THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Thu Sep 21 02:38:08 UTC 2023) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7e Phi(3,-465859^1048576) 11887192 L4561 2023 Generalized unique 8 2^37156667-1 11185272 G11 2008 Mersenne 45 9 2^32582657-1 9808358 G9 2006 Mersenne 44 10 10223*2^31172165+1 9383761 SB12 2016 11 2^30402457-1 9152052 G9 2005 Mersenne 43 12 2^25964951-1 7816230 G8 2005 Mersenne 42 13 2^24036583-1 7235733 G7 2004 Mersenne 41 14 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 15 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 16 202705*2^21320516+1 6418121 L5181 2021 17 2^20996011-1 6320430 G6 2003 Mersenne 40 18 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 19c 3*2^20928756-1 6300184 L5799 2023 20 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 21d 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 22 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 23 168451*2^19375200+1 5832522 L4676 2017 24 69*2^19374980-1 5832452 L4965 2022 25 3*2^18924988-1 5696990 L5530 2022 26 69*2^18831865-1 5668959 L4965 2021 27f 97139*2^18397548-1 5538219 L4965 2023 28 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 29 3*2^18196595-1 5477722 L5461 2022 30 3*2^17748034-1 5342692 L5404 2021 31 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 32 3622*5^7558139-1 5282917 L4965 2022 33 7*6^6772401+1 5269954 L4965 2019 34 2*3^10852677+1 5178044 L4965 2023 Divides phi 35 8508301*2^17016603-1 5122515 L4784 2018 Woodall 36 3*2^16819291-1 5063112 L5230 2021 37 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 38 69*2^15866556-1 4776312 L4965 2021 39 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 40 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 41 37*2^15474010+1 4658143 L4965 2022 42 93839*2^15337656-1 4617100 L4965 2022 43 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 44 6*5^6546983+1 4576146 L4965 2020 45 69*2^14977631-1 4508719 L4965 2021 46 192971*2^14773498-1 4447272 L4965 2021 47 4*5^6181673-1 4320805 L4965 2022 48 6962*31^2863120-1 4269952 L5410 2020 49 37*2^14166940+1 4264676 L4965 2022 50 99739*2^14019102+1 4220176 L5008 2019 51 69*2^13832885-1 4164116 L4965 2022 52 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 53 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 54 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 55 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 56 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 57 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 58 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 59 2^13466917-1 4053946 G5 2001 Mersenne 39 60 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 61 206039*2^13104952-1 3944989 L4965 2021 62 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 63 19249*2^13018586+1 3918990 SB10 2007 64 2293*2^12918431-1 3888839 L4965 2021 65 81*2^12804541+1 3854553 L4965 2022 66 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 67 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 68d 7*2^12286041-1 3698468 L4965 2023 69 69*2^12231580-1 3682075 L4965 2021 70 27*2^12184319+1 3667847 L4965 2021 71 3761*2^11978874-1 3606004 L4965 2022 72 3*2^11895718-1 3580969 L4159 2015 73 37*2^11855148+1 3568757 L4965 2022 74d 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 75 5897794^524288+1 3549792 x50 2022 Generalized Fermat 76 3*2^11731850-1 3531640 L4103 2015 77 69*2^11718455-1 3527609 L4965 2020 78 41*2^11676439+1 3514960 L4965 2022 79 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 80 81*2^11616017+1 3496772 L4965 2022 81 69*2^11604348-1 3493259 L4965 2020 82a 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 83 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 84 3*2^11484018-1 3457035 L3993 2014 85 193997*2^11452891+1 3447670 L4398 2018 86 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 87 9221*2^11392194-1 3429397 L5267 2021 88 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 89 5*2^11355764-1 3418427 L4965 2021 90a 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 91 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 92 146561*2^11280802-1 3395865 L5181 2020 93 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 94 6929*2^11255424-1 3388225 L4965 2022 95 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 96 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 97 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 98 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 99 9271*2^11134335-1 3351773 L4965 2021 100 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 101 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 102 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 103 27*2^10902757-1 3282059 L4965 2022 104 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 105 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 106 11*2^10797109+1 3250255 L4965 2022 107 7*2^10612737-1 3194754 L4965 2022 108 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 109 5*2^10495620-1 3159498 L4965 2021 110d Phi(3,-3^3304302+1)/3 3153105 L5123 2023 Generalized unique 111 5*2^10349000-1 3115361 L4965 2021 112 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 113b 52922*5^4399812-1 3075342 A1 2023 114 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 115c 177742*5^4386703-1 3066180 L5807 2023 116 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 117 475856^524288+1 2976633 L3230 2012 Generalized Fermat 118 2*3^6236772+1 2975697 L4965 2022 119b 15*2^9830108+1 2959159 A2 2023 120 9*2^9778263+1 2943552 L4965 2020 121 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 122 356926^524288+1 2911151 L3209 2012 Generalized Fermat 123 341112^524288+1 2900832 L3184 2012 Generalized Fermat 124 213988*5^4138363-1 2892597 L5621 2022 125 43*2^9596983-1 2888982 L4965 2022 126 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 127 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 128b 15*2^9312889+1 2803461 L4965 2023 129 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 130 27653*2^9167433+1 2759677 SB8 2005 131 90527*2^9162167+1 2758093 L1460 2010 132 6795*2^9144320-1 2752719 L4965 2021 133c 75*2^9079482+1 2733199 L4965 2023 134 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 135 57*2^9075622-1 2732037 L4965 2022 136 63838*5^3887851-1 2717497 L5558 2022 137 13*2^8989858+1 2706219 L4965 2020 138 4159*2^8938471-1 2690752 L4965 2022 139 273809*2^8932416-1 2688931 L1056 2017 140 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 141 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 142 2038*366^1028507-1 2636562 L2054 2016 143 64598*5^3769854-1 2635020 L5427 2022 144 8*785^900325+1 2606325 L4786 2022 145 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 146 75898^524288+1 2558647 p334 2011 Generalized Fermat 147 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 148 39*2^8413422+1 2532694 L5232 2021 149 31*2^8348000+1 2513000 L5229 2021 150 27*2^8342438-1 2511326 L3483 2021 151 3687*2^8261084-1 2486838 L4965 2021 152 273662*5^3493296-1 2441715 L5444 2021 153 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 154 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 155 102818*5^3440382-1 2404729 L5427 2021 156 11*2^7971110-1 2399545 L2484 2019 157 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 158 3177*2^7954621-1 2394584 L4965 2021 159 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 160 7*6^3072198+1 2390636 L4965 2019 161 3765*2^7904593-1 2379524 L4965 2021 162 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 163 5113*2^7895471-1 2376778 L4965 2022 164 861*2^7895451-1 2376771 L4965 2021 165a 75*2^7886683+1 2374131 A2 2023 166 28433*2^7830457+1 2357207 SB7 2004 167 2589*2^7803339-1 2349043 L4965 2022 168f 8401*2^7767655-1 2338302 L4965 2023 169 5*2^7755002-1 2334489 L4965 2021 170 2945*2^7753232-1 2333959 L4965 2022 171 2545*2^7732265-1 2327648 L4965 2021 172 5539*2^7730709-1 2327180 L4965 2021 173 4817*2^7719584-1 2323831 L4965 2021 174 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 175 9467*2^7680034-1 2311925 L4965 2022 176 45*2^7661004+1 2306194 L5200 2020 177 15*2^7619838+1 2293801 L5192 2020 178 3597*2^7580693-1 2282020 L4965 2021 179 3129*2^7545557-1 2271443 L4965 2023 180 7401*2^7523295-1 2264742 L4965 2021 181 45*2^7513661+1 2261839 L5179 2020 182 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 183d 9*2^7479919-1 2251681 L3345 2023 184 1875*2^7474308-1 2249995 L4965 2022 185 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 186 4*5^3189669-1 2229484 L4965 2022 187 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 188 3197*2^7359542-1 2215447 L4965 2022 189 109838*5^3168862-1 2214945 L5129 2020 190 101*2^7345194-1 2211126 L1884 2019 191 15*2^7300254+1 2197597 L5167 2020 192 422429!+1 2193027 p425 2022 Factorial 193 1759*2^7284439-1 2192838 L4965 2021 194e 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 195 737*2^7269322-1 2188287 L4665 2017 196 118568*5^3112069+1 2175248 L690 2020 197 6039*2^7207973-1 2169820 L4965 2021 198 502573*2^7181987-1 2162000 L3964 2014 199 402539*2^7173024-1 2159301 L3961 2014 200 3343*2^7166019-1 2157191 L1884 2016 201 161041*2^7107964+1 2139716 L4034 2015 202 27*2^7046834+1 2121310 L3483 2018 203 1759*2^7046791-1 2121299 L4965 2021 204 327*2^7044001-1 2120459 L4965 2021 205 5*2^7037188-1 2118406 L4965 2021 206 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 207 33661*2^7031232+1 2116617 SB11 2007 208 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 209 207494*5^3017502-1 2109149 L5083 2020 210 15*2^6993631-1 2105294 L4965 2021 211 8943501*2^6972593-1 2098967 L466 2022 212 6020095*2^6972593-1 2098967 L466 2022 213 2^6972593-1 2098960 G4 1999 Mersenne 38 214 273*2^6963847-1 2096330 L4965 2022 215 6219*2^6958945-1 2094855 L4965 2021 216 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 217 238694*5^2979422-1 2082532 L5081 2020 218 4*72^1119849-1 2079933 L4444 2016 219 33*2^6894190-1 2075360 L4965 2021 220 2345*2^6882320-1 2071789 L4965 2022 221b 57*2^6857990+1 2064463 A2 2023 222 146264*5^2953282-1 2064261 L1056 2020 223 69*2^6838971-1 2058738 L5037 2020 224 35816*5^2945294-1 2058677 L5076 2020 225 127*2^6836153-1 2057890 L1862 2018 226 19*2^6833086+1 2056966 L5166 2020 227 40597*2^6808509-1 2049571 L3749 2013 228 283*2^6804731-1 2048431 L2484 2020 229 1861709*2^6789999+1 2044000 L5191 2020 230 5781*2^6789459-1 2043835 L4965 2021 231 8435*2^6786180-1 2042848 L4965 2021 232 51*2^6753404+1 2032979 L4965 2020 233a 93*2^6750726+1 2032173 A2 2023 234 69*2^6745775+1 2030683 L4965 2023 235 9995*2^6711008-1 2020219 L4965 2021 236 39*2^6684941+1 2012370 L5162 2020 237 6679881*2^6679881+1 2010852 L917 2009 Cullen 238 37*2^6660841-1 2005115 L3933 2014 239 39*2^6648997+1 2001550 L5161 2020 240 304207*2^6643565-1 1999918 L3547 2013 241 69*2^6639971-1 1998833 L5037 2020 242 6471*2^6631137-1 1996175 L4965 2021 243 9935*2^6603610-1 1987889 L4965 2023 244d 554051*2^6517658-1 1962017 L5811 2023 245 1319*2^6506224-1 1958572 L4965 2021 246 3163*2^6504943-1 1958187 L4965 2023 247 322498*5^2800819-1 1957694 L4954 2019 248b 99*2^6502814+1 1957545 A2 2023 249 88444*5^2799269-1 1956611 L3523 2019 250 13*2^6481780+1 1951212 L4965 2020 251 21*2^6468257-1 1947141 L4965 2021 252a 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 253b 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 254b 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 255b 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 256c 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 257c 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 258d 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 259 138514*5^2771922+1 1937496 L4937 2019 260e 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 261 33*2^6432160-1 1936275 L4965 2022 262 15*2^6429089-1 1935350 L4965 2021 263f 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 264f 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 265 398023*2^6418059-1 1932034 L3659 2013 266 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 267d Phi(3,3^2021560+1)/3 1929059 L5123 2023 Generalized unique 268 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 269 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 270 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 271 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 272b 55*2^6395254+1 1925166 A2 2023 273 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 274 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 275 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 276 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 277 631*2^6359347-1 1914357 L4965 2021 278 4965*2^6356707-1 1913564 L4965 2022 279 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 280 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 281 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 282 1995*2^6333396-1 1906546 L4965 2021 283 1582137*2^6328550+1 1905090 L801 2009 Cullen 284 18395930^262144+1 1904404 x50 2022 Generalized Fermat 285 17191822^262144+1 1896697 x50 2022 Generalized Fermat 286b 87*2^6293522+1 1894541 A2 2023 287 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 288 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 289 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 290 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 291 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 292 3303*2^6264946-1 1885941 L4965 2021 293 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 294 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 295 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 296 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 297 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 298 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 299 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 300a 8825*2^6199424-1 1866217 A2 2023 301 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 302 7*6^2396573+1 1864898 L4965 2019 303 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 304 69*2^6186659+1 1862372 L4965 2023 305 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 306 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 307 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 308 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 309 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 310 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 311 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 312 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 313 194368*5^2638045-1 1843920 L690 2018 314 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 315 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 316 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 317 66916*5^2628609-1 1837324 L690 2018 318e 521921*2^6101122-1 1836627 L5811 2023 319 3*2^6090515-1 1833429 L1353 2010 320 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 321 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 322 8349*2^6082397-1 1830988 L4965 2021 323 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 324b 71*2^6070943+1 1827538 L4965 2023 325 32*470^683151+1 1825448 L4064 2021 326 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 327 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 328 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 329 9999*2^6037057-1 1817340 L4965 2021 330 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 331 33*2^6019138-1 1811943 L4965 2022 332b 67*2^6018626+1 1811789 L4965 2023 333 1583*2^5989282-1 1802957 L4036 2015 334f 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 335 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 336 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 337 327926*5^2542838-1 1777374 L4807 2018 338 81556*5^2539960+1 1775361 L4809 2018 339 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 340 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 341 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 342 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 343 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 344 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 345c 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 346 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 347 7*2^5775996+1 1738749 L3325 2012 348 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 349 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 350 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 351 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 352 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 353 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 354 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 355 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 356 1243*2^5686715-1 1711875 L1828 2016 357 25*2^5658915-1 1703505 L1884 2021 358e 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 359 41*2^5651731+1 1701343 L1204 2020 360 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 361 9*2^5642513+1 1698567 L3432 2013 362 10*3^3550446+1 1693995 L4965 2020 363 2622*11^1621920-1 1689060 L2054 2015 364 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 365 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 366 301562*5^2408646-1 1683577 L4675 2017 367 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 368 171362*5^2400996-1 1678230 L4669 2017 369 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 370 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 371 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 372 252191*2^5497878-1 1655032 L3183 2012 373 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 374 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 375 258317*2^5450519+1 1640776 g414 2008 376 7*6^2104746+1 1637812 L4965 2019 377 5*2^5429494-1 1634442 L3345 2017 378 43*2^5408183-1 1628027 L1884 2018 379 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 380 2*296598^296598-1 1623035 L4965 2022 381 1349*2^5385004-1 1621051 L1828 2017 382 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 383 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 384 45*2^5308037+1 1597881 L4761 2019 385 5468*70^864479-1 1595053 L5410 2022 386f 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 387 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 388 7*2^5229669-1 1574289 L4965 2021 389 180062*5^2249192-1 1572123 L4435 2016 390 124125*6^2018254+1 1570512 L4001 2019 391 27*2^5213635+1 1569462 L3760 2015 392 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 393 308084!+1 1557176 p425 2022 Factorial 394 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 395 25*2^5152151-1 1550954 L1884 2020 396 53546*5^2216664-1 1549387 L4398 2016 397 773620^262144+1 1543643 L3118 2012 Generalized Fermat 398 39*2^5119458+1 1541113 L1204 2019 399 607*26^1089034+1 1540957 L5410 2021 400 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 401 223*2^5105835-1 1537012 L2484 2019 402 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 403 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 404 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 405 51*2^5085142-1 1530782 L760 2014 406 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 407 676754^262144+1 1528413 L2975 2012 Generalized Fermat 408 296024*5^2185270-1 1527444 L671 2016 409 5359*2^5054502+1 1521561 SB6 2003 410f 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 411c 53*2^5019181+1 1510926 L4965 2023 412 13*2^4998362+1 1504659 L3917 2014 413 525094^262144+1 1499526 p338 2012 Generalized Fermat 414 92158*5^2145024+1 1499313 L4348 2016 415 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 416 77072*5^2139921+1 1495746 L4340 2016 417 2*3^3123036+1 1490068 L5043 2020 418c 51*2^4923905+1 1482245 L4965 2023 419 519397*2^4908893-1 1477730 L5410 2022 420 306398*5^2112410-1 1476517 L4274 2016 421b 39*684^519468-1 1472723 L5410 2023 422 265711*2^4858008+1 1462412 g414 2008 423 154222*5^2091432+1 1461854 L3523 2015 424 1271*2^4850526-1 1460157 L1828 2012 425 333*2^4846958-1 1459083 L5546 2022 426f 156*532^534754-1 1457695 L5410 2023 427 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 428 361658^262144+1 1457075 p332 2011 Generalized Fermat 429 100186*5^2079747-1 1453686 L4197 2015 430 288465!+1 1449771 p3 2022 Factorial 431 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 432 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 433 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 434 653*10^1435026-1 1435029 p355 2014 435 197*2^4765318-1 1434506 L5175 2021 436 1401*2^4759435-1 1432736 L4965 2023 437 2169*2^4754343-1 1431204 L4965 2023 438 188*468^535963+1 1431156 L4832 2019 439 1809*2^4752792-1 1430737 L4965 2022 440 2427*2^4749044-1 1429609 L4965 2022 441b 303*2^4748019-1 1429299 L5545 2023 442 2259*2^4746735-1 1428913 L4965 2022 443b 309*2^4745713-1 1428605 L5545 2023 444 2223*2^4729304-1 1423666 L4965 2022 445 1851*2^4727663-1 1423172 L4965 2022 446 1725*2^4727375-1 1423085 L4965 2022 447 1611*2^4724014-1 1422074 L4965 2022 448 1383*2^4719270-1 1420645 L4965 2022 449 1749*2^4717431-1 1420092 L4965 2022 450 2325*2^4713991-1 1419057 L4965 2022 451 3267113#-1 1418398 p301 2021 Primorial 452 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 453 2337*2^4705660-1 1416549 L4965 2022 454 1229*2^4703492-1 1415896 L1828 2018 455 144052*5^2018290+1 1410730 L4146 2015 456 195*2^4685711-1 1410542 L5175 2021 457 9*2^4683555-1 1409892 L1828 2012 458 31*2^4673544+1 1406879 L4990 2019 459 34*993^469245+1 1406305 L4806 2018 460 79*2^4658115-1 1402235 L1884 2018 461 39*2^4657951+1 1402185 L1823 2019 462 4*650^498101-1 1401116 L4294 2021 463 11*2^4643238-1 1397755 L2484 2014 464e 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 465 68*995^465908-1 1396712 L4001 2017 466 7*6^1793775+1 1395830 L4965 2019 467 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 468f 6*10^1380098+1 1380099 L5009 2023 469 27*2^4583717-1 1379838 L2992 2014 470d Phi(3,-3^1444194+1)/3 1378111 L5123 2023 Generalized unique 471e 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 472 121*2^4553899-1 1370863 L3023 2012 473 9473*2^4543680-1 1367788 L5037 2022 474 27*2^4542344-1 1367384 L1204 2014 475 29*2^4532463+1 1364409 L4988 2019 476 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 477 145310^262144+1 1353265 p314 2011 Generalized Fermat 478 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 479 81*536^493229+1 1346106 p431 2023 480 303*2^4471002-1 1345909 L5545 2022 481 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 482 36772*6^1723287-1 1340983 L1301 2014 483 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 484e 20*634^476756-1 1335915 L4975 2023 485c 85*2^4432870+1 1334429 L4965 2023 486 151*2^4424321-1 1331856 L1884 2016 487 195*2^4373994-1 1316706 L5175 2020 488 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 489 49*2^4365175-1 1314051 L1959 2017 490 49*2^4360869-1 1312755 L1959 2017 491 13*2^4333087-1 1304391 L1862 2018 492 353159*2^4331116-1 1303802 L2408 2011 493 9959*2^4308760-1 1297071 L5037 2022 494 23*2^4300741+1 1294654 L4147 2019 495 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 496 141941*2^4299438-1 1294265 L689 2011 497c 87*2^4297718+1 1293744 L4965 2023 498a 435*2^4292968+1 1292315 L5783 2023 499e 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 500a 415*2^4280864+1 1288672 L5818 2023 501c 79*2^4279006+1 1288112 L4965 2023 502b 205*2^4270310+1 1285494 L5517 2023 503b 483*2^4270112+1 1285435 L5178 2023 504b 123*2^4266441+1 1284329 L5178 2023 505 612749*2^4254500-1 1280738 L5410 2022 506b 223*2^4252660+1 1280181 L5178 2023 507c 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 508 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 509 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 510 3*2^4235414-1 1274988 L606 2008 511 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 512c 93*2^4232892+1 1274230 L4965 2023 513b 131*2^4227493+1 1272605 L5226 2023 514 45*436^481613+1 1271213 L5410 2020 515 109208*5^1816285+1 1269534 L3523 2014 516c 435*2^4216447+1 1269280 L5178 2023 517 1091*2^4215518-1 1269001 L1828 2018 518 191*2^4203426-1 1265360 L2484 2012 519c 269*2^4198809+1 1263970 L5226 2023 520c 545*2^4198333+1 1263827 L5804 2023 521c 53*2^4197093+1 1263453 L5563 2023 522 1259*2^4196028-1 1263134 L1828 2016 523c 329*2^4193199+1 1262282 L5226 2023 524c 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 525 325918*5^1803339-1 1260486 L3567 2014 526c 345*2^4173969+1 1256493 L5226 2023 527c 161*2^4164267+1 1253572 L5178 2023 528c 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 529c 177*2^4162494+1 1253038 L5796 2023 530d 237*2^4153348+1 1250285 L5178 2023 531 69*2^4151165+1 1249628 L4965 2023 532 133778*5^1785689+1 1248149 L3903 2014 533d 201*2^4146003+1 1248074 L5161 2023 534d 329*2^4136019+1 1245069 L5178 2023 535 81*2^4131975+1 1243851 L4965 2022 536d 459*2^4129577+1 1243130 L5226 2023 537d 551*2^4126303+1 1242144 L5226 2023 538d 363*2^4119017+1 1239951 L5226 2023 539d 105*2^4113039+1 1238151 L5178 2023 540f 204*532^454080-1 1237785 L5410 2023 541 17*2^4107544-1 1236496 L4113 2015 542e 261*2^4106385+1 1236148 L5178 2023 543 24032*5^1768249+1 1235958 L3925 2014 544 172*159^561319-1 1235689 L4001 2017 545 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 546d 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 547 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 548 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 549e 67*2^4100746+1 1234450 L5178 2023 550e 191*2^4099097+1 1233954 L5563 2023 551e 325*2^4097700+1 1233534 L5226 2023 552e 519*2^4095491+1 1232869 L5226 2023 553e 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 554f 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 555 64*425^467857-1 1229712 p268 2021 556e 381*2^4069617+1 1225080 L5226 2023 557 97*2^4066717-1 1224206 L2484 2019 558e 95*2^4063895+1 1223357 L5226 2023 559e 79*2^4062818+1 1223032 L5178 2023 560 1031*2^4054974-1 1220672 L1828 2017 561e 309*2^4054114+1 1220413 L5178 2023 562 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 563 37*2^4046360+1 1218078 L2086 2019 564f 141*2^4043116+1 1217102 L5517 2023 565 39653*430^460397-1 1212446 L4187 2016 566 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 567f 141*2^4024411+1 1211471 L5226 2023 568f 515*2^4021165+1 1210494 L5174 2023 569f 73*2^4016912+1 1209213 L5226 2023 570 40734^262144+1 1208473 p309 2011 Generalized Fermat 571f 235*2^4013398+1 1208156 L5178 2023 572 9*2^4005979-1 1205921 L1828 2012 573f 417*2^4003224+1 1205094 L5764 2023 574 12*68^656921+1 1203815 L4001 2016 575 67*688^423893+1 1202836 L4001 2017 576 221*2^3992723+1 1201932 L5178 2023 577 213*2^3990702+1 1201324 L5216 2023 578 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 579 163*2^3984604+1 1199488 L5756 2023 580 725*2^3983355+1 1199113 L5706 2023 581 (146^276995+1)^2-2 1199030 p405 2022 582 455*2^3981067+1 1198424 L5724 2023 583 138172*5^1714207-1 1198185 L3904 2014 584 50*383^463313+1 1196832 L2012 2021 585 339*2^3974295+1 1196385 L5178 2023 586 699*2^3974045+1 1196310 L5750 2023 587 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 588 29*2^3964697+1 1193495 L1204 2019 589 599*2^3963655+1 1193182 L5226 2023 590 683*2^3962937+1 1192966 L5226 2023 591 39*2^3961129+1 1192421 L1486 2019 592 165*2^3960664+1 1192281 L5178 2023 593 79*2^3957238+1 1191250 L5745 2023 594 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 595 163*2^3954818+1 1190522 L5178 2023 596 431*2^3953647+1 1190169 L5554 2023 597 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 598 341*2^3938565+1 1185629 L5554 2023 599 503*2^3936845+1 1185112 L5706 2023 600 717*2^3934760+1 1184484 L5285 2023 601 493*2^3929192+1 1182808 L5161 2023 602 273*2^3929128+1 1182788 L5554 2023 603 609*2^3928682+1 1182654 L5178 2023 604 609*2^3928441+1 1182582 L5527 2023 605 281*2^3926467+1 1181987 L5174 2023 606 153*2^3922478+1 1180786 L5554 2023 607 69*2^3920863+1 1180300 L5554 2023 608 273*2^3919321+1 1179836 L5706 2023 609 531*2^3918985+1 1179735 L5706 2023 610 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 611 555*2^3916875+1 1179100 L5302 2023 612 571*2^3910616+1 1177216 L5178 2023 613 421*2^3905144+1 1175569 L5600 2023 614 P1174253 1174253 p414 2022 615 567*2^3897588+1 1173294 L5600 2023 616 417*2^3895404+1 1172637 L5600 2023 617 539*2^3894953+1 1172501 L5285 2023 618 645*2^3893849+1 1172169 L5600 2023 619f 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 620 22478*5^1675150-1 1170884 L3903 2014 621 1199*2^3889576-1 1170883 L1828 2018 622 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 623 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 624 711*2^3886480+1 1169950 L5320 2023 625 375*2^3884634+1 1169394 L5600 2023 626 94*872^397354+1 1168428 L5410 2019 627 269*2^3877485+1 1167242 L5649 2023 628 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 629b 1365*2^3872811+1 1165836 L1134 2023 630 313*2^3869536+1 1164849 L5600 2023 631 159*2^3860863+1 1162238 L5226 2023 632 445*2^3860780+1 1162214 L5640 2023 633 397*2^3859450+1 1161813 L5226 2023 634 685*2^3856790+1 1161013 L5226 2023 635 27*2^3855094-1 1160501 L3033 2012 636 537*2^3853860+1 1160131 L5636 2022 637 164*978^387920-1 1160015 L4700 2018 638 175*2^3850344+1 1159072 L5226 2022 639 685*2^3847268+1 1158146 L5226 2022 640 655*2^3846352+1 1157871 L5282 2022 641 583*2^3846196+1 1157824 L5226 2022 642 615*2^3844151+1 1157208 L5226 2022 643 14772*241^485468-1 1156398 L5410 2022 644 525*2^3840963+1 1156248 L5613 2022 645 313*2^3837304+1 1155147 L5298 2022 646 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 647 431*2^3835247+1 1154528 L5161 2022 648 97*2^3833722+1 1154068 L5226 2022 649 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 650 125*392^444161+1 1151839 L4832 2022 651 255*2^3824348+1 1151246 L5226 2022 652 30*514^424652-1 1151218 L4001 2017 653 569*2^3823191+1 1150898 L5226 2022 654 24518^262144+1 1150678 g413 2008 Generalized Fermat 655 563*2^3819237+1 1149708 L5178 2022 656 345*2^3817949+1 1149320 L5373 2022 657 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 658 241*2^3815727-1 1148651 L2484 2019 659 351*2^3815467+1 1148573 L5226 2022 660 109*980^383669-1 1147643 L4001 2018 661 427*2^3811610+1 1147412 L5614 2022 662 569*2^3810475+1 1147071 L5610 2022 663 213*2^3807864+1 1146284 L5609 2022 664 87*2^3806438+1 1145854 L5607 2022 665 369*2^3805321+1 1145519 L5541 2022 666 123547*2^3804809-1 1145367 L2371 2011 667 2564*75^610753+1 1145203 L3610 2014 668 539*2^3801705+1 1144430 L5161 2022 669 159*2^3801463+1 1144357 L5197 2022 670 235*2^3801284+1 1144303 L5608 2022 671 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 672 519*2^3800625+1 1144105 L5315 2022 673 281*2^3798465+1 1143455 L5178 2022 674 166*443^432000+1 1143249 L5410 2020 675 85*2^3797698+1 1143223 L5161 2022 676 326834*5^1634978-1 1142807 L3523 2014 677 459*2^3795969+1 1142704 L5161 2022 678 447*2^3780151+1 1137942 L5596 2022 679 345*2^3779921+1 1137873 L5557 2022 680 477*2^3779871+1 1137858 L5197 2022 681 251*2^3774587+1 1136267 L5592 2022 682 439*2^3773958+1 1136078 L5557 2022 683 43*182^502611-1 1135939 L4064 2020 684 415267*2^3771929-1 1135470 L2373 2011 685 11*2^3771821+1 1135433 p286 2013 686 427*2^3768104+1 1134315 L5192 2022 687 1455*2^3768024-1 1134292 L1134 2022 688 711*2^3767492+1 1134131 L5161 2022 689 265*2^3765189-1 1133438 L2484 2018 690 297*2^3765140+1 1133423 L5197 2022 691 381*2^3764189+1 1133137 L5589 2022 692 115*2^3763650+1 1132974 L5554 2022 693 411*2^3759067+1 1131595 L5589 2022 694 405*2^3757192+1 1131031 L5590 2022 695 938237*2^3752950-1 1129757 L521 2007 Woodall 696 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 697 701*2^3744713+1 1127274 L5554 2022 698 207394*5^1612573-1 1127146 L3869 2014 699 684*10^1127118+1 1127121 L4036 2017 700 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 701 104944*5^1610735-1 1125861 L3849 2014 702 23451*2^3739388+1 1125673 L591 2015 703e 78*622^402915-1 1125662 L5645 2023 704 615*2^3738023+1 1125260 L5161 2022 705 347*2^3737875+1 1125216 L5178 2022 706 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 707 375*2^3733510+1 1123902 L5584 2022 708 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 709 629*2^3731479+1 1123290 L5283 2022 710 113*2^3728113+1 1122276 L5161 2022 711 303*2^3725438+1 1121472 L5161 2022 712 187*2^3723972+1 1121030 L5178 2022 713 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 714 105*2^3720512+1 1119988 L5493 2022 715 447*2^3719024+1 1119541 L5493 2022 716 177*2^3717746+1 1119156 L5279 2022 717 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 718 123*2^3716758+1 1118858 L5563 2022 719 313*2^3716716+1 1118846 L5237 2022 720 367*2^3712952+1 1117713 L5264 2022 721 53*2^3709297+1 1116612 L5197 2022 722 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 723 395*2^3701693+1 1114324 L5536 2022 724 589*2^3699954+1 1113800 L5576 2022 725 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 726 119*2^3698412-1 1113336 L2484 2018 727 391*2^3693728+1 1111926 L5493 2022 728 485*2^3688111+1 1110235 L5237 2022 729 341*2^3686613+1 1109784 L5573 2022 730 87*2^3686558+1 1109767 L5573 2022 731 675*2^3682616+1 1108581 L5231 2022 732 569*2^3682167+1 1108446 L5488 2022 733 330286*5^1584399-1 1107453 L3523 2014 734 34*951^371834-1 1107391 L5410 2019 735 45*2^3677787+1 1107126 L1204 2019 736 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 737 13*2^3675223-1 1106354 L1862 2016 738 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 739 463*2^3671262+1 1105163 L5524 2022 740 735*2^3670991+1 1105082 L5575 2022 741 475*2^3670046+1 1104797 L5524 2022 742 15*2^3668194-1 1104238 L3665 2013 743 273*2^3665736+1 1103499 L5192 2022 744 13*2^3664703-1 1103187 L1862 2016 745 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 746 609*2^3662931+1 1102655 L5573 2022 747 118*892^373012+1 1100524 L5071 2020 748 33300*430^417849-1 1100397 L4393 2016 749 655*2^3653008+1 1099668 L5574 2022 750 291*268^452750-1 1099341 L5410 2022 751 33*2^3649810+1 1098704 L4958 2019 752 295*2^3642206+1 1096416 L5161 2022 753 989*2^3640585+1 1095929 L5115 2020 754 567*2^3639287+1 1095538 L4959 2019 755 639*2^3635707+1 1094460 L1823 2019 756 753*2^3631472+1 1093185 L1823 2019 757 2*205731^205731-1 1093111 L4965 2022 758 65531*2^3629342-1 1092546 L2269 2011 759 1121*2^3629201+1 1092502 L4761 2019 760 215*2^3628962-1 1092429 L2484 2018 761 113*2^3628034-1 1092150 L2484 2014 762 1175*2^3627541+1 1092002 L4840 2019 763 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 764 951*2^3623185+1 1090691 L1823 2019 765 29*920^367810-1 1090113 L4064 2015 766 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 767 485*2^3618563+1 1089299 L3924 2019 768 95*2^3614033+1 1087935 L1474 2019 769 1005*2^3612300+1 1087414 L1823 2019 770 861*2^3611815+1 