 1011730 L5317 2021 1977 2787*2^3360631+1 1011655 L5197 2021 1978 6619*2^3360606+1 1011648 L5316 2021 1979 2755*2^3360526+1 1011623 L5174 2021 1980 1445*2^3360099+1 1011494 L5261 2021 1981c 2846*67^553905-1 1011476 L4955 2023 1982 8757*2^3359788+1 1011401 L5197 2021 1983 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1984 5085*2^3359696+1 1011373 L5261 2021 1985 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1986 6459*2^3359457+1 1011302 L5310 2021 1987 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1988 6115*2^3358998+1 1011163 L5309 2021 1989 7605*2^3358929+1 1011143 L5308 2021 1990 2315*2^3358899+1 1011133 L5197 2021 1991 6603*2^3358525+1 1011021 L5307 2021 1992 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1993 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1994 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1995 5893*2^3357490+1 1010709 L5285 2021 1996 6947*2^3357075+1 1010585 L5302 2021 1997 4621*2^3357068+1 1010582 L5301 2021 1998 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 1999 1479*2^3356275+1 1010343 L5178 2021 2000 3645*2^3356232+1 1010331 L5296 2021 2001 1259*2^3356215+1 1010325 L5298 2021 2002 2075*2^3356057+1 1010278 L5174 2021 2003 4281*2^3356051+1 1010276 L5295 2021 2004 1275*2^3356045+1 1010274 L5294 2021 2005 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 2006 4365*2^3355770+1 1010192 L5261 2021 2007 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 2008 2183*2^3355297+1 1010049 L5266 2021 2009 3087*2^3355000+1 1009960 L5226 2021 2010 8673*2^3354760+1 1009888 L5233 2021 2011 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 2012 3015*2^3353943+1 1009641 L5290 2021 2013 6819*2^3353877+1 1009622 L5174 2021 2014 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 2015 6393*2^3353366+1 1009468 L5287 2021 2016 3573*2^3353273+1 1009440 L5161 2021 2017 4047*2^3353222+1 1009425 L5286 2021 2018 1473*2^3353114+1 1009392 L5161 2021 2019 1183*2^3353058+1 1009375 L3824 2017 2020 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 2021 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 2022 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 2023 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 2024 7123*2^3352180+1 1009111 L5161 2021 2025 2757*2^3352180+1 1009111 L5285 2021 2026 9307*2^3352014+1 1009061 L5284 2021 2027 2217*2^3351732+1 1008976 L5283 2021 2028 543*2^3351686+1 1008961 L4198 2017 2029 4419*2^3351666+1 1008956 L5279 2021 2030 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 2031 3059*2^3351379+1 1008870 L5278 2021 2032 7789*2^3351046+1 1008770 L5276 2021 2033 9501*2^3350668+1 1008656 L5272 2021 2034 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 2035 9691*2^3349952+1 1008441 L5242 2021 2036 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 2037 3209*2^3349719+1 1008370 L5269 2021 2038 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 2039 393*2^3349525+1 1008311 L3101 2016 2040 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 2041 5487*2^3349303+1 1008245 L5266 2021 2042 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 2043 2511*2^3349104+1 1008185 L5264 2021 2044 1005*2^3349046-1 1008167 L4518 2021 2045 7659*2^3348894+1 1008122 L5263 2021 2046 9703*2^3348872+1 1008115 L5262 2021 2047 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 2048 7935*2^3348578+1 1008027 L5161 2021 2049 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 2050 7821*2^3348400+1 1007973 L5260 2021 2051 7911*2^3347532+1 1007712 L5250 2021 2052 8295*2^3347031+1 1007561 L5249 2021 2053 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 2054 4029*2^3346729+1 1007470 L5239 2021 2055 9007*2^3346716+1 1007466 L5161 2021 2056 8865*2^3346499+1 1007401 L5238 2021 2057 6171*2^3346480+1 1007395 L5174 2021 2058 6815*2^3346045+1 1007264 L5235 2021 2059 5*326^400785+1 1007261 L4786 2019 2060 5951*2^3345977+1 1007244 L5233 2021 2061 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 2062 1257*2^3345843+1 1007203 L5192 2021 2063 4701*2^3345815+1 1007195 L5192 2021 2064 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 2065 7545*2^3345355+1 1007057 L5231 2021 2066 5559*2^3344826+1 1006897 L5223 2021 2067 6823*2^3344692+1 1006857 L5223 2021 2068 4839*2^3344453+1 1006785 L5188 2021 2069 7527*2^3344332+1 1006749 L5220 2021 2070 7555*2^3344240+1 1006721 L5188 2021 2071 6265*2^3344080+1 1006673 L5197 2021 2072 1299*2^3343943+1 1006631 L5217 2021 2073 2815*2^3343754+1 1006574 L5216 2021 2074 5349*2^3343734+1 1006568 L5174 2021 2075 2863*2^3342920+1 1006323 L5179 2020 2076 7387*2^3342848+1 1006302 L5208 2020 2077 9731*2^3342447+1 1006181 L5203 2020 2078 7725*2^3341708+1 1005959 L5195 2020 2079 7703*2^3341625+1 1005934 L5178 2020 2080 7047*2^3341482+1 1005891 L5194 2020 2081 4839*2^3341309+1 1005838 L5192 2020 2082 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 2083 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 2084 8989*2^3340866+1 1005705 L5189 2020 2085 6631*2^3340808+1 1005688 L5188 2020 2086 1341*2^3340681+1 1005649 L5188 2020 2087 733*2^3340464+1 1005583 L3035 2016 2088 2636*138^469911+1 1005557 L5410 2021 2089 3679815*2^3340001+1 1005448 L4922 2019 2090 57*2^3339932-1 1005422 L3519 2015 2091 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 2092 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 2093 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 2094 3651*2^3339341+1 1005246 L5177 2020 2095 3853*2^3339296+1 1005232 L5178 2020 2096 8015*2^3339267+1 1005224 L5176 2020 2097 3027*2^3339182+1 1005198 L5174 2020 2098 9517*2^3339002+1 1005144 L5172 2020 2099 4003*2^3338588+1 1005019 L3035 2020 2100 6841*2^3338336+1 1004944 L1474 2020 2101 2189*2^3338209+1 1004905 L5031 2020 2102 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 2103 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 2104 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 2105 2957*2^3337667+1 1004742 L5144 2020 2106 1515*2^3337389+1 1004658 L1474 2020 2107 7933*2^3337270+1 1004623 L4666 2020 2108 1251*2^3337116+1 1004576 L4893 2020 2109 651*2^3337101+1 1004571 L3260 2016 2110 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 2111 8397*2^3336654+1 1004437 L5125 2020 2112 8145*2^3336474+1 1004383 L5110 2020 2113 1087*2^3336385-1 1004355 L1828 2012 2114 5325*2^3336120+1 1004276 L2125 2020 2115 849*2^3335669+1 1004140 L3035 2016 2116 8913*2^3335216+1 1004005 L5079 2020 2117 7725*2^3335213+1 1004004 L3035 2020 2118 611*2^3334875+1 1003901 L3813 2016 2119 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 2120 403*2^3334410+1 1003761 L4293 2016 2121 5491*2^3334392+1 1003756 L4815 2020 2122 6035*2^3334341+1 1003741 L2125 2020 2123 1725*2^3334341+1 1003740 L2125 2020 2124 4001*2^3334031+1 1003647 L1203 2020 2125 2315*2^3333969+1 1003629 L2125 2020 2126 6219*2^3333810+1 1003581 L4582 2020 2127 8063*2^3333721+1 1003554 L1823 2020 2128 9051*2^3333677+1 1003541 L3924 2020 2129 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 2130 4091*2^3333153+1 1003383 L1474 2020 2131 9949*2^3332750+1 1003262 L5090 2020 2132 3509*2^3332649+1 1003231 L5085 2020 2133 3781*2^3332436+1 1003167 L1823 2020 2134 4425*2^3332394+1 1003155 L3431 2020 2135 6459*2^3332086+1 1003062 L2629 2020 2136 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 2137 5257*2^3331758+1 1002963 L1188 2020 2138 2939*2^3331393+1 1002853 L1823 2020 2139 6959*2^3331365+1 1002845 L1675 2020 2140 8815*2^3330748+1 1002660 L3329 2020 2141 4303*2^3330652+1 1002630 L4730 2020 2142 8595*2^3330649+1 1002630 L4723 2020 2143 673*2^3330436+1 1002564 L3035 2016 2144 8163*2^3330042+1 1002447 L3278 2020 2145 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 2146 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 2147 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 2148 2829*2^3329061+1 1002151 L4343 2020 2149 5775*2^3329034+1 1002143 L1188 2020 2150 7101*2^3328905+1 1002105 L4568 2020 2151 7667*2^3328807+1 1002075 L4087 2020 2152 129*2^3328805+1 1002073 L3859 2014 2153 7261*2^3328740+1 1002055 L2914 2020 2154 4395*2^3328588+1 1002009 L3924 2020 2155 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 2156 143183*2^3328297+1 1001923 L4504 2017 2157 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 2158 9681*2^3327987+1 1001828 L1204 2020 2159 2945*2^3327987+1 1001828 L2158 2020 2160 5085*2^3327789+1 1001769 L1823 2020 2161 8319*2^3327650+1 1001727 L1204 2020 2162 4581*2^3327644+1 1001725 L2142 2020 2163 655*2^3327518+1 1001686 L4490 2016 2164 8863*2^3327406+1 1001653 L1675 2020 2165 659*2^3327371+1 1001642 L3502 2016 2166 3411*2^3327343+1 1001634 L1675 2020 2167 4987*2^3327294+1 1001619 L3924 2020 2168 821*2^3327003+1 1001531 L3035 2016 2169 2435*2^3326969+1 1001521 L3035 2020 2170 1931*2^3326850-1 1001485 L4113 2022 2171 2277*2^3326794+1 1001469 L5014 2020 2172 6779*2^3326639+1 1001422 L3924 2020 2173 6195*2^3325993+1 1001228 L1474 2019 2174 555*2^3325925+1 1001206 L4414 2016 2175 9041*2^3325643+1 1001123 L3924 2019 2176 1965*2^3325639-1 1001121 L4113 2022 2177 1993*2^3325302+1 1001019 L3662 2019 2178 6179*2^3325027+1 1000937 L3048 2019 2179 4485*2^3324900+1 1000899 L1355 2019 2180 3559*2^3324650+1 1000823 L3035 2019 2181 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 2182 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 2183 6927*2^3324387+1 1000745 L3091 2019 2184 9575*2^3324287+1 1000715 L3824 2019 2185 1797*2^3324259+1 1000705 L3895 2019 2186 4483*2^3324048+1 1000642 L3035 2019 2187 791*2^3323995+1 1000626 L3035 2016 2188 6987*2^3323926+1 1000606 L4973 2019 2189 3937*2^3323886+1 1000593 L3035 2019 2190 2121*2^3323852+1 1000583 L1823 2019 2191 1571*2^3323493+1 1000475 L3035 2019 2192 2319*2^3323402+1 1000448 L4699 2019 2193 2829*2^3323341+1 1000429 L4754 2019 2194 4335*2^3323323+1 1000424 L1823 2019 2195 8485*2^3322938+1 1000308 L4858 2019 2196 6505*2^3322916+1 1000302 L4858 2019 2197 597*2^3322871+1 1000287 L3035 2016 2198 9485*2^3322811+1 1000270 L2603 2019 2199 8619*2^3322774+1 1000259 L3035 2019 2200 387*2^3322763+1 1000254 L1455 2016 2201 1965*2^3322579-1 1000200 L4113 2022 2202 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 2203 6366*745^348190-1 1000060 L4189 2022 2204 5553507*2^3322000+1 1000029 p391 2016 2205 5029159647*2^3321910-1 1000005 L4960 2021 2206 5009522505*2^3321910-1 1000005 L4960 2021 2207 4766298357*2^3321910-1 1000005 L4960 2021 2208 4759383915*2^3321910-1 1000005 L4960 2021 2209 4635733263*2^3321910-1 1000005 L4960 2021 2210 4603393047*2^3321910-1 1000005 L4960 2021 2211 4550053935*2^3321910-1 1000005 L4960 2021 2212 4288198767*2^3321910-1 1000005 L4960 2021 2213 4229494557*2^3321910-1 1000005 L4960 2021 2214 4110178197*2^3321910-1 1000005 L4960 2021 2215 4022490843*2^3321910-1 1000005 L4960 2021 2216 3936623697*2^3321910-1 1000005 L4960 2021 2217 3751145343*2^3321910-1 1000005 L4960 2021 2218 3715773735*2^3321910-1 1000005 L4960 2021 2219 3698976057*2^3321910-1 1000005 L4960 2021 2220 3659465685*2^3321910-1 1000005 L4960 2020 2221 3652932033*2^3321910-1 1000005 L4960 2020 2222 3603204333*2^3321910-1 1000005 L4960 2020 2223 3543733545*2^3321910-1 1000005 L4960 2020 2224 3191900133*2^3321910-1 1000005 L4960 2020 2225 3174957723*2^3321910-1 1000005 L4960 2020 2226 2973510903*2^3321910-1 1000005 L4960 2019 2227 2848144257*2^3321910-1 1000005 L4960 2019 2228 2820058827*2^3321910-1 1000005 L4960 2019 2229 2611553775*2^3321910-1 1000004 L4960 2020 2230 2601087525*2^3321910-1 1000004 L4960 2019 2231 2386538565*2^3321910-1 1000004 L4960 2019 2232 2272291887*2^3321910-1 1000004 L4960 2019 2233 2167709265*2^3321910-1 1000004 L4960 2019 2234 2087077797*2^3321910-1 1000004 L4960 2019 2235 1848133623*2^3321910-1 1000004 L4960 2019 2236 1825072257*2^3321910-1 1000004 L4960 2019 2237 1633473837*2^3321910-1 1000004 L4960 2019 2238 1228267623*2^3321910-1 1000004 L4808 2019 2239 1148781333*2^3321910-1 1000004 L4808 2019 2240 1065440787*2^3321910-1 1000004 L4808 2019 2241 1055109357*2^3321910-1 1000004 L4960 2019 2242 992309607*2^3321910-1 1000004 L4808 2019 2243 926102325*2^3321910-1 1000004 L4808 2019 2244 892610007*2^3321910-1 1000004 L4960 2019 2245 763076757*2^3321910-1 1000004 L4960 2019 2246 607766997*2^3321910-1 1000004 L4808 2019 2247 539679177*2^3321910-1 1000004 L4808 2019 2248 425521077*2^3321910-1 1000004 L4808 2019 2249 132940575*2^3321910-1 1000003 L4808 2019 2250 239378138685*2^3321891+1 1000001 L5104 2020 2251 464253*2^3321908-1 1000000 L466 2013 2252 3^2095902+3^647322-1 1000000 x44 2018 2253 191273*2^3321908-1 1000000 L466 2013 2254 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 2255 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 2256 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 2257 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 2258 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 2259e 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 2260 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 2261 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 2262d 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 2263 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 2264 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 2265 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 2266 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 2267 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 2268 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 2269 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 2270 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 2271 10^999999+308267*10^292000+1 1000000 CH10 2021 2272 10^999999-1022306*10^287000-1 999999 CH13 2021 2273 10^999999-1087604*10^287000-1 999999 CH13 2021 2274 531631540026641*6^1285077+1 999999 L3494 2021 2275 3139*2^3321905-1 999997 L185 2008 2276 42550702^131072+1 999937 L4309 2022 Generalized Fermat 2277 42414020^131072+1 999753 L5030 2022 Generalized Fermat 2278 4847*2^3321063+1 999744 SB9 2005 2279 42254832^131072+1 999539 L5375 2022 Generalized Fermat 2280 42243204^131072+1 999524 L4898 2022 Generalized Fermat 2281 42230406^131072+1 999506 L5453 2022 Generalized Fermat 2282 42168978^131072+1 999424 L5462 2022 Generalized Fermat 2283 439*2^3318318+1 998916 L5573 2022 2284 41688706^131072+1 998772 L5270 2022 Generalized Fermat 2285 41364744^131072+1 998327 L5453 2022 Generalized Fermat 2286 41237116^131072+1 998152 L5459 2022 Generalized Fermat 2287e 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 2288 41102236^131072+1 997965 L4245 2022 Generalized Fermat 2289 41007562^131072+1 997834 L4210 2022 Generalized Fermat 2290 41001148^131072+1 997825 L4210 2022 Generalized Fermat 2291 975*2^3312951+1 997301 L5231 2022 2292 40550398^131072+1 997196 L4245 2022 Generalized Fermat 2293 11796*46^599707+1 997172 L5670 2023 2294 40463598^131072+1 997074 L4591 2022 Generalized Fermat 2295 689*2^3311423+1 996841 L5226 2022 2296 40151896^131072+1 996633 L4245 2022 Generalized Fermat 2297 593*2^3309333+1 996212 L5572 2022 2298 383*2^3309321+1 996208 L5570 2022 2299 49*2^3309087-1 996137 L1959 2013 2300 39746366^131072+1 996056 L4201 2022 Generalized Fermat 2301 139413*6^1279992+1 996033 L4001 2015 2302c 1274*67^545368-1 995886 L5410 2023 2303 51*2^3308171+1 995861 L2840 2015 2304 719*2^3308127+1 995849 L5192 2022 2305 39597790^131072+1 995842 L4737 2022 Generalized Fermat 2306 39502358^131072+1 995705 L5453 2022 Generalized Fermat 2307 39324372^131072+1 995448 L5202 2022 Generalized Fermat 2308 245114*5^1424104-1 995412 L3686 2013 2309 39100746^131072+1 995123 L5441 2022 Generalized Fermat 2310 38824296^131072+1 994719 L4245 2022 Generalized Fermat 2311 38734748^131072+1 994588 L4249 2021 Generalized Fermat 2312 175124*5^1422646-1 994393 L3686 2013 2313 453*2^3303073+1 994327 L5568 2022 2314 38310998^131072+1 993962 L4737 2021 Generalized Fermat 2315 531*2^3301693+1 993912 L5226 2022 2316 38196496^131072+1 993791 L4861 2021 Generalized Fermat 2317 38152876^131072+1 993726 L4245 2021 Generalized Fermat 2318 195*2^3301018+1 993708 L5569 2022 2319 341*2^3300789+1 993640 L5192 2022 2320 37909914^131072+1 993363 L4249 2021 Generalized Fermat 2321 849*2^3296427+1 992327 L5571 2022 2322 1611*22^738988+1 992038 L4139 2015 2323 36531196^131072+1 991254 L4249 2021 Generalized Fermat 2324 2017*2^3292325-1 991092 L3345 2017 2325 36422846^131072+1 991085 L4245 2021 Generalized Fermat 2326 36416848^131072+1 991076 L5202 2021 Generalized Fermat 2327 885*2^3290927+1 990671 L5161 2022 2328 36038176^131072+1 990481 L4245 2021 Generalized Fermat 2329 35997532^131072+1 990416 L4245 2021 Generalized Fermat 2330 35957420^131072+1 990353 L4245 2021 Generalized Fermat 2331 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 2332 35391288^131072+1 989449 L5070 2021 Generalized Fermat 2333 35372304^131072+1 989419 L5443 2021 Generalized Fermat 2334 219*2^3286614+1 989372 L5567 2022 2335 61*2^3286535-1 989348 L4405 2016 2336 35327718^131072+1 989347 L4591 2021 Generalized Fermat 2337 35282096^131072+1 989274 L4245 2021 Generalized Fermat 2338 35141602^131072+1 989046 L4729 2021 Generalized Fermat 2339 35139782^131072+1 989043 L4245 2021 Generalized Fermat 2340 35047222^131072+1 988893 L4249 2021 Generalized Fermat 2341 531*2^3284944+1 988870 L5536 2022 2342 34957136^131072+1 988747 L5321 2021 Generalized Fermat 2343 301*2^3284232+1 988655 L5564 2022 2344 34871942^131072+1 988608 L4245 2021 Generalized Fermat 2345 34763644^131072+1 988431 L4737 2021 Generalized Fermat 2346 34585314^131072+1 988138 L4201 2021 Generalized Fermat 2347 311*2^3282455+1 988120 L5568 2022 2348 34530386^131072+1 988048 L5070 2021 Generalized Fermat 2349 833*2^3282181+1 988038 L5564 2022 2350 561*2^3281889+1 987950 L5477 2022 2351 34087952^131072+1 987314 L4764 2021 Generalized Fermat 2352 87*2^3279368+1 987191 L3458 2015 2353 965*2^3279151+1 987126 L5564 2022 2354 33732746^131072+1 986717 L4359 2021 Generalized Fermat 2355 33474284^131072+1 986279 L5051 2021 Generalized Fermat 2356 33395198^131072+1 986145 L4658 2021 Generalized Fermat 2357 427*2^3275606+1 986059 L5566 2022 2358 33191418^131072+1 985796 L4201 2021 Generalized Fermat 2359 337*2^3274106+1 985607 L5564 2022 2360 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 2361 1045*2^3273488+1 985422 L5192 2022 2362 32869172^131072+1 985241 L4285 2021 Generalized Fermat 2363 32792696^131072+1 985108 L5198 2021 Generalized Fermat 2364 1047*2^3272351+1 985079 L5563 2022 2365 32704348^131072+1 984955 L5312 2021 Generalized Fermat 2366 32608738^131072+1 984788 L5395 2021 Generalized Fermat 2367 933*2^3270993+1 984670 L5562 2022 2368 311*2^3270759+1 984600 L5560 2022 2369 32430486^131072+1 984476 L4245 2021 Generalized Fermat 2370 32417420^131072+1 984453 L4245 2021 Generalized Fermat 2371 65*2^3270127+1 984409 L3924 2015 2372 32348894^131072+1 984333 L4245 2021 Generalized Fermat 2373 579*2^3269850+1 984326 L5226 2022 2374 32286660^131072+1 984223 L5400 2021 Generalized Fermat 2375 32200644^131072+1 984071 L4387 2021 Generalized Fermat 2376 32137342^131072+1 983959 L4559 2021 Generalized Fermat 2377 32096608^131072+1 983887 L4559 2021 Generalized Fermat 2378 32055422^131072+1 983814 L4559 2021 Generalized Fermat 2379 31821360^131072+1 983397 L4861 2021 Generalized Fermat 2380 31768014^131072+1 983301 L4252 2021 Generalized Fermat 2381 335*2^3266237+1 983238 L5559 2022 2382 1031*2^3265915+1 983142 L5364 2022 2383 31469984^131072+1 982765 L5078 2021 Generalized Fermat 2384 5*2^3264650-1 982759 L384 2013 2385 223*2^3264459-1 982703 L1884 2012 2386 1101*2^3264400+1 982686 L5231 2022 2387 483*2^3264181+1 982620 L5174 2022 2388 525*2^3263227+1 982332 L5231 2022 2389 31145080^131072+1 982174 L4201 2021 Generalized Fermat 2390 622*48^584089+1 981998 L5629 2023 2391 31044982^131072+1 981991 L5041 2021 Generalized Fermat 2392 683*2^3262037+1 981974 L5192 2022 2393 923*2^3261401+1 981783 L5477 2022 2394 30844300^131072+1 981622 L5102 2021 Generalized Fermat 2395 30819256^131072+1 981575 L4201 2021 Generalized Fermat 2396 9*2^3259381-1 981173 L1828 2011 2397 1059*2^3258751+1 980985 L5231 2022 2398 6*5^1403337+1 980892 L4965 2020 2399 30318724^131072+1 980643 L4309 2021 Generalized Fermat 2400 30315072^131072+1 980636 L5375 2021 Generalized Fermat 2401 30300414^131072+1 980609 L4755 2021 Generalized Fermat 2402 30225714^131072+1 980468 L4201 2021 Generalized Fermat 2403 875*2^3256589+1 980334 L5550 2022 2404 30059800^131072+1 980155 L4928 2021 Generalized Fermat 2405 30022816^131072+1 980085 L5273 2021 Generalized Fermat 2406 29959190^131072+1 979964 L4905 2021 Generalized Fermat 2407 29607314^131072+1 979292 L5378 2021 Generalized Fermat 2408 779*2^3253063+1 979273 L5192 2022 2409 29505368^131072+1 979095 L5378 2021 Generalized Fermat 2410 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 2411 29169314^131072+1 978443 L5380 2021 Generalized Fermat 2412 417*2^3248255+1 977825 L5178 2022 2413 28497098^131072+1 977116 L4308 2021 Generalized Fermat 2414 28398204^131072+1 976918 L5379 2021 Generalized Fermat 2415 28294666^131072+1 976710 L5375 2021 Generalized Fermat 2416 28175634^131072+1 976470 L5378 2021 Generalized Fermat 2417 33*2^3242126-1 975979 L3345 2014 2418 27822108^131072+1 975752 L4760 2021 Generalized Fermat 2419 39*2^3240990+1 975637 L3432 2014 2420 27758510^131072+1 975621 L4289 2021 Generalized Fermat 2421 27557876^131072+1 975208 L4245 2021 Generalized Fermat 2422 27544748^131072+1 975181 L4387 2021 Generalized Fermat 2423 27408050^131072+1 974898 L4210 2021 Generalized Fermat 2424 225*2^3236967+1 974427 L5529 2022 2425 27022768^131072+1 974092 L4309 2021 Generalized Fermat 2426 26896670^131072+1 973826 L5376 2021 Generalized Fermat 2427 1075*2^3234606+1 973717 L5192 2022 2428 26757382^131072+1 973530 L5375 2021 Generalized Fermat 2429 26599558^131072+1 973194 L4245 2021 Generalized Fermat 2430 6*5^1392287+1 973168 L4965 2020 2431 26500832^131072+1 972982 L4956 2021 Generalized Fermat 2432 325*2^3231474+1 972774 L5536 2022 2433 933*2^3231438+1 972763 L5197 2022 2434 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 2435 26172278^131072+1 972272 L4245 2021 Generalized Fermat 2436 697*2^3229518+1 972185 L5534 2022 2437 22598*745^338354-1 971810 L4189 2022 2438 385*2^3226814+1 971371 L5178 2022 2439 211195*2^3224974+1 970820 L2121 2013 2440 1173*2^3223546+1 970388 L5178 2022 2441 7*6^1246814+1 970211 L4965 2019 2442 25128150^131072+1 969954 L4738 2021 Generalized Fermat 2443 25124378^131072+1 969946 L5102 2021 Generalized Fermat 2444 1089*2^3221691+1 969829 L5178 2022 2445 35*832^332073-1 969696 L4001 2019 2446 600921*2^3219922-1 969299 g337 2018 2447 939*2^3219319+1 969115 L5178 2022 2448 24734116^131072+1 969055 L5070 2021 Generalized Fermat 2449 24644826^131072+1 968849 L5070 2021 Generalized Fermat 2450 24642712^131072+1 968844 L5070 2021 Generalized Fermat 2451 24641166^131072+1 968840 L5070 2021 Generalized Fermat 2452 129*2^3218214+1 968782 L5529 2022 2453 24522386^131072+1 968565 L5070 2021 Generalized Fermat 2454 24486806^131072+1 968483 L4737 2021 Generalized Fermat 2455 811*2^3216944+1 968400 L5233 2022 2456 24297936^131072+1 968042 L4201 2021 Generalized Fermat 2457 1023*2^3214745+1 967738 L5178 2022 2458 187*2^3212152+1 966957 L5178 2022 2459 301*2^3211281-1 966695 L5545 2022 2460 6*409^369832+1 965900 L4001 2015 2461 23363426^131072+1 965809 L5033 2021 Generalized Fermat 2462 1165*2^3207702+1 965618 L5178 2022 2463 94373*2^3206717+1 965323 L2785 2013 2464 2751*2^3206569-1 965277 L4036 2015 2465 761*2^3206341+1 965208 L5178 2022 2466 23045178^131072+1 965029 L5023 2021 Generalized Fermat 2467 23011666^131072+1 964946 L5273 2021 Generalized Fermat 2468 911*2^3205225+1 964872 L5364 2022 2469 22980158^131072+1 964868 L4201 2021 Generalized Fermat 2470 22901508^131072+1 964673 L4743 2021 Generalized Fermat 2471 22808110^131072+1 964440 L5248 2021 Generalized Fermat 2472 22718284^131072+1 964215 L5254 