1087268 L1745 2019 771 1087*2^3611476+1 1087166 L4834 2019 772 485767*2^3609357-1 1086531 L622 2008 773 675*2^3606447+1 1085652 L3278 2019 774 669*2^3606266+1 1085598 L1675 2019 775 65077*2^3605944+1 1085503 L4685 2020 776 1365*2^3605491+1 1085365 L1134 2022 777 851*2^3604395+1 1085034 L2125 2019 778 1143*2^3602429+1 1084443 L4754 2019 779 1183*2^3601898+1 1084283 L1823 2019 780 189*2^3596375+1 1082620 L3760 2016 781 1089*2^3593267+1 1081685 L3035 2019 782a 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 783a 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 784b 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 785b 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 786 19581121*2^3589357-1 1080512 p49 2022 787b 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 788 1101*2^3589103+1 1080431 L1823 2019 789b 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 790b 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 791b 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 792b 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 793b 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 794b 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 795 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 796b 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 797b 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 798b 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 799c 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 800c 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 801 275*2^3585539+1 1079358 L3803 2016 802c 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 803c 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 804c 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 805c 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 806c 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 807c 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 808c 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 809d 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 810d 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 811d 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 812d 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 813d 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 814d 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 815d 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 816d 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 817 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 818e 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 819e 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 820 651*2^3579843+1 1077643 L3035 2018 821e 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 822e 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 823e 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 824e 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 825e 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 826e 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 827e 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 828e 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 829 583*2^3578402+1 1077210 L3035 2018 830e 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 831e 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 832e 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 833e 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 834e 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 835f 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 836 309*2^3577339+1 1076889 L4406 2016 837f 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 838f 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 839f 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 840f 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 841f 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 842f 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 843f 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 844f 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 845f 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 846f 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 847f 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 848f 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 849f 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 850f 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 851f 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 852f 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 853 1185*2^3574583+1 1076060 L4851 2018 854 251*2^3574535+1 1076045 L3035 2016 855 1485*2^3574333+1 1075985 L1134 2022 856f 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 857f 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 858f 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 859f 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 860f 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 861f 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 862 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 863 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 864 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 865 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 866 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 867 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 868 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 869 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 870 1019*2^3571635+1 1075173 L1823 2018 871 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 872 119*2^3571416-1 1075106 L2484 2018 873 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 874 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 875 35*2^3570777+1 1074913 L2891 2014 876 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 877 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 878 33*2^3570132+1 1074719 L2552 2014 879 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 880 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 881 5*2^3569154-1 1074424 L503 2009 882 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 883 81*492^399095-1 1074352 L4001 2015 884 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 885 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 886 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 887 22934*5^1536762-1 1074155 L3789 2014 888 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 889 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 890 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 891 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 892 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 893 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 894 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 895 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 896 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 897 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 898 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 899 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 900 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 901 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 902 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 903 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 904 265*2^3564373-1 1072986 L2484 2018 905 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 906 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 907 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 908 771*2^3564109+1 1072907 L2125 2018 909 381*2^3563676+1 1072776 L4190 2016 910 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 911 555*2^3563328+1 1072672 L4850 2018 912 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 913 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 914 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 915 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 916 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 917 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 918 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 919 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 920 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 921 1183*2^3560584+1 1071846 L1823 2018 922 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 923 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 924 415*2^3559614+1 1071554 L3035 2016 925 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 926 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 927 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 928 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 929 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 930 1103*2^3558176-1 1071121 L1828 2018 931 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 932 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 933 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 934 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 935 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 936 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 937 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 938 1379*2^3557072-1 1070789 L1828 2018 939 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 940 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 941 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 942 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 943 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 944 146520528^131072+1 1070321 L5469 2023 Generalized Fermat 945 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 946 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 947 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 948 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 949 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 950 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 951 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 952 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 953 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 954 681*2^3553141+1 1069605 L3035 2018 955 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 956 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 957 599*2^3551793+1 1069200 L3824 2018 958 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 959 621*2^3551472+1 1069103 L4687 2018 960 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 961 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 962 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 963 773*2^3550373+1 1068772 L1808 2018 964 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 965 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 966 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 967 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 968 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 969 1199*2^3548380-1 1068172 L1828 2018 970 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 971 191*2^3548117+1 1068092 L4203 2015 972 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 973 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 974 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 975 867*2^3547711+1 1067971 L4155 2018 976 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 977 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 978 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 979 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 980 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 981 351*2^3545752+1 1067381 L4082 2016 982 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 983 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 984 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 985 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 986 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 987 93*2^3544744+1 1067077 L1728 2014 988 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 989 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 990 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 991 1159*2^3543702+1 1066764 L1823 2018 992 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 993 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 994 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 995 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 996 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 997 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 998 178658*5^1525224-1 1066092 L3789 2014 999 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 1000 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 1001 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 1002 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 1003 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 1004 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 1005 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 1006 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 1007 1085*2^3539671+1 1065551 L3035 2018 1008 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 1009 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 1010 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 1011 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 1012 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 1013 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 1014 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 1015 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 1016 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 1017 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 1018 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 1019 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 1020 465*2^3536871+1 1064707 L4459 2016 1021 1019*2^3536312-1 1064539 L1828 2012 1022 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 1023 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 1024 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 1025 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 1026 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 1027 1179*2^3534450+1 1063979 L3035 2018 1028 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 1029 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 1030 447*2^3533656+1 1063740 L4457 2016 1031 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 1032 1059*2^3533550+1 1063708 L1823 2018 1033 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 1034 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 1035 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 1036 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 1037 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 1038 345*2^3532957+1 1063529 L4314 2016 1039 553*2^3532758+1 1063469 L1823 2018 1040 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 1041 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 1042 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 1043 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 1044 543131*2^3529754-1 1062568 L4925 2022 1045 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 1046 141*2^3529287+1 1062424 L4185 2015 1047 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 1048 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 1049 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 1050 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 1051 13*2^3527315-1 1061829 L1862 2016 1052 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 1053 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 1054 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 1055 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 1056 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 1057 1393*2^3525571-1 1061306 L1828 2017 1058 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 1059 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 1060 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 1061 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 1062 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 1063 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 1064 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 1065 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 1066 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 1067 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 1068 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 1069 1071*2^3523944+1 1060816 L1675 2018 1070 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 1071 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 1072 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 1073 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 1074 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 1075 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 1076 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 1077 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 1078 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 1079 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 1080 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 1081 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 1082 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 1083a 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 1084 329*2^3518451+1 1059162 L1823 2016 1085 135*2^3518338+1 1059128 L4045 2015 1086 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 1087 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 1088 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 1089 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 1090 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 1091 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 1092 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 1093 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 1094 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 1095 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 1096 599*2^3515959+1 1058412 L1823 2018 1097 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 1098 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 1099 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 1100 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 1101 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 1102 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 1103 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 1104 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 1105 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 1106 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 1107 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 1108 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 1109 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 1110 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 1111 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 1112 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 1113 1135*2^3510890+1 1056887 L1823 2018 1114 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 1115 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 1116 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 1117 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 1118 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 1119 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 1120 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 1121 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 1122 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 1123 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 1124 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 1125 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 1126 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 1127 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 1128 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 1129 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 1130 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 1131 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 1132 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 1133 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 1134 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 1135 428639*2^3506452-1 1055553 L2046 2011 1136 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 1137 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 1138 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 1139 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 1140 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 1141 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 1142 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 1143 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 1144 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 1145 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 1146 104*383^408249+1 1054591 L2012 2021 1147 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 1148 555*2^3502765+1 1054441 L1823 2018 1149 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 1150e 8300*171^472170+1 1054358 L5780 2023 1151 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 1152 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 1153 643*2^3501974+1 1054203 L1823 2018 1154 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 1155 1159*2^3501490+1 1054057 L2125 2018 1156 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 1157 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 1158 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 1159 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 1160 1189*2^3499042+1 1053320 L4724 2018 1161 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 1162 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 1163 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 1164 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 1165 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 1166 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 1167 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 1168 609*2^3497474+1 1052848 L1823 2018 1169 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 1170 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 1171 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 1172 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 1173 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 1174 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 1175 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 1176 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 1177 87*2^3496188+1 1052460 L1576 2014 1178 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 1179 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 1180 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 1181 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 1182 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 1183 783*2^3494129+1 1051841 L3824 2018 1184 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 1185 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 1186 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 1187 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 1188 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 1189 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 1190 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 1191 51*2^3490971+1 1050889 L1823 2014 1192 1485*2^3490746+1 1050823 L1134 2021 1193 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 1194 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 1195 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 1196 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 1197 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 1198 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 1199 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 1200 753*2^3488818+1 1050242 L1823 2018 1201 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 1202 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 1203 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 1204 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 1205 699*2^3487253+1 1049771 L1204 2018 1206 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 1207 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 1208 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 1209 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 1210 249*2^3486411+1 1049517 L4045 2015 1211 195*2^3486379+1 1049507 L4108 2015 1212 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 1213 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 1214 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 1215 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 1216 59912*5^1500861+1 1049062 L3772 2014 1217 495*2^3484656+1 1048989 L3035 2016 1218 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 1219 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 1220 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 1221 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 1222a Phi(3,-3*2^1742059) 1048825 A3 2023 Generalized unique 1223 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 1224 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 1225 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 1226 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 1227 323*2^3482789+1 1048427 L1204 2016 1228 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 1229 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 1230 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 1231a 8235*2^3482277+1 1048274 L5820 2023 1232a 9155*2^3482129+1 1048230 L5226 2023 1233 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 1234a 4325*2^3481969+1 1048181 L5434 2023 1235 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 1236 1149*2^3481694+1 1048098 L1823 2018 1237 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 1238a 6127*2^3481244+1 1047963 L5226 2023 1239 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 1240a 8903*2^3481217+1 1047955 L5226 2023 1241a 3595*2^3481178+1 1047943 L5214 2023 1242b 3799*2^3480810+1 1047832 L5226 2023 1243b 6101*2^3480801+1 1047830 L5226 2023 1244 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 1245c 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 1246 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 1247 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 1248b 5397*2^3480379+1 1047703 L5226 2023 1249b 5845*2^3479972+1 1047580 L5517 2023 1250 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 1251 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 1252 701*2^3479779+1 1047521 L2125 2018 1253 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 1254 813*2^3479728+1 1047506 L4724 2018 1255b 7125*2^3479509+1 1047441 L5812 2023 1256b 1971*2^3479061+1 1047306 L5226 2023 1257b 1215*2^3478543+1 1047149 L5226 2023 1258 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 1259b 5985*2^3478217+1 1047052 L5387 2023 1260b 3093*2^3478148+1 1047031 L5261 2023 1261b 2145*2^3478095+1 1047015 L5387 2023 1262b 6685*2^3478086+1 1047013 L5237 2023 1263b 9603*2^3478084+1 1047012 L5178 2023 1264b 1315*2^3477718+1 1046901 L5316 2023 1265 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 1266 197*2^3477399+1 1046804 L2125 2015 1267b 8303*2^3477201+1 1046746 L5387 2023 1268 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 1269c 5925*2^3477009+1 1046688 L5810 2023 1270 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 1271c 7825*2^3476524+1 1046542 L5174 2023 1272 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 1273c 8197*2^3476332+1 1046485 L5174 2023 1274c 8529*2^3476111+1 1046418 L5387 2023 1275c 8411*2^3476055+1 1046401 L5783 2023 1276c 4319*2^3475955+1 1046371 L5803 2023 1277 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 1278 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 1279c 6423*2^3475393+1 1046202 L5174 2023 1280c 2281*2^3475340+1 1046185 L5302 2023 1281c 7379*2^3474983+1 1046078 L5798 2023 1282 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 1283 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 1284 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 1285d 4737*2^3474562+1 1045952 L5302 2023 1286d 2407*2^3474406+1 1045904 L5557 2023 1287 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 1288 491*2^3473837+1 1045732 L4343 2016 1289d 2693*2^3473721+1 1045698 L5174 2023 1290 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 1291d 3375*2^3473210+1 1045544 L5294 2023 1292d 8835*2^3472666+1 1045381 L5178 2023 1293d 5615*2^3472377+1 1045294 L5174 2023 1294d 1785*2^3472229+1 1045249 L875 2023 1295d 8997*2^3472036+1 1045191 L5302 2023 1296d 9473*2^3471885+1 1045146 L5294 2023 1297d 7897*2^3471568+1 1045050 L5294 2023 1298 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 1299 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 1300 1061*2^3471354-1 1044985 L1828 2017 1301e 1913*2^3471177+1 1044932 L5189 2023 1302 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 1303e 7723*2^3471074+1 1044902 L5189 2023 1304e 4195*2^3470952+1 1044865 L5294 2023 1305 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 1306e 5593*2^3470520+1 1044735 L5387 2023 1307e 3665*2^3469955+1 1044565 L5189 2023 1308e 3301*2^3469708+1 1044490 L5261 2023 1309e 6387*2^3469634+1 1044468 L5192 2023 1310 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 1311e 8605*2^3469570+1 1044449 L5387 2023 1312e 1359*2^3468725+1 1044194 L5197 2023 1313 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 1314e 7585*2^3468338+1 1044078 L5197 2023 1315e 1781*2^3468335+1 1044077 L5387 2023 1316f 6885*2^3468181+1 1044031 L5197 2023 1317f 7287*2^3467938+1 1043958 L5776 2023 1318 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 1319f 3163*2^3467710+1 1043889 L5517 2023 1320f 6099*2^3467689+1 1043883 L5197 2023 1321f 6665*2^3467627+1 1043864 L5174 2023 1322f 4099*2^3467462+1 1043814 L5774 2023 1323f 5285*2^3467445+1 1043809 L5189 2023 1324 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 1325 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 1326f 5935*2^3466880+1 1043639 L5197 2023 1327 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 1328 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 1329f 8937*2^3466822+1 1043622 L5174 2023 1330 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 1331f 8347*2^3466736+1 1043596 L5770 2023 1332f 8863*2^3465780+1 1043308 L5766 2023 1333f 3895*2^3465744+1 1043297 L5640 2023 1334 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 1335 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 1336 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 1337 8561*2^3465371+1 1043185 L5197 2023 1338 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 1339 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 1340 9971*2^3465233+1 1043144 L5488 2023 1341 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 1342 3801*2^3464980+1 1043067 L5197 2023 1343 3099*2^3464739+1 1042994 L5284 2023 1344 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 1345 641*2^3464061+1 1042790 L1444 2018 1346 6717*2^3463735+1 1042692 L5754 2023 1347 6015*2^3463561+1 1042640 L5387 2023 1348 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 1349 1667*2^3463355+1 1042577 L5226 2023 1350 2871*2^3463313+1 1042565 L5189 2023 1351 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 1352 6007*2^3463048+1 1042486 L5226 2023 1353 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 1354 9777*2^3462742+1 1042394 L5197 2023 1355 5215*2^3462740+1 1042393 L5174 2023 1356 8365*2^3462722+1 1042388 L5320 2023 1357 3597*2^3462056+1 1042187 L5174 2023 1358 2413*2^3461890+1 1042137 L5197 2023 1359 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 1360 453*2^3461688+1 1042075 L3035 2016 1361 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 1362 4401*2^3461476+1 1042012 L5197 2023 1363 9471*2^3461305+1 1041961 L5594 2023 1364 7245*2^3461070+1 1041890 L5449 2023 1365 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 1366 4365*2^3460914+1 1041843 L5197 2023 1367 4613*2^3460861+1 1041827 L5614 2023 1368 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 1369 5169*2^3460553+1 1041734 L5742 2023 1370 8395*2^3460530+1 1041728 L5284 2023 1371 5835*2^3460515+1 1041723 L5740 2023 1372 8059*2^3460246+1 1041642 L5350 2023 1373 571*2^3460216+1 1041632 L3035 2018 1374 6065*2^3460205+1 1041630 L5683 2023 1375 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 1376 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 1377 6237*2^3459386+1 1041383 L5509 2023 1378 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 1379 4029*2^3459062+1 1041286 L5727 2023 1380 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 1381 7055*2^3458909+1 1041240 L5509 2023 1382 7297*2^3458768+1 1041197 L5726 2023 1383 2421*2^3458432+1 1041096 L5725 2023 1384 7907*2^3458207+1 1041028 L5509 2023 1385 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 1386 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 1387 7839*2^3457846+1 1040920 L5231 2023 1388 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 1389 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 1390 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 1391 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 1392 5327*2^3457363+1 1040774 L5715 2023 1393 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 1394 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 1395 6059*2^3457001+1 1040665 L5197 2023 1396 8953*2^3456938+1 1040646 L5724 2023 1397 8669*2^3456759+1 1040593 L5710 2023 1398 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 1399 4745*2^3456167+1 1040414 L5705 2023 1400 8213*2^3456141+1 1040407 L5703 2023 1401 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 1402 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 1403 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 1404 1155*2^3455254+1 1040139 L4711 2017 1405 37292*5^1487989+1 1040065 L3553 2013 1406 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 1407 5525*2^3454069+1 1039783 L5651 2023 1408 4235*2^3453573+1 1039633 L5650 2023 1409 6441*2^3453227+1 1039529 L5683 2023 1410 4407*2^3453195+1 1039519 L5650 2023 1411 9867*2^3453039+1 1039473 L5686 2023 1412 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 1413 4857*2^3452675+1 1039363 L5600 2023 1414 8339*2^3452667+1 1039361 L5651 2023 1415 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 1416 7079*2^3452367+1 1039270 L5650 2023 1417 5527*2^3452342+1 1039263 L5679 2023 1418 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 1419 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 1420 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 1421 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 1422 