2021 Generalized Fermat 2473 22705306^131072+1 964183 L5248 2021 Generalized Fermat 2474 113983*2^3201175-1 963655 L613 2008 2475 34*888^326732-1 963343 L4001 2017 2476 899*2^3198219+1 962763 L5503 2022 2477 22007146^131072+1 962405 L4245 2020 Generalized Fermat 2478 4*3^2016951+1 962331 L4965 2020 2479 21917442^131072+1 962173 L4622 2020 Generalized Fermat 2480 987*2^3195883+1 962060 L5282 2022 2481 21869554^131072+1 962048 L5061 2020 Generalized Fermat 2482 21757066^131072+1 961754 L4773 2020 Generalized Fermat 2483 21582550^131072+1 961296 L5068 2020 Generalized Fermat 2484 21517658^131072+1 961125 L5126 2020 Generalized Fermat 2485 20968936^131072+1 959654 L4245 2020 Generalized Fermat 2486 671*2^3185411+1 958908 L5315 2022 2487 20674450^131072+1 958849 L4245 2020 Generalized Fermat 2488 1027*2^3184540+1 958646 L5174 2022 2489 789*2^3183463+1 958321 L5482 2022 2490 855*2^3183158+1 958229 L5161 2022 2491 20234282^131072+1 957624 L4942 2020 Generalized Fermat 2492 20227142^131072+1 957604 L4677 2020 Generalized Fermat 2493 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 2494 20185276^131072+1 957486 L4201 2020 Generalized Fermat 2495 935*2^3180599+1 957459 L5477 2022 2496 573*2^3179293+1 957066 L5226 2022 2497 33*2^3176269+1 956154 L3432 2013 2498 81*2^3174353-1 955578 L3887 2022 2499 19464034^131072+1 955415 L4956 2020 Generalized Fermat 2500 600921*2^3173683-1 955380 g337 2018 2501 587*2^3173567+1 955342 L5301 2022 2502 19216648^131072+1 954687 L5024 2020 Generalized Fermat 2503 1414*95^482691-1 954633 L4877 2019 2504 305*2^3171039+1 954581 L5301 2022 2505 755*2^3170701+1 954479 L5302 2022 2506 775*2^3170580+1 954443 L5449 2022 2507 78*236^402022-1 953965 L5410 2020 2508 18968126^131072+1 953946 L5011 2020 Generalized Fermat 2509 18813106^131072+1 953479 L4201 2020 Generalized Fermat 2510 18608780^131072+1 952857 L4488 2020 Generalized Fermat 2511 1087*2^3164677-1 952666 L1828 2012 2512 18509226^131072+1 952552 L4884 2020 Generalized Fermat 2513 18501600^131072+1 952528 L4875 2020 Generalized Fermat 2514 459*2^3163175+1 952214 L5178 2022 2515 15*2^3162659+1 952057 p286 2012 2516 18309468^131072+1 951934 L4928 2020 Generalized Fermat 2517 18298534^131072+1 951900 L4201 2020 Generalized Fermat 2518 849*2^3161727+1 951778 L5178 2022 2519 67*2^3161450+1 951694 L3223 2015 2520 119*2^3161195+1 951617 L5320 2022 2521 1759*2^3160863-1 951518 L4965 2021 2522 58*117^460033+1 951436 L5410 2020 2523 417*2^3160443+1 951391 L5302 2022 2524 9231*70^515544+1 951234 L5410 2021 2525 671*2^3159523+1 951115 L5188 2022 2526 17958952^131072+1 950834 L4201 2020 Generalized Fermat 2527 17814792^131072+1 950375 L4752 2020 Generalized Fermat 2528 17643330^131072+1 949824 L4201 2020 Generalized Fermat 2529 19*2^3155009-1 949754 L1828 2012 2530 281*2^3151457+1 948686 L5316 2022 2531 179*2^3150265+1 948327 L5302 2022 2532 17141888^131072+1 948183 L4963 2019 Generalized Fermat 2533 17138628^131072+1 948172 L4963 2019 Generalized Fermat 2534 17119936^131072+1 948110 L4963 2019 Generalized Fermat 2535 17052490^131072+1 947885 L4715 2019 Generalized Fermat 2536 17025822^131072+1 947796 L4870 2019 Generalized Fermat 2537 16985784^131072+1 947662 L4295 2019 Generalized Fermat 2538 865*2^3147482+1 947490 L5178 2021 2539 963*2^3145753+1 946969 L5451 2021 2540 16741226^131072+1 946837 L4201 2019 Generalized Fermat 2541 387*2^3144483+1 946587 L5450 2021 2542 1035*2^3144236+1 946513 L5449 2021 2543 1065*2^3143667+1 946342 L4944 2021 2544 193*2^3142150+1 945884 L5178 2021 2545 915*2^3141942+1 945822 L5448 2021 2546 939*2^3141397+1 945658 L5320 2021 2547 1063*2^3141350+1 945644 L5178 2021 2548 16329572^131072+1 945420 L4201 2019 Generalized Fermat 2549 69*2^3140225-1 945304 L3764 2014 2550 3*2^3136255-1 944108 L256 2007 2551 417*2^3136187+1 944089 L5178 2021 2552 15731520^131072+1 943296 L4245 2019 Generalized Fermat 2553 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 2554 15667716^131072+1 943064 L4387 2019 Generalized Fermat 2555 15567144^131072+1 942698 L4918 2019 Generalized Fermat 2556 299*2^3130621+1 942414 L5178 2021 2557 15342502^131072+1 941870 L4245 2019 Generalized Fermat 2558 15237960^131072+1 941481 L4898 2019 Generalized Fermat 2559 571*2^3127388+1 941441 L5440 2021 2560 15147290^131072+1 941141 L4861 2019 Generalized Fermat 2561 197*2^3126343+1 941126 L5178 2021 2562 15091270^131072+1 940930 L4760 2019 Generalized Fermat 2563 1097*2^3124455+1 940558 L5178 2021 2564 3125*2^3124079+1 940445 L1160 2019 2565 495*2^3123624+1 940308 L5438 2021 2566 14790404^131072+1 939784 L4871 2019 Generalized Fermat 2567 1041*2^3120649+1 939412 L5437 2021 2568 14613898^131072+1 939101 L4926 2019 Generalized Fermat 2569 3317*2^3117162-1 938363 L5399 2021 2570 763*2^3115684+1 937918 L4944 2021 2571 581*2^3114611+1 937595 L5178 2021 2572 14217182^131072+1 937534 L4387 2019 Generalized Fermat 2573 134*864^319246-1 937473 L5410 2020 2574 700057*2^3113753-1 937339 L5410 2022 2575 1197*2^3111838+1 936760 L5178 2021 2576 14020004^131072+1 936739 L4249 2019 Generalized Fermat 2577 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 2578 755*2^3110759+1 936435 L5320 2021 2579 13800346^131072+1 935840 L4880 2019 Generalized Fermat 2580f 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 2581 13613070^131072+1 935062 L4245 2019 Generalized Fermat 2582 628*80^491322+1 935033 L5410 2021 2583 761*2^3105087+1 934728 L5197 2021 2584 13433028^131072+1 934305 L4868 2018 Generalized Fermat 2585 1019*2^3103680-1 934304 L1828 2012 2586 579*2^3102639+1 933991 L5315 2021 2587 99*2^3102401-1 933918 L1862 2017 2588 256612*5^1335485-1 933470 L1056 2013 2589 13083418^131072+1 932803 L4747 2018 Generalized Fermat 2590 69*2^3097340-1 932395 L3764 2014 2591 153*2^3097277+1 932376 L4944 2021 2592 12978952^131072+1 932347 L4849 2018 Generalized Fermat 2593 12961862^131072+1 932272 L4245 2018 Generalized Fermat 2594 207*2^3095391+1 931808 L5178 2021 2595 12851074^131072+1 931783 L4670 2018 Generalized Fermat 2596 45*2^3094632-1 931579 L1862 2018 2597 259*2^3094582+1 931565 L5214 2021 2598 553*2^3094072+1 931412 L4944 2021 2599 57*2^3093440-1 931220 L2484 2020 2600 12687374^131072+1 931054 L4289 2018 Generalized Fermat 2601 513*2^3092705+1 931000 L4329 2016 2602 12661786^131072+1 930939 L4819 2018 Generalized Fermat 2603 933*2^3091825+1 930736 L5178 2021 2604 38*875^316292-1 930536 L4001 2019 2605 5*2^3090860-1 930443 L1862 2012 2606 12512992^131072+1 930266 L4814 2018 Generalized Fermat 2607 4*5^1330541-1 930009 L4965 2022 2608 12357518^131072+1 929554 L4295 2018 Generalized Fermat 2609 12343130^131072+1 929488 L4720 2018 Generalized Fermat 2610 297*2^3087543+1 929446 L5326 2021 2611 1149*2^3087514+1 929438 L5407 2021 2612 745*2^3087428+1 929412 L5178 2021 2613 373*520^342177+1 929357 L3610 2014 2614 19401*2^3086450-1 929119 L541 2015 2615 75*2^3086355+1 929088 L3760 2015 2616 65*2^3080952-1 927461 L2484 2020 2617 11876066^131072+1 927292 L4737 2018 Generalized Fermat 2618 1139*2^3079783+1 927111 L5174 2021 2619 271*2^3079189-1 926931 L2484 2018 2620 766*33^610412+1 926923 L4001 2016 2621 11778792^131072+1 926824 L4672 2018 Generalized Fermat 2622 555*2^3078792+1 926812 L5226 2021 2623 31*332^367560+1 926672 L4294 2018 2624 167*2^3077568-1 926443 L1862 2020 2625 10001*2^3075602-1 925853 L4405 2019 2626 116*107^455562-1 924513 L4064 2021 2627 11292782^131072+1 924425 L4672 2018 Generalized Fermat 2628 14844*430^350980-1 924299 L4001 2016 2629 11267296^131072+1 924297 L4654 2017 Generalized Fermat 2630 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 2631 1105*2^3069884+1 924131 L5314 2021 2632 319*2^3069362+1 923973 L5377 2021 2633 11195602^131072+1 923933 L4706 2017 Generalized Fermat 2634 973*2^3069092+1 923892 L5214 2021 2635 765*2^3068511+1 923717 L5174 2021 2636 60849*2^3067914+1 923539 L591 2014 2637 674*249^385359+1 923400 L5410 2019 2638 499*2^3066970+1 923253 L5373 2021 2639 553*2^3066838+1 923213 L5368 2021 2640 629*2^3066827+1 923210 L5226 2021 2641 11036888^131072+1 923120 L4660 2017 Generalized Fermat 2642 261*2^3066009+1 922964 L5197 2021 2643 10994460^131072+1 922901 L4704 2017 Generalized Fermat 2644f 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 2645 21*2^3065701+1 922870 p286 2012 2646 10962066^131072+1 922733 L4702 2017 Generalized Fermat 2647 10921162^131072+1 922520 L4559 2017 Generalized Fermat 2648 875*2^3063847+1 922313 L5364 2021 2649 43*2^3063674+1 922260 L3432 2013 2650 677*2^3063403+1 922180 L5346 2021 2651 8460*241^387047-1 921957 L5410 2019 2652 10765720^131072+1 921704 L4695 2017 Generalized Fermat 2653 111*2^3060238-1 921226 L2484 2020 2654 1165*2^3060228+1 921224 L5360 2021 2655 5*2^3059698-1 921062 L503 2008 2656 10453790^131072+1 920031 L4694 2017 Generalized Fermat 2657 453*2^3056181+1 920005 L5320 2021 2658 791*2^3055695+1 919859 L5177 2021 2659 10368632^131072+1 919565 L4692 2017 Generalized Fermat 2660 582971*2^3053414-1 919175 L5410 2022 2661 123*2^3049038+1 917854 L4119 2015 2662 10037266^131072+1 917716 L4691 2017 Generalized Fermat 2663 400*95^463883-1 917435 L4001 2019 2664 9907326^131072+1 916975 L4690 2017 Generalized Fermat 2665 454*383^354814+1 916558 L2012 2020 2666 9785844^131072+1 916272 L4326 2017 Generalized Fermat 2667 435*2^3041954+1 915723 L5320 2021 2668 639*2^3040438+1 915266 L5320 2021 2669 1045*2^3037988+1 914529 L5178 2021 2670 291*2^3037904+1 914503 L3545 2015 2671 311*2^3037565+1 914401 L5178 2021 2672 373*2^3036746+1 914155 L5178 2021 2673 9419976^131072+1 914103 L4591 2017 Generalized Fermat 2674 801*2^3036045+1 913944 L5348 2021 2675 915*2^3033775+1 913261 L5178 2021 2676 38804*3^1913975+1 913203 L5410 2021 2677 9240606^131072+1 913009 L4591 2017 Generalized Fermat 2678 869*2^3030655+1 912322 L5260 2021 2679 643*2^3030650+1 912320 L5320 2021 2680 99*2^3029959-1 912111 L1862 2020 2681 417*2^3029342+1 911926 L5178 2021 2682 345*2^3027769+1 911452 L5343 2021 2683 26*3^1910099+1 911351 L4799 2020 2684 355*2^3027372+1 911333 L5174 2021 2685 99*2^3026660-1 911118 L1862 2020 2686 417*2^3026492+1 911068 L5197 2021 2687 1065*2^3025527+1 910778 L5208 2021 2688 34202*3^1908800+1 910734 L5410 2021 2689 8343*42^560662+1 910099 L4444 2020 2690 699*2^3023263+1 910096 L5335 2021 2691 8770526^131072+1 910037 L4245 2017 Generalized Fermat 2692 8704114^131072+1 909604 L4670 2017 Generalized Fermat 2693 383731*2^3021377-1 909531 L466 2011 2694 46821*2^3021380-374567 909531 p363 2013 2695 2^3021377-1 909526 G3 1998 Mersenne 37 2696 615*2^3019445+1 908947 L5260 2021 2697 389*2^3019025+1 908820 L5178 2021 2698 875*2^3018175+1 908565 L5334 2021 2699c 375*2^3016803-1 908151 L2235 2023 2700 555*2^3016352+1 908016 L5178 2021 2701 7*2^3015762+1 907836 g279 2008 2702 759*2^3015314+1 907703 L5178 2021 2703 32582*3^1901790+1 907389 L5372 2021 2704 75*2^3012342+1 906808 L3941 2015 2705 459*2^3011814+1 906650 L5178 2021 2706 991*2^3010036+1 906115 L5326 2021 2707 583*2^3009698+1 906013 L5325 2021 2708 8150484^131072+1 905863 L4249 2017 Generalized Fermat 2709 593*2^3006969+1 905191 L5178 2021 2710 327*2^3006540-1 905062 L2257 2023 2711 367*2^3004536+1 904459 L5178 2021 2712 7926326^131072+1 904276 L4249 2017 Generalized Fermat 2713 1003*2^3003756+1 904224 L5320 2021 2714 573*2^3002662+1 903895 L5319 2021 2715 7858180^131072+1 903784 L4201 2017 Generalized Fermat 2716 329*2^3002295+1 903784 L5318 2021 2717 4*5^1292915-1 903710 L4965 2022 2718 7832704^131072+1 903599 L4249 2017 Generalized Fermat 2719 268514*5^1292240-1 903243 L3562 2013 2720 7*10^902708+1 902709 p342 2013 2721 435*2^2997453+1 902326 L5167 2021 2722 583*2^2996526+1 902047 L5174 2021 2723 1037*2^2995695+1 901798 L5178 2021 2724 717*2^2995326+1 901686 L5178 2021 2725 885*2^2995274+1 901671 L5178 2021 2726 43*2^2994958+1 901574 L3222 2013 2727 1065*2^2994154+1 901334 L5315 2021 2728 561*2^2994132+1 901327 L5314 2021 2729 1095*2^2992587-1 900862 L1828 2011 2730 519*2^2991849+1 900640 L5311 2021 2731 7379442^131072+1 900206 L4201 2017 Generalized Fermat 2732 459*2^2990134+1 900123 L5197 2021 2733 15*2^2988834+1 899730 p286 2012 2734 29*564^326765+1 899024 L4001 2017 2735 971*2^2982525+1 897833 L5197 2021 2736 1033*2^2980962+1 897362 L5305 2021 2737 357*2^2980540-1 897235 L2257 2023 2738 367*2^2979033-1 896781 L2257 2023 2739 39*2^2978894+1 896739 L2719 2013 2740 38*977^299737+1 896184 L5410 2021 2741 4348099*2^2976221-1 895939 L466 2008 2742 205833*2^2976222-411665 895938 L4667 2017 2743 18976*2^2976221-18975 895937 p373 2014 2744 2^2976221-1 895932 G2 1997 Mersenne 36 2745 1024*3^1877301+1 895704 p378 2014 2746 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 2747 24704*3^1877135+1 895626 L5410 2021 2748 591*2^2975069+1 895588 L5299 2021 2749 249*2^2975002+1 895568 L2322 2015 2750 195*2^2972947+1 894949 L3234 2015 2751 6705932^131072+1 894758 L4201 2017 Generalized Fermat 2752 391*2^2971600+1 894544 L5242 2021 2753 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 2754 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 2755 369*2^2968175-1 893513 L2257 2023 2756 493*72^480933+1 893256 L3610 2014 2757 561*2^2964753+1 892483 L5161 2021 2758 1185*2^2964350+1 892362 L5161 2021 2759 6403134^131072+1 892128 L4510 2016 Generalized Fermat 2760 6391936^131072+1 892028 L4511 2016 Generalized Fermat 2761 395*2^2961370-1 891464 L2257 2023 2762 21*2^2959789-1 890987 L5313 2021 2763 627*2^2959098+1 890781 L5197 2021 2764 45*2^2958002-1 890449 L1862 2017 2765 729*2^2955389+1 889664 L5282 2021 2766 198677*2^2950515+1 888199 L2121 2012 2767 88*985^296644+1 887987 L5410 2020 2768 303*2^2949403-1 887862 L1817 2022 2769 5877582^131072+1 887253 L4245 2016 Generalized Fermat 2770 321*2^2946654-1 887034 L1817 2022 2771 17*2^2946584-1 887012 L3519 2013 2772 489*2^2944673+1 886438 L5167 2021 2773 141*2^2943065+1 885953 L3719 2015 2774 757*2^2942742+1 885857 L5261 2021 2775 5734100^131072+1 885846 L4477 2016 Generalized Fermat 2776 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 2777 33*2^2939063-1 884748 L3345 2013 2778 5903*2^2938744-1 884654 L4036 2015 2779 717*2^2937963+1 884418 L5256 2021 2780 5586416^131072+1 884361 L4454 2016 Generalized Fermat 2781 243*2^2937316+1 884223 L4114 2015 2782 973*2^2937046+1 884142 L5253 2021 2783 61*2^2936967-1 884117 L2484 2017 2784 903*2^2934602+1 883407 L5246 2021 2785 5471814^131072+1 883181 L4362 2016 Generalized Fermat 2786 188*228^374503+1 883056 L4786 2020 2787 53*248^368775+1 883016 L5196 2020 2788 5400728^131072+1 882436 L4201 2016 Generalized Fermat 2789 17*326^350899+1 881887 L4786 2019 2790 855*2^2929550+1 881886 L5200 2021 2791 5326454^131072+1 881648 L4201 2016 Generalized Fermat 2792 839*2^2928551+1 881585 L5242 2021 2793 7019*10^881309-1 881313 L3564 2013 2794 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 2795 391*2^2925759-1 880744 L2257 2023 2796 577*2^2925602+1 880697 L5201 2021 2797 97366*5^1259955-1 880676 L3567 2013 2798 973*2^2923062+1 879933 L5228 2021 2799 1126*177^391360+1 879770 L4955 2020 2800 243944*5^1258576-1 879713 L3566 2013 2801 693*2^2921528+1 879471 L5201 2021 2802 6*10^879313+1 879314 L5009 2019 2803 269*2^2918105+1 878440 L2715 2015 2804 331*2^2917844+1 878362 L5210 2021 2805 169*2^2917805-1 878350 L2484 2018 2806 1085*2^2916967+1 878098 L5174 2020 2807 389*2^2916499+1 877957 L5215 2020 2808 431*2^2916429+1 877936 L5214 2020 2809 1189*2^2916406+1 877929 L5174 2020 2810f 1011*2^2916119-1 877843 L4518 2023 2811 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 2812 4974408^131072+1 877756 L4380 2016 Generalized Fermat 2813 465*2^2914079+1 877228 L5210 2020 2814 427194*113^427194+1 877069 p310 2012 Generalized Cullen 2815 4893072^131072+1 876817 L4303 2016 Generalized Fermat 2816 493*2^2912552+1 876769 L5192 2021 2817 379*2^2911423-1 876429 L2257 2023 2818 143157*2^2911403+1 876425 L4504 2017 2819 567*2^2910402+1 876122 L5201 2020 2820 683*2^2909217+1 875765 L5199 2020 2821 674*249^365445+1 875682 L5410 2019 2822 475*2^2908802+1 875640 L5192 2021 2823 371*2^2907377+1 875211 L5197 2020 2824 207*2^2903535+1 874054 L3173 2015 2825 851*2^2902731+1 873813 L5177 2020 2826 777*2^2901907+1 873564 L5192 2020 2827 717*2^2900775+1 873224 L5185 2020 2828 99*2^2899303-1 872780 L1862 2017 2829 63*2^2898957+1 872675 L3262 2013 2830 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 2831 747*2^2895307+1 871578 L5178 2020 2832 403*2^2894566+1 871354 L5180 2020 2833 629*2^2892961+1 870871 L5173 2020 2834 627*2^2891514+1 870436 L5168 2020 2835 325*2^2890955-1 870267 L5545 2022 2836 363*2^2890208+1 870042 L3261 2020 2837 471*2^2890148+1 870024 L5158 2020 2838 4329134^131072+1 869847 L4395 2016 Generalized Fermat 2839 583*2^2889248+1 869754 L5139 2020 2840 353*2^2888332-1 869478 L2257 2023 2841 955*2^2887934+1 869358 L4958 2020 2842c 8300*171^389286+1 869279 L5410 2023 2843 303*2^2887603-1 869258 L5184 2022 2844 937*2^2887130+1 869116 L5134 2020 2845 885*2^2886389+1 868893 L3924 2020 2846 763*2^2885928+1 868754 L2125 2020 2847 1071*2^2884844+1 868428 L3593 2020 2848 1181*2^2883981+1 868168 L3593 2020 2849 327*2^2881349-1 867375 L5545 2022 2850 51*2^2881227+1 867338 L3512 2013 2851 933*2^2879973+1 866962 L4951 2020 2852 261*2^2879941+1 866952 L4119 2015 2853 4085818^131072+1 866554 L4201 2016 Generalized Fermat 2854 65*2^2876718-1 865981 L2484 2016 2855 21*948^290747-1 865500 L4985 2019 2856 4013*2^2873250-1 864939 L1959 2014 2857 41*2^2872058-1 864578 L2484 2013 2858 359*2^2870935+1 864241 L1300 2020 2859 165*2^2870868+1 864220 L4119 2015 2860 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 2861 665*2^2869847+1 863913 L2885 2020 2862 283*2^2868750+1 863583 L3877 2015 2863f 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 2864 845*2^2868291+1 863445 L5100 2020 2865 3125*2^2867399+1 863177 L1754 2019 2866 701*2^2867141+1 863099 L1422 2020 2867 3814944^131072+1 862649 L4201 2016 Generalized Fermat 2868 119*954^289255+1 861852 L5410 2022 2869 307*2^2862962+1 861840 L4740 2020 2870 147*2^2862651+1 861746 L1741 2015 2871 1207*2^2861901-1 861522 L1828 2011 2872 231*2^2860725+1 861167 L2873 2015 2873 193*2^2858812+1 860591 L2997 2015 2874 629*2^2857891+1 860314 L3035 2020 2875 493*2^2857856+1 860304 L5087 2020 2876 241*2^2857313-1 860140 L2484 2018 2877 707*2^2856331+1 859845 L5084 2020 2878 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2879 949*2^2854946+1 859428 L2366 2020 2880 222361*2^2854840+1 859398 g403 2006 2881 725*2^2854661+1 859342 L5031 2020 2882 399*2^2851994+1 858539 L4099 2020 2883 225*2^2851959+1 858528 L3941 2015 2884 247*2^2851602+1 858421 L3865 2015 2885 183*2^2850321+1 858035 L2117 2015 2886 1191*2^2849315+1 857733 L1188 2020 2887 717*2^2848598+1 857517 L1204 2020 2888 795*2^2848360+1 857445 L4099 2020 2889 4242104*15^728840-1 857189 L5410 2023 2890 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2891 705*2^2846638+1 856927 L1808 2020 2892 369*2^2846547+1 856899 L4099 2020 2893 233*2^2846392-1 856852 L2484 2021 2894 955*2^2844974+1 856426 L1188 2020 2895 753*2^2844700+1 856343 L1204 2020 2896 11138*745^297992-1 855884 L4189 2019 2897 111*2^2841992+1 855527 L1792 2015 2898 44*744^297912-1 855478 L5410 2021 2899 649*2^2841318+1 855325 L4732 2020 2900 228*912^288954-1 855305 L5410 2022 2901 305*2^2840155+1 854975 L4907 2020 2902d 914*871^290787-1 854923 L5787 2023 2903 1149*2^2839622+1 854815 L2042 2020 2904 95*2^2837909+1 854298 L3539 2013 2905 199*2^2835667-1 853624 L2484 2019 2906 595*2^2833406+1 852943 L4343 2020 2907 1101*2^2832061+1 852539 L4930 2020 2908 813*2^2831757+1 852447 L4951 2020 2909 435*2^2831709+1 852432 L4951 2020 2910 393*2^2828738-1 851538 L2257 2023 2911 543*2^2828217+1 851381 L4746 2019 2912f 68*1010^283267+1 851027 L5778 2023 2913 704*249^354745+1 850043 L5410 2019 2914 1001*2^2822037+1 849521 L1209 2019 2915 84466*5^1215373-1 849515 L3562 2013 2916 97*2^2820650+1 849103 L2163 2013 2917 381*2^2820157-1 848955 L2257 2023 2918 107*2^2819922-1 848884 L2484 2013 2919 84256*3^1778899+1 848756 L4789 2018 2920 45472*3^1778899-1 848756 L4789 2018 2921 14804*3^1778530+1 848579 L4064 2021 2922 497*2^2818787+1 848543 L4842 2019 2923 97*2^2818306+1 848397 L3262 2013 2924 313*2^2817751-1 848231 L802 2021 2925 177*2^2816050+1 847718 L129 2012 2926 553*2^2815596+1 847582 L4980 2019 2927 1071*2^2814469+1 847243 L3035 2019 2928 105*2^2813000+1 846800 L3200 2015 2929 1115*2^2812911+1 846774 L1125 2019 2930 96*10^846519-1 846521 L2425 2011 Near-repdigit 2931 763*2^2811726+1 846417 L3919 2019 2932 1125*2^2811598+1 846379 L4981 2019 2933 891*2^2810100+1 845928 L4981 2019 2934 441*2^2809881+1 845862 L4980 2019 2935 711*2^2808473+1 845438 L1502 2019 2936 1089*2^2808231+1 845365 L4687 2019 2937 63*2^2807130+1 845033 L3262 2013 2938 1083*2^2806536+1 844855 L3035 2019 2939 675*2^2805669+1 844594 L1932 2019 2940 819*2^2805389+1 844510 L3372 2019 2941 1027*2^2805222+1 844459 L3035 2019 2942 437*2^2803775+1 844024 L3168 2019 2943 381*2^2801281-1 843273 L2257 2023 2944 4431*372^327835-1 842718 L5410 2019 2945 150344*5^1205508-1 842620 L3547 2013 2946 311*2^2798459+1 842423 L4970 2019 2947 81*2^2797443-1 842117 L3887 2021 2948 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2949 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2950 43*2^2795582+1 841556 L2842 2013 2951 1001*2^2794357+1 841189 L1675 2019 2952 117*2^2794014+1 841085 L1741 2015 2953 1057*2^2792700+1 840690 L1675 2019 2954 345*2^2792269+1 840560 L1754 2019 2955 711*2^2792072+1 840501 L4256 2019 2956 315*2^2791414-1 840302 L2235 2021 2957 973*2^2789516+1 839731 L3372 2019 2958 27602*3^1759590+1 839543 L4064 2021 2959 2187*2^2786802+1 838915 L1745 2019 2960 15*2^2785940+1 838653 p286 2012 2961 333*2^2785626-1 838560 L802 2021 2962 1337*2^2785444-1 838506 L4518 2017 2963 711*2^2784213+1 838135 L4687 2019 2964 58582*91^427818+1 838118 L5410 2020 2965 923*2^2783153+1 837816 L1675 2019 2966 1103*2^2783149+1 837815 L3784 2019 2967 485*2^2778151+1 836310 L1745 2019 2968 600921*2^2776014-1 835670 g337 2017 2969 1129*2^2774934+1 835342 L1774 2019 2970 750*1017^277556-1 834703 L4955 2021 2971 8700*241^350384-1 834625 L5410 2019 2972 1023*2^2772512+1 834613 L4724 2019 2973 656*249^348030+1 833953 L5410 2019 2974 92*10^833852-1 833854 L4789 2018 Near-repdigit 2975 437*2^2769299+1 833645 L3760 2019 2976 967*2^2768408+1 833377 L3760 2019 2977 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2978 1171*2^2768112+1 833288 L2676 2019 2979 57*2^2765963+1 832640 L3262 2013 2980 1323*2^2764024+1 832058 L1115 2019 2981 77*2^2762047+1 831461 L3430 2013 2982 745*2^2761514+1 831302 L1204 2019 2983 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2984 7*10^830865+1 830866 p342 2014 2985 893*2^2758841+1 830497 L4826 2019 2986 537*2^2755164+1 829390 L3035 2019 2987 579*2^2754370+1 829151 L1823 2019 2988 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2989b 677*792^285769-1 828369 L541 2023 2990 215*2^2751022-1 828143 L2484 2018 2991 337*2^2750860+1 828094 L4854 2019 2992 701*2^2750267+1 827916 L3784 2019 2993 467*2^2749195+1 827593 L1745 2019 2994 245*2^2748663+1 827433 L3173 2015 2995 591*2^2748315+1 827329 L3029 2019 2996 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 2997 1007*2^2747268-1 827014 L4518 2022 2998 1089*2^2746155+1 826679 L2583 2019 2999 707*2^2745815+1 826576 L3760 2019 3000 459*2^2742310+1 825521 L4582 2019 3001 777*2^2742196+1 825487 L3919 2019 3002 609*2^2741078+1 825150 L3091 2019 3003 684*157^375674+1 824946 L5112 2022 3004 639*2^2740186+1 824881 L4958 2019 3005 905*2^2739805+1 824767 L4958 2019 3006 119*954^276761+1 824625 L5410 2022 3007 1955556^131072+1 824610 L4250 2015 Generalized Fermat 3008 777*2^2737282+1 824007 L1823 2019 3009 765*2^2735232+1 823390 L1823 2019 3010 609*2^2735031+1 823330 L1823 2019 3011 305*2^2733989+1 823016 L1823 2019 3012 165*2^2732983+1 822713 L1741 2015 3013 1133*2^2731993+1 822415 L4687 2019 3014 251*2^2730917+1 822091 L3924 2015 3015 1185*2^2730620+1 822002 L4948 2019 