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 1423 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 1424 3719*2^3451667+1 1039059 L5294 2023 1425 6725*2^3451455+1 1038996 L5685 2023 1426 8407*2^3451334+1 1038959 L5524 2023 1427 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 1428 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 1429 1623*2^3451109+1 1038891 L5308 2023 1430 8895*2^3450982+1 1038854 L5666 2023 1431 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 1432 2899*2^3450542+1 1038721 L5600 2023 1433 6337*2^3449506+1 1038409 L5197 2023 1434 4381*2^3449456+1 1038394 L5392 2023 1435 2727*2^3449326+1 1038355 L5421 2023 1436 2877*2^3449311+1 1038350 L5517 2023 1437 7507*2^3448920+1 1038233 L5284 2023 1438 3629*2^3448919+1 1038232 L5192 2023 1439 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 1440 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 1441 1273*2^3448551-1 1038121 L1828 2012 1442 1461*2^3448423+1 1038082 L4944 2023 1443 3235*2^3448352+1 1038061 L5571 2023 1444 4755*2^3448344+1 1038059 L5524 2023 1445 5655*2^3448288+1 1038042 L5651 2023 1446 4873*2^3448176+1 1038009 L5524 2023 1447 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 1448 8139*2^3447967+1 1037946 L5652 2023 1449 1065*2^3447906+1 1037927 L4664 2017 1450 1717*2^3446756+1 1037581 L5517 2023 1451 6357*2^3446434+1 1037484 L5284 2023 1452 1155*2^3446253+1 1037429 L3035 2017 1453 9075*2^3446090+1 1037381 L5648 2023 1454 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 1455 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 1456 1483*2^3445724+1 1037270 L5650 2023 1457 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 1458 2223*2^3445682+1 1037257 L5647 2023 1459 8517*2^3445488+1 1037200 L5302 2023 1460 2391*2^3445281+1 1037137 L5596 2023 1461 6883*2^3444784+1 1036988 L5264 2023 1462 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 1463 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 1464 8037*2^3443920+1 1036728 L5626 2023 1465 1375*2^3443850+1 1036706 L5192 2023 1466 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 1467 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 1468 943*2^3442990+1 1036447 L4687 2017 1469 7743*2^3442814+1 1036395 L5514 2023 1470 5511*2^3442468+1 1036290 L5514 2022 1471 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 1472 6329*2^3441717+1 1036064 L5631 2022 1473 3957*2^3441568+1 1036019 L5476 2022 1474 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 1475 4191*2^3441427+1 1035977 L5189 2022 1476 2459*2^3441331+1 1035948 L5514 2022 1477 4335*2^3441306+1 1035940 L5178 2022 1478 2331*2^3441249+1 1035923 L5626 2022 1479 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 1480 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 1481 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 1482 2363*2^3440385+1 1035663 L5625 2022 1483 5265*2^3440332+1 1035647 L5421 2022 1484 6023*2^3440241+1 1035620 L5517 2022 1485 943*2^3440196+1 1035606 L1448 2017 1486 6663*2^3439901+1 1035518 L5624 2022 1487 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 1488 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 1489 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 1490 5745*2^3439450+1 1035382 L5178 2022 1491 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 1492 5109*2^3439090+1 1035273 L5594 2022 1493 543*2^3438810+1 1035188 L3035 2017 1494 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 1495 3325*2^3438506+1 1035097 L5619 2022 1496 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 1497 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 1498 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 1499 4775*2^3438217+1 1035011 L5618 2022 1500 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 1501 6963*2^3437988+1 1034942 L5616 2022 1502 74*941^348034-1 1034913 L5410 2020 1503 7423*2^3437856+1 1034902 L5192 2022 1504 6701*2^3437801+1 1034886 L5615 2022 1505 5741*2^3437773+1 1034877 L5517 2022 1506 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 1507 5601*2^3437259+1 1034722 L5612 2022 1508 7737*2^3437192+1 1034702 L5611 2022 1509 113*2^3437145+1 1034686 L4045 2015 1510 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 1511 6387*2^3436719+1 1034560 L5613 2022 1512 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 1513 2921*2^3436299+1 1034433 L5231 2022 1514 9739*2^3436242+1 1034416 L5178 2022 1515 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 1516 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 1517 1147*2^3435970+1 1034334 L3035 2017 1518 4589*2^3435707+1 1034255 L5174 2022 1519 7479*2^3435683+1 1034248 L5421 2022 1520 2863*2^3435616+1 1034227 L5197 2022 1521 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 1522 9863*2^3434697+1 1033951 L5189 2022 1523 4065*2^3434623+1 1033929 L5197 2022 1524 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 1525 9187*2^3434126+1 1033779 L5600 2022 1526 9531*2^3434103+1 1033772 L5601 2022 1527 1757*2^3433547+1 1033604 L5594 2022 1528 1421*2^3433099+1 1033469 L5237 2022 1529 3969*2^3433007+1 1033442 L5189 2022 1530 6557*2^3433003+1 1033441 L5261 2022 1531 7335*2^3432982+1 1033435 L5231 2022 1532 7125*2^3432836+1 1033391 L5594 2022 1533 2517*2^3432734+1 1033360 L5231 2022 1534 911*2^3432643+1 1033332 L1355 2017 1535 5413*2^3432626+1 1033328 L5231 2022 1536 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 1537 3753*2^3432413+1 1033263 L5261 2022 1538 2691*2^3432191+1 1033196 L5585 2022 1539 3933*2^3432125+1 1033177 L5387 2022 1540 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 1541 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 1542 1435*2^3431284+1 1032923 L5587 2022 1543 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 1544 6783*2^3430781+1 1032772 L5261 2022 1545 8079*2^3430683+1 1032743 L5585 2022 1546 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 1547 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 1548 6605*2^3430187+1 1032593 L5463 2022 1549 3761*2^3430057+1 1032554 L5582 2022 1550 6873*2^3429937+1 1032518 L5294 2022 1551 8067*2^3429891+1 1032504 L5581 2022 1552 3965*2^3429719+1 1032452 L5579 2022 1553 3577*2^3428812+1 1032179 L5401 2022 1554 8747*2^3428755+1 1032163 L5493 2022 1555 9147*2^3428638+1 1032127 L5493 2022 1556 3899*2^3428535+1 1032096 L5174 2022 1557 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 1558 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 1559 8891*2^3428303+1 1032026 L5532 2022 1560e 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 1561 2147*2^3427371+1 1031745 L5189 2022 1562 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 1563 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 1564 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 1565 1127*2^3427219+1 1031699 L3035 2017 1566 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 1567 3021*2^3427059+1 1031652 L5554 2022 1568 3255*2^3426983+1 1031629 L5231 2022 1569 1733*2^3426753+1 1031559 L5565 2022 1570 2339*2^3426599+1 1031513 L5237 2022 1571 4729*2^3426558+1 1031501 L5493 2022 1572 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 1573 5445*2^3425839+1 1031285 L5237 2022 1574 159*2^3425766+1 1031261 L4045 2015 1575 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 1576 3405*2^3425045+1 1031045 L5261 2022 1577 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 1578 1695*2^3424517+1 1030886 L5387 2022 1579 4715*2^3424433+1 1030861 L5557 2022 1580 5525*2^3424423+1 1030858 L5387 2022 1581 8615*2^3424231+1 1030801 L5261 2022 1582 5805*2^3424200+1 1030791 L5237 2022 1583 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 1584 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 1585 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 1586 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 1587 2109*2^3423797+1 1030669 L5197 2022 1588 4929*2^3423494+1 1030579 L5554 2022 1589 2987*2^3422911+1 1030403 L5226 2022 1590 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 1591 4843*2^3422644+1 1030323 L5553 2022 1592 5559*2^3422566+1 1030299 L5555 2022 1593 7583*2^3422501+1 1030280 L5421 2022 1594 1119*2^3422189+1 1030185 L1355 2017 1595 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 1596 2895*2^3422030+1 1030138 L5237 2022 1597 2835*2^3421697+1 1030037 L5387 2022 1598 3363*2^3421353+1 1029934 L5226 2022 1599 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 1600 9147*2^3421264+1 1029908 L5237 2022 1601 9705*2^3420915+1 1029803 L5540 2022 1602 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 1603 8919*2^3420758+1 1029755 L5226 2022 1604 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 1605 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 1606 5489*2^3420137+1 1029568 L5174 2022 1607 9957*2^3420098+1 1029557 L5237 2022 1608 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 1609 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 1610 7213*2^3419370+1 1029337 L5421 2022 1611 7293*2^3419264+1 1029305 L5192 2022 1612 975*2^3419230+1 1029294 L3545 2017 1613 4191*2^3419227+1 1029294 L5421 2022 1614 2393*2^3418921+1 1029202 L5197 2022 1615 999*2^3418885+1 1029190 L3035 2017 1616 2925*2^3418543+1 1029088 L5174 2022 1617 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 1618 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 1619 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 1620 7383*2^3418297+1 1029014 L5189 2022 1621 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 1622 907*2^3417890+1 1028891 L3035 2017 1623 5071*2^3417884+1 1028890 L5237 2022 1624 3473*2^3417741+1 1028847 L5541 2022 1625 191249*2^3417696-1 1028835 L1949 2010 1626 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 1627 3299*2^3417329+1 1028723 L5421 2022 1628 6947*2^3416979+1 1028618 L5540 2022 1629 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 1630 8727*2^3416652+1 1028519 L5226 2022 1631 8789*2^3416543+1 1028486 L5197 2022 1632 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 1633 7917*2^3415947+1 1028307 L5537 2022 1634 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 1635 2055*2^3415873+1 1028284 L5535 2022 1636 4731*2^3415712+1 1028236 L5192 2022 1637 2219*2^3415687+1 1028228 L5178 2022 1638 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 1639 5877*2^3415419+1 1028148 L5532 2022 1640 3551*2^3415275+1 1028104 L5231 2022 1641 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 1642 2313*2^3415046+1 1028035 L5226 2022 1643 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 1644 7637*2^3414875+1 1027984 L5507 2022 1645 2141*2^3414821+1 1027967 L5226 2022 1646 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 1647 3667*2^3414686+1 1027927 L5226 2022 1648 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 1649 6159*2^3414623+1 1027908 L5226 2022 1650 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 1651 4577*2^3413539+1 1027582 L5387 2022 1652 5137*2^3413524+1 1027577 L5261 2022 1653 8937*2^3413364+1 1027529 L5527 2022 1654 8829*2^3413339+1 1027522 L5531 2022 1655 7617*2^3413315+1 1027515 L5197 2022 1656 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 1657 3141*2^3413112+1 1027453 L5463 2022 1658 8831*2^3412931+1 1027399 L5310 2022 1659 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 1660 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 1661 5421*2^3412877+1 1027383 L5310 2022 1662 9187*2^3412700+1 1027330 L5337 2022 1663 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 1664 8243*2^3412577+1 1027292 L5524 2022 1665 1751*2^3412565+1 1027288 L5523 2022 1666 9585*2^3412318+1 1027215 L5197 2022 1667 9647*2^3412247+1 1027193 L5178 2022 1668 3207*2^3412108+1 1027151 L5189 2022 1669 479*2^3411975+1 1027110 L2873 2016 1670 245*2^3411973+1 1027109 L1935 2015 1671 177*2^3411847+1 1027071 L4031 2015 1672 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 1673 9963*2^3411566+1 1026988 L5237 2022 1674 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 1675 9785*2^3411223+1 1026885 L5189 2022 1676 5401*2^3411136+1 1026858 L5261 2022 1677 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 1678 9431*2^3411105+1 1026849 L5237 2022 1679 8227*2^3410878+1 1026781 L5316 2022 1680 4735*2^3410724+1 1026734 L5226 2022 1681 9515*2^3410707+1 1026730 L5237 2022 1682 6783*2^3410690+1 1026724 L5434 2022 1683 8773*2^3410558+1 1026685 L5261 2022 1684 4629*2^3410321+1 1026613 L5517 2022 1685 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 1686 113*2^3409934-1 1026495 L2484 2014 1687 5721*2^3409839+1 1026468 L5226 2022 1688 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 1689 6069*2^3409493+1 1026364 L5237 2022 1690 1981*910^346850+1 1026347 L1141 2021 1691 5317*2^3409236+1 1026287 L5471 2022 1692 7511*2^3408985+1 1026211 L5514 2022 1693 7851*2^3408909+1 1026188 L5176 2022 1694 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 1695 6027*2^3408444+1 1026048 L5239 2022 1696 59*2^3408416-1 1026038 L426 2010 1697 2153*2^3408333+1 1026014 L5237 2022 1698 9831*2^3408056+1 1025932 L5233 2022 1699 3615*2^3408035+1 1025925 L5217 2022 1700 6343*2^3407950+1 1025899 L5226 2022 1701 8611*2^3407516+1 1025769 L5509 2022 1702 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 1703 7111*2^3407452+1 1025750 L5508 2022 1704 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 1705 6945*2^3407256+1 1025691 L5507 2022 1706 6465*2^3407229+1 1025682 L5301 2022 1707 1873*2^3407156+1 1025660 L5440 2022 1708 7133*2^3406377+1 1025426 L5279 2022 1709 7063*2^3406122+1 1025349 L5178 2022 1710 3105*2^3405800+1 1025252 L5502 2022 1711 953*2^3405729+1 1025230 L3035 2017 1712 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 1713 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 1714 373*2^3404702+1 1024921 L3924 2016 1715 7221*2^3404507+1 1024863 L5231 2022 1716 6641*2^3404259+1 1024788 L5501 2022 1717 9225*2^3404209+1 1024773 L5250 2022 1718 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 1719 833*2^3403765+1 1024639 L3035 2017 1720 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 1721 2601*2^3403459+1 1024547 L5350 2022 1722 8835*2^3403266+1 1024490 L5161 2022 1723 7755*2^3403010+1 1024412 L5161 2022 1724 3123*2^3402834+1 1024359 L5260 2022 1725 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 1726 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 1727 1417*2^3402246+1 1024182 L5497 2022 1728 5279*2^3402241+1 1024181 L5250 2022 1729 6651*2^3402137+1 1024150 L5476 2022 1730 1779*2^3401715+1 1024022 L5493 2022 1731 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 1732 8397*2^3401502+1 1023959 L5476 2022 1733 4057*2^3401472+1 1023949 L5492 2022 1734 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 1735 4095*2^3401174+1 1023860 L5418 2022 1736 5149*2^3400970+1 1023798 L5176 2022 1737 4665*2^3400922+1 1023784 L5308 2022 1738 24*414^391179+1 1023717 L4273 2016 1739 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 1740 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 1741 1725*2^3400371+1 1023617 L5197 2022 1742 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 1743 9399*2^3400243+1 1023580 L5488 2022 1744 1241*2^3400127+1 1023544 L5279 2022 1745 1263*2^3399876+1 1023468 L5174 2022 1746 1167*2^3399748+1 1023430 L3545 2017 1747 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 1748 7679*2^3398569+1 1023076 L5295 2022 1749 6447*2^3398499+1 1023054 L5302 2022 1750 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 1751 2785*2^3398332+1 1023004 L5250 2022 1752 611*2^3398273+1 1022985 L3035 2017 1753 2145*2^3398034+1 1022914 L5302 2022 1754 3385*2^3397254+1 1022679 L5161 2022 1755 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 1756 4463*2^3396657+1 1022500 L5476 2022 1757 2889*2^3396450+1 1022437 L5178 2022 1758 8523*2^3396448+1 1022437 L5231 2022 1759 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 1760 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 1761 3349*2^3396326+1 1022400 L5480 2022 1762 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 1763 4477*2^3395786+1 1022238 L5161 2022 1764 3853*2^3395762+1 1022230 L5302 2022 1765 2693*2^3395725+1 1022219 L5284 2022 1766 8201*2^3395673+1 1022204 L5178 2022 1767 255*2^3395661+1 1022199 L3898 2014 1768 1049*2^3395647+1 1022195 L3035 2017 1769 9027*2^3395623+1 1022189 L5263 2022 1770 2523*2^3395549+1 1022166 L5472 2022 1771 3199*2^3395402+1 1022122 L5264 2022 1772 342924651*2^3394939-1 1021988 L4166 2017 1773 3825*2^3394947+1 1021985 L5471 2022 1774 1895*2^3394731+1 1021920 L5174 2022 1775 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 1776 555*2^3393389+1 1021515 L2549 2017 1777 1865*2^3393387+1 1021515 L5237 2022 1778 4911*2^3393373+1 1021511 L5231 2022 1779 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 1780 5229*2^3392587+1 1021275 L5463 2022 1781 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 1782 609*2^3392301+1 1021188 L3035 2017 1783 9787*2^3392236+1 1021169 L5350 2022 1784 303*2^3391977+1 1021090 L2602 2016 1785 805*2^3391818+1 1021042 L4609 2017 1786 6475*2^3391496+1 1020946 L5174 2022 1787 67*2^3391385-1 1020911 L1959 2014 1788 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 1789 4639*2^3390634+1 1020687 L5189 2022 1790 5265*2^3390581+1 1020671 L5456 2022 1791 663*2^3390469+1 1020636 L4316 2017 1792 6945*2^3390340+1 1020598 L5174 2022 1793 5871*2^3390268+1 1020577 L5231 2022 1794 7443*2^3390141+1 1020539 L5226 2022 1795 5383*2^3389924+1 1020473 L5350 2021 1796 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 1797 9627*2^3389331+1 1020295 L5231 2021 1798 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 1799 8253*2^3388624+1 1020082 L5226 2021 1800 3329*2^3388472-1 1020036 L4841 2020 1801 4695*2^3388393+1 1020012 L5237 2021 1802 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 1803 7177*2^3388144+1 1019937 L5174 2021 1804 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 1805 9611*2^3388059+1 1019912 L5435 2021 1806 1833*2^3387760+1 1019821 L5226 2021 1807 9003*2^3387528+1 1019752 L5189 2021 1808 3161*2^3387141+1 1019635 L5226 2021 1809 7585*2^3387110+1 1019626 L5189 2021 1810 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 1811 453*2^3387048+1 1019606 L2602 2016 1812 5177*2^3386919+1 1019568 L5226 2021 1813 8739*2^3386813+1 1019537 L5226 2021 1814 2875*2^3386638+1 1019484 L5226 2021 1815 7197*2^3386526+1 1019450 L5178 2021 1816 1605*2^3386229+1 1019360 L5226 2021 1817 8615*2^3386181+1 1019346 L5442 2021 1818 3765*2^3386141+1 1019334 L5174 2021 1819 5379*2^3385806+1 1019233 L5237 2021 1820 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1821 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1822 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1823 173198*5^1457792-1 1018959 L3720 2013 1824 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1825 2109*2^3384733+1 1018910 L5261 2021 1826 7067*2^3384667+1 1018891 L5439 2021 1827 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1828 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1829 2077*2^3384472+1 1018831 L5237 2021 1830 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1831 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1832 9165*2^3383917+1 1018665 L5435 2021 1833 5579*2^3383209+1 1018452 L5434 2021 1834 8241*2^3383131+1 1018428 L5387 2021 1835 7409*2^3382869+1 1018349 L5161 2021 1836 4883*2^3382813+1 1018332 L5161 2021 1837 9783*2^3382792+1 1018326 L5189 2021 1838 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1839 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1840 8877*2^3381936+1 1018069 L5429 2021 1841 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1842 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1843 6675*2^3381688+1 1017994 L5197 2021 1844 2445*2^3381129+1 1017825 L5231 2021 1845 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1846 3381*2^3380585+1 1017662 L5237 2021 1847 7899*2^3380459+1 1017624 L5421 2021 1848 5945*2^3379933+1 1017465 L5418 2021 1849 1425*2^3379921+1 1017461 L1134 2020 1850 4975*2^3379420+1 1017311 L5161 2021 1851 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1852 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1853 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1854 9065*2^3378851+1 1017140 L5414 2021 1855 2369*2^3378761+1 1017112 L5197 2021 1856 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1857 621*2^3378148+1 1016927 L3035 2017 1858 7035*2^3378141+1 1016926 L5408 2021 1859 2067*2^3378115+1 1016918 L5405 2021 1860 1093*2^3378000+1 1016883 L4583 2017 1861 9577*2^3377612+1 1016767 L5406 2021 1862 861*2^3377601+1 1016763 L4582 2017 1863 5811*2^3377016+1 1016587 L5261 2021 1864 2285*2^3376911+1 1016555 L5261 2021 1865 4199*2^3376903+1 1016553 L5174 2021 1866 6405*2^3376890+1 1016549 L5269 2021 1867 1783*2^3376810+1 1016525 L5261 2021 1868 5401*2^3376768+1 1016513 L5174 2021 1869 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1870 2941*2^3376536+1 1016443 L5174 2021 1871 1841*2^3376379+1 1016395 L5401 2021 1872 6731*2^3376133+1 1016322 L5261 2021 1873 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1874 8121*2^3375933+1 1016262 L5356 2021 1875 5505*2^3375777+1 1016214 L5174 2021 1876 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1877 3207*2^3375314+1 1016075 L5237 2021 1878 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1879 5307*2^3374939+1 1015962 L5392 2021 1880 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1881 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1882 208003!-1 1015843 p394 2016 Factorial 1883 6219*2^3374198+1 1015739 L5393 2021 1884 3777*2^3374072+1 1015701 L5261 2021 1885 9347*2^3374055+1 1015696 L5387 2021 1886 1461*2^3373383+1 1015493 L5384 2021 1887 6395*2^3373135+1 1015419 L5382 2021 1888 7869*2^3373021+1 1015385 L5381 2021 1889 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1890 4905*2^3372216+1 1015142 L5261 2021 1891 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1892 2839*2^3372034+1 1015087 L5174 2021 1893 7347*2^3371803+1 1015018 L5217 2021 1894 9799*2^3371378+1 1014890 L5261 2021 1895 4329*2^3371201+1 1014837 L5197 2021 1896 3657*2^3371183+1 1014831 L5360 2021 1897 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1898 179*2^3371145+1 1014819 L3763 2014 1899 5155*2^3371016+1 1014781 L5237 2021 1900 7575*2^3371010+1 1014780 L5237 2021 1901 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1902 9195*2^3370798+1 1014716 L5178 2021 1903 1749*2^3370786+1 1014711 L5362 2021 1904 8421*2^3370599+1 1014656 L5174 2021 1905 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1906 4357*2^3369572+1 1014346 L5231 2021 1907 6073*2^3369544+1 1014338 L5358 2021 1908 839*2^3369383+1 1014289 L2891 2017 1909 65*2^3369359+1 1014280 L5236 2021 1910 8023*2^3369228+1 1014243 L5356 2021 1911 677*2^3369115+1 1014208 L2103 2017 1912 1437*2^3369083+1 1014199 L5282 2021 1913 9509*2^3368705+1 1014086 L5237 2021 1914 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1915 4851*2^3368668+1 1014074 L5307 2021 1916 7221*2^3368448+1 1014008 L5353 2021 1917 5549*2^3368437+1 1014005 L5217 2021 1918 715*2^3368210+1 1013936 L4527 2017 1919 617*2^3368119+1 1013908 L4552 2017 1920 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1921 1847*2^3367999+1 1013872 L5352 2021 1922 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1923 6497*2^3367743+1 1013796 L5285 2021 1924 2533*2^3367666+1 1013772 L5326 2021 1925 6001*2^3367552+1 1013738 L5350 2021 1926 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1927 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1928 777*2^3367372+1 1013683 L4408 2017 1929 9609*2^3367351+1 1013678 L5285 2021 1930 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1931 2529*2^3367317+1 1013667 L5237 2021 1932 5941*2^3366960+1 1013560 L5189 2021 1933 5845*2^3366956+1 1013559 L5197 2021 1934 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1935 9853*2^3366608+1 1013454 L5178 2021 1936 61*2^3366033-1 1013279 L4405 2017 1937 7665*2^3365896+1 1013240 L5345 2021 1938 8557*2^3365648+1 1013165 L5346 2021 1939 369*2^3365614+1 1013154 L4364 2016 1940 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1941 8201*2^3365283+1 1013056 L5345 2021 1942 9885*2^3365151+1 1013016 L5344 2021 1943 5173*2^3365096+1 1012999 L5285 2021 1944 8523*2^3364918+1 1012946 L5237 2021 1945 3985*2^3364776+1 1012903 L5178 2021 1946 9711*2^3364452+1 1012805 L5192 2021 1947 7003*2^3364172+1 1012721 L5217 2021 1948 6703*2^3364088+1 1012696 L5337 2021 1949 7187*2^3364011+1 1012673 L5217 2021 1950 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1951 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1952 2345*2^3363157+1 1012415 L5336 2021 1953 6527*2^3363135+1 1012409 L5167 2021 1954 9387*2^3363088+1 1012395 L5161 2021 1955 8989*2^3362986+1 1012364 L5161 2021 1956 533*2^3362857+1 1012324 L3171 2017 1957 619*2^3362814+1 1012311 L4527 2017 1958 2289*2^3362723+1 1012284 L5161 2021 1959 7529*2^3362565+1 1012237 L5161 2021 1960 7377*2^3362366+1 1012177 L5161 2021 1961 4509*2^3362311+1 1012161 L5324 2021 1962 7021*2^3362208+1 1012130 L5178 2021 1963 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1964 104*873^344135-1 1012108 L4700 2018 1965 4953*2^3362054+1 1012083 L5323 2021 1966 8575*2^3361798+1 1012006 L5237 2021 1967 2139*2^3361706+1 1011978 L5174 2021 1968 6939*2^3361203+1 1011827 L5217 2021 1969 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1970 3^2120580-3^623816-1 1011774 CH9 2019 1971 8185*2^3360896+1 1011735 L5189 2021 1972 2389*2^3360882+1 1011730 L5317 2021 1973 2787*2^3360631+1 1011655 L5197 2021 1974 6619*2^3360606+1 1011648 L5316 2021 1975 2755*2^3360526+1 1011623 L5174 2021 1976 1445*2^3360099+1 1011494 L5261 2021 1977c 2846*67^553905-1 1011476 L4955 2023 1978 8757*2^3359788+1 1011401 L5197 2021 1979 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1980 5085*2^3359696+1 1011373 L5261 2021 1981 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1982 6459*2^3359457+1 1011302 L5310 2021 1983 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1984 6115*2^3358998+1 1011163 L5309 2021 1985 7605*2^3358929+1 1011143 L5308 2021 1986 2315*2^3358899+1 1011133 L5197 2021 1987 6603*2^3358525+1 1011021 L5307 2021 1988 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1989 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1990 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1991 5893*2^3357490+1 1010709 L5285 2021 1992 6947*2^3357075+1 1010585 L5302 2021 1993 4621*2^3357068+1 1010582 L5301 2021 1994 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 1995 1479*2^3356275+1 1010343 L5178 2021 1996 3645*2^3356232+1 1010331 L5296 2021 1997 1259*2^3356215+1 1010325 L5298 2021 1998 2075*2^3356057+1 1010278 L5174 2021 1999 4281*2^3356051+1 1010276 L5295 2021 2000 1275*2^3356045+1 1010274 L5294 2021 2001 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 2002 4365*2^3355770+1 1010192 L5261 2021 2003 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 2004 2183*2^3355297+1 1010049 L5266 2021 2005 3087*2^3355000+1 1009960 L5226 2021 2006 8673*2^3354760+1 1009888 L5233 2021 2007 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 2008 3015*2^3353943+1 1009641 L5290 2021 2009 6819*2^3353877+1 1009622 L5174 2021 2010 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 2011 6393*2^3353366+1 1009468 L5287 2021 2012 3573*2^3353273+1 1009440 L5161 2021 2013 4047*2^3353222+1 1009425 L5286 2021 2014 1473*2^3353114+1 1009392 L5161 2021 2015 1183*2^3353058+1 1009375 L3824 2017 2016 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 2017 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 2018 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 2019 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 2020 7123*2^3352180+1 1009111 L5161 2021 2021 2757*2^3352180+1 1009111 L5285 2021 2022 9307*2^3352014+1 1009061 L5284 2021 2023 2217*2^3351732+1 1008976 L5283 2021 2024 543*2^3351686+1 1008961 L4198 2017 2025 4419*2^3351666+1 1008956 L5279 2021 2026 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 2027 3059*2^3351379+1 1008870 L5278 2021 2028 7789*2^3351046+1 1008770 L5276 2021 2029 9501*2^3350668+1 1008656 L5272 2021 2030 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 2031 9691*2^3349952+1 1008441 L5242 2021 2032 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 2033 3209*2^3349719+1 1008370 L5269 2021 2034 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 2035 393*2^3349525+1 1008311 L3101 2016 2036 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 2037 5487*2^3349303+1 1008245 L5266 2021 2038 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 2039 2511*2^3349104+1 1008185 L5264 2021 2040 1005*2^3349046-1 1008167 L4518 2021 2041 7659*2^3348894+1 1008122 L5263 2021 2042 9703*2^3348872+1 1008115 L5262 2021 2043 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 2044 7935*2^3348578+1 1008027 L5161 2021 2045 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 2046 7821*2^3348400+1 1007973 L5260 2021 2047 7911*2^3347532+1 1007712 L5250 2021 2048 8295*2^3347031+1 1007561 L5249 2021 2049 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 2050 4029*2^3346729+1 1007470 L5239 2021 2051 9007*2^3346716+1 1007466 L5161 2021 2052 8865*2^3346499+1 1007401 L5238 2021 2053 6171*2^3346480+1 1007395 L5174 2021 2054 6815*2^3346045+1 1007264 L5235 2021 2055 5*326^400785+1 1007261 L4786 2019 2056 5951*2^3345977+1 1007244 L5233 2021 2057 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 2058 1257*2^3345843+1 1007203 L5192 2021 2059 4701*2^3345815+1 1007195 L5192 2021 2060 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 2061 7545*2^3345355+1 1007057 L5231 2021 2062 5559*2^3344826+1 1006897 L5223 2021 2063 6823*2^3344692+1 1006857 L5223 2021 2064 4839*2^3344453+1 1006785 L5188 2021 2065 7527*2^3344332+1 1006749 L5220 2021 2066 7555*2^3344240+1 1006721 L5188 2021 2067 6265*2^3344080+1 1006673 L5197 2021 2068 1299*2^3343943+1 1006631 L5217 2021 2069 2815*2^3343754+1 1006574 L5216 2021 2070 5349*2^3343734+1 1006568 L5174 2021 2071 2863*2^3342920+1 1006323 L5179 2020 2072 7387*2^3342848+1 1006302 L5208 2020 2073 9731*2^3342447+1 1006181 L5203 2020 2074 7725*2^3341708+1 1005959 L5195 2020 2075 7703*2^3341625+1 1005934 L5178 2020 2076 7047*2^3341482+1 1005891 L5194 2020 2077 4839*2^3341309+1 1005838 L5192 2020 2078 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 2079 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 2080 8989*2^3340866+1 1005705 L5189 2020 2081 6631*2^3340808+1 1005688 L5188 2020 2082 1341*2^3340681+1 1005649 L5188 2020 2083 733*2^3340464+1 1005583 L3035 2016 2084 2636*138^469911+1 1005557 L5410 2021 2085 3679815*2^3340001+1 1005448 L4922 2019 2086 57*2^3339932-1 1005422 L3519 2015 2087 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 2088 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 2089 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 2090 3651*2^3339341+1 1005246 L5177 2020 2091 3853*2^3339296+1 1005232 L5178 2020 2092 8015*2^3339267+1 1005224 L5176 2020 2093 3027*2^3339182+1 1005198 L5174 2020 2094 9517*2^3339002+1 1005144 L5172 2020 2095 4003*2^3338588+1 1005019 L3035 2020 2096 6841*2^3338336+1 1004944 L1474 2020 2097 2189*2^3338209+1 1004905 L5031 2020 2098 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 2099 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 2100 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 2101 2957*2^3337667+1 1004742 L5144 2020 2102 1515*2^3337389+1 1004658 L1474 2020 2103 7933*2^3337270+1 1004623 L4666 2020 2104 1251*2^3337116+1 1004576 L4893 2020 2105 651*2^3337101+1 1004571 L3260 2016 2106 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 2107 8397*2^3336654+1 1004437 L5125 2020 2108 8145*2^3336474+1 1004383 L5110 2020 2109 1087*2^3336385-1 1004355 L1828 2012 2110 5325*2^3336120+1 1004276 L2125 2020 2111 849*2^3335669+1 1004140 L3035 2016 2112 8913*2^3335216+1 1004005 L5079 2020 2113 7725*2^3335213+1 1004004 L3035 2020 2114 611*2^3334875+1 1003901 L3813 2016 2115 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 2116 403*2^3334410+1 1003761 L4293 2016 2117 5491*2^3334392+1 1003756 L4815 2020 2118 6035*2^3334341+1 1003741 L2125 2020 2119 1725*2^3334341+1 1003740 L2125 2020 2120 4001*2^3334031+1 1003647 L1203 2020 2121 2315*2^3333969+1 1003629 L2125 2020 2122 6219*2^3333810+1 1003581 L4582 2020 2123 8063*2^3333721+1 1003554 L1823 2020 2124 9051*2^3333677+1 1003541 L3924 2020 2125 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 2126 4091*2^3333153+1 1003383 L1474 2020 2127 9949*2^3332750+1 1003262 L5090 2020 2128 3509*2^3332649+1 1003231 L5085 2020 2129 3781*2^3332436+1 1003167 L1823 2020 2130 4425*2^3332394+1 1003155 L3431 2020 2131 6459*2^3332086+1 1003062 L2629 2020 2132 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 2133 5257*2^3331758+1 1002963 L1188 2020 2134 2939*2^3331393+1 1002853 L1823 2020 2135 6959*2^3331365+1 1002845 L1675 2020 2136 8815*2^3330748+1 1002660 L3329 2020 2137 4303*2^3330652+1 1002630 L4730 2020 2138 8595*2^3330649+1 1002630 L4723 2020 2139 673*2^3330436+1 1002564 L3035 2016 2140 8163*2^3330042+1 1002447 L3278 2020 2141 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 2142 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 2143 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 2144 2829*2^3329061+1 1002151 L4343 2020 2145 5775*2^3329034+1 1002143 L1188 2020 2146 7101*2^3328905+1 1002105 L4568 2020 2147 7667*2^3328807+1 1002075 L4087 2020 2148 129*2^3328805+1 1002073 L3859 2014 2149 7261*2^3328740+1 1002055 L2914 2020 2150 4395*2^3328588+1 1002009 L3924 2020 2151 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 2152 143183*2^3328297+1 1001923 L4504 2017 2153 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 2154 9681*2^3327987+1 1001828 L1204 2020 2155 2945*2^3327987+1 1001828 L2158 2020 2156 5085*2^3327789+1 1001769 L1823 2020 2157 8319*2^3327650+1 1001727 L1204 2020 2158 4581*2^3327644+1 1001725 L2142 2020 2159 655*2^3327518+1 1001686 L4490 2016 2160 8863*2^3327406+1 1001653 L1675 2020 2161 659*2^3327371+1 1001642 L3502 2016 2162 3411*2^3327343+1 1001634 L1675 2020 2163 4987*2^3327294+1 1001619 L3924 2020 2164 821*2^3327003+1 1001531 L3035 2016 2165 2435*2^3326969+1 1001521 L3035 2020 2166 1931*2^3326850-1 1001485 L4113 2022 2167 2277*2^3326794+1 1001469 L5014 2020 2168 6779*2^3326639+1 1001422 L3924 2020 2169 6195*2^3325993+1 1001228 L1474 2019 2170 555*2^3325925+1 1001206 L4414 2016 2171 9041*2^3325643+1 1001123 L3924 2019 2172 1965*2^3325639-1 1001121 L4113 2022 2173 1993*2^3325302+1 1001019 L3662 2019 2174 6179*2^3325027+1 1000937 L3048 2019 2175 4485*2^3324900+1 1000899 L1355 2019 2176 3559*2^3324650+1 1000823 L3035 2019 2177 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 2178 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 2179 6927*2^3324387+1 1000745 L3091 2019 2180 9575*2^3324287+1 1000715 L3824 2019 2181 1797*2^3324259+1 1000705 L3895 2019 2182 4483*2^3324048+1 