3016 (10^410997+1)^2-2 821995 p405 2022 3017 173*2^2729905+1 821786 L3895 2015 3018 1981*2^2728877-1 821478 L1134 2018 3019 693*2^2728537+1 821375 L3035 2019 3020 501*2^2728224+1 821280 L3035 2019 3021 763*2^2727928+1 821192 L3924 2019 3022 10*743^285478+1 819606 L4955 2019 3023 17*2^2721830-1 819354 p279 2010 3024 1006*639^291952+1 819075 L4444 2021 3025 1101*2^2720091+1 818833 L4935 2019 3026 1766192^131072+1 818812 L4231 2015 Generalized Fermat 3027 165*2^2717378-1 818015 L2055 2012 3028 68633*2^2715609+1 817485 L5105 2020 3029 1722230^131072+1 817377 L4210 2015 Generalized Fermat 3030 9574*5^1169232+1 817263 L5410 2021 3031 1717162^131072+1 817210 L4226 2015 Generalized Fermat 3032 133*2^2713410+1 816820 L3223 2015 3033 45*2^2711732+1 816315 L1349 2012 3034 569*2^2711451+1 816231 L4568 2019 3035 12830*3^1709456+1 815622 L5410 2021 3036 335*2^2708958-1 815481 L2235 2020 3037 93*2^2708718-1 815408 L1862 2016 3038 1660830^131072+1 815311 L4207 2015 Generalized Fermat 3039 837*2^2708160+1 815241 L4314 2019 3040 1005*2^2707268+1 814972 L4687 2019 3041 13*458^306196+1 814748 L3610 2015 3042 253*2^2705844+1 814543 L4083 2015 3043 657*2^2705620+1 814476 L4907 2019 3044 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 3045 303*2^2703864+1 813947 L1204 2019 3046 141*2^2702160+1 813434 L1741 2015 3047 753*2^2701925+1 813364 L4314 2019 3048 133*2^2701452+1 813221 L3173 2015 3049 521*2^2700095+1 812813 L4854 2019 3050 393*2^2698956+1 812470 L1823 2019 3051 417*2^2698652+1 812378 L3035 2019 3052 525*2^2698118+1 812218 L1823 2019 3053 3125*2^2697651+1 812078 L3924 2019 3054 153*2^2697173+1 811933 L3865 2015 3055 1560730^131072+1 811772 L4201 2015 Generalized Fermat 3056 26*3^1700041+1 811128 L4799 2020 3057 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 3058 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 3059 58*536^296735-1 809841 L5410 2021 3060 33016*3^1696980+1 809670 L5366 2021 3061 7335*2^2689080-1 809498 L4036 2015 3062 1049*2^2688749+1 809398 L4869 2018 3063b 120*957^271487-1 809281 L541 2023 3064 329*2^2688221+1 809238 L3035 2018 3065 865*2^2687434+1 809002 L4844 2018 3066 989*2^2686591+1 808748 L2805 2018 3067 136*904^273532+1 808609 L5410 2020 3068 243*2^2685873+1 808531 L3865 2015 3069 909*2^2685019+1 808275 L3431 2018 3070 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 3071 1455*2^2683953-1 807954 L1134 2020 3072 11210*241^339153-1 807873 L5410 2019 3073 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 3074 975*2^2681840+1 807318 L4155 2018 3075 999*2^2681353-1 807171 L4518 2022 3076 295*2^2680932+1 807044 L1741 2015 3077 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 3078 575*2^2679711+1 806677 L2125 2018 3079 2386*52^469972+1 806477 L4955 2019 3080a 2778*991^269162+1 806433 p433 2023 3081 10*80^423715-1 806369 p247 2023 3082 219*2^2676229+1 805628 L1792 2015 3083 637*2^2675976+1 805552 L3035 2018 3084 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 3085 951*2^2674564+1 805127 L1885 2018 3086 1372930^131072+1 804474 g236 2003 Generalized Fermat 3087 662*1009^267747-1 804286 L5410 2020 3088 261*2^2671677+1 804258 L3035 2015 3089 895*2^2671520+1 804211 L3035 2018 3090 1361244^131072+1 803988 g236 2004 Generalized Fermat 3091 789*2^2670409+1 803877 L3035 2018 3092 256*11^771408+1 803342 L3802 2014 Generalized Fermat 3093 503*2^2668529+1 803310 L4844 2018 3094 255*2^2668448+1 803286 L1129 2015 3095 4189*2^2666639-1 802742 L1959 2017 3096 539*2^2664603+1 802129 L4717 2018 3097 3^1681130+3^445781+1 802103 CH9 2022 3098 26036*745^279261-1 802086 L4189 2020 3099 1396*5^1146713-1 801522 L3547 2013 3100 676*687^282491-1 801418 L5426 2023 3101 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 3102 51*892^271541+1 801147 L5410 2019 3103 297*2^2660048+1 800757 L3865 2015 3104 99*2^2658496-1 800290 L1862 2021 3105 851*2^2656411+1 799663 L4717 2018 3106 487*2^2655008+1 799240 L3760 2018 3107 371*2^2651663+1 798233 L3760 2018 3108 69*2^2649939-1 797713 L3764 2014 3109 207*2^2649810+1 797675 L1204 2015 3110 505*2^2649496+1 797581 L3760 2018 3111 993*2^2649256+1 797509 L3760 2018 3112 517*2^2648698+1 797341 L3760 2018 3113 340*703^280035+1 797250 L4001 2018 3114 441*2^2648307+1 797223 L3760 2018 3115 1129*2^2646590+1 796707 L3760 2018 3116 128*518^293315+1 796156 L4001 2019 3117 211*744^277219-1 796057 L5410 2021 3118 Phi(3,-1181782^65536) 795940 L4142 2015 Generalized unique 3119 1176694^131072+1 795695 g236 2003 Generalized Fermat 3120 13*2^2642943-1 795607 L1862 2012 3121 119*410^304307+1 795091 L4294 2019 3122 501*2^2641052+1 795039 L3035 2018 3123 879*2^2639962+1 794711 L3760 2018 3124 57*2^2639528-1 794579 L2484 2016 3125 342673*2^2639439-1 794556 L53 2007 3126 813*2^2639092+1 794449 L2158 2018 3127 Phi(3,-1147980^65536) 794288 L4142 2015 Generalized unique 3128 197*972^265841-1 794247 L4955 2022 3129 1027*2^2638186+1 794177 L3760 2018 3130 889*2^2637834+1 794071 L3545 2018 3131 92182*5^1135262+1 793520 L3547 2013 3132 5608*70^429979+1 793358 L5390 2021 3133 741*2^2634385+1 793032 L1204 2018 3134 465*2^2630496+1 791861 L1444 2018 3135 189*2^2630487+1 791858 L3035 2015 3136 87*2^2630468+1 791852 L3262 2013 3137 4*5^1132659-1 791696 L4965 2022 3138 1131*2^2629345+1 791515 L4826 2018 3139 967*2^2629344+1 791515 L3760 2018 3140 267*2^2629210+1 791474 L3035 2015 3141 154*883^268602+1 791294 L5410 2020 3142 819*2^2627529+1 790968 L1387 2018 3143 17152*5^1131205-1 790683 L3552 2013 3144 183*2^2626442+1 790641 L3035 2015 3145 813*2^2626224+1 790576 L4830 2018 3146 807*2^2625044+1 790220 L1412 2018 3147 1063730^131072+1 789949 g260 2013 Generalized Fermat 3148 1243*2^2623707-1 789818 L1828 2011 3149 693*2^2623557+1 789773 L3278 2018 3150 981*2^2622032+1 789314 L1448 2018 3151 145*2^2621020+1 789008 L3035 2015 3152 963*792^271959-1 788338 L5410 2021 3153 541*2^2614676+1 787099 L4824 2018 3154 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 3155 1061*268^323645-1 785857 L5410 2019 3156 1662*483^292719-1 785646 L5410 2022 3157 Phi(3,-984522^65536) 785545 p379 2015 Generalized unique 3158 1071*2^2609316+1 785486 L3760 2018 3159 87*2^2609046+1 785404 L2520 2013 3160 18922*111^383954+1 785315 L4927 2021 3161 543*2^2608129+1 785128 L4822 2018 3162 377*2^2607856-1 785046 L2257 2023 3163 329584*5^1122935-1 784904 L3553 2013 3164 10*311^314806+1 784737 L3610 2014 3165 1019*2^2606525+1 784646 L1201 2018 3166 977*2^2606211+1 784551 L4746 2018 3167 13*2^2606075-1 784508 L1862 2011 3168 693*2^2605905+1 784459 L4821 2018 3169 147*2^2604275+1 783968 L1741 2015 3170 105*2^2603631+1 783774 L3459 2015 3171 93*2^2602483-1 783428 L1862 2016 3172 155*2^2602213+1 783347 L2719 2015 3173a 545*2^2602018-1 783289 L5516 2023 3174 303*2^2601525+1 783140 L4816 2018 3175 711*2^2600535+1 782842 L4815 2018 3176 1133*2^2599345+1 782484 L4796 2018 3177 397*2^2598796+1 782319 L3877 2018 3178a 421*2^2597273-1 781860 L5516 2023 3179a 585*2^2596523-1 781635 L5819 2023 3180 1536*177^347600+1 781399 L5410 2020 3181 1171*2^2595736+1 781398 L3035 2018 3182 (146^180482+1)^2-2 781254 p405 2022 3183a 579*2^2595159-1 781224 L5516 2023 3184a 543*2^2594975-1 781169 L5516 2023 3185 909548^131072+1 781036 p387 2015 Generalized Fermat 3186 2*218^333925+1 780870 L4683 2017 3187e 15690*841^266965+1 780823 L5787 2023 3188 1149*2^2593359+1 780682 L1125 2018 3189 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 3190a 495*2^2592802-1 780514 L5516 2023 3191 333*2^2591874-1 780235 L2017 2019 3192 Phi(3,-883969^65536) 779412 p379 2015 Generalized unique 3193 2154*687^274573-1 778956 L5752 2023 3194 Phi(3,-872989^65536) 778700 p379 2015 Generalized unique 3195 703*2^2586728+1 778686 L4256 2018 3196 2642*372^302825-1 778429 L5410 2019 3197 120*825^266904+1 778416 L4001 2018 3198 337*2^2585660+1 778364 L2873 2018 3199 31*2^2585311-1 778258 L4521 2022 3200 393*2^2584957+1 778153 L4600 2018 3201 151*2^2584480+1 778009 L4043 2015 3202 Phi(3,-862325^65536) 778001 p379 2015 Generalized unique 3203 385*2^2584280+1 777949 L4600 2018 3204 Phi(3,-861088^65536) 777919 p379 2015 Generalized unique 3205 65*2^2583720-1 777780 L2484 2015 3206 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 3207 82*920^262409-1 777727 L4064 2015 3208 1041*2^2582112+1 777297 L1456 2018 3209 334310*211^334310-1 777037 p350 2012 Generalized Woodall 3210 229*2^2581111-1 776995 L1862 2017 3211 61*2^2580689-1 776867 L2484 2015 3212 1113*2^2580205+1 776723 L4724 2018 3213 51*2^2578652+1 776254 L3262 2013 3214 173*2^2578197+1 776117 L3035 2015 3215 833*2^2578029+1 776067 L4724 2018 3216 80*394^298731-1 775358 L541 2020 3217 302*423^295123-1 775096 L5413 2021 3218 460*628^276994+1 775021 L5410 2020 3219 459*2^2573899+1 774824 L1204 2018 3220b 593*2^2572634-1 774443 L5516 2023 3221 Phi(3,-806883^65536) 774218 p379 2015 Generalized unique 3222 357*2^2568110-1 773081 L2257 2023 3223 627*2^2567718+1 772963 L3803 2018 3224 933*2^2567598+1 772927 L4724 2018 3225 757*2^2566468+1 772587 L2606 2018 3226b 471*2^2566323-1 772543 L5516 2023 3227 231*2^2565263+1 772224 L3035 2015 3228 4*737^269302+1 772216 L4294 2016 Generalized Fermat 3229 941*2^2564867+1 772105 L4724 2018 3230 923*2^2563709+1 771757 L1823 2018 3231 151*596^278054+1 771671 L4876 2019 3232 Phi(3,-770202^65536) 771570 p379 2015 Generalized unique 3233 303*2^2562423-1 771369 L2017 2018 3234 75*2^2562382-1 771356 L2055 2011 3235 147559*2^2562218+1 771310 L764 2012 3236 117*412^294963+1 771300 p268 2021 3237 829*2^2561730+1 771161 L1823 2018 3238 404*12^714558+1 771141 L1471 2011 3239 Phi(3,-757576^65536) 770629 p379 2015 Generalized unique 3240 295*80^404886+1 770537 L5410 2021 3241 1193*2^2559453+1 770476 L2030 2018 3242 19*984^257291+1 770072 L5410 2020 3243 116*950^258458-1 769619 L5410 2021 3244e 612497*18^612497+1 768857 L5765 2023 Generalized Cullen 3245 Phi(3,-731582^65536) 768641 p379 2015 Generalized unique 3246b 479*2^2553152-1 768579 L5516 2023 3247 65*752^267180-1 768470 L5410 2020 3248 419*2^2552363+1 768341 L4713 2018 3249 369*2^2551955-1 768218 L2257 2023 3250 34*759^266676-1 768093 L4001 2019 3251 315*2^2550412+1 767754 L4712 2017 3252 415*2^2549590+1 767506 L4710 2017 3253 1152*792^264617-1 767056 L4955 2021 3254 693*2^2547752+1 766953 L4600 2017 3255 673*2^2547226+1 766795 L2873 2017 3256 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 3257 196*814^263256+1 766242 L5410 2021 Generalized Fermat 3258 183*2^2545116+1 766159 L3035 2015 3259 311*2^2544778-1 766058 L2017 2018 3260 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 3261 67*446^288982+1 765612 L4273 2020 3262 663*2^2542990+1 765520 L4703 2017 3263 705*2^2542464+1 765361 L2873 2017 3264 689186^131072+1 765243 g429 2013 Generalized Fermat 3265 745*2^2540726+1 764838 L4696 2017 3266 Phi(3,-682504^65536) 764688 p379 2015 Generalized unique 3267 64*177^340147-1 764644 L3610 2015 3268 421*2^2539336+1 764419 L4148 2017 3269 123287*2^2538167+1 764070 L3054 2012 3270 305716*5^1093095-1 764047 L3547 2013 3271 223*2^2538080+1 764041 L2125 2015 3272 83*2^2537641+1 763908 L1300 2013 3273 543539*2^2536028-1 763427 L4187 2022 3274b 473*2^2533376-1 762625 L5516 2023 3275 645*2^2532811+1 762455 L4600 2017 3276 953*2^2531601+1 762091 L4404 2017 3277 694*567^276568-1 761556 L4444 2021 3278 545*2^2528179+1 761061 L1502 2017 3279c 517*2^2527857-1 760964 L5516 2023 3280 203*2^2526505+1 760557 L3910 2015 3281 967*2^2526276+1 760488 L1204 2017 3282 3317*2^2523366-1 759613 L5399 2021 3283 241*2^2522801-1 759442 L2484 2018 3284 360307*6^975466-1 759066 p255 2017 3285 326*80^398799+1 758953 L4444 2021 3286 749*2^2519457+1 758436 L1823 2017 3287 199*2^2518871-1 758259 L2484 2018 3288 6*10^758068+1 758069 L5009 2019 3289 87*2^2518122-1 758033 L2484 2014 3290c 515*2^2517626-1 757884 L5516 2023 3291 Phi(3,-605347^65536) 757859 p379 2015 Generalized unique 3292 711*2^2516187+1 757451 L3035 2017 3293 967*2^2514698+1 757003 L4600 2017 3294 33*2^2513872-1 756753 L3345 2013 3295 973*2^2511920+1 756167 L1823 2017 3296 679*2^2511814+1 756135 L4598 2017 3297 1093*2^2511384+1 756005 L1823 2017 3298 38*875^256892-1 755780 L4001 2019 3299 45*2^2507894+1 754953 L1349 2012 3300 130484*5^1080012-1 754902 L3547 2013 3301 572186^131072+1 754652 g0 2004 Generalized Fermat 3302 242*501^279492-1 754586 L4911 2019 3303 883*2^2506382+1 754500 L1823 2017 3304 847*2^2505540+1 754246 L4600 2017 3305 191*2^2504121+1 753818 L3035 2015 3306 783*2^2500912+1 752853 L1823 2017 3307d 133*488^279973-1 752688 L541 2023 3308 165*2^2500130-1 752617 L2055 2011 3309 33*2^2499883-1 752542 L3345 2013 3310 319*2^2498685-1 752182 L2017 2018 3311c 477*2^2496685-1 751580 L5516 2023 3312 321*2^2496594-1 751553 L2235 2018 3313c 531*2^2495930-1 751353 L5516 2023 3314 365*2^2494991+1 751070 L3035 2017 3315 213*2^2493004-1 750472 L1863 2017 3316 777*2^2492560+1 750339 L3035 2017 3317 57*2^2492031+1 750178 L1230 2013 3318 879*2^2491342+1 749972 L4600 2017 3319 14*152^343720-1 749945 L3610 2015 3320 231*2^2489083+1 749292 L3035 2015 3321 255*2^2488562+1 749135 L3035 2015 3322c 483*2^2488154-1 749012 L5516 2023 3323 708*48^445477-1 748958 L5410 2022 3324 221*780^258841-1 748596 L4001 2018 3325 303*2^2486629+1 748553 L3035 2017 3326 6*433^283918-1 748548 L3610 2015 3327c 413*2^2486596-1 748543 L5516 2023 3328 617*2^2485919+1 748339 L1885 2017 3329 515*2^2484885+1 748028 L3035 2017 3330 1095*2^2484828+1 748011 L3035 2017 3331 1113*2^2484125+1 747800 L3035 2017 3332 607*2^2483616+1 747646 L3035 2017 3333 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 3334c 527*2^2482876-1 747423 L5516 2023 3335 723*2^2482064+1 747179 L3035 2017 3336 2154*687^263317-1 747023 L5410 2023 3337 26*3^1565545+1 746957 L4799 2020 3338 14336*3^1563960+1 746203 L5410 2021 3339 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 3340c 483*2^2478266-1 746036 L5516 2023 3341c 429*2^2478139-1 745997 L5516 2023 3342 1071*2^2477584+1 745831 L3035 2017 3343 22*30^504814-1 745673 p355 2014 3344 2074*483^277812-1 745637 L5410 2022 3345 11*2^2476839+1 745604 L2691 2011 3346 825*2^2474996+1 745051 L1300 2017 3347 1061*2^2474282-1 744837 L1828 2012 3348 435*2^2473905+1 744723 L3035 2017 3349 1005*2^2473724-1 744669 L4518 2021 3350 1121*2^2473401+1 744571 L3924 2017 3351 325*2^2473267-1 744531 L2017 2018 3352 400*639^265307-1 744322 L5410 2022 3353 11996*3^1559395+1 744025 L5410 2021 3354 889*2^2471082+1 743873 L1300 2017 3355 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 3356d 561*2^2469713-1 743461 L5516 2023 3357 883*2^2469268+1 743327 L4593 2017 3358 5754*313^297824-1 743237 L5089 2020 3359 81*2^2468789+1 743182 g418 2009 3360 55154*5^1063213+1 743159 L3543 2013 3361 119*2^2468556-1 743112 L2484 2018 3362 2136*396^285974+1 742877 L5410 2021 3363 525*2^2467658+1 742842 L3035 2017 3364d 465*2^2467625-1 742832 L5516 2023 3365 715*2^2465640+1 742235 L3035 2017 3366 26773*2^2465343-1 742147 L197 2006 3367 581*550^270707-1 741839 L5410 2020 3368 993*2^2464082+1 741766 L3035 2017 3369 1179*2^2463746+1 741665 L3035 2017 3370 857*2^2463411+1 741564 L3662 2017 3371 103*2^2462567-1 741309 L2484 2014 3372 12587*2^2462524-1 741298 L2012 2017 3373 5*2^2460482-1 740680 L503 2008 3374 763*2^2458592+1 740113 L1823 2017 3375 453*2^2458461+1 740074 L3035 2017 3376 519*2^2458058+1 739952 L3803 2017 3377 373*2^2457859-1 739892 L2257 2023 3378d 545*2^2457692-1 739842 L5516 2023 3379 137*2^2457639+1 739826 L4021 2014 3380d 411*2^2457241-1 739706 L5516 2023 3381 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 3382 2688*991^246849+1 739582 L5410 2021 3383 133*2^2455666+1 739232 L2322 2014 3384 99*2^2455541-1 739194 L1862 2015 3385 377*2^2452639+1 738321 L3035 2017 3386 2189*138^345010+1 738284 L5410 2020 3387 1129*2^2452294+1 738218 L3035 2017 3388 1103*2^2451133+1 737868 L4531 2017 3389 65*2^2450614-1 737711 L2074 2014 3390 549*2^2450523+1 737684 L3035 2017 3391 4*789^254595+1 737582 L4955 2019 3392 3942*55^423771-1 737519 L4955 2019 3393d 441*2^2449825-1 737474 L5516 2023 3394b Phi(3,-3*2^1224895) 737462 A3 2023 Generalized unique 3395 2166*483^274670-1 737204 L5410 2022 3396 765*2^2448660+1 737123 L4412 2017 3397 607*2^2447836+1 736875 L4523 2017 3398 1261*988^246031+1 736807 L5342 2021 3399 1005*2^2446722+1 736540 L4522 2017 3400 703*2^2446472+1 736465 L2805 2017 3401 75*2^2446050+1 736337 L3035 2013 3402 115*26^520277-1 736181 L1471 2014 3403 114986*5^1052966-1 735997 L3528 2013 3404 1029*2^2444707+1 735934 L3035 2017 3405 4*5^1052422+1 735613 L4965 2023 Generalized Fermat 3406 1035*2^2443369+1 735531 L3173 2017 3407 1017*2^2442723+1 735336 L4417 2017 3408d 489*2^2442281-1 735203 L5516 2023 3409 962*3^1540432+1 734976 L5410 2021 3410 1065*2^2441132+1 734857 L1823 2017 3411 369*2^2436949-1 733598 L2257 2023 3412 393*2^2436849+1 733568 L3035 2016 3413 1425*2^2435607-1 733194 L1134 2020 3414 386892^131072+1 732377 p259 2009 Generalized Fermat 3415 465*2^2431455+1 731944 L3035 2016 3416 905*2^2430509+1 731660 L4408 2016 3417 223*2^2430490+1 731653 L4016 2014 3418 8*410^279991+1 731557 L4700 2019 3419 69*2^2428251-1 730979 L384 2014 3420 6070*466^273937+1 730974 L5410 2021 3421d 541*2^2427667-1 730804 L5516 2023 3422 233*2^2426512-1 730456 L2484 2020 3423 645*2^2426494+1 730451 L3035 2016 3424 665*2^2425789+1 730239 L3173 2016 3425d 539*2^2425704-1 730213 L5516 2023 3426 23*2^2425641+1 730193 L2675 2011 3427d 527*2^2424868-1 729961 L5516 2023 3428 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 3429e 433*2^2423839-1 729651 L5516 2023 3430 753*2^2422914+1 729373 L3035 2016 3431 5619*52^424922+1 729172 L5410 2019 3432 105*2^2422105+1 729129 L2520 2014 3433 62*962^244403+1 729099 L5409 2021 3434 3338*396^280633+1 729003 L5410 2021 3435e 539*2^2421556-1 728964 L5516 2023 3436 201*2^2421514-1 728951 L1862 2016 3437 1084*7^862557+1 728949 L5211 2021 3438 239*2^2421404-1 728918 L2484 2018 3439 577*2^2420868+1 728757 L4489 2016 3440 929*2^2417767+1 727824 L3924 2016 3441 4075*2^2417579-1 727768 L1959 2017 3442 303*2^2417452-1 727729 L2235 2018 3443 895*2^2417396+1 727712 L3035 2016 3444d 113*1010^242194-1 727631 L5789 2023 3445 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 3446 3317*2^2415998-1 727292 L5399 2021 3447 5724*313^291243-1 726814 L4444 2020 3448 1081*2^2412780+1 726323 L1203 2016 3449 333*2^2412735-1 726309 L2017 2018 3450 6891*52^423132+1 726100 L5410 2019 3451 83*2^2411962-1 726075 L1959 2018 3452 69*2^2410035-1 725495 L2074 2013 3453 12362*1027^240890-1 725462 L4444 2018 3454 143157*2^2409056+1 725204 L4504 2016 3455 Phi(3,-340594^65536) 725122 p379 2015 Generalized unique 3456 339*2^2408337+1 724985 L3029 2016 3457 811*2^2408096+1 724913 L2526 2016 3458 157*2^2407958+1 724870 L1741 2014 3459 243686*5^1036954-1 724806 L3549 2013 3460 3660*163^327506+1 724509 L4955 2019 3461 303*2^2406433+1 724411 L4425 2016 3462 345*2^2405701+1 724191 L3035 2016 3463 921*2^2405056+1 723997 L2805 2016 3464 673*2^2403606+1 723561 L3035 2016 3465 475*2^2403220+1 723444 L4445 2016 3466 837*2^2402798+1 723318 L3372 2016 3467 Phi(3,-329886^65536) 723303 p379 2015 Generalized unique 3468 231*2^2402748+1 723302 L3995 2014 3469 375*2^2401881+1 723041 L2805 2016 3470e 511*2^2401795-1 723016 L5516 2023 3471 107*2^2401731+1 722996 L3998 2014 3472e 419*2^2401672-1 722978 L5516 2023 3473 1023*2^2398601+1 722054 L4414 2016 3474 539*2^2398227+1 721941 L4061 2016 3475 659*2^2397567+1 721743 L4441 2016 3476 40*844^246524+1 721416 L4001 2017 3477e 453*2^2395836-1 721222 L5516 2023 3478 465*2^2395133+1 721010 L4088 2016 3479 56*318^288096+1 720941 L1471 2019 3480 667*2^2394430+1 720799 L4408 2016 3481 15*2^2393365+1 720476 L1349 2010 3482 1642*273^295670+1 720304 L5410 2019 3483 8*908^243439+1 720115 L5410 2021 3484e 427*2^2391685-1 719972 L5516 2023 3485 633*2^2391222+1 719833 L3743 2016 3486 273*2^2388104+1 718894 L3668 2014 3487 118*558^261698+1 718791 L4877 2019 3488 1485*2^2386037-1 718272 L1134 2017 3489 399*2^2384115+1 717693 L4412 2016 3490 99*2^2383846+1 717612 L1780 2013 3491 737*2^2382804-1 717299 L191 2007 3492 111*2^2382772+1 717288 L3810 2014 3493e 423*2^2382134-1 717097 L2519 2023 3494 61*2^2381887-1 717022 L2432 2012 3495 202*249^299162+1 716855 L5410 2019 3496 321*2^2378535-1 716013 L2017 2018 3497 435*2^2378522+1 716010 L1218 2016 3498 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 3499 147*2^2375995+1 715248 L1130 2014 3500 915*2^2375923+1 715228 L1741 2016 3501 1981*2^2375591-1 715128 L1134 2017 3502 81*2^2375447-1 715083 L3887 2021 3503 1129*2^2374562+1 714818 L3035 2016 3504 97*2^2374485-1 714794 L2484 2018 3505 1117*2^2373977-1 714642 L1828 2012 3506 949*2^2372902+1 714318 L4408 2016 3507 1005*2^2372754-1 714274 L4518 2021 3508 659*2^2372657+1 714244 L3035 2016 3509 1365*2^2372586+1 714223 L1134 2016 3510 509*2^2370721+1 713661 L1792 2016 3511 99*2^2370390+1 713561 L1204 2013 3512 959*2^2370077+1 713468 L1502 2016 3513 1135*2^2369808+1 713387 L2520 2016 3514 125*2^2369461+1 713281 L3035 2014 3515f 475*2^2369411-1 713267 L5516 2023 3516 1183953*2^2367907-1 712818 L447 2007 Woodall 3517 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 3518 119878*5^1019645-1 712707 L3528 2013 3519 453*2^2367388+1 712658 L3035 2016 3520 150209!+1 712355 p3 2011 Factorial 3521 281*2^2363327+1 711435 L1741 2014 3522 2683*2^2360743-1 710658 L1959 2012 3523 409*2^2360166+1 710484 L1199 2016 3524f 465*2^2360088-1 710460 L5516 2023 3525f 561*2^2359543-1 710296 L5516 2023 3526 305*2^2358854-1 710089 L2017 2018 3527 1706*123^339764+1 710078 L5410 2021 3528 403*2^2357572+1 709703 L3029 2016 3529 155*2^2357111+1 709564 L3975 2014 3530f 523*2^2356047-1 709244 L2519 2023 3531 365*2^2355607+1 709111 L2117 2016 3532 33706*6^910462+1 708482 L587 2014 3533f 423*2^2353447-1 708461 L5516 2023 3534 1087*2^2352830+1 708276 L1492 2016 3535 152*1002^235971+1 708120 L5410 2019 3536 179*2^2352291+1 708113 L1741 2014 3537 559*2^2351894+1 707994 L3924 2016 3538 24573*2^2350824+1 707673 p168 2018 3539 1035*2^2350388+1 707541 L2526 2016 3540f 513*2^2348508-1 706975 L5516 2023 3541 433*2^2348252+1 706897 L2322 2016 3542 329*2^2348105+1 706853 L3029 2016 3543 45*2^2347187+1 706576 L1349 2012 3544 7675*46^424840+1 706410 L5410 2019 3545 127*2^2346377-1 706332 L282 2009 3546 933*2^2345893+1 706188 L3035 2016 3547 903*2^2345013+1 705923 L2006 2016 3548 33*2^2345001+1 705918 L2322 2013 3549 Phi(3,-242079^65536) 705687 p379 2015 Generalized unique 3550f 495*2^2343641-1 705509 L5516 2023 3551 627*2^2343140+1 705359 L3125 2016 3552 83*2^2342345+1 705119 L2626 2013 3553d 914*871^239796-1 705008 L5410 2023 3554 61*380^273136+1 704634 L5410 2019 3555 277*2^2340182+1 704468 L1158 2014 3556 159*2^2339566+1 704282 L3035 2014 3557 335*2^2338972-1 704104 L2235 2017 3558 535*2^2338971-1 704104 L2519 2023 3559 22*422^268038+1 703685 L4955 2019 3560 9602*241^295318-1 703457 L5410 2019 3561 1149*2^2336638+1 703402 L4388 2016 3562 339*2^2336421-1 703336 L2519 2017 3563 231*2^2335281-1 702992 L1862 2019 3564 275293*2^2335007-1 702913 L193 2006 3565 105*2^2334755-1 702834 L1959 2018 3566 228188^131072+1 702323 g124 2010 Generalized Fermat 3567 809*2^2333017+1 702312 L2675 2016 3568 795*2^2332488+1 702152 L3029 2016 3569 3^1471170-3^529291+1 701927 p269 2019 3570 351*2^2331311-1 701798 L2257 2023 3571 229*2^2331017-1 701709 L1862 2021 3572 118*761^243458+1 701499 L5410 2019 3573 435*2^2329948+1 701387 L2322 2016 3574 585*2^2329350+1 701207 L2707 2016 3575 213*2^2328530-1 700960 L1863 2017 3576 1482*327^278686+1 700773 L5410 2020 3577 26472*91^357645+1 700646 L5410 2020 3578 1107*2^2327472+1 700642 L3601 2016 3579 435*2^2327152+1 700546 L2337 2016 3580 413*2^2327048-1 700514 L5516 2023 3581 4161*2^2326875-1 700463 L1959 2016 3582 427*2^2326288+1 700286 L2719 2016 3583 438*19^547574-1 700215 L5410 2020 3584 147855!