1000642 L3035 2019 2183 791*2^3323995+1 1000626 L3035 2016 2184 6987*2^3323926+1 1000606 L4973 2019 2185 3937*2^3323886+1 1000593 L3035 2019 2186 2121*2^3323852+1 1000583 L1823 2019 2187 1571*2^3323493+1 1000475 L3035 2019 2188 2319*2^3323402+1 1000448 L4699 2019 2189 2829*2^3323341+1 1000429 L4754 2019 2190 4335*2^3323323+1 1000424 L1823 2019 2191 8485*2^3322938+1 1000308 L4858 2019 2192 6505*2^3322916+1 1000302 L4858 2019 2193 597*2^3322871+1 1000287 L3035 2016 2194 9485*2^3322811+1 1000270 L2603 2019 2195 8619*2^3322774+1 1000259 L3035 2019 2196 387*2^3322763+1 1000254 L1455 2016 2197 1965*2^3322579-1 1000200 L4113 2022 2198 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 2199 6366*745^348190-1 1000060 L4189 2022 2200 5553507*2^3322000+1 1000029 p391 2016 2201 5029159647*2^3321910-1 1000005 L4960 2021 2202 5009522505*2^3321910-1 1000005 L4960 2021 2203 4766298357*2^3321910-1 1000005 L4960 2021 2204 4759383915*2^3321910-1 1000005 L4960 2021 2205 4635733263*2^3321910-1 1000005 L4960 2021 2206 4603393047*2^3321910-1 1000005 L4960 2021 2207 4550053935*2^3321910-1 1000005 L4960 2021 2208 4288198767*2^3321910-1 1000005 L4960 2021 2209 4229494557*2^3321910-1 1000005 L4960 2021 2210 4110178197*2^3321910-1 1000005 L4960 2021 2211 4022490843*2^3321910-1 1000005 L4960 2021 2212 3936623697*2^3321910-1 1000005 L4960 2021 2213 3751145343*2^3321910-1 1000005 L4960 2021 2214 3715773735*2^3321910-1 1000005 L4960 2021 2215 3698976057*2^3321910-1 1000005 L4960 2021 2216 3659465685*2^3321910-1 1000005 L4960 2020 2217 3652932033*2^3321910-1 1000005 L4960 2020 2218 3603204333*2^3321910-1 1000005 L4960 2020 2219 3543733545*2^3321910-1 1000005 L4960 2020 2220 3191900133*2^3321910-1 1000005 L4960 2020 2221 3174957723*2^3321910-1 1000005 L4960 2020 2222 2973510903*2^3321910-1 1000005 L4960 2019 2223 2848144257*2^3321910-1 1000005 L4960 2019 2224 2820058827*2^3321910-1 1000005 L4960 2019 2225 2611553775*2^3321910-1 1000004 L4960 2020 2226 2601087525*2^3321910-1 1000004 L4960 2019 2227 2386538565*2^3321910-1 1000004 L4960 2019 2228 2272291887*2^3321910-1 1000004 L4960 2019 2229 2167709265*2^3321910-1 1000004 L4960 2019 2230 2087077797*2^3321910-1 1000004 L4960 2019 2231 1848133623*2^3321910-1 1000004 L4960 2019 2232 1825072257*2^3321910-1 1000004 L4960 2019 2233 1633473837*2^3321910-1 1000004 L4960 2019 2234 1228267623*2^3321910-1 1000004 L4808 2019 2235 1148781333*2^3321910-1 1000004 L4808 2019 2236 1065440787*2^3321910-1 1000004 L4808 2019 2237 1055109357*2^3321910-1 1000004 L4960 2019 2238 992309607*2^3321910-1 1000004 L4808 2019 2239 926102325*2^3321910-1 1000004 L4808 2019 2240 892610007*2^3321910-1 1000004 L4960 2019 2241 763076757*2^3321910-1 1000004 L4960 2019 2242 607766997*2^3321910-1 1000004 L4808 2019 2243 539679177*2^3321910-1 1000004 L4808 2019 2244 425521077*2^3321910-1 1000004 L4808 2019 2245 132940575*2^3321910-1 1000003 L4808 2019 2246 239378138685*2^3321891+1 1000001 L5104 2020 2247 464253*2^3321908-1 1000000 L466 2013 2248 3^2095902+3^647322-1 1000000 x44 2018 2249 191273*2^3321908-1 1000000 L466 2013 2250 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 2251 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 2252 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 2253 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 2254 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 2255e 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 2256 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 2257 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 2258d 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 2259 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 2260 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 2261 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 2262 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 2263 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 2264 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 2265 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 2266 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 2267 10^999999+308267*10^292000+1 1000000 CH10 2021 2268 10^999999-1022306*10^287000-1 999999 CH13 2021 2269 10^999999-1087604*10^287000-1 999999 CH13 2021 2270 531631540026641*6^1285077+1 999999 L3494 2021 2271 3139*2^3321905-1 999997 L185 2008 2272 42550702^131072+1 999937 L4309 2022 Generalized Fermat 2273 42414020^131072+1 999753 L5030 2022 Generalized Fermat 2274 4847*2^3321063+1 999744 SB9 2005 2275 42254832^131072+1 999539 L5375 2022 Generalized Fermat 2276 42243204^131072+1 999524 L4898 2022 Generalized Fermat 2277 42230406^131072+1 999506 L5453 2022 Generalized Fermat 2278 42168978^131072+1 999424 L5462 2022 Generalized Fermat 2279 439*2^3318318+1 998916 L5573 2022 2280 41688706^131072+1 998772 L5270 2022 Generalized Fermat 2281 41364744^131072+1 998327 L5453 2022 Generalized Fermat 2282 41237116^131072+1 998152 L5459 2022 Generalized Fermat 2283e 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 2284 41102236^131072+1 997965 L4245 2022 Generalized Fermat 2285 41007562^131072+1 997834 L4210 2022 Generalized Fermat 2286 41001148^131072+1 997825 L4210 2022 Generalized Fermat 2287 975*2^3312951+1 997301 L5231 2022 2288 40550398^131072+1 997196 L4245 2022 Generalized Fermat 2289 11796*46^599707+1 997172 L5670 2023 2290 40463598^131072+1 997074 L4591 2022 Generalized Fermat 2291 689*2^3311423+1 996841 L5226 2022 2292 40151896^131072+1 996633 L4245 2022 Generalized Fermat 2293 593*2^3309333+1 996212 L5572 2022 2294 383*2^3309321+1 996208 L5570 2022 2295 49*2^3309087-1 996137 L1959 2013 2296 39746366^131072+1 996056 L4201 2022 Generalized Fermat 2297 139413*6^1279992+1 996033 L4001 2015 2298c 1274*67^545368-1 995886 L5410 2023 2299 51*2^3308171+1 995861 L2840 2015 2300 719*2^3308127+1 995849 L5192 2022 2301 39597790^131072+1 995842 L4737 2022 Generalized Fermat 2302 39502358^131072+1 995705 L5453 2022 Generalized Fermat 2303 39324372^131072+1 995448 L5202 2022 Generalized Fermat 2304 245114*5^1424104-1 995412 L3686 2013 2305 39100746^131072+1 995123 L5441 2022 Generalized Fermat 2306 38824296^131072+1 994719 L4245 2022 Generalized Fermat 2307 38734748^131072+1 994588 L4249 2021 Generalized Fermat 2308 175124*5^1422646-1 994393 L3686 2013 2309 453*2^3303073+1 994327 L5568 2022 2310 38310998^131072+1 993962 L4737 2021 Generalized Fermat 2311 531*2^3301693+1 993912 L5226 2022 2312 38196496^131072+1 993791 L4861 2021 Generalized Fermat 2313 38152876^131072+1 993726 L4245 2021 Generalized Fermat 2314 195*2^3301018+1 993708 L5569 2022 2315 341*2^3300789+1 993640 L5192 2022 2316 37909914^131072+1 993363 L4249 2021 Generalized Fermat 2317 849*2^3296427+1 992327 L5571 2022 2318 1611*22^738988+1 992038 L4139 2015 2319 36531196^131072+1 991254 L4249 2021 Generalized Fermat 2320 2017*2^3292325-1 991092 L3345 2017 2321 36422846^131072+1 991085 L4245 2021 Generalized Fermat 2322 36416848^131072+1 991076 L5202 2021 Generalized Fermat 2323 885*2^3290927+1 990671 L5161 2022 2324 36038176^131072+1 990481 L4245 2021 Generalized Fermat 2325 35997532^131072+1 990416 L4245 2021 Generalized Fermat 2326 35957420^131072+1 990353 L4245 2021 Generalized Fermat 2327 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 2328 35391288^131072+1 989449 L5070 2021 Generalized Fermat 2329 35372304^131072+1 989419 L5443 2021 Generalized Fermat 2330 219*2^3286614+1 989372 L5567 2022 2331 61*2^3286535-1 989348 L4405 2016 2332 35327718^131072+1 989347 L4591 2021 Generalized Fermat 2333 35282096^131072+1 989274 L4245 2021 Generalized Fermat 2334 35141602^131072+1 989046 L4729 2021 Generalized Fermat 2335 35139782^131072+1 989043 L4245 2021 Generalized Fermat 2336 35047222^131072+1 988893 L4249 2021 Generalized Fermat 2337 531*2^3284944+1 988870 L5536 2022 2338 34957136^131072+1 988747 L5321 2021 Generalized Fermat 2339 301*2^3284232+1 988655 L5564 2022 2340 34871942^131072+1 988608 L4245 2021 Generalized Fermat 2341 34763644^131072+1 988431 L4737 2021 Generalized Fermat 2342 34585314^131072+1 988138 L4201 2021 Generalized Fermat 2343 311*2^3282455+1 988120 L5568 2022 2344 34530386^131072+1 988048 L5070 2021 Generalized Fermat 2345 833*2^3282181+1 988038 L5564 2022 2346 561*2^3281889+1 987950 L5477 2022 2347 34087952^131072+1 987314 L4764 2021 Generalized Fermat 2348 87*2^3279368+1 987191 L3458 2015 2349 965*2^3279151+1 987126 L5564 2022 2350 33732746^131072+1 986717 L4359 2021 Generalized Fermat 2351 33474284^131072+1 986279 L5051 2021 Generalized Fermat 2352 33395198^131072+1 986145 L4658 2021 Generalized Fermat 2353 427*2^3275606+1 986059 L5566 2022 2354 33191418^131072+1 985796 L4201 2021 Generalized Fermat 2355 337*2^3274106+1 985607 L5564 2022 2356 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 2357 1045*2^3273488+1 985422 L5192 2022 2358 32869172^131072+1 985241 L4285 2021 Generalized Fermat 2359 32792696^131072+1 985108 L5198 2021 Generalized Fermat 2360 1047*2^3272351+1 985079 L5563 2022 2361 32704348^131072+1 984955 L5312 2021 Generalized Fermat 2362 32608738^131072+1 984788 L5395 2021 Generalized Fermat 2363 933*2^3270993+1 984670 L5562 2022 2364 311*2^3270759+1 984600 L5560 2022 2365 32430486^131072+1 984476 L4245 2021 Generalized Fermat 2366 32417420^131072+1 984453 L4245 2021 Generalized Fermat 2367 65*2^3270127+1 984409 L3924 2015 2368 32348894^131072+1 984333 L4245 2021 Generalized Fermat 2369 579*2^3269850+1 984326 L5226 2022 2370 32286660^131072+1 984223 L5400 2021 Generalized Fermat 2371 32200644^131072+1 984071 L4387 2021 Generalized Fermat 2372 32137342^131072+1 983959 L4559 2021 Generalized Fermat 2373 32096608^131072+1 983887 L4559 2021 Generalized Fermat 2374 32055422^131072+1 983814 L4559 2021 Generalized Fermat 2375 31821360^131072+1 983397 L4861 2021 Generalized Fermat 2376 31768014^131072+1 983301 L4252 2021 Generalized Fermat 2377 335*2^3266237+1 983238 L5559 2022 2378 1031*2^3265915+1 983142 L5364 2022 2379 31469984^131072+1 982765 L5078 2021 Generalized Fermat 2380 5*2^3264650-1 982759 L384 2013 2381 223*2^3264459-1 982703 L1884 2012 2382 1101*2^3264400+1 982686 L5231 2022 2383 483*2^3264181+1 982620 L5174 2022 2384 525*2^3263227+1 982332 L5231 2022 2385 31145080^131072+1 982174 L4201 2021 Generalized Fermat 2386 622*48^584089+1 981998 L5629 2023 2387 31044982^131072+1 981991 L5041 2021 Generalized Fermat 2388 683*2^3262037+1 981974 L5192 2022 2389 923*2^3261401+1 981783 L5477 2022 2390 30844300^131072+1 981622 L5102 2021 Generalized Fermat 2391 30819256^131072+1 981575 L4201 2021 Generalized Fermat 2392 9*2^3259381-1 981173 L1828 2011 2393 1059*2^3258751+1 980985 L5231 2022 2394 6*5^1403337+1 980892 L4965 2020 2395 30318724^131072+1 980643 L4309 2021 Generalized Fermat 2396 30315072^131072+1 980636 L5375 2021 Generalized Fermat 2397 30300414^131072+1 980609 L4755 2021 Generalized Fermat 2398 30225714^131072+1 980468 L4201 2021 Generalized Fermat 2399 875*2^3256589+1 980334 L5550 2022 2400 30059800^131072+1 980155 L4928 2021 Generalized Fermat 2401 30022816^131072+1 980085 L5273 2021 Generalized Fermat 2402 29959190^131072+1 979964 L4905 2021 Generalized Fermat 2403 29607314^131072+1 979292 L5378 2021 Generalized Fermat 2404 779*2^3253063+1 979273 L5192 2022 2405 29505368^131072+1 979095 L5378 2021 Generalized Fermat 2406 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 2407 29169314^131072+1 978443 L5380 2021 Generalized Fermat 2408 417*2^3248255+1 977825 L5178 2022 2409 28497098^131072+1 977116 L4308 2021 Generalized Fermat 2410 28398204^131072+1 976918 L5379 2021 Generalized Fermat 2411 28294666^131072+1 976710 L5375 2021 Generalized Fermat 2412 28175634^131072+1 976470 L5378 2021 Generalized Fermat 2413 33*2^3242126-1 975979 L3345 2014 2414 27822108^131072+1 975752 L4760 2021 Generalized Fermat 2415 39*2^3240990+1 975637 L3432 2014 2416 27758510^131072+1 975621 L4289 2021 Generalized Fermat 2417 27557876^131072+1 975208 L4245 2021 Generalized Fermat 2418 27544748^131072+1 975181 L4387 2021 Generalized Fermat 2419 27408050^131072+1 974898 L4210 2021 Generalized Fermat 2420 225*2^3236967+1 974427 L5529 2022 2421 27022768^131072+1 974092 L4309 2021 Generalized Fermat 2422 26896670^131072+1 973826 L5376 2021 Generalized Fermat 2423 1075*2^3234606+1 973717 L5192 2022 2424 26757382^131072+1 973530 L5375 2021 Generalized Fermat 2425 26599558^131072+1 973194 L4245 2021 Generalized Fermat 2426 6*5^1392287+1 973168 L4965 2020 2427 26500832^131072+1 972982 L4956 2021 Generalized Fermat 2428 325*2^3231474+1 972774 L5536 2022 2429 933*2^3231438+1 972763 L5197 2022 2430 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 2431 26172278^131072+1 972272 L4245 2021 Generalized Fermat 2432 697*2^3229518+1 972185 L5534 2022 2433 22598*745^338354-1 971810 L4189 2022 2434 385*2^3226814+1 971371 L5178 2022 2435 211195*2^3224974+1 970820 L2121 2013 2436 1173*2^3223546+1 970388 L5178 2022 2437 7*6^1246814+1 970211 L4965 2019 2438 25128150^131072+1 969954 L4738 2021 Generalized Fermat 2439 25124378^131072+1 969946 L5102 2021 Generalized Fermat 2440 1089*2^3221691+1 969829 L5178 2022 2441 35*832^332073-1 969696 L4001 2019 2442 600921*2^3219922-1 969299 g337 2018 2443 939*2^3219319+1 969115 L5178 2022 2444 24734116^131072+1 969055 L5070 2021 Generalized Fermat 2445 24644826^131072+1 968849 L5070 2021 Generalized Fermat 2446 24642712^131072+1 968844 L5070 2021 Generalized Fermat 2447 24641166^131072+1 968840 L5070 2021 Generalized Fermat 2448 129*2^3218214+1 968782 L5529 2022 2449 24522386^131072+1 968565 L5070 2021 Generalized Fermat 2450 24486806^131072+1 968483 L4737 2021 Generalized Fermat 2451 811*2^3216944+1 968400 L5233 2022 2452 24297936^131072+1 968042 L4201 2021 Generalized Fermat 2453 1023*2^3214745+1 967738 L5178 2022 2454 187*2^3212152+1 966957 L5178 2022 2455 301*2^3211281-1 966695 L5545 2022 2456 6*409^369832+1 965900 L4001 2015 2457 23363426^131072+1 965809 L5033 2021 Generalized Fermat 2458 1165*2^3207702+1 965618 L5178 2022 2459 94373*2^3206717+1 965323 L2785 2013 2460 2751*2^3206569-1 965277 L4036 2015 2461 761*2^3206341+1 965208 L5178 2022 2462 23045178^131072+1 965029 L5023 2021 Generalized Fermat 2463 23011666^131072+1 964946 L5273 2021 Generalized Fermat 2464 911*2^3205225+1 964872 L5364 2022 2465 22980158^131072+1 964868 L4201 2021 Generalized Fermat 2466 22901508^131072+1 964673 L4743 2021 Generalized Fermat 2467 22808110^131072+1 964440 L5248 2021 Generalized Fermat 2468 22718284^131072+1 964215 L5254 2021 Generalized Fermat 2469 22705306^131072+1 964183 L5248 2021 Generalized Fermat 2470 113983*2^3201175-1 963655 L613 2008 2471 34*888^326732-1 963343 L4001 2017 2472 899*2^3198219+1 962763 L5503 2022 2473 22007146^131072+1 962405 L4245 2020 Generalized Fermat 2474 4*3^2016951+1 962331 L4965 2020 2475 21917442^131072+1 962173 L4622 2020 Generalized Fermat 2476 987*2^3195883+1 962060 L5282 2022 2477 21869554^131072+1 962048 L5061 2020 Generalized Fermat 2478 21757066^131072+1 961754 L4773 2020 Generalized Fermat 2479 21582550^131072+1 961296 L5068 2020 Generalized Fermat 2480 21517658^131072+1 961125 L5126 2020 Generalized Fermat 2481 20968936^131072+1 959654 L4245 2020 Generalized Fermat 2482 671*2^3185411+1 958908 L5315 2022 2483 20674450^131072+1 958849 L4245 2020 Generalized Fermat 2484 1027*2^3184540+1 958646 L5174 2022 2485 789*2^3183463+1 958321 L5482 2022 2486 855*2^3183158+1 958229 L5161 2022 2487 20234282^131072+1 957624 L4942 2020 Generalized Fermat 2488 20227142^131072+1 957604 L4677 2020 Generalized Fermat 2489 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 2490 20185276^131072+1 957486 L4201 2020 Generalized Fermat 2491 935*2^3180599+1 957459 L5477 2022 2492 573*2^3179293+1 957066 L5226 2022 2493 33*2^3176269+1 956154 L3432 2013 2494 81*2^3174353-1 955578 L3887 2022 2495 19464034^131072+1 955415 L4956 2020 Generalized Fermat 2496 600921*2^3173683-1 955380 g337 2018 2497 587*2^3173567+1 955342 L5301 2022 2498 19216648^131072+1 954687 L5024 2020 Generalized Fermat 2499 1414*95^482691-1 954633 L4877 2019 2500 305*2^3171039+1 954581 L5301 2022 2501 755*2^3170701+1 954479 L5302 2022 2502 775*2^3170580+1 954443 L5449 2022 2503 78*236^402022-1 953965 L5410 2020 2504 18968126^131072+1 953946 L5011 2020 Generalized Fermat 2505 18813106^131072+1 953479 L4201 2020 Generalized Fermat 2506 18608780^131072+1 952857 L4488 2020 Generalized Fermat 2507 1087*2^3164677-1 952666 L1828 2012 2508 18509226^131072+1 952552 L4884 2020 Generalized Fermat 2509 18501600^131072+1 952528 L4875 2020 Generalized Fermat 2510 459*2^3163175+1 952214 L5178 2022 2511 15*2^3162659+1 952057 p286 2012 2512 18309468^131072+1 951934 L4928 2020 Generalized Fermat 2513 18298534^131072+1 951900 L4201 2020 Generalized Fermat 2514 849*2^3161727+1 951778 L5178 2022 2515 67*2^3161450+1 951694 L3223 2015 2516 119*2^3161195+1 951617 L5320 2022 2517 1759*2^3160863-1 951518 L4965 2021 2518 58*117^460033+1 951436 L5410 2020 2519 417*2^3160443+1 951391 L5302 2022 2520 9231*70^515544+1 951234 L5410 2021 2521 671*2^3159523+1 951115 L5188 2022 2522 17958952^131072+1 950834 L4201 2020 Generalized Fermat 2523 17814792^131072+1 950375 L4752 2020 Generalized Fermat 2524 17643330^131072+1 949824 L4201 2020 Generalized Fermat 2525 19*2^3155009-1 949754 L1828 2012 2526 281*2^3151457+1 948686 L5316 2022 2527 179*2^3150265+1 948327 L5302 2022 2528 17141888^131072+1 948183 L4963 2019 Generalized Fermat 2529 17138628^131072+1 948172 L4963 2019 Generalized Fermat 2530 17119936^131072+1 948110 L4963 2019 Generalized Fermat 2531 17052490^131072+1 947885 L4715 2019 Generalized Fermat 2532 17025822^131072+1 947796 L4870 2019 Generalized Fermat 2533 16985784^131072+1 947662 L4295 2019 Generalized Fermat 2534 865*2^3147482+1 947490 L5178 2021 2535 963*2^3145753+1 946969 L5451 2021 2536 16741226^131072+1 946837 L4201 2019 Generalized Fermat 2537 387*2^3144483+1 946587 L5450 2021 2538 1035*2^3144236+1 946513 L5449 2021 2539 1065*2^3143667+1 946342 L4944 2021 2540 193*2^3142150+1 945884 L5178 2021 2541 915*2^3141942+1 945822 L5448 2021 2542 939*2^3141397+1 945658 L5320 2021 2543 1063*2^3141350+1 945644 L5178 2021 2544 16329572^131072+1 945420 L4201 2019 Generalized Fermat 2545 69*2^3140225-1 945304 L3764 2014 2546 3*2^3136255-1 944108 L256 2007 2547 417*2^3136187+1 944089 L5178 2021 2548 15731520^131072+1 943296 L4245 2019 Generalized Fermat 2549 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 2550 15667716^131072+1 943064 L4387 2019 Generalized Fermat 2551 15567144^131072+1 942698 L4918 2019 Generalized Fermat 2552 299*2^3130621+1 942414 L5178 2021 2553 15342502^131072+1 941870 L4245 2019 Generalized Fermat 2554 15237960^131072+1 941481 L4898 2019 Generalized Fermat 2555 571*2^3127388+1 941441 L5440 2021 2556 15147290^131072+1 941141 L4861 2019 Generalized Fermat 2557 197*2^3126343+1 941126 L5178 2021 2558 15091270^131072+1 940930 L4760 2019 Generalized Fermat 2559 1097*2^3124455+1 940558 L5178 2021 2560 3125*2^3124079+1 940445 L1160 2019 2561 495*2^3123624+1 940308 L5438 2021 2562 14790404^131072+1 939784 L4871 2019 Generalized Fermat 2563 1041*2^3120649+1 939412 L5437 2021 2564 14613898^131072+1 939101 L4926 2019 Generalized Fermat 2565 3317*2^3117162-1 938363 L5399 2021 2566 763*2^3115684+1 937918 L4944 2021 2567 581*2^3114611+1 937595 L5178 2021 2568 14217182^131072+1 937534 L4387 2019 Generalized Fermat 2569 134*864^319246-1 937473 L5410 2020 2570 700057*2^3113753-1 937339 L5410 2022 2571 1197*2^3111838+1 936760 L5178 2021 2572 14020004^131072+1 936739 L4249 2019 Generalized Fermat 2573 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 2574 755*2^3110759+1 936435 L5320 2021 2575 13800346^131072+1 935840 L4880 2019 Generalized Fermat 2576f 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 2577 13613070^131072+1 935062 L4245 2019 Generalized Fermat 2578 628*80^491322+1 935033 L5410 2021 2579 761*2^3105087+1 934728 L5197 2021 2580 13433028^131072+1 934305 L4868 2018 Generalized Fermat 2581 1019*2^3103680-1 934304 L1828 2012 2582 579*2^3102639+1 933991 L5315 2021 2583 99*2^3102401-1 933918 L1862 2017 2584 256612*5^1335485-1 933470 L1056 2013 2585 13083418^131072+1 932803 L4747 2018 Generalized Fermat 2586 69*2^3097340-1 932395 L3764 2014 2587 153*2^3097277+1 932376 L4944 2021 2588 12978952^131072+1 932347 L4849 2018 Generalized Fermat 2589 12961862^131072+1 932272 L4245 2018 Generalized Fermat 2590 207*2^3095391+1 931808 L5178 2021 2591 12851074^131072+1 931783 L4670 2018 Generalized Fermat 2592 45*2^3094632-1 931579 L1862 2018 2593 259*2^3094582+1 931565 L5214 2021 2594 553*2^3094072+1 931412 L4944 2021 2595 57*2^3093440-1 931220 L2484 2020 2596 12687374^131072+1 931054 L4289 2018 Generalized Fermat 2597 513*2^3092705+1 931000 L4329 2016 2598 12661786^131072+1 930939 L4819 2018 Generalized Fermat 2599 933*2^3091825+1 930736 L5178 2021 2600 38*875^316292-1 930536 L4001 2019 2601 5*2^3090860-1 930443 L1862 2012 2602 12512992^131072+1 930266 L4814 2018 Generalized Fermat 2603 4*5^1330541-1 930009 L4965 2022 2604 12357518^131072+1 929554 L4295 2018 Generalized Fermat 2605 12343130^131072+1 929488 L4720 2018 Generalized Fermat 2606 297*2^3087543+1 929446 L5326 2021 2607 1149*2^3087514+1 929438 L5407 2021 2608 745*2^3087428+1 929412 L5178 2021 2609 373*520^342177+1 929357 L3610 2014 2610 19401*2^3086450-1 929119 L541 2015 2611 75*2^3086355+1 929088 L3760 2015 2612 65*2^3080952-1 927461 L2484 2020 2613 11876066^131072+1 927292 L4737 2018 Generalized Fermat 2614 1139*2^3079783+1 927111 L5174 2021 2615 271*2^3079189-1 926931 L2484 2018 2616 766*33^610412+1 926923 L4001 2016 2617 11778792^131072+1 926824 L4672 2018 Generalized Fermat 2618 555*2^3078792+1 926812 L5226 2021 2619 31*332^367560+1 926672 L4294 2018 2620 167*2^3077568-1 926443 L1862 2020 2621 10001*2^3075602-1 925853 L4405 2019 2622 116*107^455562-1 924513 L4064 2021 2623 11292782^131072+1 924425 L4672 2018 Generalized Fermat 2624 14844*430^350980-1 924299 L4001 2016 2625 11267296^131072+1 924297 L4654 2017 Generalized Fermat 2626 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 2627 1105*2^3069884+1 924131 L5314 2021 2628 319*2^3069362+1 923973 L5377 2021 2629 11195602^131072+1 923933 L4706 2017 Generalized Fermat 2630 973*2^3069092+1 923892 L5214 2021 2631 765*2^3068511+1 923717 L5174 2021 2632 60849*2^3067914+1 923539 L591 2014 2633 674*249^385359+1 923400 L5410 2019 2634 499*2^3066970+1 923253 L5373 2021 2635 553*2^3066838+1 923213 L5368 2021 2636 629*2^3066827+1 923210 L5226 2021 2637 11036888^131072+1 923120 L4660 2017 Generalized Fermat 2638 261*2^3066009+1 922964 L5197 2021 2639 10994460^131072+1 922901 L4704 2017 Generalized Fermat 2640f 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 2641 21*2^3065701+1 922870 p286 2012 2642 10962066^131072+1 922733 L4702 2017 Generalized Fermat 2643 10921162^131072+1 922520 L4559 2017 Generalized Fermat 2644 875*2^3063847+1 922313 L5364 2021 2645 43*2^3063674+1 922260 L3432 2013 2646 677*2^3063403+1 922180 L5346 2021 2647 8460*241^387047-1 921957 L5410 2019 2648 10765720^131072+1 921704 L4695 2017 Generalized Fermat 2649 111*2^3060238-1 921226 L2484 2020 2650 1165*2^3060228+1 921224 L5360 2021 2651 5*2^3059698-1 921062 L503 2008 2652 10453790^131072+1 920031 L4694 2017 Generalized Fermat 2653 453*2^3056181+1 920005 L5320 2021 2654 791*2^3055695+1 919859 L5177 2021 2655 10368632^131072+1 919565 L4692 2017 Generalized Fermat 2656 582971*2^3053414-1 919175 L5410 2022 2657 123*2^3049038+1 917854 L4119 2015 2658 10037266^131072+1 917716 L4691 2017 Generalized Fermat 2659 400*95^463883-1 917435 L4001 2019 2660 9907326^131072+1 916975 L4690 2017 Generalized Fermat 2661 454*383^354814+1 916558 L2012 2020 2662 9785844^131072+1 916272 L4326 2017 Generalized Fermat 2663 435*2^3041954+1 915723 L5320 2021 2664 639*2^3040438+1 915266 L5320 2021 2665 1045*2^3037988+1 914529 L5178 2021 2666 291*2^3037904+1 914503 L3545 2015 2667 311*2^3037565+1 914401 L5178 2021 2668 373*2^3036746+1 914155 L5178 2021 2669 9419976^131072+1 914103 L4591 2017 Generalized Fermat 2670 801*2^3036045+1 913944 L5348 2021 2671 915*2^3033775+1 913261 L5178 2021 2672 38804*3^1913975+1 913203 L5410 2021 2673 9240606^131072+1 913009 L4591 2017 Generalized Fermat 2674 869*2^3030655+1 912322 L5260 2021 2675 643*2^3030650+1 912320 L5320 2021 2676 99*2^3029959-1 912111 L1862 2020 2677 417*2^3029342+1 911926 L5178 2021 2678 345*2^3027769+1 911452 L5343 2021 2679 26*3^1910099+1 911351 L4799 2020 2680 355*2^3027372+1 911333 L5174 2021 2681 99*2^3026660-1 911118 L1862 2020 2682 417*2^3026492+1 911068 L5197 2021 2683 1065*2^3025527+1 910778 L5208 2021 2684 34202*3^1908800+1 910734 L5410 2021 2685 8343*42^560662+1 910099 L4444 2020 2686 699*2^3023263+1 910096 L5335 2021 2687 8770526^131072+1 910037 L4245 2017 Generalized Fermat 2688 8704114^131072+1 909604 L4670 2017 Generalized Fermat 2689 383731*2^3021377-1 909531 L466 2011 2690 46821*2^3021380-374567 909531 p363 2013 2691 2^3021377-1 909526 G3 1998 Mersenne 37 2692 615*2^3019445+1 908947 L5260 2021 2693 389*2^3019025+1 908820 L5178 2021 2694 875*2^3018175+1 908565 L5334 2021 2695c 375*2^3016803-1 908151 L2235 2023 2696 555*2^3016352+1 908016 L5178 2021 2697 7*2^3015762+1 907836 g279 2008 2698 759*2^3015314+1 907703 L5178 2021 2699 32582*3^1901790+1 907389 L5372 2021 2700 75*2^3012342+1 906808 L3941 2015 2701 459*2^3011814+1 906650 L5178 2021 2702 991*2^3010036+1 906115 L5326 2021 2703 583*2^3009698+1 906013 L5325 2021 2704 8150484^131072+1 905863 L4249 2017 Generalized Fermat 2705 593*2^3006969+1 905191 L5178 2021 2706 327*2^3006540-1 905062 L2257 2023 2707 367*2^3004536+1 904459 L5178 2021 2708 7926326^131072+1 904276 L4249 2017 Generalized Fermat 2709 1003*2^3003756+1 904224 L5320 2021 2710 573*2^3002662+1 903895 L5319 2021 2711 7858180^131072+1 903784 L4201 2017 Generalized Fermat 2712 329*2^3002295+1 903784 L5318 2021 2713 4*5^1292915-1 903710 L4965 2022 2714 7832704^131072+1 903599 L4249 2017 Generalized Fermat 2715 268514*5^1292240-1 903243 L3562 2013 2716 7*10^902708+1 902709 p342 2013 2717 435*2^2997453+1 902326 L5167 2021 2718 583*2^2996526+1 902047 L5174 2021 2719 1037*2^2995695+1 901798 L5178 2021 2720 717*2^2995326+1 901686 L5178 2021 2721 885*2^2995274+1 901671 L5178 2021 2722 43*2^2994958+1 901574 L3222 2013 2723 1065*2^2994154+1 901334 L5315 2021 2724 561*2^2994132+1 901327 L5314 2021 2725 1095*2^2992587-1 900862 L1828 2011 2726 519*2^2991849+1 900640 L5311 2021 2727 7379442^131072+1 900206 L4201 2017 Generalized Fermat 2728 459*2^2990134+1 900123 L5197 2021 2729 15*2^2988834+1 899730 p286 2012 2730 29*564^326765+1 899024 L4001 2017 2731 971*2^2982525+1 897833 L5197 2021 2732 1033*2^2980962+1 897362 L5305 2021 2733 357*2^2980540-1 897235 L2257 2023 2734 367*2^2979033-1 896781 L2257 2023 2735 39*2^2978894+1 896739 L2719 2013 2736 38*977^299737+1 896184 L5410 2021 2737 4348099*2^2976221-1 895939 L466 2008 2738 205833*2^2976222-411665 895938 L4667 2017 2739 18976*2^2976221-18975 895937 p373 2014 2740 2^2976221-1 895932 G2 1997 Mersenne 36 2741 1024*3^1877301+1 895704 p378 2014 2742 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 2743 24704*3^1877135+1 895626 L5410 2021 2744 591*2^2975069+1 895588 L5299 2021 2745 249*2^2975002+1 895568 L2322 2015 2746 195*2^2972947+1 894949 L3234 2015 2747 6705932^131072+1 894758 L4201 2017 Generalized Fermat 2748 391*2^2971600+1 894544 L5242 2021 2749 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 2750 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 2751 369*2^2968175-1 893513 L2257 2023 2752 493*72^480933+1 893256 L3610 2014 2753 561*2^2964753+1 892483 L5161 2021 2754 1185*2^2964350+1 892362 L5161 2021 2755 6403134^131072+1 892128 L4510 2016 Generalized Fermat 2756 6391936^131072+1 892028 L4511 2016 Generalized Fermat 2757 395*2^2961370-1 891464 L2257 2023 2758 21*2^2959789-1 890987 L5313 2021 2759 627*2^2959098+1 890781 L5197 2021 2760 45*2^2958002-1 890449 L1862 2017 2761 729*2^2955389+1 889664 L5282 2021 2762 198677*2^2950515+1 888199 L2121 2012 2763 88*985^296644+1 887987 L5410 2020 2764 303*2^2949403-1 887862 L1817 2022 2765 5877582^131072+1 887253 L4245 2016 Generalized Fermat 2766 321*2^2946654-1 887034 L1817 2022 2767 17*2^2946584-1 887012 L3519 2013 2768 489*2^2944673+1 886438 L5167 2021 2769 141*2^2943065+1 885953 L3719 2015 2770 757*2^2942742+1 885857 L5261 2021 2771 5734100^131072+1 885846 L4477 2016 Generalized Fermat 2772 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 2773 33*2^2939063-1 884748 L3345 2013 2774 5903*2^2938744-1 884654 L4036 2015 2775 717*2^2937963+1 884418 L5256 2021 2776 5586416^131072+1 884361 L4454 2016 Generalized Fermat 2777 243*2^2937316+1 884223 L4114 2015 2778 973*2^2937046+1 884142 L5253 2021 2779 61*2^2936967-1 884117 L2484 2017 2780 903*2^2934602+1 883407 L5246 2021 2781 5471814^131072+1 883181 L4362 2016 Generalized Fermat 2782 188*228^374503+1 883056 L4786 2020 2783 53*248^368775+1 883016 L5196 2020 2784 5400728^131072+1 882436 L4201 2016 Generalized Fermat 2785 17*326^350899+1 881887 L4786 2019 2786 855*2^2929550+1 881886 L5200 2021 2787 5326454^131072+1 881648 L4201 2016 Generalized Fermat 2788 839*2^2928551+1 881585 L5242 2021 2789 7019*10^881309-1 881313 L3564 2013 2790 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 2791 391*2^2925759-1 880744 L2257 2023 2792 577*2^2925602+1 880697 L5201 2021 2793 97366*5^1259955-1 880676 L3567 2013 2794 973*2^2923062+1 879933 L5228 2021 2795 1126*177^391360+1 879770 L4955 2020 2796 243944*5^1258576-1 879713 L3566 2013 2797 693*2^2921528+1 879471 L5201 2021 2798 6*10^879313+1 879314 L5009 2019 2799 269*2^2918105+1 878440 L2715 2015 2800 331*2^2917844+1 878362 L5210 2021 2801 169*2^2917805-1 878350 L2484 2018 2802 1085*2^2916967+1 878098 L5174 2020 2803 389*2^2916499+1 877957 L5215 2020 2804 431*2^2916429+1 877936 L5214 2020 2805 1189*2^2916406+1 877929 L5174 2020 2806f 1011*2^2916119-1 877843 L4518 2023 2807 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 2808 4974408^131072+1 877756 L4380 2016 Generalized Fermat 2809 465*2^2914079+1 877228 L5210 2020 2810 427194*113^427194+1 877069 p310 2012 Generalized Cullen 2811 4893072^131072+1 876817 L4303 2016 Generalized Fermat 2812 493*2^2912552+1 876769 L5192 2021 2813 379*2^2911423-1 876429 L2257 2023 2814 143157*2^2911403+1 876425 L4504 2017 2815 567*2^2910402+1 876122 L5201 2020 2816 683*2^2909217+1 875765 L5199 2020 2817 674*249^365445+1 875682 L5410 2019 2818 475*2^2908802+1 875640 L5192 2021 2819 371*2^2907377+1 875211 L5197 2020 2820 207*2^2903535+1 874054 L3173 2015 2821 851*2^2902731+1 873813 L5177 2020 2822 777*2^2901907+1 873564 L5192 2020 2823 717*2^2900775+1 873224 L5185 2020 2824 99*2^2899303-1 872780 L1862 2017 2825 63*2^2898957+1 872675 L3262 2013 2826 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 2827 747*2^2895307+1 871578 L5178 2020 2828 403*2^2894566+1 871354 L5180 2020 2829 629*2^2892961+1 870871 L5173 2020 2830 627*2^2891514+1 870436 L5168 2020 2831 325*2^2890955-1 870267 L5545 2022 2832 363*2^2890208+1 870042 L3261 2020 2833 471*2^2890148+1 870024 L5158 2020 2834 4329134^131072+1 869847 L4395 2016 Generalized Fermat 2835 583*2^2889248+1 869754 L5139 2020 2836 353*2^2888332-1 869478 L2257 2023 2837 955*2^2887934+1 869358 L4958 2020 2838c 8300*171^389286+1 869279 L5410 2023 2839 303*2^2887603-1 869258 L5184 2022 2840 937*2^2887130+1 869116 L5134 2020 2841 885*2^2886389+1 868893 L3924 2020 2842 763*2^2885928+1 868754 L2125 2020 2843 1071*2^2884844+1 868428 L3593 2020 2844 1181*2^2883981+1 868168 L3593 2020 2845 327*2^2881349-1 867375 L5545 2022 2846 51*2^2881227+1 867338 L3512 2013 2847 933*2^2879973+1 866962 L4951 2020 2848 261*2^2879941+1 866952 L4119 2015 2849 4085818^131072+1 866554 L4201 2016 Generalized Fermat 2850 65*2^2876718-1 865981 L2484 2016 2851 21*948^290747-1 865500 L4985 2019 2852 4013*2^2873250-1 864939 L1959 2014 2853 41*2^2872058-1 864578 L2484 2013 2854 359*2^2870935+1 864241 L1300 2020 2855 165*2^2870868+1 864220 L4119 2015 2856 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 2857 665*2^2869847+1 863913 L2885 2020 2858 283*2^2868750+1 863583 L3877 2015 2859f 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 2860 845*2^2868291+1 863445 L5100 2020 2861 3125*2^2867399+1 863177 L1754 2019 2862 701*2^2867141+1 863099 L1422 2020 2863 3814944^131072+1 862649 L4201 2016 Generalized Fermat 2864 119*954^289255+1 861852 L5410 2022 2865 307*2^2862962+1 861840 L4740 2020 2866 147*2^2862651+1 861746 L1741 2015 2867 1207*2^2861901-1 861522 L1828 2011 2868 231*2^2860725+1 861167 L2873 2015 2869 193*2^2858812+1 860591 L2997 2015 2870 629*2^2857891+1 860314 L3035 2020 2871 493*2^2857856+1 860304 L5087 2020 2872 241*2^2857313-1 860140 L2484 2018 2873 707*2^2856331+1 859845 L5084 2020 2874 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2875 949*2^2854946+1 859428 L2366 2020 2876 222361*2^2854840+1 859398 g403 2006 2877 725*2^2854661+1 859342 L5031 2020 2878 399*2^2851994+1 858539 L4099 2020 2879 225*2^2851959+1 858528 L3941 2015 2880 247*2^2851602+1 858421 L3865 2015 2881 183*2^2850321+1 858035 L2117 2015 2882 1191*2^2849315+1 857733 L1188 2020 2883 717*2^2848598+1 857517 L1204 2020 2884 795*2^2848360+1 857445 L4099 2020 2885 4242104*15^728840-1 857189 L5410 2023 2886 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2887 705*2^2846638+1 856927 L1808 2020 2888 369*2^2846547+1 856899 L4099 2020 2889 233*2^2846392-1 856852 L2484 2021 2890 955*2^2844974+1 856426 L1188 2020 2891 753*2^2844700+1 856343 L1204 2020 2892 11138*745^297992-1 855884 L4189 2019 2893 111*2^2841992+1 855527 L1792 2015 2894 44*744^297912-1 855478 L5410 2021 2895 649*2^2841318+1 855325 L4732 2020 2896 228*912^288954-1 855305 L5410 2022 2897 305*2^2840155+1 854975 L4907 2020 2898d 914*871^290787-1 854923 L5787 2023 2899 1149*2^2839622+1 854815 L2042 2020 2900 95*2^2837909+1 854298 L3539 2013 2901 199*2^2835667-1 853624 L2484 2019 2902 595*2^2833406+1 852943 L4343 2020 2903 1101*2^2832061+1 852539 L4930 2020 2904 813*2^2831757+1 852447 L4951 2020 2905 435*2^2831709+1 852432 L4951 2020 2906 393*2^2828738-1 851538 L2257 2023 2907 543*2^2828217+1 851381 L4746 2019 2908f 68*1010^283267+1 851027 L5778 2023 2909 704*249^354745+1 850043 L5410 2019 2910 1001*2^2822037+1 849521 L1209 2019 2911 84466*5^1215373-1 849515 L3562 2013 2912 97*2^2820650+1 849103 L2163 2013 2913 381*2^2820157-1 848955 L2257 2023 2914 107*2^2819922-1 848884 L2484 2013 2915 84256*3^1778899+1 848756 L4789 2018 2916 45472*3^1778899-1 848756 L4789 2018 2917 14804*3^1778530+1 848579 L4064 2021 2918 497*2^2818787+1 848543 L4842 2019 2919 97*2^2818306+1 848397 L3262 2013 2920 313*2^2817751-1 848231 L802 2021 2921 177*2^2816050+1 847718 L129 2012 2922 553*2^2815596+1 847582 L4980 2019 2923 1071*2^2814469+1 847243 L3035 2019 2924 105*2^2813000+1 846800 L3200 2015 2925 1115*2^2812911+1 846774 L1125 2019 2926 96*10^846519-1 846521 L2425 2011 Near-repdigit 2927 763*2^2811726+1 