-1 700177 p362 2013 Factorial 3585 5872*3^1467401+1 700132 L4444 2021 3586 421*2^2324375-1 699710 L5516 2023 3587 451*2^2323952+1 699582 L3173 2016 3588 431*2^2323633+1 699486 L3260 2016 3589d 3084*871^237917-1 699484 L5790 2023 3590 228*912^236298-1 699444 L5366 2022 3591 1085*2^2323291+1 699384 L1209 2016 3592 15*2^2323205-1 699356 L2484 2011 3593 7566*46^420563+1 699299 L5410 2019 3594 1131*2^2322167+1 699045 L1823 2016 3595 385*2^2321502+1 698845 L1129 2016 3596 8348*3^1464571+1 698782 L5367 2021 3597 645*2^2320231+1 698462 L3377 2016 3598 1942*877^237267+1 698280 L5410 2022 3599 165*2^2319575+1 698264 L2627 2014 3600 809*2^2319373+1 698204 L3924 2016 3601 125098*6^896696+1 697771 L587 2014 3602 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 3603 381*2^2314743+1 696810 L4358 2016 3604 120*825^238890+1 696714 L4837 2018 3605 3375*2^2314297+1 696677 L1745 2019 3606 4063*2^2313843-1 696540 L1959 2016 3607 345*2^2313720-1 696502 L2017 2017 3608 74*830^238594-1 696477 L5410 2020 3609 495*2^2313462-1 696425 L5545 2023 3610 926*639^248221-1 696388 L4444 2022 3611 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 3612 1983*366^271591-1 696222 L2054 2012 3613 3*2^2312734-1 696203 L158 2005 3614 2643996*7^823543-1 695981 p396 2021 3615 53653*2^2311848+1 695941 L2012 2017 3616 873*2^2311086+1 695710 L2526 2016 3617 1033*2^2310976+1 695677 L4352 2016 3618 4063*2^2310187-1 695440 L1959 2016 3619 4063*2^2309263-1 695162 L1959 2016 3620 565*2^2308984+1 695077 L2322 2016 3621 447*2^2308104-1 694812 L5516 2023 3622 450457*2^2307905-1 694755 L172 2006 3623 1018*3^1455600+1 694501 L5410 2021 3624 553*2^2306343-1 694282 L5516 2023 3625 1185*2^2306324+1 694276 L4347 2016 3626 3267*2^2305266+1 693958 L1204 2019 3627 107*770^240408-1 693938 L4955 2020 3628 467*2^2304298-1 693666 L5516 2023 3629 537*2^2304115+1 693611 L3267 2016 3630 842*1017^230634-1 693594 L4001 2017 3631 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 3632 641*2^2302879+1 693239 L2051 2016 3633 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 3634 189*2^2299959+1 692359 L2627 2014 3635 2582*111^338032-1 691389 L4786 2021 3636 659*2^2294393+1 690684 L3378 2016 3637 1087*2^2293345-1 690369 L1828 2011 3638 97768*5^987383-1 690157 L1016 2013 3639 4761657101009*2^2292504-1 690126 L257 2019 3640 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 3641 319*2^2290722+1 689579 L1792 2015 3642e 3066*697^242498-1 689482 L5410 2023 3643 779*2^2290273+1 689444 L3034 2016 3644 1001*2^2289438-1 689193 L4518 2020 3645 971*2^2289135+1 689102 L4198 2016 3646 399*2^2288691+1 688968 L1990 2015 3647 1425*2^2288483-1 688906 L1134 2021 3648 Phi(3,-180139^65536) 688864 p379 2015 Generalized unique 3649 74270*151^315734-1 687982 L4001 2018 3650 23902*52^400831+1 687832 L5410 2019 3651 417*2^2284402+1 687677 L2322 2015 3652 130*686^242244+1 687085 L4064 2018 3653 427*2^2282080+1 686978 L3260 2015 3654 109*2^2280194+1 686409 L2520 2014 3655 105*2^2280078-1 686374 L2444 2014 3656 1019*2^2278467+1 685890 L4323 2016 3657 213*2^2277870-1 685710 L1863 2017 3658 904*957^229937-1 685425 L5410 2022 3659 547*2^2276648+1 685343 L3260 2015 3660 26*3^1435875+1 685088 L4799 2020 3661 7913*2^2275664-1 685048 L4036 2015 3662 5*6^880336+1 685036 p420 2023 3663 651*2^2275040+1 684859 L4082 2016 3664 155877*2^2273465-1 684387 L541 2014 3665 16*710^240014+1 684344 L5410 2019 Generalized Fermat 3666 739*2^2272938+1 684226 L1209 2016 3667 279*798^235749-1 684147 L541 2021 3668 4821*396^263301+1 683980 L5410 2021 3669 (362^133647+1)^2-2 683928 p403 2019 3670 943*2^2269594+1 683219 L1823 2016 3671 493*2^2269427-1 683169 L5516 2023 3672 182*792^235539+1 682766 L4837 2019 3673 1286*603^245567+1 682758 L4444 2019 3674 50*893^231310-1 682564 L4975 2019 3675 329*2^2266631+1 682327 L4109 2015 3676 739*2^2266602+1 682319 L2520 2016 3677 19683*2^2265896+1 682107 L2914 2019 3678 1151*2^2265761+1 682066 L1823 2016 3679 851*2^2265691+1 682044 L3173 2016 3680 977*2^2265655+1 682034 L2413 2016 3681 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 3682 185*2^2264906-1 681807 L2484 2022 3683 31924*3^1428855+1 681742 L5410 2021 3684 217*2^2264546+1 681699 L3179 2014 3685 178*821^233901-1 681671 L5410 2022 3686 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 3687 93*2^2263894+1 681502 L2826 2013 3688 34*912^230098+1 681091 L5410 2022 3689 377*2^2262094-1 680961 L2257 2023 3690 74*932^229308-1 680913 L4444 2021 3691 217499*28^470508-1 680905 p366 2013 3692 963*2^2261357+1 680740 L1300 2016 3693 2138*3^1426626+1 680677 L5410 2021 3694 1065*2^2260193+1 680389 L1204 2016 3695 837*2^2259470+1 680172 L1823 2016 3696 927*2^2258112+1 679763 L4287 2016 3697 265*2^2258071-1 679750 L2484 2018 3698e 430157*38^430157+1 679561 L5765 2023 Generalized Cullen 3699 561*2^2256600+1 679308 L3877 2015 3700 495*2^2255944+1 679110 L4119 2015 3701 489*2^2255331-1 678925 L5516 2023 3702 129*2^2255199+1 678885 L3049 2014 3703 735*2^2254660+1 678724 L4283 2016 3704 162*814^233173+1 678682 L5410 2021 3705 403*2^2254355-1 678632 L5516 2023 3706 973*2^2254320+1 678621 L1204 2016 3707 275102*151^311399-1 678537 L4001 2018 3708 603*2^2252402+1 678044 L1803 2016 3709 1029*2^2252198+1 677983 L3125 2016 3710 39*2^2251104-1 677652 L177 2015 3711 575*2^2250751+1 677547 L1741 2015 3712 2838*88^348438+1 677536 L5410 2020 3713 725*2^2250697+1 677531 L2859 2016 3714 65*2^2250637+1 677512 L3487 2013 3715 14641*2^2250096+1 677351 L181 2017 Generalized Fermat 3716 187*2^2249974+1 677312 L2322 2014 3717 141*2^2249967+1 677310 L3877 2014 3718 459*2^2249183+1 677075 L3877 2015 3719 904*957^227111-1 677001 L5410 2022 3720 319*2^2248914+1 676994 L2322 2015 3721 569*2^2248709+1 676932 L4133 2015 3722 571*2^2248701-1 676930 L5516 2023 3723 221*2^2248363+1 676828 L1130 2014 3724 144912*151^310514-1 676609 L4001 2018 3725 649*2^2247490+1 676565 L1204 2016 3726 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 3727 721*2^2246420+1 676243 L3037 2016 3728 875*2^2246363+1 676226 L2859 2016 3729 3888*931^227714-1 676075 L4001 2018 3730 347*2^2245598-1 675995 L2519 2017 3731 1199*2^2244631+1 675705 L3593 2016 3732 137*2^2244398-1 675634 L2484 2022 3733 197*2^2244347+1 675619 L1129 2014 3734 6510*565^245490+1 675605 L5410 2022 3735 507*2^2244237-1 675586 L5516 2023 3736 5055*2^2242777-1 675147 L4036 2015 3737 651*2^2241783+1 674847 L3260 2016 3738 35*2^2241049+1 674625 L2742 2013 3739 4161*2^2240358-1 674419 L1959 2016 3740 164978*151^309413-1 674210 L4001 2018 3741 493*2^2238775-1 673942 L5516 2023 3742 2354*138^314727+1 673482 L5410 2020 3743 20*698^236810-1 673455 L5410 2020 3744 146*447^254042-1 673292 L4001 2018 3745 675*2^2236244+1 673180 L4191 2016 3746 615*2^2235833+1 673056 L1823 2016 3747 53069*28^465060-1 673021 p257 2016 3748 831*2^2235253+1 672882 L3432 2013 3749 185*2^2235003+1 672806 L2322 2014 3750 103*2^2234536+1 672665 L3865 2014 3751 885*2^2234318+1 672600 L3125 2016 3752 963*2^2234249+1 672579 L1823 2016 3753 305*2^2233655+1 672400 L4118 2015 3754 267*2^2233376+1 672316 L1792 2014 3755 221*994^224221-1 672080 L5410 2020 3756 103*2^2232551-1 672067 L2484 2013 3757 889*2^2231034+1 671612 L2526 2016 3758 1779*88^345359+1 671548 L5410 2020 3759 907*2^2230776+1 671534 L4269 2016 3760 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 3761 1425*2^2229009+1 671002 L1134 2016 3762 747*2^2228814+1 670943 L2526 2016 3763 9760*3^1406070+1 670870 L4444 2021 3764 969*2^2228379+1 670812 L4262 2016 3765 887*2^2228179+1 670752 L2840 2015 3766 130816^131072+1 670651 g308 2003 Generalized Fermat 3767 1123*2^2227338+1 670499 L3924 2015 3768 3478*378^260076+1 670348 L4955 2021 3769 213*2^2226329+1 670195 L2125 2014 3770 505*2^2225296+1 669884 L4111 2015 3771 11*878^227481+1 669591 L5410 2019 3772 271*2^2223601-1 669374 L2484 2018 3773 325*2^2223243-1 669266 L2235 2016 3774 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 3775 84363*2^2222321+1 668991 L541 2014 3776 2516745*2^2222222+1 668962 p396 2017 3777 7043*48^397817-1 668831 p255 2016 3778 1137*2^2221062+1 668610 L4040 2015 3779 471*2^2220478-1 668434 L5516 2023 3780 152*806^229984-1 668413 L4001 2018 3781 1425*2^2219664-1 668189 L1134 2021 3782 1031*2^2218785+1 667924 L1204 2015 3783 911*2^2218151+1 667733 L3260 2015 3784 27*2^2218064+1 667706 L690 2009 3785 587*2^2217355+1 667494 L4109 2015 3786 547*2^2216110+1 667119 L2322 2015 3787 67*2^2215581-1 666959 L268 2010 3788 33*2^2215291-1 666871 L3345 2013 3789 157533*2^2214598-1 666666 L3494 2013 3790 1105*2^2213846+1 666438 L2321 2015 3791 33*2^2212971-1 666173 L3345 2013 3792 101*2^2212769+1 666112 L1741 2014 3793 3*10^665829+1 665830 p300 2012 3794 4207801666259*2^2211084-1 665616 L257 2019 3795 298*912^224846+1 665546 L5410 2022 3796 631*2^2210260+1 665358 L2322 2015 3797 479*2^2209541+1 665141 L4106 2015 3798 165*2^2207550-1 664541 L2055 2011 3799 819*2^2206370+1 664187 L2526 2015 3800 19*2^2206266+1 664154 p189 2006 3801 45*2^2205977-1 664067 L1862 2015 3802 1323*2^2205832+1 664025 L4893 2019 3803 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 3804 73*416^253392+1 663660 L3610 2015 3805 531*2^2203439-1 663304 L5516 2022 3806 790*821^227461-1 662903 L5410 2022 3807b Phi(3,3*2^1100957) 662844 A3 2023 Generalized unique 3808 Phi(3,-16159^78732) 662674 p294 2014 Generalized unique 3809 1041*2^2201196+1 662630 L3719 2015 3810 481*2^2201148+1 662615 L1741 2015 3811 1344*73^355570+1 662545 L3610 2014 3812 551*2^2200462-1 662408 L5516 2022 3813 783*2^2200256+1 662346 L3924 2015 3814 969*2^2200223+1 662337 L1209 2015 3815 173*2^2199301+1 662058 L1204 2014 3816 5077*2^2198565-1 661838 L251 2008 3817 114487*2^2198389-1 661787 L179 2006 3818 1035*2^2197489+1 661514 L2517 2014 3819 903*2^2197294+1 661455 L2322 2014 3820 404882*43^404882-1 661368 p310 2011 Generalized Woodall 3821 638*520^243506-1 661366 L4877 2019 3822 537*2^2196693-1 661274 L5516 2022 3823 12192710656^65536+1 661003 L5218 2021 Generalized Fermat 3824 256*3^1384608+1 660629 L3802 2014 Generalized Fermat 3825 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 3826 10880*151^302997-1 660228 L4001 2018 3827 1073*2^2193069+1 660183 L2487 2014 3828 169*2^2193049-1 660176 L2484 2018 3829 26040*421^251428+1 659823 L5410 2021 3830 202064*151^302700-1 659582 L4001 2018 3831 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 3832 819*2^2190853+1 659516 L3234 2014 3833 591*2^2190433-1 659389 L5516 2022 3834 1179*2^2189870+1 659220 L2517 2014 3835 385*2^2189441-1 659091 L2235 2022 3836 269*2^2189235+1 659028 L1204 2014 3837 39*2^2188855+1 658913 p286 2013 3838 433*2^2188076+1 658680 L3855 2014 3839 1323*2^2186806+1 658298 L4974 2019 3840 815*2^2185439+1 657886 L3035 2014 3841 249*2^2185003+1 657754 L1300 2014 3842 585*2^2184510+1 657606 L3838 2014 3843 1033*2^2183858+1 657410 L3865 2014 3844 1035*2^2183770+1 657384 L3514 2014 3845 193020*151^301686-1 657373 L4001 2018 3846 353938*7^777777+1 657304 L4789 2020 3847 1179*2^2182691+1 657059 L2163 2014 3848 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 3849 23902*52^382687+1 656697 L4876 2019 3850 525*2^2180848+1 656504 L3797 2014 3851 135*2^2180256-1 656325 L1959 2019 3852 1107*2^2180142+1 656292 L1741 2014 3853 447*2^2180102+1 656279 L3760 2014 3854 315*2^2179612-1 656132 L2235 2015 3855 1423*2^2179023-1 655955 L3887 2015 3856 995*2^2178819+1 655893 L1741 2014 3857 219*2^2178673-1 655849 L5313 2021 3858 1423*2^2178363-1 655756 L3887 2015 3859 196597*2^2178109-1 655682 L175 2006 3860 6*10^655642+1 655643 L5009 2019 3861 879*2^2177186+1 655402 L2981 2014 3862 573*2^2176326-1 655143 L5516 2022 3863 67*410^250678+1 654970 L4444 2019 3864 587*2^2175602-1 654925 L5516 2022 3865 70082*5^936972-1 654921 L3523 2013 3866 699*2^2175031+1 654753 L3865 2014 3867 1260*991^218477+1 654577 L5410 2021 3868 69*2^2174213-1 654506 L2055 2012 3869 1069*2^2174122+1 654479 L3865 2014 3870 793*2^2173720+1 654358 L2322 2014 3871 3267*2^2173170+1 654193 L1204 2019 3872 651*2^2173159+1 654189 L3864 2014 3873 187*2^2172693-1 654049 L1959 2019 3874 10001*2^2172615+1 654027 L4405 2018 3875 1011*2^2172063+1 653860 L2826 2014 3876 1105*2^2171956+1 653827 L3035 2014 3877 4165*2^2171145-1 653584 L1959 2017 3878 Phi(3,-96873^65536) 653552 L4026 2014 Generalized unique 3879 739*2^2170786+1 653475 L2121 2014 3880 134*937^219783-1 653140 L5410 2021 3881 701*2^2169041+1 652950 L3863 2014 3882 1779*88^335783+1 652928 L5410 2020 3883 295*2^2168448+1 652771 L1935 2014 3884 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 3885 359*2^2165551+1 651899 L3838 2014 3886 453*2^2165267-1 651813 L5516 2022 3887 1059*2^2164149+1 651477 L2322 2014 3888 329*2^2163717+1 651347 L2117 2014 3889 559*2^2163382+1 651246 L1741 2014 3890 235*2^2163273-1 651213 L5313 2021 3891 775*2^2162344+1 650934 L3588 2014 3892 21*2^2160479-1 650371 L2074 2012 3893 399*2^2160379-1 650342 L5545 2022 3894 102976*5^929801-1 649909 L3313 2013 3895 1007*2^2158720-1 649843 L4518 2021 3896 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 3897 617*2^2156699+1 649234 L1675 2014 3898 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat 3899f 551878*15^551878+1 649065 L5765 2023 Generalized Cullen 3900 57*572^235362+1 648989 L4444 2021 3901 2*3^1360104-1 648935 p390 2015 3902 483*2^2155456+1 648860 L3760 2014 3903 105*2^2155392+1 648840 L3580 2014 3904 40*1017^215605+1 648396 L4927 2018 3905 1005*2^2153712-1 648335 L4518 2021 3906 31340*6^833096+1 648280 p271 2013 3907 537*2^2153392-1 648239 L5516 2022 3908 415*2^2153341-1 648223 L5516 2022 3909 427*2^2153306+1 648213 L3838 2014 3910 834*709^227380-1 648183 L5410 2021 3911 395*2^2152816-1 648065 L5598 2022 3912 261*2^2152805+1 648062 L1125 2014 3913 405*2^2152377-1 647933 L1862 2022 3914 371*2^2150871+1 647480 L2545 2014 3915 111*2^2150802-1 647458 L2484 2013 3916 357*2^2148518+1 646771 L1741 2014 3917 993*2^2148205+1 646678 L1741 2014 3918 67*2^2148060+1 646633 L3276 2013 3919 243*2^2147387-1 646431 L2444 2014 3920 693*2^2147024+1 646322 L3862 2014 3921 567*2^2146332-1 646114 L5516 2022 3922 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 3923 143157*2^2144728+1 645633 L4504 2016 3924 509*2^2144181+1 645466 L3035 2014 3925 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 3926 161*2^2142431+1 644939 L3105 2014 3927 587*2^2142136-1 644850 L5516 2022 3928 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 3929 571*2^2141727-1 644727 L5516 2022 3930 23*2^2141626-1 644696 L545 2008 3931 519*2^2140311+1 644301 L2659 2014 3932 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 3933 315*2^2139665+1 644106 L3838 2014 3934 193*2^2139400+1 644026 L3538 2014 3935 1113*2^2139060+1 643925 L3914 2014 3936 292402*159^292402+1 643699 g407 2012 Generalized Cullen 3937 307*2^2137553-1 643471 L2235 2015 3938 1051*2^2137440+1 643437 L3865 2014 3939 1185*2^2137344+1 643408 L3877 2014 3940 405*2^2137280-1 643388 L1862 2016 3941 483*2^2136414-1 643128 L5516 2022 3942 513*2^2135642+1 642896 L3843 2014 3943 241*2^2135279-1 642786 L2484 2018 3944 915*2^2135151+1 642748 L2322 2014 3945 61*2^2134577-1 642574 L2055 2011 3946 2*3^1346542+1 642465 L5043 2020 3947 93*10^642225-1 642227 L4789 2020 Near-repdigit 3948 26362*421^244658+1 642057 L5388 2021 3949 5428*378^249058+1 641949 L5410 2021 3950 711*2^2132477+1 641943 L2125 2014 3951 81*984^214452+1 641856 L5410 2020 Generalized Fermat 3952 215*2^2131988-1 641795 L2484 2018 3953 473*2^2130944-1 641481 L5516 2022 3954 319*2^2130729-1 641416 L1817 2015 3955 78792*151^294324-1 641331 L4001 2018 3956 75*2^2130432-1 641326 L2055 2011 3957 1145*2^2130307+1 641290 L3909 2014 3958 110488*5^917100+1 641031 L3354 2013 3959 37*2^2128328+1 640693 L3422 2013 3960 103*2^2128242+1 640667 L3787 2014 3961 185*2^2127966-1 640584 L1959 2019 3962 3762*70^347127+1 640487 L4876 2019 3963 253*2^2126968+1 640284 L1935 2014 3964 583*2^2126166+1 640043 L1741 2014 3965 999*2^2125575+1 639865 L1741 2014 3966 7*848^218439-1 639677 L5410 2020 3967 587*2^2124947+1 639676 L3838 2014 3968 451*2^2124636+1 639582 L1741 2014 3969 887*2^2124027+1 639399 L3865 2014 3970 721751*2^2123838-1 639345 L4001 2022 3971 545*2^2122250-1 638864 L5516 2022 3972c 745*2^2121591-1 638666 L2519 2023 3973 693*2^2121393+1 638606 L3278 2014 3974 118*107^314663-1 638575 L5227 2021 3975 8331405*2^2120345-1 638295 L2055 2013 3976 975*2^2119209+1 637949 L1158 2014 3977 33*2^2118570-1 637755 L3345 2013 3978 117*2^2117600-1 637464 L1959 2019 3979 254*5^911506-1 637118 p292 2010 3980 579*2^2116044-1 636996 L5516 2022 3981 1139*2^2115949+1 636968 L3865 2014 3982 771*2^2115741+1 636905 L1675 2014 3983 411*2^2115559+1 636850 L2840 2014 3984 34*3^1334729+1 636830 L4799 2021 3985 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 3986 929*2^2114679+1 636585 L3035 2014 3987 571*2^2113491-1 636227 L5516 2022 3988 1065*2^2113463+1 636219 L2826 2014 3989d 753*2^2112554-1 635945 L1817 2023 3990 609179*2^2111132-1 635520 L5410 2022 3991 591*2^2111001+1 635478 L1360 2014 3992 357*2^2109585-1 635051 L5546 2022 3993 1051*2^2109344+1 634979 L3035 2014 3994 433*2^2109146+1 634919 L1935 2014 3995 519*2^2108910+1 634848 L1356 2014 3996 1047*2^2108751+1 634801 L3824 2014 3997 257*2^2108554-1 634741 L5313 2021 3998 3261*46^381439+1 634245 L5000 2019 3999 765*2^2106027+1 633981 L3838 2014 4000 503*2^2106013+1 633976 L1741 2014 4001 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 4002 113*2^2104825+1 633618 L3785 2014 4003f 981*2^2104657-1 633568 L2257 2023 4004 381*2^2103999+1 633370 L2322 2014 4005 1246461300659*2^2103424-1 633206 L2484 2015 4006 57*2^2103370-1 633180 L2055 2011 4007 539*2^2102167+1 632819 L3125 2014 4008 1425*2^2101260-1 632546 L1134 2020 4009 1001*2^2101062-1 632486 L4518 2020 4010 179*894^214290-1 632445 L5209 2020 4011 633*2^2100738-1 632388 L2257 2023 4012 687*2^2100243+1 632239 L3867 2014 4013 329*2^2099771+1 632097 L2507 2014 4014 35*2^2099769+1 632095 L3432 2013 4015 405*2^2099716+1 632081 L3154 2014 4016 575*2^2098483+1 631710 L3168 2014 4017 523*2^2098043-1 631577 L5516 2022 4018 1005*2^2097683-1 631469 L4518 2021 4019 919*2^2097543-1 631427 L1817 2023 4020 729*2^2097449-1 631398 L2257 2023 4021 2509589*2^2097152-1 631313 L466 2022 4022 522335*2^2097154-1 631312 L466 2022 4023 695265*2^2097153-1 631312 L466 2020 4024 208703*2^2097153+1 631312 L466 2018 4025 28401*2^2097152+1 631311 L4547 2017 4026 399*2^2096857-1 631220 L5546 2022 4027 907*2^2095896+1 630931 L1129 2014 4028 815730721*2^2095440+1 630800 L466 2019 Generalized Fermat 4029 2503*2^2094587-1 630537 L4113 2017 4030 14641*2^2093384+1 630176 L181 2017 Generalized Fermat 4031 103*2^2093350+1 630164 L3432 2013 4032 4001*2^2093286-1 630146 L1959 2014 4033 14172*1027^209226-1 630103 L4001 2018 4034 369*2^2093022+1 630065 L3514 2014 4035 217*2^2092673-1 629960 L2484 2018 4036 2188*253^262084+1 629823 L5410 2020 4037 68*920^212407+1 629532 L4001 2017 4038 165*2^2090645+1 629350 L1209 2014 4039 1119*2^2090509+1 629309 L2520 2014 4040 941*2^2090243+1 629229 L1356 2014 4041 435*2^2089948-1 629140 L5516 2022 4042 615*2^2089329-1 628954 L2257 2023 4043 62722^131072+1 628808 g308 2003 Generalized Fermat 4044 401*2^2088713+1 628768 L3035 2014 4045 1702*1021^208948+1 628734 L5410 2021 4046 819*2^2088423+1 628681 L3890 2014 4047 363*2^2088182-1 628608 L5545 2022 4048 423*2^2088102-1 628584 L5516 2022 4049 1009*2^2087690+1 628461 L3728 2014 4050 85*2^2087651-1 628448 L2338 2013 4051 467*2^2085835+1 627902 L3625 2014 4052 563528*13^563528-1 627745 p262 2009 Generalized Woodall 4053 55*2^2084305-1 627441 L3887 2021 4054 (146^144882-1)^2-2 627152 p405 2022 4055 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 4056 18*984^209436-1 626843 L5410 2019 4057 247*2^2082202+1 626808 L3294 2014 4058 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 4059 159*2^2081069-1 626467 L1959 2019 4060 27*634^223550+1 626409 L4001 2018 4061 399*2^2080579-1 626320 L5546 2022 4062 655*2^2080562+1 626315 L3859 2014 4063 201*2^2080464+1 626285 L1741 2014 4064 269328*211^269328+1 626000 p354 2012 Generalized Cullen 4065 153*2^2079401+1 625965 L3601 2014 4066 279*2^2079167+1 625895 L2413 2014 4067 692*95^316400-1 625755 L4444 2019 4068 643*2^2078306+1 625636 L3035 2014 4069 79*2^2078162+1 625591 L2117 2013 4070 1485*2^2077172+1 625295 L1134 2015 4071 777*2^2076841-1 625195 L2257 2023 4072 405*2^2076673-1 625144 L5516 2022 4073 239*2^2076663+1 625141 L2413 2014 4074 1003*2^2076535-1 625103 L51 2008 4075 2186*7^739474-1 624932 p258 2011 4076 73*2^2075936+1 624921 L3464 2013 4077 825*2^2075800-1 624881 L2257 2023 4078 807*2^2075519+1 624797 L3555 2014 4079 585*2^2075384-1 624756 L5516 2022 4080 1425*2^2075382+1 624756 L1134 2015 4081c 1308596*3^1308596+1 624366 p137 2023 Generalized Cullen 4082 65*2^2073229+1 624106 L1480 2013 4083 693*2^2072564+1 623907 L3290 2014 4084 55*552^227540-1 623903 L4786 2019 4085 867*2^2072142-1 623780 L2257 2023 4086 375*2^2071598+1 623616 L2413 2014 4087 73*2^2071592+1 623614 L1480 2013 4088 125*2^2071555+1 623603 L3432 2013 4089 1107*2^2071480+1 623581 L2520 2014 4090 6207*28^430803-1 623444 L1471 2014 4091 299*2^2070979+1 623430 L1741 2014 4092 99*2^2070908-1 623408 L1862 2015 4093 831*2^2070622-1 623323 L5545 2023 4094 19062*1027^206877-1 623029 L4444 2018 4095 891*2^2069024+1 622842 L2520 2014 4096 943*2^2068944+1 622818 L1741 2014 4097 579*2^2068647+1 622728 L2967 2014 4098 911*2^2068497+1 622683 L1741 2014 4099 501*2^2067915-1 622508 L5551 2022 4100 1005*2^2067272+1 622314 L3895 2014 4101 441*2^2067233-1 622302 L5516 2022 4102 3474*5^890253+1 622264 L5410 2021 4103 393*2^2066540+1 622094 L3700 2014 4104 44*950^208860-1 621929 L4187 2021 4105 951*2^2065180+1 621685 L1403 2014 4106 915*2^2064663+1 621529 L3035 2014 4107 213*2^2064426-1 621457 L1863 2017 4108 29*468^232718+1 621416 L4832 2018 4109 1455*2^2064103-1 621361 L1134 2016 4110 983*2^2064020-1 621335 L2257 2023 4111 824*423^236540-1 621238 L5410 2021 4112 447*2^2063218-1 621094 L5551 2022 4113 9756404*15^527590-1 620501 L5630 2022 4114 9*2^2060941-1 620407 L503 2008 4115 813*2^2060392-1 620243 L2257 2023 4116 1455*2^2059553+1 619991 L1134 2015 4117 659*2^2058623+1 619711 L3860 2014 4118 128448*151^284308-1 619506 L4001 2018 4119 477*2^2057225-1 619290 L5516 2022 4120 909*2^2056937-1 619203 L2257 2023 4121 575*2^2056081+1 618945 L1935 2014 4122 1095*2^2055975+1 618914 L3518 2014 4123 589*2^2055877-1 618884 L5516 2022 4124 3*10^618853+1 618854 p300 2012 4125 225*2^2055433-1 618750 L2484 2022 4126 819*2^2054470+1 618461 L2826 2014 4127 969*2^2054054+1 618335 L3668 2014 4128 3394*28^427262+1 618320 p385 2015 4129 318564*151^283711-1 618206 L4444 2018 4130 675*2^2053578+1 618192 L1792 2014 4131 178998*151^283702-1 618186 L4001 2018 4132 551*2^2051922-1 617693 L5516 2022 4133 281*2^2051865+1 617676 L5519 2022 4134 5916*277^252878-1 617654 L5410 2020 4135 739*2^2051658+1 617614 L3838 2014 4136 71*2^2051313+1 617509 L1480 2013 4137 265*2^2051155-1 617462 L2484 2018 4138 779*2^2050881+1 617380 L3453 2014 4139 75*2^2050637-1 617306 L2055 2011 4140 377*2^2050148-1 617159 L2235 2022 4141 935*2^2050113+1 617149 L3696 2014 4142 847*2^2049400+1 616934 L2322 2014 4143 4998*235^260170-1 616885 L5410 2019 4144 541*2^2049193-1 616872 L5516 2022 4145 73*2^2048754+1 616739 L3432 2013 4146 30*712^215913+1 615889 L4444 2022 4147 527*2^2045751+1 615836 L4123 2014 4148 785*2^2045419+1 615736 L3861 2014 4149 195*2^2044789+1 615546 L3744 2014 4150 537*2^2044162+1 615357 L1741 2014 4151 413*2^2043829+1 615257 L1300 2014 4152 1682*655^218457-1 615231 L4925 2022 4153 431*2^2043666-1 615208 L5516 2022 4154 1334*567^223344-1 615000 L5410 2021 4155 345*2^2042295+1 614795 L2562 2014 4156 777*2^2041710-1 614619 L2257 2023 4157 216848*151^282017-1 614514 L4700 2018 4158 104*579^222402-1 614428 L4001 2018 4159 57257*2^2040062-1 614125 L4812 2019 4160 1069*2^2039562+1 613973 L1741 2014 4161 625*2^2039416+1 613929 L1741 2014 Generalized Fermat 4162 7188*313^245886-1 613624 L5410 2020 4163 1085*2^2038005+1 613504 L2520 2014 4164 125*2^2037752-1 613427 L2444 2014 4165 1069*2^2036902+1 613172 L3876 2014 4166 10020*171^274566+1 613109 L5410 2019 4167 417*2^2036482+1 613045 L1847 2014 4168 701*2^2035955+1 612887 L2823 2014 4169 1025*2^2034405+1 612420 L1741 2014 4170 651*2^2034352+1 612404 L3459 2014 4171 121*2^2033941-1 612280 L162 2006 4172 19683*2^2033900+1 612270 L1823 2019 4173 57*2^2033643+1 612190 L3432 2013 4174 4175*2^2032552-1 611863 L1959 2017 4175 249*2^2031803+1 611637 L2327 2014 4176 783*2^2031629+1 611585 L2126 2014 4177 10005*2^2031284+1 611482 p168 2022 4178 (290^124116-1)^2-2 611246 p403 2019 4179 767*2^2030354-1 611201 L2257 2023 4180 872*268^251714-1 611199 L5410 2019 4181 921*2^2030231-1 611164 L2257 2023 4182 4157*2^2029894-1 611063 L1959 2017 4183 293028*151^280273-1 610714 L4001 2018 4184 285*2^2028495+1 610641 L2594 2014 4185 615*2^2028140-1 610534 L2257 2023 4186 775*2^2027562+1 610360 L1204 2014 4187 199*686^215171-1 610297 L4001 2018 4188 4190*235^257371-1 610248 L5410 2019 4189 621*2^2026864+1 610150 L3446 2014 4190 357*2^2026846+1 610144 L2163 2014 4191 425*2^2026610-1 610074 L5516 2022 4192 122112*151^279966-1 610045 L4001 2018 4193 879*2^2026501+1 610041 L1139 2014 4194 4185*2^2026400-1 610011 L1959 2017 4195 787*2^2026242+1 609963 L2122 2014 4196 2*3^1277862+1 609696 L5043 2020 4197 273*2^2024810-1 609531 L5118 2020 4198 919*2^2024094+1 609316 L1741 2014 4199 325*2^2024035-1 609298 L4076 2015 4200 811*2^2023885-1 609254 L2257 2023 4201 235*2^2023486+1 609133 L2594 2014 4202 559*2^2023437-1 609118 L5516 2022 4203 195*2^2023030+1 608996 L4122 2014 4204 8*10^608989-1 608990 p297 2011 Near-repdigit 4205 1485*2^2022873+1 608949 L1134 2015 4206 233*2^2022801+1 608927 L3767 2014 4207 521*2^2022059+1 608704 L3760 2014 4208 569*2^2021884-1 608651 L5516 2022 4209 5678*1027^202018-1 608396 L4001 2018 4210 94*790^209857+1 608090 L4001 2018 4211 19650619*2^2019807-1 608030 L3432 2022 4212 431*2^2019693+1 607991 L2100 2014 4213 1155*2^2019244+1 607857 L3873 2014 4214 195*2^2018866+1 607742 L2413 2014 4215 59506*6^780877+1 607646 p254 2013 4216 4101*2^2018133-1 607523 L1959 2017 4217 2152*177^270059+1 607089 L5410 2020 4218 5844*693^213666+1 606972 L5410 2022 4219e (2634^88719+1)^2-2 606948 p432 2023 4220 4081*2^2015959-1 606868 L1959 2017 4221 4191*2^2015150-1 606625 L1959 2017 4222 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 4223 251749*2^2013995-1 606279 L436 2007 Woodall 4224e 77777*2^2013487+1 606125 p420 2023 4225 126*523^222906-1 605973 L4001 2017 4226 1023*2^2012570+1 605847 L1741 2014 4227 403*2^2012412+1 605799 L3538 2014 4228 1173*2^2012185+1 605732 L1413 2014 4229 85*730^211537+1 605701 L4001 2018 4230 Phi(3,-1449889^49152) 605684 L4142 2017 Generalized unique 4231 751*2^2010924+1 605352 L3859 2014 4232 101*2^2009735+1 604993 L3432 2013 4233 915*2^2009048-1 604787 L2257 2023 4234 1069*2^2008558+1 604640 L1595 2014 4235 881*2^2008309+1 604565 L3260 2014 4236 959*2^2008035+1 604482 L1422 2014 4237 633*2^2007897+1 604441 L3857 2014 4238 143*2^2007888-1 604437 L384 2016 4239 4*5^864751-1 604436 L4881 2019 4240 223*2^2007748+1 604395 L1741 2014 4241 461*2^2007631+1 604360 L1300 2014 4242 1731*352^237258-1 604191 L5410 2022 4243 477*2^2006719+1 604086 L3803 2014 4244 428551*2^2006520+1 604029 g411 2011 4245 6844*565^219383+1 603757 L5580 2022 4246 1097*2^2005203+1 603630 L3868 2014 4247 Phi(3,-1373894^49152) 603386 L4142 2016 Generalized unique 4248 6*5^862923+1 603159 L4965 2020 4249 493*2^2002964+1 602955 L3800 2014 4250 315*2^2002904+1 602937 L3790 2014 4251 77*2^2002742-1 602888 L2074 2013 4252 585*2^2002589+1 602843 L3035 2014 4253 1059*2^2001821+1 602612 L2103 2014 4254 249*2^2001627-1 602553 L1862 2015 4255 47*158^273942-1 602307 L541 2020 4256 1115*2^2000291+1 602151 L3588 2014 4257 891*2^2000268+1 602144 L3440 2014 4258 1067*792^207705-1 602083 L5410 2021 4259 841*2^1999951-1 602049 L2257 2023 4260 17872*430^228564+1 601921 L4955 2020 4261 343388*151^276191-1 601820 L4700 2018 4262 537*2^1999105-1 601794 L5516 2022 4263 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 4264 Phi(3,-1316236^49152) 601555 L4142 2016 Generalized unique 4265 573*2^1998232+1 601531 L1300 2013 4266 1323*2^1998103-1 601493 L1828 2016 4267 Phi(3,-1310544^49152) 601370 L4142 2016 Generalized unique 4268e 2588*697^211483-1 601299 L5410 2023 4269 1274*3^1260173+1 601259 L5410 2021 4270 561*2^1996865-1 601120 L5516 2022 4271 669*2^1995918+1 600835 L2659 2013 4272 19861029*2^1995311-1 600656 L895 2013 4273 261*2^1995105+1 600589 L3378 2013 4274 68398*1027^199397+1 600503 L4001 2018 4275 1031*2^1994741+1 600480 L2626 2014 4276 577*2^1994634+1 600448 L3035 2013 4277a 550935*2^1994609+1 600443 A4 2023 4278a 193365*2^1994609+1 600443 A4 2023 4279 497*2^1994051+1 600272 L2413 2013 4280 8331405*2^1993674-1 600163 L260 2011 4281 655*2^1993685-1 600162 L5598 2023 4282 1965*2^1993666-1 600157 L4113 2022 4283 467917*2^1993429-1 600088 L160 2005 4284 137137*2^1993201-1 600019 L321 2007 4285 781*2^1993173-1 600008 L2257 2023 4286 2*7^709976+2*7^211441+1 600000 CH9 2023 4287 589*2^1992774+1 599888 L2322 2013 4288 209*2^1992071+1 599676 L3422 2013 4289 2955*2^1991780-1 599589 L1862 2019 4290 317*2^1991592-1 599532 L1809 2014 4291 Phi(3,-1249158^49152) 599322 L4142 2016 Generalized unique 4292 547*2^1990606+1 599235 L3173 2013 4293 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 4294 508*1017^199220-1 599122 L4700 2017 4295 885*2^1990215-1 599118 L5184 2023 4296 1606*877^203564+1 599092 L5410 2022 4297 105*2^1989208-1 598814 L1959 2014 4298 1925975*2^1989191+1 598813 L5327 2022 4299 1019*2^1988959+1 598740 L3514 2013 4300 1455*2^1988795-1 598691 L1134 2015 4301 629*2^1988579+1 598625 L2117 2013 4302 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 4303 733*2^1988086+1 598477 L3502 2013 4304 135*2^1987735+1 598370 L1300 2013 4305 162434*5^856004-1 598327 L3410 2013 4306 749*2^1986977+1 598143 L1492 2013 4307 4141*2^1986959-1 598138 L1959 2016 4308e 2172*697^210354-1 598089 L5410 2023 4309 34*3^1253399+1 598025 L4799 2020 4310 3792*217^255934-1 597984 L5410 2020 4311 32*236^251993+1 597959 L4786 2019 4312 174344*5^855138-1 597722 L3354 2013 4313 6292*1027^198459+1 597678 L4001 2018 4314 4125*2^1984855-1 597505 L1959 2017 4315 8331405*2^1984565-1 597421 L260 2011 4316 1133*2^1984488-1 597394 L1828 2016 4317 195*2^1983875-1 597209 L1828 2014 4318 2631730144*10^597115+1 597125 L4789 2022 4319 675*2^1982779-1 596879 L2257 2023 4320d 4442553*2^1981910-1 596622 L5340 2023 4321a 3256715*2^1981910-1 596621 L5340 2023 4322 1071855*2^1981910-1 596621 L5340 2021 4323 523895*2^1981910-1 596621 L5340 2021 4324 496177*2^1981910+1 596621 L5340 2021 4325 445*2^1980900+1 596313 L3577 2013 4326 731*2^1980503+1 596194 L3035 2013 4327 1147*2^1978390+1 595558 L1741 2013 4328 5758*211^256223+1 595539 L5410 2020 4329 4*5^851878+1 595438 L4965 2023 Generalized Fermat 4330 25*2^1977369-1 595249 L426 2008 4331 245478*151^273168-1 595233 L4001 2018 4332 1197*2^1977152-1 595186 L1828 2016 4333 43*780^205685+1 594863 L5410 2019 4334 1234*95^300749-1 594802 L4444 2019 4335 866*183^262883+1 594763 L3610 2015 4336 386*117^287544+1 594698 L5410 2020 4337 1149*2^1975451-1 594674 L1828 2016 4338 651*2^1974918-1 594513 L2257 2023 4339 381*2^1974841-1 594489 L1809 2014 4340 19920911*2^1974666-1 594441 L806 2017 4341 Phi(3,-1109580^49152) 594264 L4142 2016 Generalized unique 4342 148323*2^1973319-1 594034 L587 2011 4343 705*2^1972428+1 593763 L3043 2013 4344 549*2^1971947-1 593618 L5516 2022 4345 74*894^201093+1 593496 L5410 2022 4346 549*2^1971183+1 593388 L2840 2013 4347f 549721*12^549721-1 593255 L5765 2023 Generalized Woodall 4348 4197*2^1970430-1 593163 L1959 2016 4349 1387*2^1970033-1 593043 L1828 2016 4350 92163*2^1969778+1 592968 L5115 2022 4351 1616*277^242731-1 592869 L5410 2020 4352 84969*2^1969323+1 592831 L5115 2022 4353 1693*396^228140+1 592642 L5410 2021 4354 441*2^1968431+1 592560 L3035 2013 4355 1485*2^1968400-1 592551 L1134 2014 4356 1159*2^1968190+1 592488 L3035 2013 4357 731*2^1968039+1 592442 L3682 2013 4358 833*2^1967841+1 592383 L3744 2013 4359 989*2^1967819+1 592376 L3738 2013 4360 1035*2^1967708+1 592343 L3739 2013 4361 148*789^204455+1 592325 L5410 2019 4362 1309*2^1967613-1 592314 L1828 2016 4363 449*2^1967140-1 592171 L5516 2022 4364 611*2^1966866-1 592089 L2257 2023 4365 4025*2^1966732-1 592049 L1959 2016 4366 203*2^1966689+1 592035 L1408 2013 4367 101594*151^271697-1 592027 L4001 2018 4368 921*2^1966634-1 592019 L2257 2023 4369 273*2^1966630+1 592018 L2532 2013 4370 93*2^1965880+1 591791 L1210 2011 4371 465*2^1965363-1 591636 L5516 2022 4372 253*2^1965215-1 591592 L3345 2012 4373 1089*2^1964781+1 591462 L3737 2013 4374 657*2^1964578-1 591400 L2257 2023 4375 10*173^264234+1 591369 L1471 2015 4376 1089*2^1964474+1 591369 L3736 2013 Generalized Fermat 4377 125*2^1963964-1 591215 L1959 2014 4378b 265*110^289460+1 590904 L4789 2023 4379 Phi(3,-1020993^49152) 590711 L4142 2016 Generalized unique 4380 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 4381 102088*6^759012-1 590632 L4521 2019 4382 4065*2^1961907-1 590597 L1959 2016 4383 609*2^1961889-1 590591 L2257 2023 4384 113*2^1960341+1 590124 L3091 2013 4385 57406*5^844253-1 590113 L3313 2012 4386 1010036096^65536+1 590109 L4704 2022 Generalized Fermat 4387 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 4388 1111*2^1959625-1 589909 L1828 2016 4389 24838*421^224768+1 589860 L5410 2021 4390 803*2^1959445+1 589855 L2724 2013 4391 552*360^230680+1 589691 L5410 2021 4392 915*2^1958653-1 589617 L2257 2023 4393 6166*3^1235741+1 589603 L5365 2021 4394 727*2^1958505-1 589572 L2257 2023 4395 45*2^1957377-1 589231 L1862 2014 4396 1065*2^1957291-1 589207 L1828 2016 4397 1149*2^1957223+1 589186 L1935 2013 4398 6326*333^233552+1 589126 L4001 2017 4399 129*2^1956915+1 589093 L2826 2013 4400 229*2^1956294+1 588906 L3548 2013 4401 74*500^218184-1 588874 p355 2013 4402 27*342^232379+1 588856 L5410 2021 4403 801*2^1956058-1 588836 L2257 2023 4404 525*2^1955409-1 588640 L5516 2022 4405 1045*2^1955356+1 588624 L1186 2013 4406 112*113^286643-1 588503 L426 2012 4407 1137*2^1954730+1 588436 L3733 2013 4408 673*2^1954456+1 588353 L3666 2013 4409 Phi(3,-965206^49152) 588313 L4142 2017 Generalized unique 4410 121*2^1954243-1 588288 L162 2006 4411 351*2^1954003+1 588217 L2413 2013 4412 829*2^1953661-1 588114 L2257 2023 4413 539*2^1953060-1 587933 L5516 2022 4414 641*2^1952941+1 587897 L3487 2013 4415 188378*151^269725-1 587730 L4001 2018 4416 4027*2^1951909-1 587587 L1959 2016 4417 1019*138^274533+1 587471 L5410 2020 4418 Phi(3,94259^59049) 587458 p269 2014 Generalized unique 4419 1173*2^1951169+1 587364 L3171 2013 4420 1101*2^1950812+1 587256 L2719 2013 4421 P587124 587124 p414 2020 4422 3317*2^1949958-1 587000 L5399 2021 4423 4007*2^1949916-1 586987 L1959 2016 4424 313*2^1949544+1 586874 L2520 2013 4425 391*2^1949159-1 586758 L2519 2014 4426 539*2^1949135+1 586751 L1130 2013 4427 675*2^1949015-1 586715 L2257 2023 4428 1167*2^1949013-1 586715 L1828 2016 4429 351*2^1947281-1 586193 L1809 2014 4430 3068*5^838561+1 586133 L5410 2021 4431 4892*693^206286+1 586008 L5410 2022 4432 21290*745^203998-1 585919 L4189 2017 4433 111*2^1946322-1 585904 L2484 2012 4434 1209*2^1946260-1 585886 L1828 2016 4435 1339*2^1945965-1 585797 L1828 2016 4436 149*2^1945668-1 585707 L3967 2015 4437 4011*2^1945630-1 585697 L1959 2016 4438 639*2^1945473+1 585649 L2649 2013 4439 675*2^1945232+1 585577 L3688 2013 4440 949*2^1944741-1 585429 L2257 2023 4441 603*2^1944086-1 585231 L2257 2023 4442 30364*1027^194319+1 585210 L4001 2018 4443 417*2^1943755+1 585132 L3173 2013 4444 89*2^1943337+1 585005 L2413 2011 4445 Phi(3,-889529^49152) 584827 L4142 2016 Generalized unique 4446 607*2^1942565-1 584774 L2257 2023 4447 269*2^1942389+1 584720 L3548 2013 4448 549*2^1942139-1 584645 L5545 2022 4449 4173*2^1941820-1 584550 L1959 2016 4450 1093*2^1941672+1 584505 L2322 2013 4451 144*471^218627-1 584397 L4064 2021 4452 193*2^1940804+1 584243 L3418 2013 4453 827*2^1940747+1 584226 L3206 2013 4454 221*2^1940211+1 584065 L2327 2013 4455 421*138^272919-1 584017 L5410 2020 4456 Phi(3,-872232^49152) 583988 L4142 2017 Generalized unique 4457 9105446*15^496499-1 583936 L5629 2022 4458 9*10^583696+1 583697 L4789 2020 Generalized Fermat 4459 575*2^1938673+1 583602 L2019 2013 4460 1179*2^1938570+1 583571 L1300 2013 4461 743*2^1938344-1 583503 L2257 2023 4462 865*2^1938180+1 583454 L3233 2013 4463 17702*1027^193732-1 583442 L4700 2018 4464 1091*2^1937857+1 583357 L3731 2013 4465 555*2^1937595+1 583277 L2826 2013 4466 765*2^1937364-1 583208 L2257 2023 4467 9299*2^1937309+1 583193 L3886 2014 4468 30*386^225439+1 583120 L3610 2015 4469 34910*430^221380-1 583002 L4001 2015 4470 56064*1027^193573+1 582964 L4700 2018 4471 239*2^1936025+1 582804 L1741 2013 4472 1191*2^1935613-1 582681 L1828 2016 4473 859*2^1935299-1 582586 L2257 2023 4474 4047*2^1934881-1 582461 L1959 2016 4475 357*2^1934704-1 582407 L1809 2014 4476 182627*2^1934664-1 582398 L3336 2012 4477 64*497^215875-1 582078 L4925 2019 4478 771*2^1933543-1 582058 L2257 2023 4479 14172*1027^193213-1 581879 L4001 2018 4480 363*2^1932724+1 581811 L3171 2013 4481 1265*2^1932660-1 581792 L1828 2016 4482 134*383^225187+1 581705 L2012 2019 4483 143*2^1932112-1 581626 L1828 2012 4484 48764*5^831946-1 581510 L3313 2012 4485 1095*2^1931213-1 581357 L1828 2016 4486 1365*2^1931200+1 581353 L1134 2016 4487 1789*138^271671+1 581347 L5211 2020 4488 387*2^1930200+1 581051 L1129 2013 4489 2135489665061*2^1929362-1 580809 L2484 2015 4490 1101*2^1929297-1 580780 L1828 2016 4491 735*2^1929225+1 580758 L3378 2013 4492 214519*2^1929114+1 580727 g346 2006 4493 481*2^1928773-1 580622 L5516 2022 4494 1071*2^1928515-1 580544 L1828 2016 4495 877*2^1927713-1 580303 L2257 2023 4496 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 4497 3871*2^1925976+1 579781 L5327 2022 4498 633*2^1925684+1 579692 L1408 2013 4499 3580*408^222030+1 579649 L5410 2021 4500 5724*313^232269-1 579642 L5410 2020 4501 1965*2^1925248-1 579561 L4113 2022 4502 968*288^235591+1 579414 L5410 2020 4503 1283*2^1924402-1 579306 L1828 2016 4504 1005*2^1923658+1 579082 L3514 2013 4505 243*2^1923567-1 579054 L2055 2011 4506 4005*2^1923385-1 579001 L1959 2016 4507 4508*687^204090-1 578999 L5410 2023 4508 319*2^1923378+1 578997 L3548 2013 4509 1620198*7^684923-1 578834 L4786 2021 4510 815*2^1922594-1 578762 L2257 2023 4511 280992*151^265553-1 578640 L4001 2018 4512 851*2^1922179+1 578637 L3180 2013 4513 685*2^1921923-1 578560 L2257 2023 4514 625*2^1921056+1 578299 L3378 2013 Generalized Fermat 4515 314159*2^1920875+1 578247 L4994 2019 4516 157*2^1920152+1 578026 L2494 2013 4517 14066*60^324990+1 577886 L4444 2018 4518 689*2^1919392-1 577798 L2257 2023 4519 143171*2^1918679+1 577586 L4504 2017 4520 1187*2^1918188-1 577436 L1828 2015 4521 Phi(3,-747624^49152) 577407 L4142 2016 Generalized unique 4522 75492*151^264966-1 577360 L4444 2018 4523 459*2^1917881-1 577343 L5551 2022 4524 1071*2^1917749-1 577304 L1828 2015 4525 335*2^1917610-1 577261 L1809 2014 4526 51*712^202369-1 577256 L4001 2018 4527 133631*28^398790-1 577118 p255 2013 4528 783*2^1916988-1 577074 L2257 2023 4529 191*2^1916611+1 576960 L1792 2013 4530 1087*2^1916212+1 576841 L2719 2013 4531 1065*2^1916200-1 576837 L1828 2015 4532 1682*161^261371+1 576804 L5410 2020 4533 861*2^1915741-1 576699 L2257 2023 4534 1125*2^1915695+1 576685 L3719 2013 4535 Phi(3,-731896^49152) 576499 L4142 2016 Generalized unique 4536 63348*1027^191392+1 576396 L4001 2018 4537 93788*151^264402-1 576131 L4001 2018 4538 461*2^1913118-1 575909 L5551 2022 4539 207*2^1913067+1 575893 L1741 2013 4540 80618*151^264291-1 575889 L4001 2018 4541 849*2^1913021+1 575880 L2413 2013 4542 72844*1027^191206+1 575836 L4001 2018 4543 859*430^218562+1 575580 L5410 2020 4544 535*2^1911715-1 575487 L5545 2022 4545 280*53^333574+1 575177 L4294 2021 4546 85*2^1910520+1 575126 L2703 2011 4547 267*2^1909876-1 574933 L1828 2013 4548 4103*2^1909766-1 574901 L1959 2016 4549 621*2^1909716+1 574885 L2117 2013 4550 611*2^1909525+1 574828 L2413 2013 4551 379*2^1909097-1 574699 L1809 2014 4552 435*2^1908579+1 574543 L3385 2013 4553 4035*2^1907685-1 574275 L1959 2016 4554 291*2^1907541-1 574230 L2484 2013 4555 573*2^1907450+1 574203 L2520 2013 4556 10005*2^1906876-1 574031 L4405 2019 4557 14*814^197138-1 573796 L4001 2018 4558 751*2^1905889-1 573733 L2257 2022 4559 19061965*2^1905351-1 573576 p286 2022 4560 263*2^1904406-1 573286 L2484 2015 4561 969*2^1904357+1 573272 L2719 2013 4562 17*962^192155+1 573234 L4786 2020 4563 699*2^1903573-1 573036 L2257 2022 4564 27*2^1902689-1 572768 L1153 2009 4565 553*2^1902102+1 572593 L2520 2013 4566 1112*423^218014-1 572583 L5410 2021 4567 4171*2^1901433-1 572392 L1959 2016 4568 86*394^220461-1 572208 L541 2020 4569 20707410481*2^1900579-1 572142 L5327 2021 4570 825*2^1899868-1 571921 L2257 2022 4571 271562*151^262431-1 571837 L4001 2018 4572 1323*2^1899548-1 571825 L1828 2014 4573 10005*2^1898938-1 571642 L4405 2019 4574 4806*37^364466-1 571560 L4001 2015 4575 314159*2^1898333+1 571461 L4994 2019 4576 2707*352^224386+1 571412 L5410 2021 4577 633*2^1897632+1 571247 L1741 2013 4578 451*2^1897621-1 571244 L5516 2022 4579 1131*2^1897379-1 571172 L1828 2014 4580d 137*1010^190044-1 570956 L5410 2023 4581 7092*313^228770-1 570910 L5410 2020 4582 707*2^1895035+1 570466 L3035 2013 4583 429*2^1894947-1 570439 L5516 2022 4584 781*2^1894473-1 570297 L2257 2022 4585 3945*2^1894329-1 570254 L4036 2015 4586 5732*29^389934-1 570243 L5660 2023 4587 Phi(3,-628716^49152) 570012 L4142 2016 Generalized unique 4588 4157*2^1892772-1 569785 L1959 2015 4589 154*730^198988+1 569770 L4001 2018 4590 10005*2^1892466-1 569694 L4405 2019 4591 1053*2^1891799-1 569492 L1828 2014 4592 687*2^1891730+1 569471 L3221 2013 4593 5758*211^244970+1 569384 L5410 2020 4594 87*2^1891391+1 569368 L2673 2011 4595 929*2^1890324-1 569048 L2257 2022 4596 85287*2^1890011+1 568955 p254 2011 4597 221*2^1889983+1 568944 L1741 2013 4598 597*2^1889088-1 568675 L5516 2022 4599 607*2^1888525-1 568506 L2257 2022 4600f 379*954^190738-1 568316 L5410 2023 4601 585*2^1887819+1 568293 L3171 2013 4602 347*2^1887507+1 568199 L3548 2013 4603 391*2^1886863-1 568005 L1809 2014 4604 759*2^1886119-1 567782 L2257 2022 4605 791*2^1885961+1 567734 L3075 2013 4606 975*2^1885724+1 567663 L1129 2013 4607 22*615^203539-1 567647 L4001 2018 4608 987*2^1885160+1 567493 L2070 2013 4609 Phi(3,-590826^49152) 567358 L4142 2017 Generalized unique 4610 744716047603963*2^1884575-1 567329 L257 2013 4611 485*2^1884579+1 567318 L3548 2013 4612 14296*421^216090+1 567086 L5410 2021 4613 879*2^1883385+1 566959 L3223 2013 4614 815730721*2^1882432+1 566678 L466 2018 Generalized Fermat 4615 693*2^1881882+1 566506 L2322 2013 4616 30*7^670289+1 566462 L3610 2014 4617 639*2^1880451+1 566075 L3141 2013 4618 927*2^1880136-1 565981 L2257 2022 4619 277*2^1880022+1 565946 L3418 2013 4620 46498*1027^187913+1 565918 L4001 2018 4621 747*2^1879749-1 565864 L2257 2022 4622 2655*2^1879275-1 565722 L2484 2018 4623 89*2^1879132-1 565678 L1828 2013 4624 441*2^1879067+1 565659 L2840 2013 4625 283*2^1879051-1 565654 L2484 2015 4626 214*378^219424-1 565566 L5410 2020 4627 729*2^1877995+1 565336 L1792 2013 4628 645*2^1877756+1 565264 L2981 2013 4629 Phi(3,-561180^49152) 565160 L4142 2017 Generalized unique 4630 613*2^1876758+1 564964 L2413 2013 4631 10005*2^1876648-1 564932 L4405 2019 4632 267*2^1876604+1 564917 L1792 2013 4633 345067*2^1876573-1 564911 g59 2005 4634 1063*2^1876427-1 564864 L1828 2014 4635 1389*2^1876376-1 564849 L1828 2014 4636 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 4637 4015*2^1875453-1 564572 L1959 2014 4638 1043*2^1875213+1 564499 L2413 2013 4639 1209*2^1874804-1 564376 L1828 2014 4640 4125*2^1874718-1 564350 L1959 2015 4641 1199*2^1874495+1 564283 L2827 2013 4642 495*2^1874077+1 564157 L1344 2013 4643 505*2^1873631-1 564022 L5516 2022 4644 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 4645 Phi(3,-544951^49152) 563907 L4142 2017 Generalized unique 4646 1958*687^198762-1 563883 L4955 2023 4647 21*2^1872923-1 563808 L2074 2012 4648 4039*2^1872875-1 563796 L1959 2015 4649 789*2^1872863-1 563791 L2257 2022 4650 439*2^1872789-1 563769 L5516 2022 4651 399878576^65536+1 563736 L4964 2019 Generalized Fermat 4652 357*2^1871600-1 563411 L2519 2014 4653 1309*2^1871045-1 563244 L1828 2014 4654 901*2^1870997-1 563230 L2257 2022 4655 859*2^1870639-1 563122 L2519 2022 4656 Phi(3,-533612^49152) 563010 L4142 2017 Generalized unique 4657 735*2^1870118+1 562965 L3075 2013 4658 575*2^1869989+1 562926 L3650 2013 4659 315*2^1869119-1 562664 L2235 2012 4660 19683*2^1868828+1 562578 L3784 2019 4661 400*315^225179-1 562570 L4444 2021 4662 933*2^1868602+1 562509 L3709 2013 4663 503*2^1868417+1 562453 L3378 2013 4664 1073*2^1867944-1 562311 L1828 2014 4665 2*1595^175532-1 562188 L4961 2019 4666 13162*3^1177896+1 562004 L5410 2021 4667 1115*2^1866094-1 561754 L1828 2014 4668 955*2^1865553-1 561591 L2257 2022 4669 621*2^1865542-1 561587 L2257 2022 4670 70*905^189879-1 561408 L541 2017 4671 407*2^1864735+1 561344 L2520 2013 4672f 627912!6+1 561315 p397 2023 Multifactorial 4673 10005*2^1864432-1 561254 L4405 2019 4674 489*2^1864339+1 561225 L2520 2013 4675 427*2^1863702+1 561033 L3586 2013 4676 1161*2^1863637+1 561014 L3213 2013 4677 653*2^1862782-1 560757 L2257 2022 4678 2*3^1175232+1 560729 p199 2010 4679 347*2^1861974-1 560513 L2519 2014 4680 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 4681 411*2^1861627+1 560409 L1741 2013 4682 281*2^1860862-1 560178 L2484 2015 4683 1165*2^1860749-1 560145 L1828 2014 4684 231*2^1860743-1 560142 L1862 2015 4685 103*2^1860103-1 559949 L2484 2012 4686 350006744^65536+1 559945 L4964 2019 Generalized Fermat 4687 11726*1027^185913-1 559895 L4001 2018 4688 2655*2^1859692-1 559827 L1862 2018 4689 161*2^1859586-1 559794 L177 2013 4690 813*2^1859419-1 559744 L2519 2022 4691 981*2^1859266-1 559698 L2257 2022 4692 51*2^1859193+1 559675 L1204 2011 4693 1177*2^1859144+1 559662 L3625 2013 4694 1818*378^217098+1 559572 L5410 2021 4695 1455*2^1858634-1 559508 L1134 2015 4696 8331405*2^1858587-1 559498 L260 2011 4697 8*3^1172480+1 559417 L4799 2020 4698 663*2^1858195-1 559376 L1817 2022 4699 671*2^1857950-1 559302 L1817 2022 4700 145*590^201814+1 559199 L5410 2022 4701 435*2^1857332-1 559116 L5551 2022 4702 669*2^1857223+1 559083 L2413 2013 4703 296990*151^256535-1 558990 L4700 2018 4704 525*2^1856834-1 558966 L5516 2022 4705 1125*2^1856703-1 558927 L1828 2014 4706 429*2^1856373-1 558827 L5516 2022 4707 52600*91^285235+1 558792 L5410 2020 4708 1155*2^1855389-1 558531 L1828 2014 4709 4031*2^1855338-1 558516 L1959 2014 4710 229*372^217261-1 558482 L4876 2019 4711 Phi(3,-478421^49152) 558349 L4142 2017 Generalized unique 4712 917*2^1854642-1 558306 L1817 2022 4713 126072*31^374323-1 558257 L2054 2012 4714 3^1170000+3^364398+1 558232 x44 2017 4715 4918*3^1169850+1 558164 L5410 2021 4716 19*932^187910+1 557985 L5410 2022 4717 435*2^1853363-1 557921 L4036 2015 4718 1229*2^1853192-1 557870 L1828 2014 4719 3161*618^199877+1 557858 L4714 2018 4720 333*2^1853115-1 557846 L1830 2012 4721 87*2^1852590-1 557688 L2055 2011 4722 765*2^1849609+1 556791 L1792 2013 4723 137*2^1849238-1 556679 L321 2007 4724 639*2^1848903+1 556579 L3439 2013 4725 1061*268^229202-1 556537 L5410 2019 4726 261*2^1848217+1 556372 L1983 2013 4727 Phi(3,-456551^49152) 556351 L4142 2017 Generalized unique 4728 917*2^1847872-1 556268 L2519 2022 4729 465*2^1847589-1 556183 L5516 2022 4730 663*2^1847319-1 556102 L1817 2022 4731 775*2^1846945-1 555989 L1817 2022 4732 88*107^273915-1 555881 L4444 2021 4733 275*2^1846390-1 555822 L2444 2014 4734 1011*2^1846173+1 555757 L3221 2013 4735 575*2^1845718-1 555620 L5516 2022 4736 1029*2^1844975+1 555396 L2626 2013 4737 133*2^1843619-1 554987 L1959 2014 4738 261*2^1843555-1 554968 L1828 2013 4739 655*2^1843379-1 554916 L1817 2022 4740 2^120*611953#*611957^50000+1 554832 p383 2015 4741 73246*1027^184192+1 554713 L4001 2018 4742a 289194516^65536+1 554513 L5639 2023 Generalized