846417 L3919 2019 2928 1125*2^2811598+1 846379 L4981 2019 2929 891*2^2810100+1 845928 L4981 2019 2930 441*2^2809881+1 845862 L4980 2019 2931 711*2^2808473+1 845438 L1502 2019 2932 1089*2^2808231+1 845365 L4687 2019 2933 63*2^2807130+1 845033 L3262 2013 2934 1083*2^2806536+1 844855 L3035 2019 2935 675*2^2805669+1 844594 L1932 2019 2936 819*2^2805389+1 844510 L3372 2019 2937 1027*2^2805222+1 844459 L3035 2019 2938 437*2^2803775+1 844024 L3168 2019 2939 381*2^2801281-1 843273 L2257 2023 2940 4431*372^327835-1 842718 L5410 2019 2941 150344*5^1205508-1 842620 L3547 2013 2942 311*2^2798459+1 842423 L4970 2019 2943 81*2^2797443-1 842117 L3887 2021 2944 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2945 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2946 43*2^2795582+1 841556 L2842 2013 2947 1001*2^2794357+1 841189 L1675 2019 2948 117*2^2794014+1 841085 L1741 2015 2949 1057*2^2792700+1 840690 L1675 2019 2950 345*2^2792269+1 840560 L1754 2019 2951 711*2^2792072+1 840501 L4256 2019 2952 315*2^2791414-1 840302 L2235 2021 2953 973*2^2789516+1 839731 L3372 2019 2954 27602*3^1759590+1 839543 L4064 2021 2955 2187*2^2786802+1 838915 L1745 2019 2956 15*2^2785940+1 838653 p286 2012 2957 333*2^2785626-1 838560 L802 2021 2958 1337*2^2785444-1 838506 L4518 2017 2959 711*2^2784213+1 838135 L4687 2019 2960 58582*91^427818+1 838118 L5410 2020 2961 923*2^2783153+1 837816 L1675 2019 2962 1103*2^2783149+1 837815 L3784 2019 2963 485*2^2778151+1 836310 L1745 2019 2964 600921*2^2776014-1 835670 g337 2017 2965 1129*2^2774934+1 835342 L1774 2019 2966 750*1017^277556-1 834703 L4955 2021 2967 8700*241^350384-1 834625 L5410 2019 2968 1023*2^2772512+1 834613 L4724 2019 2969 656*249^348030+1 833953 L5410 2019 2970 92*10^833852-1 833854 L4789 2018 Near-repdigit 2971 437*2^2769299+1 833645 L3760 2019 2972 967*2^2768408+1 833377 L3760 2019 2973 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2974 1171*2^2768112+1 833288 L2676 2019 2975 57*2^2765963+1 832640 L3262 2013 2976 1323*2^2764024+1 832058 L1115 2019 2977 77*2^2762047+1 831461 L3430 2013 2978 745*2^2761514+1 831302 L1204 2019 2979 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2980 7*10^830865+1 830866 p342 2014 2981 893*2^2758841+1 830497 L4826 2019 2982 537*2^2755164+1 829390 L3035 2019 2983 579*2^2754370+1 829151 L1823 2019 2984 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2985b 677*792^285769-1 828369 L541 2023 2986 215*2^2751022-1 828143 L2484 2018 2987 337*2^2750860+1 828094 L4854 2019 2988 701*2^2750267+1 827916 L3784 2019 2989 467*2^2749195+1 827593 L1745 2019 2990 245*2^2748663+1 827433 L3173 2015 2991 591*2^2748315+1 827329 L3029 2019 2992 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 2993 1007*2^2747268-1 827014 L4518 2022 2994 1089*2^2746155+1 826679 L2583 2019 2995 707*2^2745815+1 826576 L3760 2019 2996 459*2^2742310+1 825521 L4582 2019 2997 777*2^2742196+1 825487 L3919 2019 2998 609*2^2741078+1 825150 L3091 2019 2999 684*157^375674+1 824946 L5112 2022 3000 639*2^2740186+1 824881 L4958 2019 3001 905*2^2739805+1 824767 L4958 2019 3002 119*954^276761+1 824625 L5410 2022 3003 1955556^131072+1 824610 L4250 2015 Generalized Fermat 3004 777*2^2737282+1 824007 L1823 2019 3005 765*2^2735232+1 823390 L1823 2019 3006 609*2^2735031+1 823330 L1823 2019 3007 305*2^2733989+1 823016 L1823 2019 3008 165*2^2732983+1 822713 L1741 2015 3009 1133*2^2731993+1 822415 L4687 2019 3010 251*2^2730917+1 822091 L3924 2015 3011 1185*2^2730620+1 822002 L4948 2019 3012 (10^410997+1)^2-2 821995 p405 2022 3013 173*2^2729905+1 821786 L3895 2015 3014 1981*2^2728877-1 821478 L1134 2018 3015 693*2^2728537+1 821375 L3035 2019 3016 501*2^2728224+1 821280 L3035 2019 3017 763*2^2727928+1 821192 L3924 2019 3018 10*743^285478+1 819606 L4955 2019 3019 17*2^2721830-1 819354 p279 2010 3020 1006*639^291952+1 819075 L4444 2021 3021 1101*2^2720091+1 818833 L4935 2019 3022 1766192^131072+1 818812 L4231 2015 Generalized Fermat 3023 165*2^2717378-1 818015 L2055 2012 3024 68633*2^2715609+1 817485 L5105 2020 3025 1722230^131072+1 817377 L4210 2015 Generalized Fermat 3026 9574*5^1169232+1 817263 L5410 2021 3027 1717162^131072+1 817210 L4226 2015 Generalized Fermat 3028 133*2^2713410+1 816820 L3223 2015 3029 45*2^2711732+1 816315 L1349 2012 3030 569*2^2711451+1 816231 L4568 2019 3031 12830*3^1709456+1 815622 L5410 2021 3032 335*2^2708958-1 815481 L2235 2020 3033 93*2^2708718-1 815408 L1862 2016 3034 1660830^131072+1 815311 L4207 2015 Generalized Fermat 3035 837*2^2708160+1 815241 L4314 2019 3036 1005*2^2707268+1 814972 L4687 2019 3037 13*458^306196+1 814748 L3610 2015 3038 253*2^2705844+1 814543 L4083 2015 3039 657*2^2705620+1 814476 L4907 2019 3040 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 3041 303*2^2703864+1 813947 L1204 2019 3042 141*2^2702160+1 813434 L1741 2015 3043 753*2^2701925+1 813364 L4314 2019 3044 133*2^2701452+1 813221 L3173 2015 3045 521*2^2700095+1 812813 L4854 2019 3046 393*2^2698956+1 812470 L1823 2019 3047 417*2^2698652+1 812378 L3035 2019 3048 525*2^2698118+1 812218 L1823 2019 3049 3125*2^2697651+1 812078 L3924 2019 3050 153*2^2697173+1 811933 L3865 2015 3051 1560730^131072+1 811772 L4201 2015 Generalized Fermat 3052 26*3^1700041+1 811128 L4799 2020 3053 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 3054 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 3055 58*536^296735-1 809841 L5410 2021 3056 33016*3^1696980+1 809670 L5366 2021 3057 7335*2^2689080-1 809498 L4036 2015 3058 1049*2^2688749+1 809398 L4869 2018 3059b 120*957^271487-1 809281 L541 2023 3060 329*2^2688221+1 809238 L3035 2018 3061 865*2^2687434+1 809002 L4844 2018 3062 989*2^2686591+1 808748 L2805 2018 3063 136*904^273532+1 808609 L5410 2020 3064 243*2^2685873+1 808531 L3865 2015 3065 909*2^2685019+1 808275 L3431 2018 3066 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 3067 1455*2^2683953-1 807954 L1134 2020 3068 11210*241^339153-1 807873 L5410 2019 3069 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 3070 975*2^2681840+1 807318 L4155 2018 3071 999*2^2681353-1 807171 L4518 2022 3072 295*2^2680932+1 807044 L1741 2015 3073 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 3074 575*2^2679711+1 806677 L2125 2018 3075 2386*52^469972+1 806477 L4955 2019 3076 10*80^423715-1 806369 p247 2023 3077 219*2^2676229+1 805628 L1792 2015 3078 637*2^2675976+1 805552 L3035 2018 3079 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 3080 951*2^2674564+1 805127 L1885 2018 3081 1372930^131072+1 804474 g236 2003 Generalized Fermat 3082 662*1009^267747-1 804286 L5410 2020 3083 261*2^2671677+1 804258 L3035 2015 3084 895*2^2671520+1 804211 L3035 2018 3085 1361244^131072+1 803988 g236 2004 Generalized Fermat 3086 789*2^2670409+1 803877 L3035 2018 3087 256*11^771408+1 803342 L3802 2014 Generalized Fermat 3088 503*2^2668529+1 803310 L4844 2018 3089 255*2^2668448+1 803286 L1129 2015 3090 4189*2^2666639-1 802742 L1959 2017 3091 539*2^2664603+1 802129 L4717 2018 3092 3^1681130+3^445781+1 802103 CH9 2022 3093 26036*745^279261-1 802086 L4189 2020 3094 1396*5^1146713-1 801522 L3547 2013 3095 676*687^282491-1 801418 L5426 2023 3096 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 3097 51*892^271541+1 801147 L5410 2019 3098 297*2^2660048+1 800757 L3865 2015 3099 99*2^2658496-1 800290 L1862 2021 3100 851*2^2656411+1 799663 L4717 2018 3101 487*2^2655008+1 799240 L3760 2018 3102 371*2^2651663+1 798233 L3760 2018 3103 69*2^2649939-1 797713 L3764 2014 3104 207*2^2649810+1 797675 L1204 2015 3105 505*2^2649496+1 797581 L3760 2018 3106 993*2^2649256+1 797509 L3760 2018 3107 517*2^2648698+1 797341 L3760 2018 3108 340*703^280035+1 797250 L4001 2018 3109 441*2^2648307+1 797223 L3760 2018 3110 1129*2^2646590+1 796707 L3760 2018 3111 128*518^293315+1 796156 L4001 2019 3112 211*744^277219-1 796057 L5410 2021 3113 Phi(3,-1181782^65536) 795940 L4142 2015 Generalized unique 3114 1176694^131072+1 795695 g236 2003 Generalized Fermat 3115 13*2^2642943-1 795607 L1862 2012 3116 119*410^304307+1 795091 L4294 2019 3117 501*2^2641052+1 795039 L3035 2018 3118 879*2^2639962+1 794711 L3760 2018 3119 57*2^2639528-1 794579 L2484 2016 3120 342673*2^2639439-1 794556 L53 2007 3121 813*2^2639092+1 794449 L2158 2018 3122 Phi(3,-1147980^65536) 794288 L4142 2015 Generalized unique 3123 197*972^265841-1 794247 L4955 2022 3124 1027*2^2638186+1 794177 L3760 2018 3125 889*2^2637834+1 794071 L3545 2018 3126 92182*5^1135262+1 793520 L3547 2013 3127 5608*70^429979+1 793358 L5390 2021 3128 741*2^2634385+1 793032 L1204 2018 3129 465*2^2630496+1 791861 L1444 2018 3130 189*2^2630487+1 791858 L3035 2015 3131 87*2^2630468+1 791852 L3262 2013 3132 4*5^1132659-1 791696 L4965 2022 3133 1131*2^2629345+1 791515 L4826 2018 3134 967*2^2629344+1 791515 L3760 2018 3135 267*2^2629210+1 791474 L3035 2015 3136 154*883^268602+1 791294 L5410 2020 3137 819*2^2627529+1 790968 L1387 2018 3138 17152*5^1131205-1 790683 L3552 2013 3139 183*2^2626442+1 790641 L3035 2015 3140 813*2^2626224+1 790576 L4830 2018 3141 807*2^2625044+1 790220 L1412 2018 3142 1063730^131072+1 789949 g260 2013 Generalized Fermat 3143 1243*2^2623707-1 789818 L1828 2011 3144 693*2^2623557+1 789773 L3278 2018 3145 981*2^2622032+1 789314 L1448 2018 3146 145*2^2621020+1 789008 L3035 2015 3147 963*792^271959-1 788338 L5410 2021 3148 541*2^2614676+1 787099 L4824 2018 3149 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 3150 1061*268^323645-1 785857 L5410 2019 3151 1662*483^292719-1 785646 L5410 2022 3152 Phi(3,-984522^65536) 785545 p379 2015 Generalized unique 3153 1071*2^2609316+1 785486 L3760 2018 3154 87*2^2609046+1 785404 L2520 2013 3155 18922*111^383954+1 785315 L4927 2021 3156 543*2^2608129+1 785128 L4822 2018 3157 377*2^2607856-1 785046 L2257 2023 3158 329584*5^1122935-1 784904 L3553 2013 3159 10*311^314806+1 784737 L3610 2014 3160 1019*2^2606525+1 784646 L1201 2018 3161 977*2^2606211+1 784551 L4746 2018 3162 13*2^2606075-1 784508 L1862 2011 3163 693*2^2605905+1 784459 L4821 2018 3164 147*2^2604275+1 783968 L1741 2015 3165 105*2^2603631+1 783774 L3459 2015 3166 93*2^2602483-1 783428 L1862 2016 3167 155*2^2602213+1 783347 L2719 2015 3168a 545*2^2602018-1 783289 L5516 2023 3169 303*2^2601525+1 783140 L4816 2018 3170 711*2^2600535+1 782842 L4815 2018 3171 1133*2^2599345+1 782484 L4796 2018 3172 397*2^2598796+1 782319 L3877 2018 3173a 421*2^2597273-1 781860 L5516 2023 3174a 585*2^2596523-1 781635 L5819 2023 3175 1536*177^347600+1 781399 L5410 2020 3176 1171*2^2595736+1 781398 L3035 2018 3177 (146^180482+1)^2-2 781254 p405 2022 3178a 579*2^2595159-1 781224 L5516 2023 3179a 543*2^2594975-1 781169 L5516 2023 3180 909548^131072+1 781036 p387 2015 Generalized Fermat 3181 2*218^333925+1 780870 L4683 2017 3182e 15690*841^266965+1 780823 L5787 2023 3183 1149*2^2593359+1 780682 L1125 2018 3184 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 3185a 495*2^2592802-1 780514 L5516 2023 3186 333*2^2591874-1 780235 L2017 2019 3187 Phi(3,-883969^65536) 779412 p379 2015 Generalized unique 3188 2154*687^274573-1 778956 L5752 2023 3189 Phi(3,-872989^65536) 778700 p379 2015 Generalized unique 3190 703*2^2586728+1 778686 L4256 2018 3191 2642*372^302825-1 778429 L5410 2019 3192 120*825^266904+1 778416 L4001 2018 3193 337*2^2585660+1 778364 L2873 2018 3194 31*2^2585311-1 778258 L4521 2022 3195 393*2^2584957+1 778153 L4600 2018 3196 151*2^2584480+1 778009 L4043 2015 3197 Phi(3,-862325^65536) 778001 p379 2015 Generalized unique 3198 385*2^2584280+1 777949 L4600 2018 3199 Phi(3,-861088^65536) 777919 p379 2015 Generalized unique 3200 65*2^2583720-1 777780 L2484 2015 3201 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 3202 82*920^262409-1 777727 L4064 2015 3203 1041*2^2582112+1 777297 L1456 2018 3204 334310*211^334310-1 777037 p350 2012 Generalized Woodall 3205 229*2^2581111-1 776995 L1862 2017 3206 61*2^2580689-1 776867 L2484 2015 3207 1113*2^2580205+1 776723 L4724 2018 3208 51*2^2578652+1 776254 L3262 2013 3209 173*2^2578197+1 776117 L3035 2015 3210 833*2^2578029+1 776067 L4724 2018 3211 80*394^298731-1 775358 L541 2020 3212 302*423^295123-1 775096 L5413 2021 3213 460*628^276994+1 775021 L5410 2020 3214 459*2^2573899+1 774824 L1204 2018 3215b 593*2^2572634-1 774443 L5516 2023 3216 Phi(3,-806883^65536) 774218 p379 2015 Generalized unique 3217 357*2^2568110-1 773081 L2257 2023 3218 627*2^2567718+1 772963 L3803 2018 3219 933*2^2567598+1 772927 L4724 2018 3220 757*2^2566468+1 772587 L2606 2018 3221b 471*2^2566323-1 772543 L5516 2023 3222 231*2^2565263+1 772224 L3035 2015 3223 4*737^269302+1 772216 L4294 2016 Generalized Fermat 3224 941*2^2564867+1 772105 L4724 2018 3225 923*2^2563709+1 771757 L1823 2018 3226 151*596^278054+1 771671 L4876 2019 3227 Phi(3,-770202^65536) 771570 p379 2015 Generalized unique 3228 303*2^2562423-1 771369 L2017 2018 3229 75*2^2562382-1 771356 L2055 2011 3230 147559*2^2562218+1 771310 L764 2012 3231 117*412^294963+1 771300 p268 2021 3232 829*2^2561730+1 771161 L1823 2018 3233 404*12^714558+1 771141 L1471 2011 3234 Phi(3,-757576^65536) 770629 p379 2015 Generalized unique 3235 295*80^404886+1 770537 L5410 2021 3236 1193*2^2559453+1 770476 L2030 2018 3237 19*984^257291+1 770072 L5410 2020 3238 116*950^258458-1 769619 L5410 2021 3239e 612497*18^612497+1 768857 L5765 2023 Generalized Cullen 3240 Phi(3,-731582^65536) 768641 p379 2015 Generalized unique 3241b 479*2^2553152-1 768579 L5516 2023 3242 65*752^267180-1 768470 L5410 2020 3243 419*2^2552363+1 768341 L4713 2018 3244 369*2^2551955-1 768218 L2257 2023 3245 34*759^266676-1 768093 L4001 2019 3246 315*2^2550412+1 767754 L4712 2017 3247 415*2^2549590+1 767506 L4710 2017 3248 1152*792^264617-1 767056 L4955 2021 3249 693*2^2547752+1 766953 L4600 2017 3250 673*2^2547226+1 766795 L2873 2017 3251 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 3252 196*814^263256+1 766242 L5410 2021 Generalized Fermat 3253 183*2^2545116+1 766159 L3035 2015 3254 311*2^2544778-1 766058 L2017 2018 3255 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 3256 67*446^288982+1 765612 L4273 2020 3257 663*2^2542990+1 765520 L4703 2017 3258 705*2^2542464+1 765361 L2873 2017 3259 689186^131072+1 765243 g429 2013 Generalized Fermat 3260 745*2^2540726+1 764838 L4696 2017 3261 Phi(3,-682504^65536) 764688 p379 2015 Generalized unique 3262 64*177^340147-1 764644 L3610 2015 3263 421*2^2539336+1 764419 L4148 2017 3264 123287*2^2538167+1 764070 L3054 2012 3265 305716*5^1093095-1 764047 L3547 2013 3266 223*2^2538080+1 764041 L2125 2015 3267 83*2^2537641+1 763908 L1300 2013 3268 543539*2^2536028-1 763427 L4187 2022 3269b 473*2^2533376-1 762625 L5516 2023 3270 645*2^2532811+1 762455 L4600 2017 3271 953*2^2531601+1 762091 L4404 2017 3272 694*567^276568-1 761556 L4444 2021 3273 545*2^2528179+1 761061 L1502 2017 3274c 517*2^2527857-1 760964 L5516 2023 3275 203*2^2526505+1 760557 L3910 2015 3276 967*2^2526276+1 760488 L1204 2017 3277 3317*2^2523366-1 759613 L5399 2021 3278 241*2^2522801-1 759442 L2484 2018 3279 360307*6^975466-1 759066 p255 2017 3280 326*80^398799+1 758953 L4444 2021 3281 749*2^2519457+1 758436 L1823 2017 3282 199*2^2518871-1 758259 L2484 2018 3283 6*10^758068+1 758069 L5009 2019 3284 87*2^2518122-1 758033 L2484 2014 3285c 515*2^2517626-1 757884 L5516 2023 3286 Phi(3,-605347^65536) 757859 p379 2015 Generalized unique 3287 711*2^2516187+1 757451 L3035 2017 3288 967*2^2514698+1 757003 L4600 2017 3289 33*2^2513872-1 756753 L3345 2013 3290 973*2^2511920+1 756167 L1823 2017 3291 679*2^2511814+1 756135 L4598 2017 3292 1093*2^2511384+1 756005 L1823 2017 3293 38*875^256892-1 755780 L4001 2019 3294 45*2^2507894+1 754953 L1349 2012 3295 130484*5^1080012-1 754902 L3547 2013 3296 572186^131072+1 754652 g0 2004 Generalized Fermat 3297 242*501^279492-1 754586 L4911 2019 3298 883*2^2506382+1 754500 L1823 2017 3299 847*2^2505540+1 754246 L4600 2017 3300 191*2^2504121+1 753818 L3035 2015 3301 783*2^2500912+1 752853 L1823 2017 3302d 133*488^279973-1 752688 L541 2023 3303 165*2^2500130-1 752617 L2055 2011 3304 33*2^2499883-1 752542 L3345 2013 3305 319*2^2498685-1 752182 L2017 2018 3306c 477*2^2496685-1 751580 L5516 2023 3307 321*2^2496594-1 751553 L2235 2018 3308c 531*2^2495930-1 751353 L5516 2023 3309 365*2^2494991+1 751070 L3035 2017 3310 213*2^2493004-1 750472 L1863 2017 3311 777*2^2492560+1 750339 L3035 2017 3312 57*2^2492031+1 750178 L1230 2013 3313 879*2^2491342+1 749972 L4600 2017 3314 14*152^343720-1 749945 L3610 2015 3315 231*2^2489083+1 749292 L3035 2015 3316 255*2^2488562+1 749135 L3035 2015 3317c 483*2^2488154-1 749012 L5516 2023 3318 708*48^445477-1 748958 L5410 2022 3319 221*780^258841-1 748596 L4001 2018 3320 303*2^2486629+1 748553 L3035 2017 3321 6*433^283918-1 748548 L3610 2015 3322c 413*2^2486596-1 748543 L5516 2023 3323 617*2^2485919+1 748339 L1885 2017 3324 515*2^2484885+1 748028 L3035 2017 3325 1095*2^2484828+1 748011 L3035 2017 3326 1113*2^2484125+1 747800 L3035 2017 3327 607*2^2483616+1 747646 L3035 2017 3328 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 3329c 527*2^2482876-1 747423 L5516 2023 3330 723*2^2482064+1 747179 L3035 2017 3331 2154*687^263317-1 747023 L5410 2023 3332 26*3^1565545+1 746957 L4799 2020 3333 14336*3^1563960+1 746203 L5410 2021 3334 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 3335c 483*2^2478266-1 746036 L5516 2023 3336c 429*2^2478139-1 745997 L5516 2023 3337 1071*2^2477584+1 745831 L3035 2017 3338 22*30^504814-1 745673 p355 2014 3339 2074*483^277812-1 745637 L5410 2022 3340 11*2^2476839+1 745604 L2691 2011 3341 825*2^2474996+1 745051 L1300 2017 3342 1061*2^2474282-1 744837 L1828 2012 3343 435*2^2473905+1 744723 L3035 2017 3344 1005*2^2473724-1 744669 L4518 2021 3345 1121*2^2473401+1 744571 L3924 2017 3346 325*2^2473267-1 744531 L2017 2018 3347 400*639^265307-1 744322 L5410 2022 3348 11996*3^1559395+1 744025 L5410 2021 3349 889*2^2471082+1 743873 L1300 2017 3350 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 3351d 561*2^2469713-1 743461 L5516 2023 3352 883*2^2469268+1 743327 L4593 2017 3353 5754*313^297824-1 743237 L5089 2020 3354 81*2^2468789+1 743182 g418 2009 3355 55154*5^1063213+1 743159 L3543 2013 3356 119*2^2468556-1 743112 L2484 2018 3357 2136*396^285974+1 742877 L5410 2021 3358 525*2^2467658+1 742842 L3035 2017 3359d 465*2^2467625-1 742832 L5516 2023 3360 715*2^2465640+1 742235 L3035 2017 3361 26773*2^2465343-1 742147 L197 2006 3362 581*550^270707-1 741839 L5410 2020 3363 993*2^2464082+1 741766 L3035 2017 3364 1179*2^2463746+1 741665 L3035 2017 3365 857*2^2463411+1 741564 L3662 2017 3366 103*2^2462567-1 741309 L2484 2014 3367 12587*2^2462524-1 741298 L2012 2017 3368 5*2^2460482-1 740680 L503 2008 3369 763*2^2458592+1 740113 L1823 2017 3370 453*2^2458461+1 740074 L3035 2017 3371 519*2^2458058+1 739952 L3803 2017 3372 373*2^2457859-1 739892 L2257 2023 3373d 545*2^2457692-1 739842 L5516 2023 3374 137*2^2457639+1 739826 L4021 2014 3375d 411*2^2457241-1 739706 L5516 2023 3376 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 3377 2688*991^246849+1 739582 L5410 2021 3378 133*2^2455666+1 739232 L2322 2014 3379 99*2^2455541-1 739194 L1862 2015 3380 377*2^2452639+1 738321 L3035 2017 3381 2189*138^345010+1 738284 L5410 2020 3382 1129*2^2452294+1 738218 L3035 2017 3383 1103*2^2451133+1 737868 L4531 2017 3384 65*2^2450614-1 737711 L2074 2014 3385 549*2^2450523+1 737684 L3035 2017 3386 4*789^254595+1 737582 L4955 2019 3387 3942*55^423771-1 737519 L4955 2019 3388d 441*2^2449825-1 737474 L5516 2023 3389b Phi(3,-3*2^1224895) 737462 A3 2023 Generalized unique 3390 2166*483^274670-1 737204 L5410 2022 3391 765*2^2448660+1 737123 L4412 2017 3392 607*2^2447836+1 736875 L4523 2017 3393 1261*988^246031+1 736807 L5342 2021 3394 1005*2^2446722+1 736540 L4522 2017 3395 703*2^2446472+1 736465 L2805 2017 3396 75*2^2446050+1 736337 L3035 2013 3397 115*26^520277-1 736181 L1471 2014 3398 114986*5^1052966-1 735997 L3528 2013 3399 1029*2^2444707+1 735934 L3035 2017 3400 4*5^1052422+1 735613 L4965 2023 Generalized Fermat 3401 1035*2^2443369+1 735531 L3173 2017 3402 1017*2^2442723+1 735336 L4417 2017 3403d 489*2^2442281-1 735203 L5516 2023 3404 962*3^1540432+1 734976 L5410 2021 3405 1065*2^2441132+1 734857 L1823 2017 3406 369*2^2436949-1 733598 L2257 2023 3407 393*2^2436849+1 733568 L3035 2016 3408 1425*2^2435607-1 733194 L1134 2020 3409 386892^131072+1 732377 p259 2009 Generalized Fermat 3410 465*2^2431455+1 731944 L3035 2016 3411 905*2^2430509+1 731660 L4408 2016 3412 223*2^2430490+1 731653 L4016 2014 3413 8*410^279991+1 731557 L4700 2019 3414 69*2^2428251-1 730979 L384 2014 3415 6070*466^273937+1 730974 L5410 2021 3416d 541*2^2427667-1 730804 L5516 2023 3417 233*2^2426512-1 730456 L2484 2020 3418 645*2^2426494+1 730451 L3035 2016 3419 665*2^2425789+1 730239 L3173 2016 3420d 539*2^2425704-1 730213 L5516 2023 3421 23*2^2425641+1 730193 L2675 2011 3422d 527*2^2424868-1 729961 L5516 2023 3423 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 3424e 433*2^2423839-1 729651 L5516 2023 3425 753*2^2422914+1 729373 L3035 2016 3426 5619*52^424922+1 729172 L5410 2019 3427 105*2^2422105+1 729129 L2520 2014 3428 62*962^244403+1 729099 L5409 2021 3429 3338*396^280633+1 729003 L5410 2021 3430e 539*2^2421556-1 728964 L5516 2023 3431 201*2^2421514-1 728951 L1862 2016 3432 1084*7^862557+1 728949 L5211 2021 3433 239*2^2421404-1 728918 L2484 2018 3434 577*2^2420868+1 728757 L4489 2016 3435 929*2^2417767+1 727824 L3924 2016 3436 4075*2^2417579-1 727768 L1959 2017 3437 303*2^2417452-1 727729 L2235 2018 3438 895*2^2417396+1 727712 L3035 2016 3439d 113*1010^242194-1 727631 L5789 2023 3440 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 3441 3317*2^2415998-1 727292 L5399 2021 3442 5724*313^291243-1 726814 L4444 2020 3443 1081*2^2412780+1 726323 L1203 2016 3444 333*2^2412735-1 726309 L2017 2018 3445 6891*52^423132+1 726100 L5410 2019 3446 83*2^2411962-1 726075 L1959 2018 3447 69*2^2410035-1 725495 L2074 2013 3448 12362*1027^240890-1 725462 L4444 2018 3449 143157*2^2409056+1 725204 L4504 2016 3450 Phi(3,-340594^65536) 725122 p379 2015 Generalized unique 3451 339*2^2408337+1 724985 L3029 2016 3452 811*2^2408096+1 724913 L2526 2016 3453 157*2^2407958+1 724870 L1741 2014 3454 243686*5^1036954-1 724806 L3549 2013 3455 3660*163^327506+1 724509 L4955 2019 3456 303*2^2406433+1 724411 L4425 2016 3457 345*2^2405701+1 724191 L3035 2016 3458 921*2^2405056+1 723997 L2805 2016 3459 673*2^2403606+1 723561 L3035 2016 3460 475*2^2403220+1 723444 L4445 2016 3461 837*2^2402798+1 723318 L3372 2016 3462 Phi(3,-329886^65536) 723303 p379 2015 Generalized unique 3463 231*2^2402748+1 723302 L3995 2014 3464 375*2^2401881+1 723041 L2805 2016 3465e 511*2^2401795-1 723016 L5516 2023 3466 107*2^2401731+1 722996 L3998 2014 3467e 419*2^2401672-1 722978 L5516 2023 3468 1023*2^2398601+1 722054 L4414 2016 3469 539*2^2398227+1 721941 L4061 2016 3470 659*2^2397567+1 721743 L4441 2016 3471 40*844^246524+1 721416 L4001 2017 3472e 453*2^2395836-1 721222 L5516 2023 3473 465*2^2395133+1 721010 L4088 2016 3474 56*318^288096+1 720941 L1471 2019 3475 667*2^2394430+1 720799 L4408 2016 3476 15*2^2393365+1 720476 L1349 2010 3477 1642*273^295670+1 720304 L5410 2019 3478 8*908^243439+1 720115 L5410 2021 3479e 427*2^2391685-1 719972 L5516 2023 3480 633*2^2391222+1 719833 L3743 2016 3481 273*2^2388104+1 718894 L3668 2014 3482 118*558^261698+1 718791 L4877 2019 3483 1485*2^2386037-1 718272 L1134 2017 3484 399*2^2384115+1 717693 L4412 2016 3485 99*2^2383846+1 717612 L1780 2013 3486 737*2^2382804-1 717299 L191 2007 3487 111*2^2382772+1 717288 L3810 2014 3488e 423*2^2382134-1 717097 L2519 2023 3489 61*2^2381887-1 717022 L2432 2012 3490 202*249^299162+1 716855 L5410 2019 3491 321*2^2378535-1 716013 L2017 2018 3492 435*2^2378522+1 716010 L1218 2016 3493 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 3494 147*2^2375995+1 715248 L1130 2014 3495 915*2^2375923+1 715228 L1741 2016 3496 1981*2^2375591-1 715128 L1134 2017 3497 81*2^2375447-1 715083 L3887 2021 3498 1129*2^2374562+1 714818 L3035 2016 3499 97*2^2374485-1 714794 L2484 2018 3500 1117*2^2373977-1 714642 L1828 2012 3501 949*2^2372902+1 714318 L4408 2016 3502 1005*2^2372754-1 714274 L4518 2021 3503 659*2^2372657+1 714244 L3035 2016 3504 1365*2^2372586+1 714223 L1134 2016 3505 509*2^2370721+1 713661 L1792 2016 3506 99*2^2370390+1 713561 L1204 2013 3507 959*2^2370077+1 713468 L1502 2016 3508 1135*2^2369808+1 713387 L2520 2016 3509 125*2^2369461+1 713281 L3035 2014 3510f 475*2^2369411-1 713267 L5516 2023 3511 1183953*2^2367907-1 712818 L447 2007 Woodall 3512 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 3513 119878*5^1019645-1 712707 L3528 2013 3514 453*2^2367388+1 712658 L3035 2016 3515 150209!+1 712355 p3 2011 Factorial 3516 281*2^2363327+1 711435 L1741 2014 3517 2683*2^2360743-1 710658 L1959 2012 3518 409*2^2360166+1 710484 L1199 2016 3519f 465*2^2360088-1 710460 L5516 2023 3520f 561*2^2359543-1 710296 L5516 2023 3521 305*2^2358854-1 710089 L2017 2018 3522 1706*123^339764+1 710078 L5410 2021 3523 403*2^2357572+1 709703 L3029 2016 3524 155*2^2357111+1 709564 L3975 2014 3525f 523*2^2356047-1 709244 L2519 2023 3526 365*2^2355607+1 709111 L2117 2016 3527 33706*6^910462+1 708482 L587 2014 3528f 423*2^2353447-1 708461 L5516 2023 3529 1087*2^2352830+1 708276 L1492 2016 3530 152*1002^235971+1 708120 L5410 2019 3531 179*2^2352291+1 708113 L1741 2014 3532 559*2^2351894+1 707994 L3924 2016 3533 24573*2^2350824+1 707673 p168 2018 3534 1035*2^2350388+1 707541 L2526 2016 3535f 513*2^2348508-1 706975 L5516 2023 3536 433*2^2348252+1 706897 L2322 2016 3537 329*2^2348105+1 706853 L3029 2016 3538 45*2^2347187+1 706576 L1349 2012 3539 7675*46^424840+1 706410 L5410 2019 3540 127*2^2346377-1 706332 L282 2009 3541 933*2^2345893+1 706188 L3035 2016 3542 903*2^2345013+1 705923 L2006 2016 3543 33*2^2345001+1 705918 L2322 2013 3544 Phi(3,-242079^65536) 705687 p379 2015 Generalized unique 3545f 495*2^2343641-1 705509 L5516 2023 3546 627*2^2343140+1 705359 L3125 2016 3547 83*2^2342345+1 705119 L2626 2013 3548d 914*871^239796-1 705008 L5410 2023 3549 61*380^273136+1 704634 L5410 2019 3550 277*2^2340182+1 704468 L1158 2014 3551 159*2^2339566+1 704282 L3035 2014 3552 335*2^2338972-1 704104 L2235 2017 3553 535*2^2338971-1 704104 L2519 2023 3554 22*422^268038+1 703685 L4955 2019 3555 9602*241^295318-1 703457 L5410 2019 3556 1149*2^2336638+1 703402 L4388 2016 3557 339*2^2336421-1 703336 L2519 2017 3558 231*2^2335281-1 702992 L1862 2019 3559 275293*2^2335007-1 702913 L193 2006 3560 105*2^2334755-1 702834 L1959 2018 3561 228188^131072+1 702323 g124 2010 Generalized Fermat 3562 809*2^2333017+1 702312 L2675 2016 3563 795*2^2332488+1 702152 L3029 2016 3564 3^1471170-3^529291+1 701927 p269 2019 3565 351*2^2331311-1 701798 L2257 2023 3566 229*2^2331017-1 701709 L1862 2021 3567 118*761^243458+1 701499 L5410 2019 3568 435*2^2329948+1 701387 L2322 2016 3569 585*2^2329350+1 701207 L2707 2016 3570 213*2^2328530-1 700960 L1863 2017 3571 1482*327^278686+1 700773 L5410 2020 3572 26472*91^357645+1 700646 L5410 2020 3573 1107*2^2327472+1 700642 L3601 2016 3574 435*2^2327152+1 700546 L2337 2016 3575 413*2^2327048-1 700514 L5516 2023 3576 4161*2^2326875-1 700463 L1959 2016 3577 427*2^2326288+1 700286 L2719 2016 3578 438*19^547574-1 700215 L5410 2020 3579 147855!-1 700177 p362 2013 Factorial 3580 5872*3^1467401+1 700132 L4444 2021 3581 421*2^2324375-1 699710 L5516 2023 3582 451*2^2323952+1 699582 L3173 2016 3583 431*2^2323633+1 699486 L3260 2016 3584d 3084*871^237917-1 699484 L5790 2023 3585 228*912^236298-1 699444 L5366 2022 3586 1085*2^2323291+1 699384 L1209 2016 3587 15*2^2323205-1 699356 L2484 2011 3588 7566*46^420563+1 699299 L5410 2019 3589 1131*2^2322167+1 699045 L1823 2016 3590 385*2^2321502+1 698845 L1129 2016 3591 8348*3^1464571+1 698782 L5367 2021 3592 645*2^2320231+1 698462 L3377 2016 3593 1942*877^237267+1 698280 L5410 2022 3594 165*2^2319575+1 698264 L2627 2014 3595 809*2^2319373+1 698204 L3924 2016 3596 125098*6^896696+1 697771 L587 2014 3597 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 3598 381*2^2314743+1 696810 L4358 2016 3599 120*825^238890+1 696714 L4837 2018 3600 3375*2^2314297+1 696677 L1745 2019 3601 4063*2^2313843-1 696540 L1959 2016 3602 345*2^2313720-1 696502 L2017 2017 3603 74*830^238594-1 696477 L5410 2020 3604 495*2^2313462-1 696425 L5545 2023 3605 926*639^248221-1 696388 L4444 2022 3606 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 3607 1983*366^271591-1 696222 L2054 2012 3608 3*2^2312734-1 696203 L158 2005 3609 2643996*7^823543-1 695981 p396 2021 3610 53653*2^2311848+1 695941 L2012 2017 3611 873*2^2311086+1 695710 L2526 2016 3612 1033*2^2310976+1 695677 L4352 2016 3613 4063*2^2310187-1 695440 L1959 2016 3614 4063*2^2309263-1 695162 L1959 2016 3615 565*2^2308984+1 695077 L2322 2016 3616 447*2^2308104-1 694812 L5516 2023 3617 450457*2^2307905-1 694755 L172 2006 3618 1018*3^1455600+1 694501 L5410 2021 3619 553*2^2306343-1 694282 L5516 2023 3620 1185*2^2306324+1 694276 L4347 2016 3621 3267*2^2305266+1 693958 L1204 2019 3622 107*770^240408-1 693938 L4955 2020 3623 467*2^2304298-1 693666 L5516 2023 3624 537*2^2304115+1 693611 L3267 2016 3625 842*1017^230634-1 693594 L4001 2017 3626 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 3627 641*2^2302879+1 693239 L2051 2016 3628 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 3629 189*2^2299959+1 692359 L2627 2014 3630 2582*111^338032-1 691389 L4786 2021 3631 659*2^2294393+1 690684 L3378 2016 3632 1087*2^2293345-1 690369 L1828 2011 3633 97768*5^987383-1 690157 L1016 2013 3634 4761657101009*2^2292504-1 690126 L257 2019 3635 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 3636 319*2^2290722+1 689579 L1792 2015 3637e 3066*697^242498-1 689482 L5410 2023 3638 779*2^2290273+1 689444 L3034 2016 3639 1001*2^2289438-1 689193 L4518 2020 3640 971*2^2289135+1 689102 L4198 2016 3641 399*2^2288691+1 688968 L1990 2015 3642 1425*2^2288483-1 688906 L1134 2021 3643 Phi(3,-180139^65536) 688864 p379 2015 Generalized unique 3644 74270*151^315734-1 687982 L4001 2018 3645 23902*52^400831+1 687832 L5410 2019 3646 417*2^2284402+1 687677 L2322 2015 3647 130*686^242244+1 687085 L4064 2018 3648 427*2^2282080+1 686978 L3260 2015 3649 109*2^2280194+1 686409 L2520 2014 3650 105*2^2280078-1 686374 L2444 2014 3651 1019*2^2278467+1 685890 L4323 2016 3652 213*2^2277870-1 685710 L1863 2017 3653 904*957^229937-1 685425 L5410 2022 3654 547*2^2276648+1 685343 L3260 2015 3655 26*3^1435875+1 685088 L4799 2020 3656 7913*2^2275664-1 685048 L4036 2015 3657 5*6^880336+1 685036 p420 2023 3658 651*2^2275040+1 684859 L4082 2016 3659 155877*2^2273465-1 684387 L541 2014 3660 16*710^240014+1 684344 L5410 2019 Generalized Fermat 3661 739*2^2272938+1 684226 L1209 2016 3662 279*798^235749-1 684147 L541 2021 3663 4821*396^263301+1 683980 L5410 2021 3664 (362^133647+1)^2-2 683928 p403 2019 3665 943*2^2269594+1 683219 L1823 2016 3666 493*2^2269427-1 683169 L5516 2023 3667 182*792^235539+1 682766 L4837 2019 3668 1286*603^245567+1 682758 L4444 2019 3669 50*893^231310-1 682564 L4975 2019 3670 329*2^2266631+1 682327 L4109 2015 3671 739*2^2266602+1 682319 L2520 2016 3672 19683*2^2265896+1 682107 L2914 2019 3673 1151*2^2265761+1 682066 L1823 2016 3674 851*2^2265691+1 682044 L3173 2016 3675 977*2^2265655+1 682034 L2413 2016 3676 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 3677 185*2^2264906-1 681807 L2484 2022 3678 31924*3^1428855+1 681742 L5410 2021 3679 217*2^2264546+1 681699 L3179 2014 3680 178*821^233901-1 681671 L5410 2022 3681 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 3682 93*2^2263894+1 681502 L2826 2013 3683 34*912^230098+1 681091 L5410 2022 3684 377*2^2262094-1 680961 L2257 2023 3685 74*932^229308-1 680913 L4444 2021 3686 217499*28^470508-1 680905 p366 2013 3687 963*2^2261357+1 680740 L1300 2016 3688 2138*3^1426626+1 680677 L5410 2021 3689 1065*2^2260193+1 680389 L1204 2016 3690 837*2^2259470+1 680172 L1823 2016 3691 927*2^2258112+1 679763 L4287 2016 3692 265*2^2258071-1 679750 L2484 2018 3693e 430157*38^430157+1 679561 L5765 2023 Generalized Cullen 3694 561*2^2256600+1 679308 L3877 2015 3695 495*2^2255944+1 679110 L4119 2015 3696 489*2^2255331-1 678925 L5516 2023 3697 129*2^2255199+1 678885 L3049 2014 3698 735*2^2254660+1 678724 L4283 2016 3699 162*814^233173+1 678682 L5410 2021 3700 403*2^2254355-1 678632 L5516 2023 3701 973*2^2254320+1 678621 L1204 2016 3702 275102*151^311399-1 678537 L4001 2018 3703 603*2^2252402+1 678044 L1803 2016 3704 1029*2^2252198+1 677983 L3125 2016 3705 39*2^2251104-1 677652 L177 2015 3706 575*2^2250751+1 677547 L1741 2015 3707 2838*88^348438+1 677536 L5410 2020 3708 725*2^2250697+1 677531 L2859 2016 3709 65*2^2250637+1 677512 L3487 2013 3710 14641*2^2250096+1 677351 L181 2017 Generalized Fermat 3711 187*2^2249974+1 677312 L2322 2014 3712 141*2^2249967+1 677310 L3877 2014 3713 459*2^2249183+1 677075 L3877 2015 3714 904*957^227111-1 677001 L5410 2022 3715 319*2^2248914+1 676994 L2322 2015 3716 569*2^2248709+1 676932 L4133 2015 3717 571*2^2248701-1 676930 L5516 2023 3718 221*2^2248363+1 676828 L1130 2014 3719 144912*151^310514-1 676609 L4001 2018 3720 649*2^2247490+1 676565 L1204 2016 3721 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 3722 721*2^2246420+1 676243 L3037 2016 3723 875*2^2246363+1 676226 L2859 2016 3724 3888*931^227714-1 676075 L4001 2018 3725 347*2^2245598-1 675995 L2519 2017 3726 1199*2^2244631+1 675705 L3593 2016 3727 137*2^2244398-1 675634 L2484 2022 3728 197*2^2244347+1 675619 L1129 2014 3729 6510*565^245490+1 675605 L5410 2022 3730 507*2^2244237-1 675586 L5516 2023 3731 5055*2^2242777-1 675147 L4036 2015 3732 651*2^2241783+1 674847 L3260 2016 3733 35*2^2241049+1 674625 L2742 2013 3734 4161*2^2240358-1 674419 L1959 2016 3735 164978*151^309413-1 674210 L4001 2018 3736 493*2^2238775-1 673942 L5516 2023 3737 2354*138^314727+1 673482 L5410 2020 3738 20*698^236810-1 673455 L5410 2020 3739 146*447^254042-1 673292 L4001 2018 3740 675*2^2236244+1 673180 L4191 2016 3741 615*2^2235833+1 673056 L1823 2016 3742 53069*28^465060-1 673021 p257 2016 3743 831*2^2235253+1 672882 L3432 2013 3744 185*2^2235003+1 672806 L2322 2014 3745 103*2^2234536+1 672665 L3865 2014 3746 885*2^2234318+1 672600 L3125 2016 3747 963*2^2234249+1 672579 L1823 2016 3748 305*2^2233655+1 672400 L4118 2015 3749 267*2^2233376+1 672316 L1792 2014 3750 221*994^224221-1 672080 L5410 2020 3751 103*2^2232551-1 672067 L2484 2013 3752 889*2^2231034+1 671612 L2526 2016 3753 1779*88^345359+1 671548 L5410 2020 3754 907*2^2230776+1 671534 L4269 2016 3755 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 3756 1425*2^2229009+1 671002 L1134 2016 3757 747*2^2228814+1 670943 L2526 2016 3758 9760*3^1406070+1 670870 L4444 2021 3759 969*2^2228379+1 670812 L4262 2016 3760 887*2^2228179+1 670752 L2840 2015 3761 130816^131072+1 670651 g308 2003 Generalized Fermat 3762 1123*2^2227338+1 670499 L3924 2015 3763 3478*378^260076+1 670348 L4955 2021 3764 213*2^2226329+1 670195 L2125 2014 3765 505*2^2225296+1 669884 L4111 2015 3766 11*878^227481+1 