Fermat 4743 503*2^1842034-1 554511 L5516 2022 4744a 289131432^65536+1 554507 L5772 2023 Generalized Fermat 4745a 289084224^65536+1 554502 L5797 2023 Generalized Fermat 4746a 288721164^65536+1 554466 L5772 2023 Generalized Fermat 4747a 288686746^65536+1 554463 L5639 2023 Generalized Fermat 4748a 288683836^65536+1 554463 L5823 2023 Generalized Fermat 4749a 288675878^65536+1 554462 L5772 2023 Generalized Fermat 4750a 288387034^65536+1 554433 L5416 2023 Generalized Fermat 4751a 288212888^65536+1 554416 L5772 2023 Generalized Fermat 4752a 288163930^65536+1 554411 L5620 2023 Generalized Fermat 4753a 288090918^65536+1 554404 L5772 2023 Generalized Fermat 4754a 287967504^65536+1 554392 L4933 2023 Generalized Fermat 4755a 287895384^65536+1 554385 L4968 2023 Generalized Fermat 4756a 287877392^65536+1 554383 L5822 2023 Generalized Fermat 4757a 287747230^65536+1 554370 L5639 2023 Generalized Fermat 4758a 287571970^65536+1 554353 L5620 2023 Generalized Fermat 4759 953*2^1841461+1 554338 L3612 2013 4760a 287423798^65536+1 554338 L4371 2023 Generalized Fermat 4761a 287286178^65536+1 554325 L4933 2023 Generalized Fermat 4762a 287234044^65536+1 554319 L5077 2023 Generalized Fermat 4763a 287196594^65536+1 554316 L5070 2023 Generalized Fermat 4764a 287130118^65536+1 554309 L5639 2023 Generalized Fermat 4765a 287114344^65536+1 554308 L5077 2023 Generalized Fermat 4766a 287028470^65536+1 554299 L5070 2023 Generalized Fermat 4767a 286986062^65536+1 554295 L5070 2023 Generalized Fermat 4768a 286897030^65536+1 554286 L4477 2023 Generalized Fermat 4769a 286844394^65536+1 554281 L5634 2023 Generalized Fermat 4770b 286591074^65536+1 554256 L5639 2023 Generalized Fermat 4771 713*2^1841166-1 554250 L1817 2022 4772 4171*2^1841157-1 554248 L1959 2016 4773b 286487634^65536+1 554245 L5070 2023 Generalized Fermat 4774b 286130010^65536+1 554210 L5816 2023 Generalized Fermat 4775b 286096802^65536+1 554207 L5077 2023 Generalized Fermat 4776b 285911424^65536+1 554188 L5022 2023 Generalized Fermat 4777b 285894112^65536+1 554186 L5077 2023 Generalized Fermat 4778 19061965*2^1840922+1 554181 p286 2022 4779b 285744852^65536+1 554172 L4249 2023 Generalized Fermat 4780b 285657432^65536+1 554163 L5347 2023 Generalized Fermat 4781b 285568918^65536+1 554154 L5077 2023 Generalized Fermat 4782b 285303034^65536+1 554127 L5022 2023 Generalized Fermat 4783b 285249588^65536+1 554122 L5077 2023 Generalized Fermat 4784b 285162248^65536+1 554113 L5432 2023 Generalized Fermat 4785 1089*2^1840695-1 554108 L1828 2014 4786b 284839974^65536+1 554081 L4928 2023 Generalized Fermat 4787b 284492270^65536+1 554046 L5815 2023 Generalized Fermat 4788b 284435642^65536+1 554041 L5813 2023 Generalized Fermat 4789b 284425404^65536+1 554040 L4933 2023 Generalized Fermat 4790b 284328160^65536+1 554030 L5070 2023 Generalized Fermat 4791 705*2^1840379-1 554013 L1817 2022 4792b 284130644^65536+1 554010 L5022 2023 Generalized Fermat 4793b 284063728^65536+1 554004 L4737 2023 Generalized Fermat 4794b 284039224^65536+1 554001 L5627 2023 Generalized Fermat 4795 105*2^1840262-1 553977 L1959 2014 4796 1009*2^1840225-1 553966 L1828 2014 4797b 283636836^65536+1 553961 L5627 2023 Generalized Fermat 4798b 283489024^65536+1 553946 L4933 2023 Generalized Fermat 4799b 283267288^65536+1 553924 L5772 2023 Generalized Fermat 4800b 283137222^65536+1 553911 L5077 2023 Generalized Fermat 4801b 282940616^65536+1 553891 L5620 2023 Generalized Fermat 4802b 282868132^65536+1 553884 L5077 2023 Generalized Fermat 4803b 282771412^65536+1 553874 L5070 2023 Generalized Fermat 4804b 282596850^65536+1 553856 L5784 2023 Generalized Fermat 4805c 282493816^65536+1 553846 L5627 2023 Generalized Fermat 4806c 282464682^65536+1 553843 L5634 2023 Generalized Fermat 4807c 282143224^65536+1 553810 L5809 2023 Generalized Fermat 4808 1323*2^1839623-1 553785 L1828 2014 4809c 281862512^65536+1 553782 L5526 2023 Generalized Fermat 4810c 281859504^65536+1 553782 L4933 2023 Generalized Fermat 4811c 281833104^65536+1 553779 L5639 2023 Generalized Fermat 4812c 281588454^65536+1 553754 L5806 2023 Generalized Fermat 4813c 281522310^65536+1 553748 L5760 2023 Generalized Fermat 4814c 281292474^65536+1 553725 L5403 2023 Generalized Fermat 4815c 281286938^65536+1 553724 L5805 2023 Generalized Fermat 4816c 281151930^65536+1 553710 L5347 2023 Generalized Fermat 4817c 281128342^65536+1 553708 L5070 2023 Generalized Fermat 4818 681*2^1839269+1 553678 L3141 2013 4819c 280735020^65536+1 553668 L5639 2023 Generalized Fermat 4820c 280662244^65536+1 553661 L4737 2023 Generalized Fermat 4821 667*2^1839205-1 553659 L1817 2022 4822c 280558854^65536+1 553650 L4387 2023 Generalized Fermat 4823c 280491706^65536+1 553643 L5639 2023 Generalized Fermat 4824c 280388348^65536+1 553633 L5760 2023 Generalized Fermat 4825c 280295540^65536+1 553623 L5347 2023 Generalized Fermat 4826c 280240520^65536+1 553618 L5143 2023 Generalized Fermat 4827c 280233868^65536+1 553617 L5801 2023 Generalized Fermat 4828 399*2^1839019-1 553603 L1809 2014 4829c 280073642^65536+1 553601 L5143 2023 Generalized Fermat 4830c 279934378^65536+1 553587 L4933 2023 Generalized Fermat 4831 779*2^1838955+1 553584 L3640 2013 4832c 279828194^65536+1 553576 L5051 2023 Generalized Fermat 4833c 279710598^65536+1 553564 L5800 2023 Generalized Fermat 4834c 279526044^65536+1 553545 L5143 2023 Generalized Fermat 4835c 279337808^65536+1 553526 L4933 2023 Generalized Fermat 4836c 279168686^65536+1 553509 L5077 2023 Generalized Fermat 4837c 279168218^65536+1 553509 L5143 2023 Generalized Fermat 4838c 279065654^65536+1 553498 L5797 2023 Generalized Fermat 4839c 278914560^65536+1 553483 L5797 2023 Generalized Fermat 4840c 278901336^65536+1 553482 L5143 2023 Generalized Fermat 4841c 278573258^65536+1 553448 L5070 2023 Generalized Fermat 4842c 278480374^65536+1 553439 L5797 2023 Generalized Fermat 4843 503*2^1838444-1 553430 L5545 2022 4844c 278378566^65536+1 553428 L5784 2023 Generalized Fermat 4845c 278311344^65536+1 553421 L4933 2023 Generalized Fermat 4846c 278271548^65536+1 553417 L5416 2023 Generalized Fermat 4847d 278263718^65536+1 553416 L5070 2023 Generalized Fermat 4848d 278185106^65536+1 553408 L5761 2023 Generalized Fermat 4849d 278131874^65536+1 553403 L4928 2023 Generalized Fermat 4850d 278124408^65536+1 553402 L4359 2023 Generalized Fermat 4851d 278002954^65536+1 553390 L5639 2023 Generalized Fermat 4852d 277985464^65536+1 553388 L5347 2023 Generalized Fermat 4853d 277821740^65536+1 553371 L5070 2023 Generalized Fermat 4854d 277816522^65536+1 553371 L5143 2023 Generalized Fermat 4855d 277779168^65536+1 553367 L4672 2023 Generalized Fermat 4856d 277680222^65536+1 553357 L5795 2023 Generalized Fermat 4857d 277676682^65536+1 553356 L4387 2023 Generalized Fermat 4858d 277619668^65536+1 553350 L5794 2023 Generalized Fermat 4859d 277513352^65536+1 553340 L4387 2023 Generalized Fermat 4860 135*2^1838124+1 553333 L3472 2013 4861d 277403366^65536+1 553328 L4387 2023 Generalized Fermat 4862d 277344684^65536+1 553322 L4387 2023 Generalized Fermat 4863d 277304596^65536+1 553318 L4359 2023 Generalized Fermat 4864d 276966990^65536+1 553283 L5627 2023 Generalized Fermat 4865d 276846832^65536+1 553271 L4933 2023 Generalized Fermat 4866d 276779720^65536+1 553264 L5416 2023 Generalized Fermat 4867 15*2^1837873-1 553257 L632 2008 4868d 276513748^65536+1 553237 L4672 2023 Generalized Fermat 4869d 276312804^65536+1 553216 L4629 2023 Generalized Fermat 4870d 276289408^65536+1 553214 L5793 2023 Generalized Fermat 4871d 276196344^65536+1 553204 L5772 2023 Generalized Fermat 4872d 276109738^65536+1 553195 L5077 2023 Generalized Fermat 4873d 275981748^65536+1 553182 L5792 2023 Generalized Fermat 4874d 275744042^65536+1 553158 L5772 2023 Generalized Fermat 4875d 275702614^65536+1 553153 L4359 2023 Generalized Fermat 4876d 275560040^65536+1 553139 L5639 2023 Generalized Fermat 4877 28*392^213295-1 553137 L4001 2017 4878d 275518122^65536+1 553134 L4933 2023 Generalized Fermat 4879d 275336392^65536+1 553115 L5416 2023 Generalized Fermat 4880d 275029884^65536+1 553084 L5791 2023 Generalized Fermat 4881 1111*792^190801-1 553083 L5426 2021 4882 379*2^1837291-1 553083 L1809 2014 4883d 274885318^65536+1 553069 L4933 2023 Generalized Fermat 4884d 274737458^65536+1 553053 L5634 2023 Generalized Fermat 4885d 274690448^65536+1 553049 L5143 2023 Generalized Fermat 4886 333*2^1837105+1 553027 L3470 2013 4887d 274372420^65536+1 553016 L5639 2023 Generalized Fermat 4888 825*2^1837054-1 553012 L1817 2022 4889d 274269120^65536+1 553005 L5639 2023 Generalized Fermat 4890d 274179144^65536+1 552996 L5526 2023 Generalized Fermat 4891d 274171652^65536+1 552995 L5070 2023 Generalized Fermat 4892d 273780490^65536+1 552954 L5077 2023 Generalized Fermat 4893d 273679286^65536+1 552944 L4999 2023 Generalized Fermat 4894d 273498220^65536+1 552925 L5788 2023 Generalized Fermat 4895e 273465348^65536+1 552921 L5143 2023 Generalized Fermat 4896e 273412686^65536+1 552916 L5785 2023 Generalized Fermat 4897e 272667828^65536+1 552838 L5526 2023 Generalized Fermat 4898 4167*2^1836466-1 552835 L1959 2015 4899d 272445424^65536+1 552815 L5416 2023 Generalized Fermat 4900e 272335146^65536+1 552803 L4933 2023 Generalized Fermat 4901 523061!5+1 552801 x46 2022 Multifactorial 4902e 272284168^65536+1 552798 L5070 2023 Generalized Fermat 4903e 272096382^65536+1 552778 L5784 2023 Generalized Fermat 4904e 272064584^65536+1 552775 L5760 2023 Generalized Fermat 4905e 272034326^65536+1 552772 L5620 2023 Generalized Fermat 4906e 272033228^65536+1 552772 L5070 2023 Generalized Fermat 4907e 271870308^65536+1 552755 L5639 2023 Generalized Fermat 4908e 271761074^65536+1 552743 L5784 2023 Generalized Fermat 4909e 271742714^65536+1 552741 L5786 2023 Generalized Fermat 4910 309*2^1836139+1 552736 L3460 2013 4911e 271645276^65536+1 552731 L5077 2023 Generalized Fermat 4912e 271633032^65536+1 552730 L4201 2023 Generalized Fermat 4913e 271481852^65536+1 552714 L5599 2023 Generalized Fermat 4914e 271450498^65536+1 552711 L5490 2023 Generalized Fermat 4915e 271396206^65536+1 552705 L5634 2023 Generalized Fermat 4916e 271317774^65536+1 552697 L5077 2023 Generalized Fermat 4917d 271079666^65536+1 552672 L5416 2023 Generalized Fermat 4918e 271031136^65536+1 552667 L5781 2023 Generalized Fermat 4919 271018852^65536+1 552666 L4704 2019 Generalized Fermat 4920e 270953578^65536+1 552659 L5779 2023 Generalized Fermat 4921e 270900338^65536+1 552653 L5643 2023 Generalized Fermat 4922e 270881478^65536+1 552651 L4387 2023 Generalized Fermat 4923e 270870834^65536+1 552650 L5639 2023 Generalized Fermat 4924e 270738766^65536+1 552636 L4933 2023 Generalized Fermat 4925d 270729942^65536+1 552635 L5416 2023 Generalized Fermat 4926d 270650780^65536+1 552627 L5416 2023 Generalized Fermat 4927e 270226036^65536+1 552582 L5627 2023 Generalized Fermat 4928e 270152854^65536+1 552574 L4933 2023 Generalized Fermat 4929e 270118384^65536+1 552571 L5654 2023 Generalized Fermat 4930 4061*2^1835582-1 552569 L1959 2014 4931 423*2^1835585+1 552569 L2873 2013 4932 621*2^1835567-1 552564 L1817 2022 4933e 270017480^65536+1 552560 L5070 2023 Generalized Fermat 4934e 269455002^65536+1 552501 L5416 2023 Generalized Fermat 4935e 269348314^65536+1 552490 L4839 2023 Generalized Fermat 4936e 269192112^65536+1 552473 L5777 2023 Generalized Fermat 4937e 269177540^65536+1 552472 L4933 2023 Generalized Fermat 4938e 269095066^65536+1 552463 L5639 2023 Generalized Fermat 4939e 269088864^65536+1 552462 L5485 2023 Generalized Fermat 4940e 268778680^65536+1 552429 L5143 2023 Generalized Fermat 4941e 268758496^65536+1 552427 L5654 2023 Generalized Fermat 4942e 268667968^65536+1 552418 L5717 2023 Generalized Fermat 4943e 268581226^65536+1 552408 L5654 2023 Generalized Fermat 4944e 268580560^65536+1 552408 L5639 2023 Generalized Fermat 4945e 268526572^65536+1 552403 L5654 2023 Generalized Fermat 4946e 268501802^65536+1 552400 L4387 2023 Generalized Fermat 4947f 268337126^65536+1 552383 L5143 2023 Generalized Fermat 4948f 267890702^65536+1 552335 L5627 2023 Generalized Fermat 4949 1181*2^1834802-1 552334 L1828 2014 4950f 267754986^65536+1 552321 L4933 2023 Generalized Fermat 4951f 267633214^65536+1 552308 L5761 2023 Generalized Fermat 4952f 267535458^65536+1 552297 L4933 2023 Generalized Fermat 4953f 267275536^65536+1 552270 L5634 2023 Generalized Fermat 4954f 267203854^65536+1 552262 L4933 2023 Generalized Fermat 4955 73*2^1834526+1 552250 L1513 2011 4956f 267077662^65536+1 552249 L5634 2023 Generalized Fermat 4957f 267075766^65536+1 552248 L5070 2023 Generalized Fermat 4958f 267010136^65536+1 552241 L5156 2023 Generalized Fermat 4959 309*2^1834379+1 552206 L3471 2013 4960f 266524754^65536+1 552190 L5747 2023 Generalized Fermat 4961 3748*333^218908+1 552187 L4575 2017 4962f 266186666^65536+1 552154 L5673 2023 Generalized Fermat 4963f 266185914^65536+1 552153 L5673 2023 Generalized Fermat 4964f 265916906^65536+1 552125 L5416 2023 Generalized Fermat 4965 87*2^1834098+1 552121 L1513 2011 4966f 265876478^65536+1 552120 L4933 2023 Generalized Fermat 4967f 265830698^65536+1 552115 L4672 2023 Generalized Fermat 4968f 265641702^65536+1 552095 L5669 2023 Generalized Fermat 4969f 265498354^65536+1 552080 L5771 2023 Generalized Fermat 4970 26*578^199886-1 552073 L5415 2021 4971f 265337706^65536+1 552063 L5620 2023 Generalized Fermat 4972f 265119988^65536+1 552039 L5457 2023 Generalized Fermat 4973f 265085200^65536+1 552035 L5717 2023 Generalized Fermat 4974f 265072156^65536+1 552034 L5717 2023 Generalized Fermat 4975f 264996308^65536+1 552026 L5759 2023 Generalized Fermat 4976f 264906106^65536+1 552016 L5769 2023 Generalized Fermat 4977f 264769234^65536+1 552002 L5620 2023 Generalized Fermat 4978f 264664796^65536+1 551990 L5347 2023 Generalized Fermat 4979f 264647588^65536+1 551988 L5070 2023 Generalized Fermat 4980f 264551432^65536+1 551978 L5768 2023 Generalized Fermat 4981f 264535130^65536+1 551976 L5457 2023 Generalized Fermat 4982f 264499238^65536+1 551973 L5767 2023 Generalized Fermat 4983f 264497192^65536+1 551972 L5762 2023 Generalized Fermat 4984f 264438670^65536+1 551966 L5459 2023 Generalized Fermat 4985f 264426558^65536+1 551965 L5460 2023 Generalized Fermat 4986f 264301176^65536+1 551951 L5143 2023 Generalized Fermat 4987f 264203868^65536+1 551941 L5632 2023 Generalized Fermat 4988 1021*2^1833459-1 551930 L1828 2014 4989 34*813^189659-1 551927 L4001 2018 4990f 264072794^65536+1 551927 L5370 2023 Generalized Fermat 4991f 264032558^65536+1 551922 L5143 2023 Generalized Fermat 4992f 264031336^65536+1 551922 L5759 2023 Generalized Fermat 4993 489*2^1833431-1 551921 L5545 2022 4994f 263988664^65536+1 551918 L5654 2023 Generalized Fermat 4995f 263952980^65536+1 551914 L5070 2023 Generalized Fermat 4996 263586530^65536+1 551874 L5457 2023 Generalized Fermat 4997 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 4998 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 4999 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 5000 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 5001 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 5002 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 5003 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5004 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5005f 524427*10^524427-1 524433 L5765 2023 Generalized Woodall 5006 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 5007 110059!+1 507082 p312 2011 Factorial 5008 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 5009 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5010 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5011 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5012 1098133#-1 476311 p346 2012 Primorial 5013 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5014 103040!-1 471794 p301 2010 Factorial 5015 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 5016 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5017 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5018 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5019 1467763*2^1467763-1 441847 L381 2007 Woodall 5020 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5021 5529*2^1430926+1 430756 L3035 2017 Divides GF(1430925,5) 5022 94550!-1 429390 p290 2010 Factorial 5023 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 5024 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5025 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5026 2^1398269-1 420921 G1 1996 Mersenne 35 5027 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5028 338707*2^1354830+1 407850 L124 2005 Cullen 5029 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5030 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5031 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5032 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 5033 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5034 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5035 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5036 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5037 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5038 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5039 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5040 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5041 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5042 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5043 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5044 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5045 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5046 1268979*2^1268979-1 382007 L201 2007 Woodall 5047 2^1257787-1 378632 SG 1996 Mersenne 34 5048 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5049 843301#-1 365851 p302 2010 Primorial 5050 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 5051 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5052 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5053 1195203*2^1195203-1 359799 L124 2005 Woodall 5054 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 5055 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5056 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5057 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5058 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5059 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5060 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5061 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 5062 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5063 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 5064 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 5065 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5066 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 5067 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 5068 2^859433-1 258716 SG 1994 Mersenne 33 5069 2^756839-1 227832 SG 1992 Mersenne 32 5070 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 5071c 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 5072 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 5073 667071*2^667071-1 200815 g55 2000 Woodall 5074 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5075 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5076 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5077 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5078 392113#+1 169966 p16 2001 Primorial 5079 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5080 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5081 366439#+1 158936 p16 2001 Primorial 5082 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5083 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5084 481899*2^481899+1 145072 gm 1998 Cullen 5085 34790!-1 142891 p85 2002 Factorial 5086 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5087 361275*2^361275+1 108761 DS 1998 Cullen 5088 26951!+1 107707 p65 2002 Factorial 5089 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5090 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5091 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5092e R(86453) 86453 E3 2023 Repunit, ECPP, unique 5093 21480!-1 83727 p65 2001 Factorial 5094 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5095 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5096 262419*2^262419+1 79002 DS 1998 Cullen 5097 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5098 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5099 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5100 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5101 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5102 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5103 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5104 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5105 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5106 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5107 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5108 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5109 5^104824+104824^5 73269 E4 2023 ECPP 5110 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5111 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5112 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 5113 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 5114 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5115 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5116 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 5117 12770275971*2^222225-1 66907 L527 2017 Twin (p) 5118 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5119 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5120 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 5121 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 5122 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 5123 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 5124 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5125 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5126 145823#+1 63142 p21 2000 Primorial 5127 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5128 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5129 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5130 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5131 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5132 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5133 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5134 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 5135 70965694293*2^200006-1 60219 L95 2016 Twin (p) 5136 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 5137 66444866235*2^200003-1 60218 L95 2016 Twin (p) 5138 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5139 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 5140 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 5141 3^125330+1968634623437000 59798 E4 2022 ECPP 5142 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5143 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 5144 2003663613*2^195000-1 58711 L202 2007 Twin (p) 5145 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5146 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5147 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5148 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5149 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5150 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5151 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5152 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5153 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5154 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 5155 17976255129*2^183241-1 55172 p415 2021 Twin (p) 5156 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5157 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5158 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5159 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5160 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 5161 191547657*2^173372-1 52199 L5116 2020 Twin (p) 5162 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 5163 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 5164 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 5165 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 5166 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5167 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5168 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5169 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 5170 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 5171 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5172 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 5173 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 5174 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 5175 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 5176 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5177 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 5178 33218925*2^169690-1 51090 g259 2002 Twin (p) 5179 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5180 10^50000+65859 50001 E3 2022 ECPP 5181 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5182 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 5183 268981272*5^69421+1 48532 L5695 2023 Twin (p+2) 5184 268981272*5^69421-1 48532 L5695 2023 Twin (p) 5185 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5186 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5187 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5188 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 5189 110427610*3^100003-1 47722 p415 2021 Twin (p) 5190 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5191 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 5192 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5193 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5194 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5195 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5196 151023*2^151023-1 45468 g25 1998 Woodall 5197 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 5198 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5199 17147299833*2^143732-1 43278 L3494 2023 Sophie Germain (2p+1) 5200 17147299833*2^143731-1 43278 L3494 2023 Sophie Germain (p) 5201 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 5202 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 5203 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 5204 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 5205 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 5206 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 5207 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 5208 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 5209 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 5210 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5211 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5212 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 5213a U(201107) 42029 E11 2023 Fibonacci number, ECPP 5214 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5215 10^40000+14253 40001 E3 2022 ECPP 5216 p(1289844341) 40000 c84 2020 Partitions, ECPP 5217 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5218 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5219 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5220 tau(47^4176) 38404 E3 2022 ECPP 5221 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5222 3^78296+479975120078336 37357 E4 2022 ECPP 5223 63^20018+20018^63 36020 E4 2023 ECPP 5224 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5225 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5226 p(1000007396) 35219 E4 2022 Partitions, ECPP 5227 2^116224-15905 34987 c87 2017 ECPP 5228 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5229 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5230 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5231 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 5232 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5233 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5234 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5235 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5236 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5237 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5238 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5239 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5240 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5241 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5242 V(148091) 30950 c81 2015 Lucas number, ECPP 5243 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5244e -E(9266)/(61657889*34536574993) 30900 E10 2023 Euler irregular, ECPP 5245 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5246 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5247 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5248 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5249 49363*2^98727-1 29725 Y 1997 Woodall 5250 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5251 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5252 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5253 V(140057) 29271 c76 2014 Lucas number,ECPP 5254 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5255 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5256 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5257 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5258 primV(205011) 28552 x39 2009 Lucas primitive part 5259 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 5260 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5261 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5262 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5263 90825*2^90825+1 27347 Y 1997 Cullen 5264 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5265 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5266 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5267 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5268 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5269 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5270 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5271 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5272 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5273 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 5274 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 5275 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5276 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5277 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5278e -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5279 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5280 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5281 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5282 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5283 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5284 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5285 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5286 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5287 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5288 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5289e -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5290 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5291 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5292 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 5293 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5294 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5295 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5296 6917!-1 23560 g1 1998 Factorial 5297 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5298 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5299 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5300 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5301 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5302 p(398256632) 22223 E1 2022 Partitions, ECPP 5303 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5304 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5305 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5306 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5307 6380!+1 21507 g1 1998 Factorial 5308 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5309 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5310 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5311 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5312 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5313a primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5314 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5315 p(355646102) 21000 E1 2022 Partitions, ECPP 5316 p(350199893) 20838 E7 2022 Partitions, ECPP 5317 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5318 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5319 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5320 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5321 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5322 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5323 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5324 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5325 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5326 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5327 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5328 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5329 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5330 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5331 p(322610098) 20000 E1 2022 Partitions, ECPP 5332 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5333 V(94823) 19817 c73 2014 Lucas number, ECPP 5334 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5335 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5336 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5337 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5338 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5339 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5340 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5341 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5342 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5343 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5344 V(89849) 18778 c70 2014 Lucas number, ECPP 5345 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5346 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5347 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5348 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5349 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5350 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5351 42209#+1 18241 p8 1999 Primorial 5352 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5353 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5354 7457*2^59659+1 17964 Y 1997 Cullen 5355 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5356 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5357 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5358 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5359 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5360 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5361 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5362 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 5363 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5364 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5365 U(81839) 17103 p54 2001 Fibonacci number 5366 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5367 V(81671) 17069 c66 2013 Lucas number, ECPP 5368 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5369 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5370 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 5371 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5372 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5373 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5374 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5375 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5376 p(221444161) 16569 c77 2017 Partitions, ECPP 5377 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 5378 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5379 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5380 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 5381 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5382 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5383 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5384 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5385 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5386 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 5387 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5388 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5389 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5390 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5391 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5392 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5393 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5394 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5395 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5396 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 5397 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5398 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5399 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5400 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5401 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5402 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 5403 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5404 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 5405 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5406 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 5407 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5408 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5409 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 5410 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5411 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5412 p(158375386) 14011 E1 2022 Partitions, ECPP 5413 p(158295265) 14007 E1 2022 Partitions, ECPP 5414 p(158221457) 14004 E1 2022 Partitions, ECPP 5415 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5416 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5417 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5418 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 5419 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 5420 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 5421 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5422 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 5423 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5424 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5425 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5426 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5427 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5428 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5429 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5430 p(141528106) 13244 E6 2022 Partitions, ECPP 5431 p(141513546) 13244 E6 2022 Partitions, ECPP 5432 p(141512238) 13244 E6 2022 Partitions, ECPP 5433 p(141255053) 13232 E6 2022 Partitions, ECPP 5434 p(141150528) 13227 E6 2022 Partitions, ECPP 5435 p(141112026) 13225 E6 2022 Partitions, ECPP 5436 p(141111278) 13225 E6 2022 Partitions, ECPP 5437 p(140859260) 13213 E6 2022 Partitions, ECPP 5438 p(140807155) 13211 E6 2022 Partitions, ECPP 5439 p(140791396) 13210 E6 2022 Partitions, ECPP 5440 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5441 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5442 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5443 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5444 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5445 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5446 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5447 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 5448 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5449 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5450 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 5451 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5452 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 5453 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5454 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5455 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5456 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5457 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5458 V(56003) 11704 p193 2006 Lucas number 5459 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5460 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5461 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5462 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5463 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5464 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5465 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5466 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5467 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5468 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5469 primU(67825) 11336 x23 2007 Fibonacci primitive part 5470 3610!-1 11277 C 1993 Factorial 5471 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5472 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5473 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 5474 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 5475 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 5476 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5477 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5478 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5479 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5480 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5481 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5482 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5483 3507!-1 10912 C 1992 Factorial 5484 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5485 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5486 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5487 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 5488 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5489 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5490 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5491 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5492 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5493 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5494 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5495 V(51169) 10694 p54 2001 Lucas number 5496 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5497 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5498 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5499 U(50833) 10624 CH4 2005 Fibonacci number 5500 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5501 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5502 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5503 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5504 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 5505 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 5506 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 5507 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 5508 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5509 24029#+1 10387 C 1993 Primorial 5510 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5511 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5512 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5513 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5514 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 5515 23801#+1 10273 C 1993 Primorial 5516 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5517 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5518 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5519 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5520 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5521 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5522 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 5523 32469*2^32469+1 9779 MM 1997 Cullen 5524 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 5525 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 5526 8073*2^32294+1 9726 MM 1997 Cullen 5527 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 5528 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5529 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5530 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5531 V(44507) 9302 CH3 2005 Lucas number 5532 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 5533 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5534 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 5535 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5536 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5537 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5538 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5539 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5540 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5541 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 5542 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 5543 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5544 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5545 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 5546 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 5547 18523#+1 8002 D 1990 Primorial 5548 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 5549 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5550 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 5551 U(37511) 7839 x13 2005 Fibonacci number 5552 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 5553 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 5554 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5555 V(36779) 7687 CH3 2005 Lucas number 5556 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5557 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5558 V(35449) 7409 p12 2001 Lucas number 5559 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 5560 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 5561 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 5562 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 5563 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 5564 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5565 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 5566 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 5567 23005*2^23005-1 6930 Y 1997 Woodall 5568 22971*2^22971-1 6920 Y 1997 Woodall 5569 15877#-1 6845 CD 1992 Primorial 5570 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 5571 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5572 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5573 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5574 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5575 13649#+1 5862 D 1988 Primorial 5576 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5577 18885*2^18885-1 5690 K 1988 Woodall 5578 1963!