669591 L5410 2019 3767 271*2^2223601-1 669374 L2484 2018 3768 325*2^2223243-1 669266 L2235 2016 3769 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 3770 84363*2^2222321+1 668991 L541 2014 3771 2516745*2^2222222+1 668962 p396 2017 3772 7043*48^397817-1 668831 p255 2016 3773 1137*2^2221062+1 668610 L4040 2015 3774 471*2^2220478-1 668434 L5516 2023 3775 152*806^229984-1 668413 L4001 2018 3776 1425*2^2219664-1 668189 L1134 2021 3777 1031*2^2218785+1 667924 L1204 2015 3778 911*2^2218151+1 667733 L3260 2015 3779 27*2^2218064+1 667706 L690 2009 3780 587*2^2217355+1 667494 L4109 2015 3781 547*2^2216110+1 667119 L2322 2015 3782 67*2^2215581-1 666959 L268 2010 3783 33*2^2215291-1 666871 L3345 2013 3784 157533*2^2214598-1 666666 L3494 2013 3785 1105*2^2213846+1 666438 L2321 2015 3786 33*2^2212971-1 666173 L3345 2013 3787 101*2^2212769+1 666112 L1741 2014 3788 3*10^665829+1 665830 p300 2012 3789 4207801666259*2^2211084-1 665616 L257 2019 3790 298*912^224846+1 665546 L5410 2022 3791 631*2^2210260+1 665358 L2322 2015 3792 479*2^2209541+1 665141 L4106 2015 3793 165*2^2207550-1 664541 L2055 2011 3794 819*2^2206370+1 664187 L2526 2015 3795 19*2^2206266+1 664154 p189 2006 3796 45*2^2205977-1 664067 L1862 2015 3797 1323*2^2205832+1 664025 L4893 2019 3798 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 3799 73*416^253392+1 663660 L3610 2015 3800 531*2^2203439-1 663304 L5516 2022 3801 790*821^227461-1 662903 L5410 2022 3802b Phi(3,3*2^1100957) 662844 A3 2023 Generalized unique 3803 Phi(3,-16159^78732) 662674 p294 2014 Generalized unique 3804 1041*2^2201196+1 662630 L3719 2015 3805 481*2^2201148+1 662615 L1741 2015 3806 1344*73^355570+1 662545 L3610 2014 3807 551*2^2200462-1 662408 L5516 2022 3808 783*2^2200256+1 662346 L3924 2015 3809 969*2^2200223+1 662337 L1209 2015 3810 173*2^2199301+1 662058 L1204 2014 3811 5077*2^2198565-1 661838 L251 2008 3812 114487*2^2198389-1 661787 L179 2006 3813 1035*2^2197489+1 661514 L2517 2014 3814 903*2^2197294+1 661455 L2322 2014 3815 404882*43^404882-1 661368 p310 2011 Generalized Woodall 3816 638*520^243506-1 661366 L4877 2019 3817 537*2^2196693-1 661274 L5516 2022 3818 12192710656^65536+1 661003 L5218 2021 Generalized Fermat 3819 256*3^1384608+1 660629 L3802 2014 Generalized Fermat 3820 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 3821 10880*151^302997-1 660228 L4001 2018 3822 1073*2^2193069+1 660183 L2487 2014 3823 169*2^2193049-1 660176 L2484 2018 3824 26040*421^251428+1 659823 L5410 2021 3825 202064*151^302700-1 659582 L4001 2018 3826 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 3827 819*2^2190853+1 659516 L3234 2014 3828 591*2^2190433-1 659389 L5516 2022 3829 1179*2^2189870+1 659220 L2517 2014 3830 385*2^2189441-1 659091 L2235 2022 3831 269*2^2189235+1 659028 L1204 2014 3832 39*2^2188855+1 658913 p286 2013 3833 433*2^2188076+1 658680 L3855 2014 3834 1323*2^2186806+1 658298 L4974 2019 3835 815*2^2185439+1 657886 L3035 2014 3836 249*2^2185003+1 657754 L1300 2014 3837 585*2^2184510+1 657606 L3838 2014 3838 1033*2^2183858+1 657410 L3865 2014 3839 1035*2^2183770+1 657384 L3514 2014 3840 193020*151^301686-1 657373 L4001 2018 3841 353938*7^777777+1 657304 L4789 2020 3842 1179*2^2182691+1 657059 L2163 2014 3843 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 3844 23902*52^382687+1 656697 L4876 2019 3845 525*2^2180848+1 656504 L3797 2014 3846 135*2^2180256-1 656325 L1959 2019 3847 1107*2^2180142+1 656292 L1741 2014 3848 447*2^2180102+1 656279 L3760 2014 3849 315*2^2179612-1 656132 L2235 2015 3850 1423*2^2179023-1 655955 L3887 2015 3851 995*2^2178819+1 655893 L1741 2014 3852 219*2^2178673-1 655849 L5313 2021 3853 1423*2^2178363-1 655756 L3887 2015 3854 196597*2^2178109-1 655682 L175 2006 3855 6*10^655642+1 655643 L5009 2019 3856 879*2^2177186+1 655402 L2981 2014 3857 573*2^2176326-1 655143 L5516 2022 3858 67*410^250678+1 654970 L4444 2019 3859 587*2^2175602-1 654925 L5516 2022 3860 70082*5^936972-1 654921 L3523 2013 3861 699*2^2175031+1 654753 L3865 2014 3862 1260*991^218477+1 654577 L5410 2021 3863 69*2^2174213-1 654506 L2055 2012 3864 1069*2^2174122+1 654479 L3865 2014 3865 793*2^2173720+1 654358 L2322 2014 3866 3267*2^2173170+1 654193 L1204 2019 3867 651*2^2173159+1 654189 L3864 2014 3868 187*2^2172693-1 654049 L1959 2019 3869 10001*2^2172615+1 654027 L4405 2018 3870 1011*2^2172063+1 653860 L2826 2014 3871 1105*2^2171956+1 653827 L3035 2014 3872 4165*2^2171145-1 653584 L1959 2017 3873 Phi(3,-96873^65536) 653552 L4026 2014 Generalized unique 3874 739*2^2170786+1 653475 L2121 2014 3875 134*937^219783-1 653140 L5410 2021 3876 701*2^2169041+1 652950 L3863 2014 3877 1779*88^335783+1 652928 L5410 2020 3878 295*2^2168448+1 652771 L1935 2014 3879 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 3880 359*2^2165551+1 651899 L3838 2014 3881 453*2^2165267-1 651813 L5516 2022 3882 1059*2^2164149+1 651477 L2322 2014 3883 329*2^2163717+1 651347 L2117 2014 3884 559*2^2163382+1 651246 L1741 2014 3885 235*2^2163273-1 651213 L5313 2021 3886 775*2^2162344+1 650934 L3588 2014 3887 21*2^2160479-1 650371 L2074 2012 3888 399*2^2160379-1 650342 L5545 2022 3889 102976*5^929801-1 649909 L3313 2013 3890 1007*2^2158720-1 649843 L4518 2021 3891 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 3892 617*2^2156699+1 649234 L1675 2014 3893 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat 3894f 551878*15^551878+1 649065 L5765 2023 Generalized Cullen 3895 57*572^235362+1 648989 L4444 2021 3896 2*3^1360104-1 648935 p390 2015 3897 483*2^2155456+1 648860 L3760 2014 3898 105*2^2155392+1 648840 L3580 2014 3899 40*1017^215605+1 648396 L4927 2018 3900 1005*2^2153712-1 648335 L4518 2021 3901 31340*6^833096+1 648280 p271 2013 3902 537*2^2153392-1 648239 L5516 2022 3903 415*2^2153341-1 648223 L5516 2022 3904 427*2^2153306+1 648213 L3838 2014 3905 834*709^227380-1 648183 L5410 2021 3906 395*2^2152816-1 648065 L5598 2022 3907 261*2^2152805+1 648062 L1125 2014 3908 405*2^2152377-1 647933 L1862 2022 3909 371*2^2150871+1 647480 L2545 2014 3910 111*2^2150802-1 647458 L2484 2013 3911 357*2^2148518+1 646771 L1741 2014 3912 993*2^2148205+1 646678 L1741 2014 3913 67*2^2148060+1 646633 L3276 2013 3914 243*2^2147387-1 646431 L2444 2014 3915 693*2^2147024+1 646322 L3862 2014 3916 567*2^2146332-1 646114 L5516 2022 3917 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 3918 143157*2^2144728+1 645633 L4504 2016 3919 509*2^2144181+1 645466 L3035 2014 3920 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 3921 161*2^2142431+1 644939 L3105 2014 3922 587*2^2142136-1 644850 L5516 2022 3923 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 3924 571*2^2141727-1 644727 L5516 2022 3925 23*2^2141626-1 644696 L545 2008 3926 519*2^2140311+1 644301 L2659 2014 3927 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 3928 315*2^2139665+1 644106 L3838 2014 3929 193*2^2139400+1 644026 L3538 2014 3930 1113*2^2139060+1 643925 L3914 2014 3931 292402*159^292402+1 643699 g407 2012 Generalized Cullen 3932 307*2^2137553-1 643471 L2235 2015 3933 1051*2^2137440+1 643437 L3865 2014 3934 1185*2^2137344+1 643408 L3877 2014 3935 405*2^2137280-1 643388 L1862 2016 3936 483*2^2136414-1 643128 L5516 2022 3937 513*2^2135642+1 642896 L3843 2014 3938 241*2^2135279-1 642786 L2484 2018 3939 915*2^2135151+1 642748 L2322 2014 3940 61*2^2134577-1 642574 L2055 2011 3941 2*3^1346542+1 642465 L5043 2020 3942 93*10^642225-1 642227 L4789 2020 Near-repdigit 3943 26362*421^244658+1 642057 L5388 2021 3944 5428*378^249058+1 641949 L5410 2021 3945 711*2^2132477+1 641943 L2125 2014 3946 81*984^214452+1 641856 L5410 2020 Generalized Fermat 3947 215*2^2131988-1 641795 L2484 2018 3948 473*2^2130944-1 641481 L5516 2022 3949 319*2^2130729-1 641416 L1817 2015 3950 78792*151^294324-1 641331 L4001 2018 3951 75*2^2130432-1 641326 L2055 2011 3952 1145*2^2130307+1 641290 L3909 2014 3953 110488*5^917100+1 641031 L3354 2013 3954 37*2^2128328+1 640693 L3422 2013 3955 103*2^2128242+1 640667 L3787 2014 3956 185*2^2127966-1 640584 L1959 2019 3957 3762*70^347127+1 640487 L4876 2019 3958 253*2^2126968+1 640284 L1935 2014 3959 583*2^2126166+1 640043 L1741 2014 3960 999*2^2125575+1 639865 L1741 2014 3961 7*848^218439-1 639677 L5410 2020 3962 587*2^2124947+1 639676 L3838 2014 3963 451*2^2124636+1 639582 L1741 2014 3964 887*2^2124027+1 639399 L3865 2014 3965 721751*2^2123838-1 639345 L4001 2022 3966 545*2^2122250-1 638864 L5516 2022 3967c 745*2^2121591-1 638666 L2519 2023 3968 693*2^2121393+1 638606 L3278 2014 3969 118*107^314663-1 638575 L5227 2021 3970 8331405*2^2120345-1 638295 L2055 2013 3971 975*2^2119209+1 637949 L1158 2014 3972 33*2^2118570-1 637755 L3345 2013 3973 117*2^2117600-1 637464 L1959 2019 3974 254*5^911506-1 637118 p292 2010 3975 579*2^2116044-1 636996 L5516 2022 3976 1139*2^2115949+1 636968 L3865 2014 3977 771*2^2115741+1 636905 L1675 2014 3978 411*2^2115559+1 636850 L2840 2014 3979 34*3^1334729+1 636830 L4799 2021 3980 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 3981 929*2^2114679+1 636585 L3035 2014 3982 571*2^2113491-1 636227 L5516 2022 3983 1065*2^2113463+1 636219 L2826 2014 3984d 753*2^2112554-1 635945 L1817 2023 3985 609179*2^2111132-1 635520 L5410 2022 3986 591*2^2111001+1 635478 L1360 2014 3987 357*2^2109585-1 635051 L5546 2022 3988 1051*2^2109344+1 634979 L3035 2014 3989 433*2^2109146+1 634919 L1935 2014 3990 519*2^2108910+1 634848 L1356 2014 3991 1047*2^2108751+1 634801 L3824 2014 3992 257*2^2108554-1 634741 L5313 2021 3993 3261*46^381439+1 634245 L5000 2019 3994 765*2^2106027+1 633981 L3838 2014 3995 503*2^2106013+1 633976 L1741 2014 3996 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 3997 113*2^2104825+1 633618 L3785 2014 3998f 981*2^2104657-1 633568 L2257 2023 3999 381*2^2103999+1 633370 L2322 2014 4000 1246461300659*2^2103424-1 633206 L2484 2015 4001 57*2^2103370-1 633180 L2055 2011 4002 539*2^2102167+1 632819 L3125 2014 4003 1425*2^2101260-1 632546 L1134 2020 4004 1001*2^2101062-1 632486 L4518 2020 4005 179*894^214290-1 632445 L5209 2020 4006 633*2^2100738-1 632388 L2257 2023 4007 687*2^2100243+1 632239 L3867 2014 4008 329*2^2099771+1 632097 L2507 2014 4009 35*2^2099769+1 632095 L3432 2013 4010 405*2^2099716+1 632081 L3154 2014 4011 575*2^2098483+1 631710 L3168 2014 4012 523*2^2098043-1 631577 L5516 2022 4013 1005*2^2097683-1 631469 L4518 2021 4014 919*2^2097543-1 631427 L1817 2023 4015 729*2^2097449-1 631398 L2257 2023 4016 2509589*2^2097152-1 631313 L466 2022 4017 522335*2^2097154-1 631312 L466 2022 4018 695265*2^2097153-1 631312 L466 2020 4019 208703*2^2097153+1 631312 L466 2018 4020 28401*2^2097152+1 631311 L4547 2017 4021 399*2^2096857-1 631220 L5546 2022 4022 907*2^2095896+1 630931 L1129 2014 4023 815730721*2^2095440+1 630800 L466 2019 Generalized Fermat 4024 2503*2^2094587-1 630537 L4113 2017 4025 14641*2^2093384+1 630176 L181 2017 Generalized Fermat 4026 103*2^2093350+1 630164 L3432 2013 4027 4001*2^2093286-1 630146 L1959 2014 4028 14172*1027^209226-1 630103 L4001 2018 4029 369*2^2093022+1 630065 L3514 2014 4030 217*2^2092673-1 629960 L2484 2018 4031 2188*253^262084+1 629823 L5410 2020 4032 68*920^212407+1 629532 L4001 2017 4033 165*2^2090645+1 629350 L1209 2014 4034 1119*2^2090509+1 629309 L2520 2014 4035 941*2^2090243+1 629229 L1356 2014 4036 435*2^2089948-1 629140 L5516 2022 4037 615*2^2089329-1 628954 L2257 2023 4038 62722^131072+1 628808 g308 2003 Generalized Fermat 4039 401*2^2088713+1 628768 L3035 2014 4040 1702*1021^208948+1 628734 L5410 2021 4041 819*2^2088423+1 628681 L3890 2014 4042 363*2^2088182-1 628608 L5545 2022 4043 423*2^2088102-1 628584 L5516 2022 4044 1009*2^2087690+1 628461 L3728 2014 4045 85*2^2087651-1 628448 L2338 2013 4046 467*2^2085835+1 627902 L3625 2014 4047 563528*13^563528-1 627745 p262 2009 Generalized Woodall 4048 55*2^2084305-1 627441 L3887 2021 4049 (146^144882-1)^2-2 627152 p405 2022 4050 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 4051 18*984^209436-1 626843 L5410 2019 4052 247*2^2082202+1 626808 L3294 2014 4053 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 4054 159*2^2081069-1 626467 L1959 2019 4055 27*634^223550+1 626409 L4001 2018 4056 399*2^2080579-1 626320 L5546 2022 4057 655*2^2080562+1 626315 L3859 2014 4058 201*2^2080464+1 626285 L1741 2014 4059 269328*211^269328+1 626000 p354 2012 Generalized Cullen 4060 153*2^2079401+1 625965 L3601 2014 4061 279*2^2079167+1 625895 L2413 2014 4062 692*95^316400-1 625755 L4444 2019 4063 643*2^2078306+1 625636 L3035 2014 4064 79*2^2078162+1 625591 L2117 2013 4065 1485*2^2077172+1 625295 L1134 2015 4066 777*2^2076841-1 625195 L2257 2023 4067 405*2^2076673-1 625144 L5516 2022 4068 239*2^2076663+1 625141 L2413 2014 4069 1003*2^2076535-1 625103 L51 2008 4070 2186*7^739474-1 624932 p258 2011 4071 73*2^2075936+1 624921 L3464 2013 4072 825*2^2075800-1 624881 L2257 2023 4073 807*2^2075519+1 624797 L3555 2014 4074 585*2^2075384-1 624756 L5516 2022 4075 1425*2^2075382+1 624756 L1134 2015 4076c 1308596*3^1308596+1 624366 p137 2023 Generalized Cullen 4077 65*2^2073229+1 624106 L1480 2013 4078 693*2^2072564+1 623907 L3290 2014 4079 55*552^227540-1 623903 L4786 2019 4080 867*2^2072142-1 623780 L2257 2023 4081 375*2^2071598+1 623616 L2413 2014 4082 73*2^2071592+1 623614 L1480 2013 4083 125*2^2071555+1 623603 L3432 2013 4084 1107*2^2071480+1 623581 L2520 2014 4085 6207*28^430803-1 623444 L1471 2014 4086 299*2^2070979+1 623430 L1741 2014 4087 99*2^2070908-1 623408 L1862 2015 4088 831*2^2070622-1 623323 L5545 2023 4089 19062*1027^206877-1 623029 L4444 2018 4090 891*2^2069024+1 622842 L2520 2014 4091 943*2^2068944+1 622818 L1741 2014 4092 579*2^2068647+1 622728 L2967 2014 4093 911*2^2068497+1 622683 L1741 2014 4094 501*2^2067915-1 622508 L5551 2022 4095 1005*2^2067272+1 622314 L3895 2014 4096 441*2^2067233-1 622302 L5516 2022 4097 3474*5^890253+1 622264 L5410 2021 4098 393*2^2066540+1 622094 L3700 2014 4099 44*950^208860-1 621929 L4187 2021 4100 951*2^2065180+1 621685 L1403 2014 4101 915*2^2064663+1 621529 L3035 2014 4102 213*2^2064426-1 621457 L1863 2017 4103 29*468^232718+1 621416 L4832 2018 4104 1455*2^2064103-1 621361 L1134 2016 4105 983*2^2064020-1 621335 L2257 2023 4106 824*423^236540-1 621238 L5410 2021 4107 447*2^2063218-1 621094 L5551 2022 4108 9756404*15^527590-1 620501 L5630 2022 4109 9*2^2060941-1 620407 L503 2008 4110 813*2^2060392-1 620243 L2257 2023 4111 1455*2^2059553+1 619991 L1134 2015 4112 659*2^2058623+1 619711 L3860 2014 4113 128448*151^284308-1 619506 L4001 2018 4114 477*2^2057225-1 619290 L5516 2022 4115 909*2^2056937-1 619203 L2257 2023 4116 575*2^2056081+1 618945 L1935 2014 4117 1095*2^2055975+1 618914 L3518 2014 4118 589*2^2055877-1 618884 L5516 2022 4119 3*10^618853+1 618854 p300 2012 4120 225*2^2055433-1 618750 L2484 2022 4121 819*2^2054470+1 618461 L2826 2014 4122 969*2^2054054+1 618335 L3668 2014 4123 3394*28^427262+1 618320 p385 2015 4124 318564*151^283711-1 618206 L4444 2018 4125 675*2^2053578+1 618192 L1792 2014 4126 178998*151^283702-1 618186 L4001 2018 4127 551*2^2051922-1 617693 L5516 2022 4128 281*2^2051865+1 617676 L5519 2022 4129 5916*277^252878-1 617654 L5410 2020 4130 739*2^2051658+1 617614 L3838 2014 4131 71*2^2051313+1 617509 L1480 2013 4132 265*2^2051155-1 617462 L2484 2018 4133 779*2^2050881+1 617380 L3453 2014 4134 75*2^2050637-1 617306 L2055 2011 4135 377*2^2050148-1 617159 L2235 2022 4136 935*2^2050113+1 617149 L3696 2014 4137 847*2^2049400+1 616934 L2322 2014 4138 4998*235^260170-1 616885 L5410 2019 4139 541*2^2049193-1 616872 L5516 2022 4140 73*2^2048754+1 616739 L3432 2013 4141 30*712^215913+1 615889 L4444 2022 4142 527*2^2045751+1 615836 L4123 2014 4143 785*2^2045419+1 615736 L3861 2014 4144 195*2^2044789+1 615546 L3744 2014 4145 537*2^2044162+1 615357 L1741 2014 4146 413*2^2043829+1 615257 L1300 2014 4147 1682*655^218457-1 615231 L4925 2022 4148 431*2^2043666-1 615208 L5516 2022 4149 1334*567^223344-1 615000 L5410 2021 4150 345*2^2042295+1 614795 L2562 2014 4151 777*2^2041710-1 614619 L2257 2023 4152 216848*151^282017-1 614514 L4700 2018 4153 104*579^222402-1 614428 L4001 2018 4154 57257*2^2040062-1 614125 L4812 2019 4155 1069*2^2039562+1 613973 L1741 2014 4156 625*2^2039416+1 613929 L1741 2014 Generalized Fermat 4157 7188*313^245886-1 613624 L5410 2020 4158 1085*2^2038005+1 613504 L2520 2014 4159 125*2^2037752-1 613427 L2444 2014 4160 1069*2^2036902+1 613172 L3876 2014 4161 10020*171^274566+1 613109 L5410 2019 4162 417*2^2036482+1 613045 L1847 2014 4163 701*2^2035955+1 612887 L2823 2014 4164 1025*2^2034405+1 612420 L1741 2014 4165 651*2^2034352+1 612404 L3459 2014 4166 121*2^2033941-1 612280 L162 2006 4167 19683*2^2033900+1 612270 L1823 2019 4168 57*2^2033643+1 612190 L3432 2013 4169 4175*2^2032552-1 611863 L1959 2017 4170 249*2^2031803+1 611637 L2327 2014 4171 783*2^2031629+1 611585 L2126 2014 4172 10005*2^2031284+1 611482 p168 2022 4173 (290^124116-1)^2-2 611246 p403 2019 4174 767*2^2030354-1 611201 L2257 2023 4175 872*268^251714-1 611199 L5410 2019 4176 921*2^2030231-1 611164 L2257 2023 4177 4157*2^2029894-1 611063 L1959 2017 4178 293028*151^280273-1 610714 L4001 2018 4179 285*2^2028495+1 610641 L2594 2014 4180 615*2^2028140-1 610534 L2257 2023 4181 775*2^2027562+1 610360 L1204 2014 4182 199*686^215171-1 610297 L4001 2018 4183 4190*235^257371-1 610248 L5410 2019 4184 621*2^2026864+1 610150 L3446 2014 4185 357*2^2026846+1 610144 L2163 2014 4186 425*2^2026610-1 610074 L5516 2022 4187 122112*151^279966-1 610045 L4001 2018 4188 879*2^2026501+1 610041 L1139 2014 4189 4185*2^2026400-1 610011 L1959 2017 4190 787*2^2026242+1 609963 L2122 2014 4191 2*3^1277862+1 609696 L5043 2020 4192 273*2^2024810-1 609531 L5118 2020 4193 919*2^2024094+1 609316 L1741 2014 4194 325*2^2024035-1 609298 L4076 2015 4195 811*2^2023885-1 609254 L2257 2023 4196 235*2^2023486+1 609133 L2594 2014 4197 559*2^2023437-1 609118 L5516 2022 4198 195*2^2023030+1 608996 L4122 2014 4199 8*10^608989-1 608990 p297 2011 Near-repdigit 4200 1485*2^2022873+1 608949 L1134 2015 4201 233*2^2022801+1 608927 L3767 2014 4202 521*2^2022059+1 608704 L3760 2014 4203 569*2^2021884-1 608651 L5516 2022 4204 5678*1027^202018-1 608396 L4001 2018 4205 94*790^209857+1 608090 L4001 2018 4206 19650619*2^2019807-1 608030 L3432 2022 4207 431*2^2019693+1 607991 L2100 2014 4208 1155*2^2019244+1 607857 L3873 2014 4209 195*2^2018866+1 607742 L2413 2014 4210 59506*6^780877+1 607646 p254 2013 4211 4101*2^2018133-1 607523 L1959 2017 4212 2152*177^270059+1 607089 L5410 2020 4213 5844*693^213666+1 606972 L5410 2022 4214e (2634^88719+1)^2-2 606948 p432 2023 4215 4081*2^2015959-1 606868 L1959 2017 4216 4191*2^2015150-1 606625 L1959 2017 4217 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 4218 251749*2^2013995-1 606279 L436 2007 Woodall 4219e 77777*2^2013487+1 606125 p420 2023 4220 126*523^222906-1 605973 L4001 2017 4221 1023*2^2012570+1 605847 L1741 2014 4222 403*2^2012412+1 605799 L3538 2014 4223 1173*2^2012185+1 605732 L1413 2014 4224 85*730^211537+1 605701 L4001 2018 4225 Phi(3,-1449889^49152) 605684 L4142 2017 Generalized unique 4226 751*2^2010924+1 605352 L3859 2014 4227 101*2^2009735+1 604993 L3432 2013 4228 915*2^2009048-1 604787 L2257 2023 4229 1069*2^2008558+1 604640 L1595 2014 4230 881*2^2008309+1 604565 L3260 2014 4231 959*2^2008035+1 604482 L1422 2014 4232 633*2^2007897+1 604441 L3857 2014 4233 143*2^2007888-1 604437 L384 2016 4234 4*5^864751-1 604436 L4881 2019 4235 223*2^2007748+1 604395 L1741 2014 4236 461*2^2007631+1 604360 L1300 2014 4237 1731*352^237258-1 604191 L5410 2022 4238 477*2^2006719+1 604086 L3803 2014 4239 428551*2^2006520+1 604029 g411 2011 4240 6844*565^219383+1 603757 L5580 2022 4241 1097*2^2005203+1 603630 L3868 2014 4242 Phi(3,-1373894^49152) 603386 L4142 2016 Generalized unique 4243 6*5^862923+1 603159 L4965 2020 4244 493*2^2002964+1 602955 L3800 2014 4245 315*2^2002904+1 602937 L3790 2014 4246 77*2^2002742-1 602888 L2074 2013 4247 585*2^2002589+1 602843 L3035 2014 4248 1059*2^2001821+1 602612 L2103 2014 4249 249*2^2001627-1 602553 L1862 2015 4250 47*158^273942-1 602307 L541 2020 4251 1115*2^2000291+1 602151 L3588 2014 4252 891*2^2000268+1 602144 L3440 2014 4253 1067*792^207705-1 602083 L5410 2021 4254 841*2^1999951-1 602049 L2257 2023 4255 17872*430^228564+1 601921 L4955 2020 4256 343388*151^276191-1 601820 L4700 2018 4257 537*2^1999105-1 601794 L5516 2022 4258 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 4259 Phi(3,-1316236^49152) 601555 L4142 2016 Generalized unique 4260 573*2^1998232+1 601531 L1300 2013 4261 1323*2^1998103-1 601493 L1828 2016 4262 Phi(3,-1310544^49152) 601370 L4142 2016 Generalized unique 4263e 2588*697^211483-1 601299 L5410 2023 4264 1274*3^1260173+1 601259 L5410 2021 4265 561*2^1996865-1 601120 L5516 2022 4266 669*2^1995918+1 600835 L2659 2013 4267 19861029*2^1995311-1 600656 L895 2013 4268 261*2^1995105+1 600589 L3378 2013 4269 68398*1027^199397+1 600503 L4001 2018 4270 1031*2^1994741+1 600480 L2626 2014 4271 577*2^1994634+1 600448 L3035 2013 4272a 550935*2^1994609+1 600443 A4 2023 4273a 193365*2^1994609+1 600443 A4 2023 4274 497*2^1994051+1 600272 L2413 2013 4275 8331405*2^1993674-1 600163 L260 2011 4276 655*2^1993685-1 600162 L5598 2023 4277 1965*2^1993666-1 600157 L4113 2022 4278 467917*2^1993429-1 600088 L160 2005 4279 137137*2^1993201-1 600019 L321 2007 4280 781*2^1993173-1 600008 L2257 2023 4281 2*7^709976+2*7^211441+1 600000 CH9 2023 4282 589*2^1992774+1 599888 L2322 2013 4283 209*2^1992071+1 599676 L3422 2013 4284 2955*2^1991780-1 599589 L1862 2019 4285 317*2^1991592-1 599532 L1809 2014 4286 Phi(3,-1249158^49152) 599322 L4142 2016 Generalized unique 4287 547*2^1990606+1 599235 L3173 2013 4288 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 4289 508*1017^199220-1 599122 L4700 2017 4290 885*2^1990215-1 599118 L5184 2023 4291 1606*877^203564+1 599092 L5410 2022 4292 105*2^1989208-1 598814 L1959 2014 4293 1925975*2^1989191+1 598813 L5327 2022 4294 1019*2^1988959+1 598740 L3514 2013 4295 1455*2^1988795-1 598691 L1134 2015 4296 629*2^1988579+1 598625 L2117 2013 4297 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 4298 733*2^1988086+1 598477 L3502 2013 4299 135*2^1987735+1 598370 L1300 2013 4300 162434*5^856004-1 598327 L3410 2013 4301 749*2^1986977+1 598143 L1492 2013 4302 4141*2^1986959-1 598138 L1959 2016 4303e 2172*697^210354-1 598089 L5410 2023 4304 34*3^1253399+1 598025 L4799 2020 4305 3792*217^255934-1 597984 L5410 2020 4306 32*236^251993+1 597959 L4786 2019 4307 174344*5^855138-1 597722 L3354 2013 4308 6292*1027^198459+1 597678 L4001 2018 4309 4125*2^1984855-1 597505 L1959 2017 4310 8331405*2^1984565-1 597421 L260 2011 4311 1133*2^1984488-1 597394 L1828 2016 4312 195*2^1983875-1 597209 L1828 2014 4313 2631730144*10^597115+1 597125 L4789 2022 4314 675*2^1982779-1 596879 L2257 2023 4315d 4442553*2^1981910-1 596622 L5340 2023 4316a 3256715*2^1981910-1 596621 L5340 2023 4317 1071855*2^1981910-1 596621 L5340 2021 4318 523895*2^1981910-1 596621 L5340 2021 4319 496177*2^1981910+1 596621 L5340 2021 4320 445*2^1980900+1 596313 L3577 2013 4321 731*2^1980503+1 596194 L3035 2013 4322 1147*2^1978390+1 595558 L1741 2013 4323 5758*211^256223+1 595539 L5410 2020 4324 4*5^851878+1 595438 L4965 2023 Generalized Fermat 4325 25*2^1977369-1 595249 L426 2008 4326 245478*151^273168-1 595233 L4001 2018 4327 1197*2^1977152-1 595186 L1828 2016 4328 43*780^205685+1 594863 L5410 2019 4329 1234*95^300749-1 594802 L4444 2019 4330 866*183^262883+1 594763 L3610 2015 4331 386*117^287544+1 594698 L5410 2020 4332 1149*2^1975451-1 594674 L1828 2016 4333 651*2^1974918-1 594513 L2257 2023 4334 381*2^1974841-1 594489 L1809 2014 4335 19920911*2^1974666-1 594441 L806 2017 4336 Phi(3,-1109580^49152) 594264 L4142 2016 Generalized unique 4337 148323*2^1973319-1 594034 L587 2011 4338 705*2^1972428+1 593763 L3043 2013 4339 549*2^1971947-1 593618 L5516 2022 4340 74*894^201093+1 593496 L5410 2022 4341 549*2^1971183+1 593388 L2840 2013 4342f 549721*12^549721-1 593255 L5765 2023 Generalized Woodall 4343 4197*2^1970430-1 593163 L1959 2016 4344 1387*2^1970033-1 593043 L1828 2016 4345 92163*2^1969778+1 592968 L5115 2022 4346 1616*277^242731-1 592869 L5410 2020 4347 84969*2^1969323+1 592831 L5115 2022 4348 1693*396^228140+1 592642 L5410 2021 4349 441*2^1968431+1 592560 L3035 2013 4350 1485*2^1968400-1 592551 L1134 2014 4351 1159*2^1968190+1 592488 L3035 2013 4352 731*2^1968039+1 592442 L3682 2013 4353 833*2^1967841+1 592383 L3744 2013 4354 989*2^1967819+1 592376 L3738 2013 4355 1035*2^1967708+1 592343 L3739 2013 4356 148*789^204455+1 592325 L5410 2019 4357 1309*2^1967613-1 592314 L1828 2016 4358 449*2^1967140-1 592171 L5516 2022 4359 611*2^1966866-1 592089 L2257 2023 4360 4025*2^1966732-1 592049 L1959 2016 4361 203*2^1966689+1 592035 L1408 2013 4362 101594*151^271697-1 592027 L4001 2018 4363 921*2^1966634-1 592019 L2257 2023 4364 273*2^1966630+1 592018 L2532 2013 4365 93*2^1965880+1 591791 L1210 2011 4366 465*2^1965363-1 591636 L5516 2022 4367 253*2^1965215-1 591592 L3345 2012 4368 1089*2^1964781+1 591462 L3737 2013 4369 657*2^1964578-1 591400 L2257 2023 4370 10*173^264234+1 591369 L1471 2015 4371 1089*2^1964474+1 591369 L3736 2013 Generalized Fermat 4372 125*2^1963964-1 591215 L1959 2014 4373b 265*110^289460+1 590904 L4789 2023 4374 Phi(3,-1020993^49152) 590711 L4142 2016 Generalized unique 4375 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 4376 102088*6^759012-1 590632 L4521 2019 4377 4065*2^1961907-1 590597 L1959 2016 4378 609*2^1961889-1 590591 L2257 2023 4379 113*2^1960341+1 590124 L3091 2013 4380 57406*5^844253-1 590113 L3313 2012 4381 1010036096^65536+1 590109 L4704 2022 Generalized Fermat 4382 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 4383 1111*2^1959625-1 589909 L1828 2016 4384 24838*421^224768+1 589860 L5410 2021 4385 803*2^1959445+1 589855 L2724 2013 4386 552*360^230680+1 589691 L5410 2021 4387 915*2^1958653-1 589617 L2257 2023 4388 6166*3^1235741+1 589603 L5365 2021 4389 727*2^1958505-1 589572 L2257 2023 4390 45*2^1957377-1 589231 L1862 2014 4391 1065*2^1957291-1 589207 L1828 2016 4392 1149*2^1957223+1 589186 L1935 2013 4393 6326*333^233552+1 589126 L4001 2017 4394 129*2^1956915+1 589093 L2826 2013 4395 229*2^1956294+1 588906 L3548 2013 4396 74*500^218184-1 588874 p355 2013 4397 27*342^232379+1 588856 L5410 2021 4398 801*2^1956058-1 588836 L2257 2023 4399 525*2^1955409-1 588640 L5516 2022 4400 1045*2^1955356+1 588624 L1186 2013 4401 112*113^286643-1 588503 L426 2012 4402 1137*2^1954730+1 588436 L3733 2013 4403 673*2^1954456+1 588353 L3666 2013 4404 Phi(3,-965206^49152) 588313 L4142 2017 Generalized unique 4405 121*2^1954243-1 588288 L162 2006 4406 351*2^1954003+1 588217 L2413 2013 4407 829*2^1953661-1 588114 L2257 2023 4408 539*2^1953060-1 587933 L5516 2022 4409 641*2^1952941+1 587897 L3487 2013 4410 188378*151^269725-1 587730 L4001 2018 4411 4027*2^1951909-1 587587 L1959 2016 4412 1019*138^274533+1 587471 L5410 2020 4413 Phi(3,94259^59049) 587458 p269 2014 Generalized unique 4414 1173*2^1951169+1 587364 L3171 2013 4415 1101*2^1950812+1 587256 L2719 2013 4416 P587124 587124 p414 2020 4417 3317*2^1949958-1 587000 L5399 2021 4418 4007*2^1949916-1 586987 L1959 2016 4419 313*2^1949544+1 586874 L2520 2013 4420 391*2^1949159-1 586758 L2519 2014 4421 539*2^1949135+1 586751 L1130 2013 4422 675*2^1949015-1 586715 L2257 2023 4423 1167*2^1949013-1 586715 L1828 2016 4424 351*2^1947281-1 586193 L1809 2014 4425 3068*5^838561+1 586133 L5410 2021 4426 4892*693^206286+1 586008 L5410 2022 4427 21290*745^203998-1 585919 L4189 2017 4428 111*2^1946322-1 585904 L2484 2012 4429 1209*2^1946260-1 585886 L1828 2016 4430 1339*2^1945965-1 585797 L1828 2016 4431 149*2^1945668-1 585707 L3967 2015 4432 4011*2^1945630-1 585697 L1959 2016 4433 639*2^1945473+1 585649 L2649 2013 4434 675*2^1945232+1 585577 L3688 2013 4435 949*2^1944741-1 585429 L2257 2023 4436 603*2^1944086-1 585231 L2257 2023 4437 30364*1027^194319+1 585210 L4001 2018 4438 417*2^1943755+1 585132 L3173 2013 4439 89*2^1943337+1 585005 L2413 2011 4440 Phi(3,-889529^49152) 584827 L4142 2016 Generalized unique 4441 607*2^1942565-1 584774 L2257 2023 4442 269*2^1942389+1 584720 L3548 2013 4443 549*2^1942139-1 584645 L5545 2022 4444 4173*2^1941820-1 584550 L1959 2016 4445 1093*2^1941672+1 584505 L2322 2013 4446 144*471^218627-1 584397 L4064 2021 4447 193*2^1940804+1 584243 L3418 2013 4448 827*2^1940747+1 584226 L3206 2013 4449 221*2^1940211+1 584065 L2327 2013 4450 421*138^272919-1 584017 L5410 2020 4451 Phi(3,-872232^49152) 583988 L4142 2017 Generalized unique 4452 9105446*15^496499-1 583936 L5629 2022 4453 9*10^583696+1 583697 L4789 2020 Generalized Fermat 4454 575*2^1938673+1 583602 L2019 2013 4455 1179*2^1938570+1 583571 L1300 2013 4456 743*2^1938344-1 583503 L2257 2023 4457 865*2^1938180+1 583454 L3233 2013 4458 17702*1027^193732-1 583442 L4700 2018 4459 1091*2^1937857+1 583357 L3731 2013 4460 555*2^1937595+1 583277 L2826 2013 4461 765*2^1937364-1 583208 L2257 2023 4462 9299*2^1937309+1 583193 L3886 2014 4463 30*386^225439+1 583120 L3610 2015 4464 34910*430^221380-1 583002 L4001 2015 4465 56064*1027^193573+1 582964 L4700 2018 4466 239*2^1936025+1 582804 L1741 2013 4467 1191*2^1935613-1 582681 L1828 2016 4468 859*2^1935299-1 582586 L2257 2023 4469 4047*2^1934881-1 582461 L1959 2016 4470 357*2^1934704-1 582407 L1809 2014 4471 182627*2^1934664-1 582398 L3336 2012 4472 64*497^215875-1 582078 L4925 2019 4473 771*2^1933543-1 582058 L2257 2023 4474 14172*1027^193213-1 581879 L4001 2018 4475 363*2^1932724+1 581811 L3171 2013 4476 1265*2^1932660-1 581792 L1828 2016 4477 134*383^225187+1 581705 L2012 2019 4478 143*2^1932112-1 581626 L1828 2012 4479 48764*5^831946-1 581510 L3313 2012 4480 1095*2^1931213-1 581357 L1828 2016 4481 1365*2^1931200+1 581353 L1134 2016 4482 1789*138^271671+1 581347 L5211 2020 4483 387*2^1930200+1 581051 L1129 2013 4484 2135489665061*2^1929362-1 580809 L2484 2015 4485 1101*2^1929297-1 580780 L1828 2016 4486 735*2^1929225+1 580758 L3378 2013 4487 214519*2^1929114+1 580727 g346 2006 4488 481*2^1928773-1 580622 L5516 2022 4489 1071*2^1928515-1 580544 L1828 2016 4490 877*2^1927713-1 580303 L2257 2023 4491 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 4492 3871*2^1925976+1 579781 L5327 2022 4493 633*2^1925684+1 579692 L1408 2013 4494 3580*408^222030+1 579649 L5410 2021 4495 5724*313^232269-1 579642 L5410 2020 4496 1965*2^1925248-1 579561 L4113 2022 4497 968*288^235591+1 579414 L5410 2020 4498 1283*2^1924402-1 579306 L1828 2016 4499 1005*2^1923658+1 579082 L3514 2013 4500 243*2^1923567-1 579054 L2055 2011 4501 4005*2^1923385-1 579001 L1959 2016 4502 4508*687^204090-1 578999 L5410 2023 4503 319*2^1923378+1 578997 L3548 2013 4504 1620198*7^684923-1 578834 L4786 2021 4505 815*2^1922594-1 578762 L2257 2023 4506 280992*151^265553-1 578640 L4001 2018 4507 851*2^1922179+1 578637 L3180 2013 4508 685*2^1921923-1 578560 L2257 2023 4509 625*2^1921056+1 578299 L3378 2013 Generalized Fermat 4510 314159*2^1920875+1 578247 L4994 2019 4511 157*2^1920152+1 578026 L2494 2013 4512 14066*60^324990+1 577886 L4444 2018 4513 689*2^1919392-1 577798 L2257 2023 4514 143171*2^1918679+1 577586 L4504 2017 4515 1187*2^1918188-1 577436 L1828 2015 4516 Phi(3,-747624^49152) 577407 L4142 2016 Generalized unique 4517 75492*151^264966-1 577360 L4444 2018 4518 459*2^1917881-1 577343 L5551 2022 4519 1071*2^1917749-1 577304 L1828 2015 4520 335*2^1917610-1 577261 L1809 2014 4521 51*712^202369-1 577256 L4001 2018 4522 133631*28^398790-1 577118 p255 2013 4523 783*2^1916988-1 577074 L2257 2023 4524 191*2^1916611+1 576960 L1792 2013 4525 1087*2^1916212+1 576841 L2719 2013 4526 1065*2^1916200-1 576837 L1828 2015 4527 1682*161^261371+1 576804 L5410 2020 4528 861*2^1915741-1 576699 L2257 2023 4529 1125*2^1915695+1 576685 L3719 2013 4530 Phi(3,-731896^49152) 576499 L4142 2016 Generalized unique 4531 63348*1027^191392+1 576396 L4001 2018 4532 93788*151^264402-1 576131 L4001 2018 4533 461*2^1913118-1 575909 L5551 2022 4534 207*2^1913067+1 575893 L1741 2013 4535 80618*151^264291-1 575889 L4001 2018 4536 849*2^1913021+1 575880 L2413 2013 4537 72844*1027^191206+1 575836 L4001 2018 4538 859*430^218562+1 575580 L5410 2020 4539 535*2^1911715-1 575487 L5545 2022 4540 280*53^333574+1 575177 L4294 2021 4541 85*2^1910520+1 575126 L2703 2011 4542 267*2^1909876-1 574933 L1828 2013 4543 4103*2^1909766-1 574901 L1959 2016 4544 621*2^1909716+1 574885 L2117 2013 4545 611*2^1909525+1 574828 L2413 2013 4546 379*2^1909097-1 574699 L1809 2014 4547 435*2^1908579+1 574543 L3385 2013 4548 4035*2^1907685-1 574275 L1959 2016 4549 291*2^1907541-1 574230 L2484 2013 4550 573*2^1907450+1 574203 L2520 2013 4551 10005*2^1906876-1 574031 L4405 2019 4552 14*814^197138-1 573796 L4001 2018 4553 751*2^1905889-1 573733 L2257 2022 4554 19061965*2^1905351-1 573576 p286 2022 4555 263*2^1904406-1 573286 L2484 2015 4556 969*2^1904357+1 573272 L2719 2013 4557 17*962^192155+1 573234 L4786 2020 4558 699*2^1903573-1 573036 L2257 2022 4559 27*2^1902689-1 572768 L1153 2009 4560 553*2^1902102+1 572593 L2520 2013 4561 1112*423^218014-1 572583 L5410 2021 4562 4171*2^1901433-1 572392 L1959 2016 4563 86*394^220461-1 572208 L541 2020 4564 20707410481*2^1900579-1 572142 L5327 2021 4565 825*2^1899868-1 571921 L2257 2022 4566 271562*151^262431-1 571837 L4001 2018 4567 1323*2^1899548-1 571825 L1828 2014 4568 10005*2^1898938-1 571642 L4405 2019 4569 4806*37^364466-1 571560 L4001 2015 4570 314159*2^1898333+1 571461 L4994 2019 4571 2707*352^224386+1 571412 L5410 2021 4572 633*2^1897632+1 571247 L1741 2013 4573 451*2^1897621-1 571244 L5516 2022 4574 1131*2^1897379-1 571172 L1828 2014 4575d 137*1010^190044-1 570956 L5410 2023 4576 7092*313^228770-1 570910 L5410 2020 4577 707*2^1895035+1 570466 L3035 2013 4578 429*2^1894947-1 570439 L5516 2022 4579 781*2^1894473-1 570297 L2257 2022 4580 3945*2^1894329-1 570254 L4036 2015 4581 5732*29^389934-1 570243 L5660 2023 4582 Phi(3,-628716^49152) 570012 L4142 2016 Generalized unique 4583 4157*2^1892772-1 569785 L1959 2015 4584 154*730^198988+1 569770 L4001 2018 4585 10005*2^1892466-1 569694 L4405 2019 4586 1053*2^1891799-1 569492 L1828 2014 4587 687*2^1891730+1 569471 L3221 2013 4588 5758*211^244970+1 569384 L5410 2020 4589 87*2^1891391+1 569368 L2673 2011 4590 929*2^1890324-1 569048 L2257 2022 4591 85287*2^1890011+1 568955 p254 2011 4592 221*2^1889983+1 568944 L1741 2013 4593 597*2^1889088-1 568675 L5516 2022 4594 607*2^1888525-1 568506 L2257 2022 4595f 379*954^190738-1 568316 L5410 2023 4596 585*2^1887819+1 568293 L3171 2013 4597 347*2^1887507+1 568199 L3548 2013 4598 391*2^1886863-1 568005 L1809 2014 4599 759*2^1886119-1 567782 L2257 2022 4600 791*2^1885961+1 567734 L3075 2013 4601 975*2^1885724+1 567663 L1129 2013 4602 22*615^203539-1 567647 L4001 2018 4603 987*2^1885160+1 567493 L2070 2013 4604 Phi(3,-590826^49152) 567358 L4142 2017 Generalized unique 4605 744716047603963*2^1884575-1 567329 L257 2013 4606 485*2^1884579+1 567318 L3548 2013 4607 14296*421^216090+1 567086 L5410 2021 4608 879*2^1883385+1 566959 L3223 2013 4609 815730721*2^1882432+1 566678 L466 2018 Generalized Fermat 4610 693*2^1881882+1 566506 L2322 2013 4611 30*7^670289+1 566462 L3610 2014 4612 639*2^1880451+1 566075 L3141 2013 4613 927*2^1880136-1 565981 L2257 2022 4614 277*2^1880022+1 565946 L3418 2013 4615 46498*1027^187913+1 565918 L4001 2018 4616 747*2^1879749-1 565864 L2257 2022 4617 2655*2^1879275-1 565722 L2484 2018 4618 89*2^1879132-1 565678 L1828 2013 4619 441*2^1879067+1 565659 L2840 2013 4620 283*2^1879051-1 565654 L2484 2015 4621 214*378^219424-1 565566 L5410 2020 4622 729*2^1877995+1 565336 L1792 2013 4623 645*2^1877756+1 565264 L2981 2013 4624 Phi(3,-561180^49152) 565160 L4142 2017 Generalized unique 4625 613*2^1876758+1 564964 L2413 2013 4626 10005*2^1876648-1 564932 L4405 2019 4627 267*2^1876604+1 564917 L1792 2013 4628 345067*2^1876573-1 564911 g59 2005 4629 1063*2^1876427-1 564864 L1828 2014 4630 1389*2^1876376-1 564849 L1828 2014 4631 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 4632 4015*2^1875453-1 564572 L1959 2014 4633 1043*2^1875213+1 564499 L2413 2013 4634 1209*2^1874804-1 564376 L1828 2014 4635 4125*2^1874718-1 564350 L1959 2015 4636 1199*2^1874495+1 564283 L2827 2013 4637 495*2^1874077+1 564157 L1344 2013 4638 505*2^1873631-1 564022 L5516 2022 4639 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 4640 Phi(3,-544951^49152) 563907 L4142 2017 Generalized unique 4641 1958*687^198762-1 563883 L4955 2023 4642 21*2^1872923-1 563808 L2074 2012 4643 4039*2^1872875-1 563796 L1959 2015 4644 789*2^1872863-1 563791 L2257 2022 4645 439*2^1872789-1 563769 L5516 2022 4646 399878576^65536+1 563736 L4964 2019 Generalized Fermat 4647 357*2^1871600-1 563411 L2519 2014 4648 1309*2^1871045-1 563244 L1828 2014 4649 901*2^1870997-1 563230 L2257 2022 4650 859*2^1870639-1 563122 L2519 2022 4651 Phi(3,-533612^49152) 563010 L4142 2017 Generalized unique 4652 735*2^1870118+1 562965 L3075 2013 4653 575*2^1869989+1 562926 L3650 2013 4654 315*2^1869119-1 562664 L2235 2012 4655 19683*2^1868828+1 562578 L3784 2019 4656 400*315^225179-1 562570 L4444 2021 4657 933*2^1868602+1 562509 L3709 2013 4658 503*2^1868417+1 562453 L3378 2013 4659 1073*2^1867944-1 562311 L1828 2014 4660 2*1595^175532-1 562188 L4961 2019 4661 13162*3^1177896+1 562004 L5410 2021 4662 1115*2^1866094-1 561754 L1828 2014 4663 955*2^1865553-1 561591 L2257 2022 4664 621*2^1865542-1 561587 L2257 2022 4665 70*905^189879-1 561408 L541 2017 4666 407*2^1864735+1 561344 L2520 2013 4667f 627912!6+1 561315 p397 2023 Multifactorial 4668 10005*2^1864432-1 561254 L4405 2019 4669 489*2^1864339+1 561225 L2520 2013 4670 427*2^1863702+1 561033 L3586 2013 4671 1161*2^1863637+1 561014 L3213 2013 4672 653*2^1862782-1 560757 L2257 2022 4673 2*3^1175232+1 560729 p199 2010 4674 347*2^1861974-1 560513 L2519 2014 4675 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 4676 411*2^1861627+1 560409 L1741 2013 4677 281*2^1860862-1 560178 L2484 2015 4678 1165*2^1860749-1 560145 L1828 2014 4679 231*2^1860743-1 560142 L1862 2015 4680 103*2^1860103-1 559949 L2484 2012 4681 350006744^65536+1 559945 L4964 2019 Generalized Fermat 4682 11726*1027^185913-1 559895 L4001 2018 4683 2655*2^1859692-1 559827 L1862 2018 4684 161*2^1859586-1 559794 L177 2013 4685 813*2^1859419-1 559744 L2519 2022 4686 981*2^1859266-1 559698 L2257 2022 4687 51*2^1859193+1 559675 L1204 2011 4688 1177*2^1859144+1 559662 L3625 2013 4689 1818*378^217098+1 559572 L5410 2021 4690 1455*2^1858634-1 559508 L1134 2015 4691 8331405*2^1858587-1 559498 L260 2011 4692 8*3^1172480+1 559417 L4799 2020 4693 663*2^1858195-1 559376 L1817 2022 4694 671*2^1857950-1 559302 L1817 2022 4695 145*590^201814+1 559199 L5410 2022 4696 435*2^1857332-1 559116 L5551 2022 4697 669*2^1857223+1 559083 L2413 2013 4698 296990*151^256535-1 558990 L4700 2018 4699 525*2^1856834-1 558966 L5516 2022 4700 1125*2^1856703-1 558927 L1828 2014 4701 429*2^1856373-1 558827 L5516 2022 4702 52600*91^285235+1 558792 L5410 2020 4703 1155*2^1855389-1 558531 L1828 2014 4704 4031*2^1855338-1 558516 L1959 2014 4705 229*372^217261-1 558482 L4876 2019 4706 Phi(3,-478421^49152) 558349 L4142 2017 Generalized unique 4707 917*2^1854642-1 558306 L1817 2022 4708 126072*31^374323-1 558257 L2054 2012 4709 3^1170000+3^364398+1 558232 x44 2017 4710 4918*3^1169850+1 558164 L5410 2021 4711 19*932^187910+1 557985 L5410 2022 4712 435*2^1853363-1 557921 L4036 2015 4713 1229*2^1853192-1 557870 L1828 2014 4714 3161*618^199877+1 557858 L4714 2018 4715 333*2^1853115-1 557846 L1830 2012 4716 87*2^1852590-1 557688 L2055 2011 4717 765*2^1849609+1 556791 L1792 2013 4718 137*2^1849238-1 556679 L321 2007 4719 639*2^1848903+1 556579 L3439 2013 4720 1061*268^229202-1 556537 L5410 2019 4721 261*2^1848217+1 556372 L1983 2013 4722 Phi(3,-456551^49152) 556351 L4142 2017 Generalized unique 4723 917*2^1847872-1 556268 L2519 2022 4724 465*2^1847589-1 556183 L5516 2022 4725 663*2^1847319-1 556102 L1817 2022 4726 775*2^1846945-1 555989 L1817 2022 4727 88*107^273915-1 555881 L4444 2021 4728 275*2^1846390-1 555822 L2444 2014 4729 1011*2^1846173+1 555757 L3221 2013 4730 575*2^1845718-1 555620 L5516 2022 4731 1029*2^1844975+1 555396 L2626 2013 4732 133*2^1843619-1 554987 L1959 2014 4733 261*2^1843555-1 554968 L1828 2013 4734 655*2^1843379-1 554916 L1817 2022 4735 2^120*611953#*611957^50000+1 554832 p383 2015 4736 73246*1027^184192+1 554713 L4001 2018 4737 503*2^1842034-1 554511 L5516 2022 4738a 288212888^65536+1 554416 L5772 2023 Generalized Fermat 4739a 288163930^65536+1 554411 L5620 2023 Generalized Fermat 4740a 288090918^65536+1 554404 L5772 2023 Generalized Fermat 4741a 287967504^65536+1 554392 L4933 2023 Generalized Fermat 4742a 287895384^65536+1 554385 L4968 2023 Generalized Fermat 4743a 287877392^65536+1 554383 L5822 2023 Generalized Fermat 4744a 287747230^65536+1 554370 L5639 2023 Generalized Fermat 4745a 287571970^65536+1 554353 L5620 2023 Generalized Fermat 4746 953*2^1841461+1 554338 L3612 2013 4747a 287423798^65536+1 554338 L4371 2023 Generalized Fermat 4748a 287286178^65536+1 554325 L4933 2023 Generalized Fermat 4749a 287234044^65536+1 554319 L5077 2023 Generalized Fermat 4750a 287196594^65536+1 554316 L5070 2023 Generalized Fermat 4751a 287130118^65536+1 554309 L5639 2023 Generalized Fermat 4752a 287114344^65536+1 554308 L5077 2023 Generalized Fermat 4753a 287028470^65536+1 554299 L5070 2023 Generalized Fermat 4754a 286986062^65536+1 554295 L5070 2023 Generalized Fermat 4755a 286897030^65536+1 554286 L4477 2023 Generalized Fermat 4756a 286844394^65536+1 554281 L5634 2023 Generalized Fermat 4757b 286591074^65536+1 554256 L5639 2023 Generalized Fermat 4758 713*2^1841166-1 554250 L1817 2022 4759 4171*2^1841157-1 554248 L1959 2016 4760b 286487634^65536+1 554245 L5070 2023 Generalized Fermat 4761b 286130010^65536+1 554210 L5816 2023 Generalized Fermat 4762b 286096802^65536+1 554207 L5077 2023 Generalized Fermat 4763b 285911424^65536+1 554188 L5022 2023 Generalized Fermat 4764b 285894112^65536+1 554186 L5077 2023 Generalized Fermat 4765 19061965*2^1840922+1 554181 p286 2022 4766b 285744852^65536+1 554172 L4249 2023 Generalized Fermat 4767b 285657432^65536+1 554163 L5347 2023 Generalized Fermat 4768b 285568918^65536+1 554154 L5077 2023 Generalized Fermat 4769b 285303034^65536+1 554127 L5022 2023 Generalized Fermat 4770b 285249588^65536+1 554122 L5077 2023 Generalized Fermat 4771b 285162248^65536+1 554113 L5432 2023 Generalized Fermat 4772 1089*2^1840695-1 554108 L1828 2014 4773b 284839974^65536+1 554081 L4928 2023 Generalized Fermat 4774b 284492270^65536+1 554046 L5815 2023 Generalized Fermat 4775b 284435642^65536+1 554041 L5813 2023 Generalized Fermat 4776b 284425404^65536+1 554040 L4933 2023 Generalized Fermat 4777b 284328160^65536+1 554030 L5070 2023 Generalized Fermat 4778 705*2^1840379-1 554013 L1817 2022 4779b 284130644^65536+1 554010 L5022 2023 Generalized Fermat 4780b 284063728^65536+1 554004 L4737 2023 Generalized Fermat 4781b 284039224^65536+1 554001 L5627 2023 Generalized Fermat 4782 105*2^1840262-1 553977 L1959 2014 4783 1009*2^1840225-1 553966 L1828 2014 4784b 283636836^65536+1 553961 L5627 2023 Generalized Fermat 4785b 283489024^65536+1 553946 L4933 2023 Generalized Fermat 4786b 283267288^65536+1 553924 L5772 2023 Generalized Fermat 4787b 283137222^65536+1 553911 L5077 2023 Generalized Fermat 4788b 282940616^65536+1 553891 L5620 2023 Generalized Fermat 4789b 282868132^65536+1 553884 L5077 2023 Generalized Fermat 4790b 282771412^65536+1 553874 L5070 2023 Generalized Fermat 4791b 282596850^65536+1 553856 L5784 2023 Generalized Fermat 4792c 282493816^65536+1 553846 L5627 2023 Generalized Fermat 4793c 282464682^65536+1 553843 L5634 2023 Generalized Fermat 4794c 282143224^65536+1 553810 L5809 2023 Generalized Fermat 4795 1323*2^1839623-1 553785 L1828 2014 4796c 281862512^65536+1 553782 L5526 2023 Generalized Fermat 4797c 281859504^65536+1 553782 L4933 2023 Generalized Fermat 4798c 281833104^65536+1 553779 L5639 2023 Generalized Fermat 4799c 281588454^65536+1 553754 L5806 2023 Generalized Fermat 4800c 281522310^65536+1 553748 L5760 2023 Generalized Fermat 4801c 281292474^65536+1 553725 L5403 2023 Generalized Fermat 4802c 281286938^65536+1 553724 L5805 2023 Generalized Fermat 4803c 281151930^65536+1 553710 L5347 2023 Generalized Fermat 4804c 281128342^65536+1 553708 L5070 2023 Generalized Fermat 4805 681*2^1839269+1 553678 L3141 2013 4806c 280735020^65536+1 553668 L5639 2023 Generalized Fermat 4807c 280662244^65536+1 553661 L4737 2023 Generalized Fermat 4808 667*2^1839205-1 553659 L1817 2022 4809c 280558854^65536+1 553650 L4387 2023 Generalized Fermat 4810c 280491706^65536+1 553643 L5639 2023 Generalized Fermat 4811c 280388348^65536+1 553633 L5760 2023 Generalized Fermat 4812c 280295540^65536+1 553623 L5347 2023 Generalized Fermat 4813c 280240520^65536+1 553618 L5143 2023 Generalized Fermat 4814c 280233868^65536+1 553617 L5801 2023 Generalized Fermat 4815 399*2^1839019-1 553603 L1809 2014 4816c 280073642^65536+1 553601 L5143 2023 Generalized Fermat 4817c 279934378^65536+1 553587 L4933 2023 Generalized Fermat 4818 779*2^1838955+1 553584 L3640 2013 4819c 279828194^65536+1 553576 L5051 2023 Generalized Fermat 4820c 279710598^65536+1 553564 L5800 2023 Generalized Fermat 4821c 279526044^65536+1 553545 L5143 2023 Generalized Fermat 4822c 279337808^65536+1 553526 L4933 2023 Generalized Fermat 4823c 279168686^65536+1 553509 L5077 2023 Generalized Fermat 4824c 279168218^65536+1 553509 L5143 2023 Generalized Fermat 4825c 279065654^65536+1 553498 L5797 2023 Generalized Fermat 4826c 278914560^65536+1 553483 L5797 2023 Generalized Fermat 4827c 278901336^65536+1 553482 L5143 2023 Generalized Fermat 4828c 278573258^65536+1 553448 L5070 2023 Generalized Fermat 4829c 278480374^65536+1 553439 L5797 2023 Generalized Fermat 4830 503*2^1838444-1 553430 L5545 2022 4831c 278378566^65536+1 553428 L5784 2023 Generalized Fermat 4832c 278311344^65536+1 553421 L4933 2023 Generalized Fermat 4833c 278271548^65536+1 553417 L5416 2023 Generalized Fermat 4834d 278263718^65536+1 553416 L5070 2023 Generalized Fermat 4835d 278185106^65536+1 553408 L5761 2023 Generalized Fermat 4836d 278131874^65536+1 553403 L4928 2023 Generalized Fermat 4837d 278124408^65536+1 553402 L4359 2023 Generalized Fermat 4838d 278002954^65536+1 553390 L5639 2023 Generalized Fermat 4839d 277985464^65536+1 553388 L5347 2023 Generalized Fermat 4840d 277821740^65536+1 553371 L5070 2023 Generalized Fermat 4841d 277816522^65536+1 553371 L5143 2023 Generalized Fermat 4842d 277779168^65536+1 553367 L4672 2023 Generalized Fermat 4843d 277680222^65536+1 553357 L5795 2023 Generalized Fermat 4844d 277676682^65536+1 553356 L4387 2023 Generalized Fermat 4845d 277619668^65536+1 553350 L5794 2023 Generalized Fermat 4846d 277513352^65536+1 553340 L4387 2023 Generalized Fermat 4847 135*2^1838124+1 553333 L3472 2013 4848d 277403366^65536+1 553328 L4387 2023 Generalized Fermat 4849d 277344684^65536+1 553322 L4387 2023 Generalized Fermat 4850d 277304596^65536+1 553318 L4359 2023 Generalized Fermat 4851d 276966990^65536+1 553283 L5627 2023 Generalized Fermat 4852d 276846832^65536+1 553271 L4933 2023 Generalized Fermat 4853d 276779720^65536+1 553264 L5416 2023 Generalized Fermat 4854 15*2^1837873-1 553257 L632 2008 4855d 276513748^65536+1 553237 L4672 2023 Generalized Fermat 4856d 276312804^65536+1 553216 L4629 2023 Generalized Fermat 4857d 276289408^65536+1 553214 L5793 2023 Generalized Fermat 4858d 276196344^65536+1 553204 L5772 2023 Generalized Fermat 4859d 276109738^65536+1 553195 L5077 2023 Generalized Fermat 4860d 275981748^65536+1 553182 L5792 2023 Generalized Fermat 4861d 275744042^65536+1 553158 L5772 2023 Generalized Fermat 4862d 275702614^65536+1 553153 L4359 2023 Generalized Fermat 4863d 275560040^65536+1 553139 L5639 2023 Generalized Fermat 4864 28*392^213295-1 553137 L4001 2017 4865d 275518122^65536+1 553134 L4933 2023 Generalized Fermat 4866d 275336392^65536+1 553115 L5416 2023 Generalized Fermat 4867d 275029884^65536+1 553084 L5791 2023 Generalized Fermat 4868 1111*792^190801-1 553083 L5426 2021 4869 379*2^1837291-1 553083 L1809 2014 4870d 274885318^65536+1 553069 L4933 2023 Generalized Fermat 4871d 274737458^65536+1 553053 L5634 2023 Generalized Fermat 4872d 274690448^65536+1 553049 L5143 2023 Generalized Fermat 4873 333*2^1837105+1 553027 L3470 2013 4874d 274372420^65536+1 553016 L5639 2023 Generalized Fermat 4875 825*2^1837054-1 553012 L1817 2022 4876d 274269120^65536+1 553005 L5639 2023 Generalized Fermat 4877d 274179144^65536+1 552996 L5526 2023 Generalized Fermat 4878d 274171652^65536+1 552995 L5070 2023 Generalized Fermat 4879d 273780490^65536+1 552954 L5077 2023 Generalized Fermat 4880d 273679286^65536+1 552944 L4999 2023 Generalized Fermat 4881d 273498220^65536+1 552925 L5788 2023 Generalized Fermat 4882e 273465348^65536+1 552921 L5143 2023 Generalized Fermat 4883e 273412686^65536+1 552916 L5785 2023 Generalized Fermat 4884e 272667828^65536+1 552838 L5526 2023 Generalized Fermat 4885 4167*2^1836466-1 552835 L1959 2015 4886d 272445424^65536+1 552815 L5416 2023 Generalized Fermat 4887e 272335146^65536+1 552803 L4933 2023 Generalized Fermat 4888 523061!5+1 552801 x46 2022 Multifactorial 4889e 272284168^65536+1 552798 L5070 2023 Generalized Fermat 4890e 272096382^65536+1 552778 L5784 2023 Generalized Fermat 4891e 272064584^65536+1 552775 L5760 2023 Generalized Fermat 4892e 272034326^65536+1 552772 L5620 2023 Generalized Fermat 4893e 272033228^65536+1 552772 L5070 2023 Generalized Fermat 4894e 271870308^65536+1 552755 L5639 2023 Generalized Fermat 4895e 271761074^65536+1 552743 L5784 2023 Generalized Fermat 4896e 271742714^65536+1 552741 L5786 2023 Generalized Fermat 4897 309*2^1836139+1 552736 L3460 2013 4898e 271645276^65536+1 552731 L5077 2023 Generalized Fermat 4899e 271633032^65536+1 552730 L4201 2023 Generalized Fermat 4900e 271481852^65536+1 552714 L5599 2023 Generalized Fermat 4901e 271450498^65536+1 552711 L5490 2023 Generalized Fermat 4902e 271396206^65536+1 552705 L5634 2023 Generalized Fermat 4903e 271317774^65536+1 552697 L5077 2023 Generalized Fermat 4904d 271079666^65536+1 552672 L5416 2023 Generalized Fermat 4905e 271031136^65536+1 552667 L5781 2023 Generalized Fermat 4906 271018852^65536+1 552666 L4704 2019 Generalized Fermat 4907e 270953578^65536+1 552659 L5779 2023 Generalized Fermat 4908e 270900338^65536+1 552653 L5643 2023 Generalized Fermat 4909e 270881478^65536+1 552651 L4387 2023 Generalized Fermat 4910e 270870834^65536+1 552650 L5639 2023 Generalized Fermat 4911e 270738766^65536+1 552636 L4933 2023 Generalized Fermat 4912d 270729942^65536+1 552635 L5416 2023 Generalized Fermat 4913d 270650780^65536+1 552627 L5416 2023 Generalized Fermat 4914e 270226036^65536+1 552582 L5627 2023 Generalized Fermat 4915e 270152854^65536+1 552574 L4933 2023 Generalized Fermat 4916e 270118384^65536+1 552571 L5654 2023 Generalized Fermat 4917 4061*2^1835582-1 552569 L1959 2014 4918 423*2^1835585+1 552569 L2873 2013 4919 621*2^1835567-1 552564 L1817 2022 4920e 270017480^65536+1 552560 L5070 2023 Generalized Fermat 4921e 269455002^65536+1 552501 L5416 2023 Generalized Fermat 4922e 269348314^65536+1 552490 L4839 2023 Generalized Fermat 4923e 269192112^65536+1 552473 L5777 2023 Generalized Fermat 4924e 269177540^65536+1 552472 L4933 2023 Generalized Fermat 4925e 269095066^65536+1 552463 L5639 2023 Generalized Fermat 4926e 269088864^65536+1 552462 L5485 2023 Generalized Fermat 4927e 268778680^65536+1 552429 L5143 2023 Generalized Fermat 4928e 268758496^65536+1 552427 L5654 2023 Generalized Fermat 4929e 268667968^65536+1 552418 L5717 2023 Generalized Fermat 4930e 268581226^65536+1 552408 L5654 2023 Generalized Fermat 4931e 268580560^65536+1 552408 L5639 2023 Generalized Fermat 4932e 268526572^65536+1 552403 L5654 2023 Generalized Fermat 4933e 268501802^65536+1 552400 L4387 2023 Generalized Fermat 4934f 268337126^65536+1 552383 L5143 2023 Generalized Fermat 4935f 267890702^65536+1 552335 L5627 2023 Generalized Fermat 4936 1181*2^1834802-1 552334 L1828 2014 4937f 267754986^65536+1 552321 L4933 2023 Generalized Fermat 4938f 267633214^65536+1 552308 L5761 2023 Generalized Fermat 4939f 267535458^65536+1 552297 L4933 2023 Generalized Fermat 4940f 267275536^65536+1 552270 L5634 2023 Generalized Fermat 4941f 267203854^65536+1 552262 L4933 2023 Generalized Fermat 4942 73*2^1834526+1 552250 L1513 2011 4943f 267077662^65536+1 552249 L5634 2023 Generalized Fermat 4944f 267075766^65536+1 552248 L5070 2023 Generalized Fermat 4945f 267010136^65536+1 552241 L5156 2023 Generalized Fermat 4946 309*2^1834379+1 552206 L3471 2013 4947f 266524754^65536+1 552190 L5747 2023 Generalized Fermat 4948 3748*333^218908+1 552187 L4575 2017 4949f 266186666^65536+1 552154 L5673 2023 Generalized Fermat 4950f 266185914^65536+1 552153 L5673 2023 Generalized Fermat 4951f 265916906^65536+1 552125 L5416 2023 Generalized Fermat 4952 87*2^1834098+1 552121 L1513 2011 4953f 265876478^65536+1 552120 L4933 2023 Generalized Fermat 4954f 265830698^65536+1 552115 L4672 2023 Generalized Fermat 4955f 265641702^65536+1 552095 L5669 2023 Generalized Fermat 4956f 265498354^65536+1 552080 L5771 2023 Generalized Fermat 4957 26*578^199886-1 552073 L5415 2021 4958f 265337706^65536+1 552063 L5620 2023 Generalized Fermat 4959f 265119988^65536+1 552039 L5457 2023 Generalized Fermat 4960f 265085200^65536+1 552035 L5717 2023 Generalized Fermat 4961f 265072156^65536+1 552034 L5717 2023 Generalized Fermat 4962f 264996308^65536+1 552026 L5759 2023 Generalized Fermat 4963f 264906106^65536+1 552016 L5769 2023 Generalized Fermat 4964f 264769234^65536+1 552002 L5620 2023 Generalized Fermat 4965f 264664796^65536+1 551990 L5347 2023 Generalized Fermat 4966f 264647588^65536+1 551988 L5070 2023 Generalized Fermat 4967f 264551432^65536+1 551978 L5768 2023 Generalized Fermat 4968f 264535130^65536+1 551976 L5457 2023 Generalized Fermat 4969f 264499238^65536+1 551973 L5767 2023 Generalized Fermat 4970f 264497192^65536+1 551972 L5762 2023 Generalized Fermat 4971f 264438670^65536+1 551966 L5459 2023 Generalized Fermat 4972f 264426558^65536+1 551965 L5460 2023 Generalized Fermat 4973f 264301176^65536+1 551951 L5143 2023 Generalized Fermat 4974f 264203868^65536+1 551941 L5632 2023 Generalized Fermat 4975 1021*2^1833459-1 551930 L1828 2014 4976 34*813^189659-1 551927 L4001 2018 4977f 264072794^65536+1 551927 L5370 2023 Generalized Fermat 4978f 264032558^65536+1 551922 L5143 2023 Generalized Fermat 4979f 264031336^65536+1 551922 L5759 2023 Generalized Fermat 4980 489*2^1833431-1 551921 L5545 2022 4981f 263988664^65536+1 551918 L5654 2023 Generalized Fermat 4982f 263952980^65536+1 551914 L5070 2023 Generalized Fermat 4983 263586530^65536+1 551874 L5457 2023 Generalized Fermat 4984f 263569112^65536+1 551872 L5760 2023 Generalized Fermat 4985 263517354^65536+1 551867 L5070 2023 Generalized Fermat 4986 121458*151^253264-1 551862 L4001 2018 4987 263430480^65536+1 551857 L4933 2023 Generalized Fermat 4988 263266882^65536+1 551840 L5143 2023 Generalized Fermat 4989f 263163114^65536+1 551828 L5416 2023 Generalized Fermat 4990 263096256^65536+1 551821 L5460 2023 Generalized Fermat 4991 263088168^65536+1 551820 L5143 2023 Generalized Fermat 4992 263087188^65536+1 551820 L5460 2023 Generalized Fermat 4993f 262724378^65536+1 551781 L5416 2023 Generalized Fermat 4994 262696566^65536+1 551778 L5762 2023 Generalized Fermat 4995 262694450^65536+1 551778 L5761 2023 Generalized Fermat 4996 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 4997 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 4998 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 4999 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 5000 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 5001 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 5002 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5003 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5004f 524427*10^524427-1 524433 L5765 2023 Generalized Woodall 5005 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 5006 110059!+1 507082 p312 2011 Factorial 5007 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 5008 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5009 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5010 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5011 1098133#-1 476311 p346 2012 Primorial 5012 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5013 103040!-1 471794 p301 2010 Factorial 5014 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 5015 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5016 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5017 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5018 1467763*2^1467763-1 441847 L381 2007 Woodall 5019 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5020 5529*2^1430926+1 430756 L3035 2017 Divides GF(1430925,5) 5021 94550!-1 429390 p290 2010 Factorial 5022 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 5023 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5024 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5025 2^1398269-1 420921 G1 1996 Mersenne 35 5026 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5027 338707*2^1354830+1 407850 L124 2005 Cullen 5028 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5029 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5030 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5031 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 5032 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5033 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5034 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5035 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5036 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5037 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5038 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5039 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5040 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5041 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5042 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5043 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5044 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5045 1268979*2^1268979-1 382007 L201 2007 Woodall 5046 2^1257787-1 378632 SG 1996 Mersenne 34 5047 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5048 843301#-1 365851 p302 2010 Primorial 5049 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 5050 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5051 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5052 1195203*2^1195203-1 359799 L124 2005 Woodall 5053 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 5054 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5055 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5056 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5057 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5058 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5059 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5060 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 5061 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5062 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 5063 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 5064 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5065 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 5066 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 5067 2^859433-1 258716 SG 1994 Mersenne 33 5068 2^756839-1 227832 SG 1992 Mersenne 32 5069 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 5070c 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 5071 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 5072 667071*2^667071-1 200815 g55 2000 Woodall 5073 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5074 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5075 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5076 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5077 392113#+1 169966 p16 2001 Primorial 5078 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5079 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5080 366439#+1 158936 p16 2001 Primorial 5081 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5082 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5083 481899*2^481899+1 145072 gm 1998 Cullen 5084 34790!-1 142891 p85 2002 Factorial 5085 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5086 361275*2^361275+1 108761 DS 1998 Cullen 5087 26951!+1 107707 p65 2002 Factorial 5088 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5089 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5090 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5091e R(86453) 86453 E3 2023 Repunit, ECPP, unique 5092 21480!-1 83727 p65 2001 Factorial 5093 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5094 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5095 262419*2^262419+1 79002 DS 1998 Cullen 5096 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5097 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5098 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5099 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5100 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5101 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5102 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5103 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5104 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5105 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5106 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5107 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5108 5^104824+104824^5 73269 E4 2023 ECPP 5109 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5110 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5111 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 5112 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 5113 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5114 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5115 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 5116 12770275971*2^222225-1 66907 L527 2017 Twin (p) 5117 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5118 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5119 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 5120 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 5121 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 5122 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 5123 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5124 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5125 145823#+1 63142 p21 2000 Primorial 5126 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5127 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5128 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5129 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5130 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5131 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5132 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5133 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 5134 70965694293*2^200006-1 60219 L95 2016 Twin (p) 5135 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 5136 66444866235*2^200003-1 60218 L95 2016 Twin (p) 5137 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5138 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 5139 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 5140 3^125330+1968634623437000 59798 E4 2022 ECPP 5141 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5142 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 5143 2003663613*2^195000-1 58711 L202 2007 Twin (p) 5144 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5145 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5146 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5147 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5148 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5149 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5150 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5151 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5152 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5153 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 5154 17976255129*2^183241-1 55172 p415 2021 Twin (p) 5155 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5156 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5157 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5158 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5159 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 5160 191547657*2^173372-1 52199 L5116 2020 Twin (p) 5161 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 5162 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 5163 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 5164 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 5165 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5166 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5167 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5168 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 5169 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 5170 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5171 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 5172 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 5173 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 5174 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 5175 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5176 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 5177 33218925*2^169690-1 51090 g259 2002 Twin (p) 5178 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5179 10^50000+65859 50001 E3 2022 ECPP 5180 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5181 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 5182 268981272*5^69421+1 48532 L5695 2023 Twin (p+2) 5183 268981272*5^69421-1 48532 L5695 2023 Twin (p) 5184 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5185 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5186 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5187 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 5188 110427610*3^100003-1 47722 p415 2021 Twin (p) 5189 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5190 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 5191 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5192 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5193 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5194 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5195 151023*2^151023-1 45468 g25 1998 Woodall 5196 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 5197 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5198 17147299833*2^143732-1 43278 L3494 2023 Sophie Germain (2p+1) 5199 17147299833*2^143731-1 43278 L3494 2023 Sophie Germain (p) 5200 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 5201 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 5202 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 5203 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 5204 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 5205 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 5206 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 5207 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 5208 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 5209 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5210 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5211 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 5212a U(201107) 42029 E11 2023 Fibonacci number, ECPP 5213 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5214 10^40000+14253 40001 E3 2022 ECPP 5215 p(1289844341) 40000 c84 2020 Partitions, ECPP 5216 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5217 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5218 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5219 tau(47^4176) 38404 E3 2022 ECPP 5220 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5221 3^78296+479975120078336 37357 E4 2022 ECPP 5222 63^20018+20018^63 36020 E4 2023 ECPP 5223 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5224 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5225 p(1000007396) 35219 E4 2022 Partitions, ECPP 5226 2^116224-15905 34987 c87 2017 ECPP 5227 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5228 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5229 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5230 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 5231 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5232 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5233 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5234 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5235 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5236 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5237 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5238 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5239 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5240 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5241 V(148091) 30950 c81 2015 Lucas number, ECPP 5242 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5243e -E(9266)/(61657889*34536574993) 30900 E10 2023 Euler irregular, ECPP 5244 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5245 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5246 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5247 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5248 49363*2^98727-1 29725 Y 1997 Woodall 5249 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5250 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5251 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5252 V(140057) 29271 c76 2014 Lucas number,ECPP 5253 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5254 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5255 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5256 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5257 primV(205011) 28552 x39 2009 Lucas primitive part 5258 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 5259 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5260 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5261 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5262 90825*2^90825+1 27347 Y 1997 Cullen 5263 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5264 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5265 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5266 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5267 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5268 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5269 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5270 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5271 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5272 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 5273 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 5274 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5275 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5276 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5277e -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5278 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5279 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5280 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5281 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5282 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5283 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5284 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5285 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5286 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5287 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5288e -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5289 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5290 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5291 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 5292 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5293 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5294 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5295 6917!