-1 5614 CD 1992 Factorial 5579 13033#-1 5610 CD 1992 Primorial 5580 289*2^18502+1 5573 K 1985 Cullen, generalized Fermat 5581 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5582 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 5583 U(25561) 5342 p54 2001 Fibonacci number 5584 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5585 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5586 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5587 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5588 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5589 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5590 11549#+1 4951 D 1987 Primorial 5591 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5592 7911*2^15823-1 4768 K 1988 Woodall 5593 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 5594 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5595 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5596 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5597 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5598 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 5599 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5600 1477!+1 4042 D 1985 Factorial 5601 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5602 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5603c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5604c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5605c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5606c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5607 12379*2^12379-1 3731 K 1985 Woodall 5608 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5609 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5610 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 5611 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5612 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5613 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5614 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5615 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5616 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5617 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5618 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5619 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5620 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5621 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5622 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5623 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5624 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5625 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5626 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5627 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5628 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5629 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5630 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5631 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5632 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5633c (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5634 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5635 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5636 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5637 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5638 V(14449) 3020 DK 1995 Lucas number 5639 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5640 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5641 U(14431) 3016 p54 2001 Fibonacci number 5642 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5643 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5644 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5645 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5646 V(13963) 2919 c11 2002 Lucas number, ECPP 5647 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5648 9531*2^9531-1 2874 K 1985 Woodall 5649 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5650 6569#-1 2811 D 1992 Primorial 5651 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5652 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5653 V(12251) 2561 p54 2001 Lucas number 5654 974!-1 2490 CD 1992 Factorial 5655 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 5656 7755*2^7755-1 2339 K 1985 Woodall 5657 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5658 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5659 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5660 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5661 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5662 V(10691) 2235 DK 1996 Lucas number 5663 872!+1 2188 D 1984 Factorial 5664 4787#+1 2038 D 1985 Primorial 5665 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5666 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5667 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5668 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5669 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5670 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5671 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5672 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5673 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5674 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5675 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5676 6611*2^6611+1 1994 K 1985 Cullen 5677 4583#-1 1953 D 1992 Primorial 5678 U(9311) 1946 DK 1995 Fibonacci number 5679 4547#+1 1939 D 1985 Primorial 5680 4297#-1 1844 D 1992 Primorial 5681 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5682 V(8467) 1770 c2 2000 Lucas number, ECPP 5683 4093#-1 1750 CD 1992 Primorial 5684 5795*2^5795+1 1749 K 1985 Cullen 5685 (2^5807+1)/3 1748 PM 1999 Cyclotomy, generalized Lucas number, Wagstaff 5686 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5687 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5688 V(7741) 1618 DK 1995 Lucas number 5689 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5690 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5691 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5692 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5693 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5694 83*2^5318-1 1603 K 1985 Woodall 5695 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5696 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5697 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5698 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5699 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5700 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5701 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5702 4713*2^4713+1 1423 K 1985 Cullen 5703 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5704 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5705 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5706 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5707 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5708 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5709b 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5710 V(5851) 1223 DK 1995 Lucas number 5711 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5712 16*(257578748915*2777#-1)+15 1197 p429 2023 Cunningham chain (16p+15) 5713 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5714 U(5387) 1126 WM 1991 Fibonacci number 5715 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5716 (2^3539+1)/3 1065 M 1990 First titanic by ECPP, generalized Lucas number, Wagstaff 5717 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5718 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5719 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5720 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5721 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5722 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5723 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 5724 R(1031) 1031 WD 1986 Repunit 5725 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5726 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5727 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 5728 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5729 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5730 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5731 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5732 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5733 V(4793) 1002 DK 1995 Lucas number 5734 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5735 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5736 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5737 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5738 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5739 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A4 Gingrich1, LLR2, MultiSieve, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g59 Linton, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g308 Angel, GFN17Sieve, GFNSearch, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g346 Dausch, ProthSieve, PrimeSierpinski, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g411 Brittenham, NewPGen, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe gm Morii, Proth.exe K Keller L51 Hedges, NewPGen, PRP, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L160 Wong, ProthSieve, RieselSieve, LLR L162 Banka, NewPGen, 12121search, LLR L172 Smith, ProthSieve, RieselSieve, LLR L175 Duggan, ProthSieve, RieselSieve, LLR L177 Kwok, Rieselprime, LLR L179 White, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L251 Burt, NewPGen, Rieselprime, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L260 Soule, Srsieve, Rieselprime, LLR L268 Metcalfe, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L321 Broadhurst, NewPGen, OpenPFGW, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L545 AndersonM, NewPGen, Rieselprime, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L632 Stokkedalen, Rieselprime, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L806 Stevens, Srsieve, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L895 Dinkel, Srsieve, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1139 Harvey1, PSieve, Srsieve, PrimeGrid, LLR L1141 Ogawa, NewPGen, LLR L1153 Kaiser1, Srsieve, PrimeGrid, 12121search, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1186 Richard1, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1210 Rhodes, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1344 Kobara, PSieve, Srsieve, PrimeGrid, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1356 Gockel, PSieve, Srsieve, PrimeGrid, LLR L1360 Tatterson, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1403 Andrews1, PSieve, Srsieve, PrimeGrid, LLR L1408 Emery, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1413 Morton, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1480 Goudie, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1513 Miller1, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1595 Cilliers, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1803 Puppi, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1809 Vogel, PSieve, Srsieve, NPLB, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1830 Bonath, PSieve, Srsieve, NPLB, LLR L1847 Liu1, PSieve, Srsieve, PrimeGrid, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1983 Safford, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2019 Wood_D, PSieve, Srsieve, PrimeGrid, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2070 Schemmel, PSieve, Srsieve, PrimeGrid, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2100 Christensen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2122 Megele, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2126 Senftleben, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2321 Medcalf, PSieve, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2327 Oh, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2338 Burt, PSieve, Srsieve, Rieselprime, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2494 Javtokas, PSieve, Srsieve, PrimeGrid, LLR L2507 Geis, PSieve, Srsieve, PrimeGrid, LLR L2517 McPherson, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2532 Papp2, PSieve, Srsieve, PrimeGrid, LLR L2545 Nose, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2562 Jones3, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2594 Sheridan, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2649 Brandstaetter, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2673 Burningham, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2703 Armstrong, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2724 AverayJones, PSieve, Srsieve, PrimeGrid, LLR L2742 Fluttert, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2823 Loureiro, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2827 Melzer, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2859 Keenan, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2967 Ryjkov, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2981 Yoshigoe, PSieve, Srsieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3037 Noltensmeier, PSieve, Srsieve, PrimeGrid, LLR L3043 Hayase, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3049 Tardy, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3075 Goellner, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3105 Eldredge, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3154 Hentrich, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3180 Poon, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3206 Chang2, PSieve, Srsieve, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3213 OBrien1, PSieve, Srsieve, PrimeGrid, LLR L3221 Vicena, PSieve, Srsieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3233 Nadeau, PSieve, Srsieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3276 Jeka, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3290 Bednar1, PSieve, Srsieve, PrimeGrid, LLR L3294 Bartlett, PSieve, Srsieve, PrimeGrid, LLR L3313 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3336 Dongen, Siemelink, Srsieve, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3354 Willig, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3385 Rassokhin, PSieve, Srsieve, PrimeGrid, LLR L3410 Kurtovic, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3418 Stein, PSieve, Srsieve, PrimeGrid, LLR L3422 Micom, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3439 Huang, PSieve, Srsieve, PrimeGrid, LLR L3440 Pelikan, PSieve, Srsieve, PrimeGrid, LLR L3446 Marshall3, PSieve, Srsieve, PrimeGrid, LLR L3453 Benes, PSieve, Srsieve, PrimeGrid, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3464 Ferrell, PSieve, Srsieve, PrimeGrid, LLR L3470 Fisan, PSieve, Srsieve, PrimeGrid, LLR L3471 Gieorgijewski, PSieve, Srsieve, PrimeGrid, LLR L3472 Hernas, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3487 Ziemann, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3518 Papendick, PSieve, Srsieve, PrimeGrid, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3538 Beard1, PSieve, Srsieve, PrimeGrid, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3555 Cervelle, PSieve, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3577 Sriworarat, PSieve, Srsieve, PrimeGrid, LLR L3580 Nelson1, PSieve, Srsieve, PrimeGrid, LLR L3586 Wharton, PSieve, Srsieve, PrimeGrid, LLR L3588 Matousek, PSieve, Srsieve, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3612 Smits, PSieve, Srsieve, PrimeGrid, LLR L3625 Haymoz, PSieve, Srsieve, PrimeGrid, LLR L3640 Stopper, PSieve, Srsieve, PrimeGrid, LLR L3650 Smit, PSieve, Srsieve, PrimeGrid, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3666 Bielecki, PSieve, Srsieve, PrimeGrid, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3682 Schaible, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3688 Hasznos, PSieve, Srsieve, PrimeGrid, LLR L3696 Linderson, PSieve, Srsieve, PrimeGrid, LLR L3700 Kim4, PSieve, Srsieve, PrimeGrid, LLR L3709 Buss, PSieve, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3728 Rietveld, PSieve, Srsieve, PrimeGrid, LLR L3731 Deram, PSieve, Srsieve, PrimeGrid, LLR L3733 Bryniarski, PSieve, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3736 Lukosevisius, PSieve, Srsieve, PrimeGrid, LLR L3737 Cartiaux, PSieve, Srsieve, PrimeGrid, LLR L3738 Larsson1, PSieve, Srsieve, PrimeGrid, LLR L3739 Gournay, PSieve, Srsieve, PrimeGrid, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3744 Green1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3767 Huang1, PSieve, Srsieve, PrimeGrid, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3785 Reichel, PSieve, Srsieve, PrimeGrid, LLR L3787 Palumbo, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3790 Tamagawa, PSieve, Srsieve, PrimeGrid, LLR L3797 Schmidt3, PSieve, Srsieve, PrimeGrid, LLR L3800 Amschl, PSieve, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3838 Boyden, PSieve, Srsieve, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3843 Whiteley, PSieve, Srsieve, PrimeGrid, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3855 Lunner, PSieve, Srsieve, PrimeGrid, LLR L3857 Hudec, PSieve, Srsieve, PrimeGrid, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3860 Cimrman, PSieve, Srsieve, PrimeGrid, LLR L3861 Roemer, PSieve, Srsieve, PrimeGrid, LLR L3862 Gudenschwager, PSieve, Srsieve, PrimeGrid, LLR L3863 WaldenForrest, PSieve, Srsieve, PrimeGrid, LLR L3864 Piantoni, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3867 Traebert, PSieve, Srsieve, PrimeGrid, LLR L3868 Miller3, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3873 Sala, PSieve, Srsieve, PrimeGrid, LLR L3876 Apreutesei, PSieve, Srsieve, PrimeGrid, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3886 Vogel, Srsieve, CRUS, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3890 Beeson, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3909 Taylor2, PSieve, Srsieve, PrimeGrid, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3914 Matsuda, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3967 Inouye, PSieve, Srsieve, Rieselprime, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4026 Batalov, Cyclo, EMsieve, PIES, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4040 Oddone, PSieve, Srsieve, PrimeGrid, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4076 Lacroix, PSieve, Srsieve, NPLB, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4106 Ga, PSieve, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4111 Leps1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4118 Slegel, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4122 Sasaki1, PSieve, Srsieve, PrimeGrid, LLR L4123 Bush, PSieve, Srsieve, PrimeGrid, LLR L4133 Ito, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4191 Mahan, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4262 Hutchins, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4269 Romanov, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4283 Crawford1, PSieve, Srsieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4287 Suzuki1, PSieve, Srsieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4547 Nair, TwinGen, NewPGen, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4575 Gingrich2, Srsieve, CRUS, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4629 Chen2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4714 James1, Srsieve, CRUS, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4812 Nezumi, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4839 Harris, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4961 Vornicu, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4974 Monroe, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4994 Wong, Srsieve, NewPGen, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5000 Wimmer2, Srsieve, CRUS, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5118 Vanderveen1, PSieve, Srsieve, PrimeGrid, Rieselprime, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5209 Hansen1, Srsieve, CRUS, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5218 Atnashev, LLR2, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5227 Nagayama, Srsieve, CRUS, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5340 Ogawa, MultiSieve, NewPGen, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5347 Whyte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5365 Racanelli, Srsieve, CRUS, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5388 Dewar, Srsieve, CRUS, LLR L5389 Doornink, TwinGen, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5415 VanHullebusch, Srsieve, CRUS, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5490 Vasiliu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5519 Atnashev, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5551 Marler, PSieve, Srsieve, NPLB, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5580 Ivanek1, Srsieve, CRUS, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5598 Rodermond, PSieve, Srsieve, NPLB, LLR L5599 Jayaputera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5630 Orpen1, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5643 Fisher1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5654 DeJesus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5660 Andrews2, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5669 Song, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5673 Lepri, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5695 Steinberg, NewPGen, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5717 Natividad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5747 Pettit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5752 Wissel, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5759 Benz1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5760 West, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5761 Sawyer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5762 Liskay, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5777 New, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5779 Wakeland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5781 Cesarini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5785 Kelley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5786 Madarasz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5788 Gordon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5789 Williams8, LLR L5790 Kolencik, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5792 Puada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5795 VandeVelde, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5800 Geiger1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5801 Rozkosz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5806 Georgell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5813 Griffiths, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5815 Huerta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5822 Kulbanau, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5823 Xu1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p168 Cami, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p254 Vogel, Srsieve, CRUS, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p257 Siemelink, Srsieve, OpenPFGW p258 Batalov, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p271 Dettweiler, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p292 Dausch, Srsieve, SierpinskiRiesel, OpenPFGW p294 Batalov, EMsieve, PIES, LLR, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p300 Gramolin, NewPGen, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p383 Maloy, OpenPFGW p384 Booker, OpenPFGW p385 Rajala, Srsieve, CRUS, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p390 Jaworski, Srsieve, Rieselprime, Prime95, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p397 Rodenkirch, Fpsieve, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p429 Steinberg, MultiSieve, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p432 Rodermond, Cksieve, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown Y Young