-1 23560 g1 1998 Factorial 5296 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5297 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5298 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5299 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5300 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5301 p(398256632) 22223 E1 2022 Partitions, ECPP 5302 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5303 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5304 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5305 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5306 6380!+1 21507 g1 1998 Factorial 5307 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5308 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5309 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5310 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5311 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5312a primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5313 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5314 p(355646102) 21000 E1 2022 Partitions, ECPP 5315 p(350199893) 20838 E7 2022 Partitions, ECPP 5316 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5317 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5318 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5319 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5320 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5321 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5322 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5323 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5324 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5325 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5326 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5327 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5328 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5329 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5330 p(322610098) 20000 E1 2022 Partitions, ECPP 5331 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5332 V(94823) 19817 c73 2014 Lucas number, ECPP 5333 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5334 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5335 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5336 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5337 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5338 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5339 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5340 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5341 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5342 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5343 V(89849) 18778 c70 2014 Lucas number, ECPP 5344 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5345 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5346 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5347 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5348 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5349 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5350 42209#+1 18241 p8 1999 Primorial 5351 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5352 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5353 7457*2^59659+1 17964 Y 1997 Cullen 5354 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5355 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5356 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5357 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5358 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5359 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5360 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5361 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 5362 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5363 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5364 U(81839) 17103 p54 2001 Fibonacci number 5365 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5366 V(81671) 17069 c66 2013 Lucas number, ECPP 5367 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5368 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5369 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 5370 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5371 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5372 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5373 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5374 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5375 p(221444161) 16569 c77 2017 Partitions, ECPP 5376 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 5377 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5378 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5379 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 5380 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5381 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5382 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5383 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5384 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5385 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 5386 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5387 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5388 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5389 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5390 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5391 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5392 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5393 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5394 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5395 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 5396 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5397 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5398 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5399 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5400 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5401 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 5402 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5403 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 5404 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5405 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 5406 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5407 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5408 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 5409 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5410 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5411 p(158375386) 14011 E1 2022 Partitions, ECPP 5412 p(158295265) 14007 E1 2022 Partitions, ECPP 5413 p(158221457) 14004 E1 2022 Partitions, ECPP 5414 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5415 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5416 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5417 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 5418 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 5419 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 5420 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5421 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 5422 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5423 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5424 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5425 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5426 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5427 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5428 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5429 p(141528106) 13244 E6 2022 Partitions, ECPP 5430 p(141513546) 13244 E6 2022 Partitions, ECPP 5431 p(141512238) 13244 E6 2022 Partitions, ECPP 5432 p(141255053) 13232 E6 2022 Partitions, ECPP 5433 p(141150528) 13227 E6 2022 Partitions, ECPP 5434 p(141112026) 13225 E6 2022 Partitions, ECPP 5435 p(141111278) 13225 E6 2022 Partitions, ECPP 5436 p(140859260) 13213 E6 2022 Partitions, ECPP 5437 p(140807155) 13211 E6 2022 Partitions, ECPP 5438 p(140791396) 13210 E6 2022 Partitions, ECPP 5439 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5440 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5441 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5442 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5443 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5444 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5445 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5446 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 5447 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5448 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5449 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 5450 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5451 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 5452 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5453 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5454 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5455 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5456 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5457 V(56003) 11704 p193 2006 Lucas number 5458 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5459 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5460 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5461 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5462 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5463 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5464 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5465 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5466 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5467 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5468 primU(67825) 11336 x23 2007 Fibonacci primitive part 5469 3610!-1 11277 C 1993 Factorial 5470 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5471 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5472 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 5473 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 5474 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 5475 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5476 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5477 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5478 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5479 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5480 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5481 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5482 3507!-1 10912 C 1992 Factorial 5483 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5484 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5485 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5486 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 5487 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5488 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5489 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5490 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5491 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5492 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5493 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5494 V(51169) 10694 p54 2001 Lucas number 5495 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5496 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5497 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5498 U(50833) 10624 CH4 2005 Fibonacci number 5499 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5500 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5501 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5502 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5503 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 5504 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 5505 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 5506 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 5507 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5508 24029#+1 10387 C 1993 Primorial 5509 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5510 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5511 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5512 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5513 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 5514 23801#+1 10273 C 1993 Primorial 5515 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5516 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5517 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5518 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5519 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5520 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5521 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 5522 32469*2^32469+1 9779 MM 1997 Cullen 5523 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 5524 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 5525 8073*2^32294+1 9726 MM 1997 Cullen 5526 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 5527 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5528 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5529 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5530 V(44507) 9302 CH3 2005 Lucas number 5531 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 5532 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5533 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 5534 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5535 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5536 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5537 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5538 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5539 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5540 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 5541 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 5542 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5543 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5544 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 5545 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 5546 18523#+1 8002 D 1990 Primorial 5547 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 5548 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5549 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 5550 U(37511) 7839 x13 2005 Fibonacci number 5551 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 5552 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 5553 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5554 V(36779) 7687 CH3 2005 Lucas number 5555 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5556 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5557 V(35449) 7409 p12 2001 Lucas number 5558 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 5559 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 5560 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 5561 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 5562 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 5563 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5564 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 5565 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 5566 23005*2^23005-1 6930 Y 1997 Woodall 5567 22971*2^22971-1 6920 Y 1997 Woodall 5568 15877#-1 6845 CD 1992 Primorial 5569 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 5570 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5571 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5572 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5573 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5574 13649#+1 5862 D 1988 Primorial 5575 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5576 18885*2^18885-1 5690 K 1988 Woodall 5577 1963!-1 5614 CD 1992 Factorial 5578 13033#-1 5610 CD 1992 Primorial 5579 289*2^18502+1 5573 K 1985 Cullen, generalized Fermat 5580 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5581 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 5582 U(25561) 5342 p54 2001 Fibonacci number 5583 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5584 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5585 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5586 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5587 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5588 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5589 11549#+1 4951 D 1987 Primorial 5590 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5591 7911*2^15823-1 4768 K 1988 Woodall 5592 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 5593 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5594 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5595 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5596 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5597 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 5598 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5599 1477!+1 4042 D 1985 Factorial 5600 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5601 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5602c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5603c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5604c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5605c (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5606 12379*2^12379-1 3731 K 1985 Woodall 5607 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5608 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5609 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 5610 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5611 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5612 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5613 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5614 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5615 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5616 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5617 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5618 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5619 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5620 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5621 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5622 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5623 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5624 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5625 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5626 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5627 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5628 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5629 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5630 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5631 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5632c (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5633 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5634 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5635 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5636 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5637 V(14449) 3020 DK 1995 Lucas number 5638 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5639 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5640 U(14431) 3016 p54 2001 Fibonacci number 5641 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5642 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5643 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5644 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5645 V(13963) 2919 c11 2002 Lucas number, ECPP 5646 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5647 9531*2^9531-1 2874 K 1985 Woodall 5648 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5649 6569#-1 2811 D 1992 Primorial 5650 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5651 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5652 V(12251) 2561 p54 2001 Lucas number 5653 974!-1 2490 CD 1992 Factorial 5654 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 5655 7755*2^7755-1 2339 K 1985 Woodall 5656 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5657 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5658 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5659 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5660 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5661 V(10691) 2235 DK 1996 Lucas number 5662 872!+1 2188 D 1984 Factorial 5663 4787#+1 2038 D 1985 Primorial 5664 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5665 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5666 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5667 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5668 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5669 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5670 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5671 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5672 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5673 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5674 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5675 6611*2^6611+1 1994 K 1985 Cullen 5676 4583#-1 1953 D 1992 Primorial 5677 U(9311) 1946 DK 1995 Fibonacci number 5678 4547#+1 1939 D 1985 Primorial 5679 4297#-1 1844 D 1992 Primorial 5680 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5681 V(8467) 1770 c2 2000 Lucas number, ECPP 5682 4093#-1 1750 CD 1992 Primorial 5683 5795*2^5795+1 1749 K 1985 Cullen 5684 (2^5807+1)/3 1748 PM 1999 Cyclotomy, generalized Lucas number, Wagstaff 5685 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5686 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5687 V(7741) 1618 DK 1995 Lucas number 5688 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5689 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5690 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5691 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5692 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5693 83*2^5318-1 1603 K 1985 Woodall 5694 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5695 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5696 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5697 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5698 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5699 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5700 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5701 4713*2^4713+1 1423 K 1985 Cullen 5702 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5703 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5704 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5705 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5706 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5707 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5708b 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5709 V(5851) 1223 DK 1995 Lucas number 5710 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5711 16*(257578748915*2777#-1)+15 1197 p429 2023 Cunningham chain (16p+15) 5712 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5713 U(5387) 1126 WM 1991 Fibonacci number 5714 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5715 (2^3539+1)/3 1065 M 1990 First titanic by ECPP, generalized Lucas number, Wagstaff 5716 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5717 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5718 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5719 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5720 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5721 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5722 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 5723 R(1031) 1031 WD 1986 Repunit 5724 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5725 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5726 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 5727 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5728 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5729 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5730 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5731 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5732 V(4793) 1002 DK 1995 Lucas number 5733 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5734 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5735 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5736 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5737 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5738 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A4 Gingrich1, LLR2, MultiSieve, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe g1 Caldwell, Proth.exe G1 Armengaud, GIMPS, Prime95 G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g59 Linton, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g308 Angel, GFN17Sieve, GFNSearch, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g346 Dausch, ProthSieve, PrimeSierpinski, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g411 Brittenham, NewPGen, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe gm Morii, Proth.exe K Keller L51 Hedges, NewPGen, PRP, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L160 Wong, ProthSieve, RieselSieve, LLR L162 Banka, NewPGen, 12121search, LLR L172 Smith, ProthSieve, RieselSieve, LLR L175 Duggan, ProthSieve, RieselSieve, LLR L177 Kwok, Rieselprime, LLR L179 White, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L251 Burt, NewPGen, Rieselprime, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L260 Soule, Srsieve, Rieselprime, LLR L268 Metcalfe, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L321 Broadhurst, NewPGen, OpenPFGW, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L545 AndersonM, NewPGen, Rieselprime, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L632 Stokkedalen, Rieselprime, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L806 Stevens, Srsieve, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L895 Dinkel, Srsieve, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1139 Harvey1, PSieve, Srsieve, PrimeGrid, LLR L1141 Ogawa, NewPGen, LLR L1153 Kaiser1, Srsieve, PrimeGrid, 12121search, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1186 Richard1, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1210 Rhodes, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1344 Kobara, PSieve, Srsieve, PrimeGrid, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1356 Gockel, PSieve, Srsieve, PrimeGrid, LLR L1360 Tatterson, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1403 Andrews1, PSieve, Srsieve, PrimeGrid, LLR L1408 Emery, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1413 Morton, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1480 Goudie, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1513 Miller1, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1595 Cilliers, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1803 Puppi, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1809 Vogel, PSieve, Srsieve, NPLB, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1830 Bonath, PSieve, Srsieve, NPLB, LLR L1847 Liu1, PSieve, Srsieve, PrimeGrid, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1983 Safford, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2019 Wood_D, PSieve, Srsieve, PrimeGrid, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2070 Schemmel, PSieve, Srsieve, PrimeGrid, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2100 Christensen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2122 Megele, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2126 Senftleben, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2321 Medcalf, PSieve, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2327 Oh, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2338 Burt, PSieve, Srsieve, Rieselprime, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2494 Javtokas, PSieve, Srsieve, PrimeGrid, LLR L2507 Geis, PSieve, Srsieve, PrimeGrid, LLR L2517 McPherson, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2532 Papp2, PSieve, Srsieve, PrimeGrid, LLR L2545 Nose, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2562 Jones3, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2594 Sheridan, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2649 Brandstaetter, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2673 Burningham, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2703 Armstrong, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2724 AverayJones, PSieve, Srsieve, PrimeGrid, LLR L2742 Fluttert, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2823 Loureiro, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2827 Melzer, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2859 Keenan, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2967 Ryjkov, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2981 Yoshigoe, PSieve, Srsieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3037 Noltensmeier, PSieve, Srsieve, PrimeGrid, LLR L3043 Hayase, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3049 Tardy, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3075 Goellner, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3105 Eldredge, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3154 Hentrich, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3180 Poon, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3206 Chang2, PSieve, Srsieve, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3213 OBrien1, PSieve, Srsieve, PrimeGrid, LLR L3221 Vicena, PSieve, Srsieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3233 Nadeau, PSieve, Srsieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3276 Jeka, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3290 Bednar1, PSieve, Srsieve, PrimeGrid, LLR L3294 Bartlett, PSieve, Srsieve, PrimeGrid, LLR L3313 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3336 Dongen, Siemelink, Srsieve, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3354 Willig, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3385 Rassokhin, PSieve, Srsieve, PrimeGrid, LLR L3410 Kurtovic, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3418 Stein, PSieve, Srsieve, PrimeGrid, LLR L3422 Micom, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3439 Huang, PSieve, Srsieve, PrimeGrid, LLR L3440 Pelikan, PSieve, Srsieve, PrimeGrid, LLR L3446 Marshall3, PSieve, Srsieve, PrimeGrid, LLR L3453 Benes, PSieve, Srsieve, PrimeGrid, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3464 Ferrell, PSieve, Srsieve, PrimeGrid, LLR L3470 Fisan, PSieve, Srsieve, PrimeGrid, LLR L3471 Gieorgijewski, PSieve, Srsieve, PrimeGrid, LLR L3472 Hernas, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3487 Ziemann, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3518 Papendick, PSieve, Srsieve, PrimeGrid, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3538 Beard1, PSieve, Srsieve, PrimeGrid, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3555 Cervelle, PSieve, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3577 Sriworarat, PSieve, Srsieve, PrimeGrid, LLR L3580 Nelson1, PSieve, Srsieve, PrimeGrid, LLR L3586 Wharton, PSieve, Srsieve, PrimeGrid, LLR L3588 Matousek, PSieve, Srsieve, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3612 Smits, PSieve, Srsieve, PrimeGrid, LLR L3625 Haymoz, PSieve, Srsieve, PrimeGrid, LLR L3640 Stopper, PSieve, Srsieve, PrimeGrid, LLR L3650 Smit, PSieve, Srsieve, PrimeGrid, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3666 Bielecki, PSieve, Srsieve, PrimeGrid, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3682 Schaible, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3688 Hasznos, PSieve, Srsieve, PrimeGrid, LLR L3696 Linderson, PSieve, Srsieve, PrimeGrid, LLR L3700 Kim4, PSieve, Srsieve, PrimeGrid, LLR L3709 Buss, PSieve, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3728 Rietveld, PSieve, Srsieve, PrimeGrid, LLR L3731 Deram, PSieve, Srsieve, PrimeGrid, LLR L3733 Bryniarski, PSieve, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3736 Lukosevisius, PSieve, Srsieve, PrimeGrid, LLR L3737 Cartiaux, PSieve, Srsieve, PrimeGrid, LLR L3738 Larsson1, PSieve, Srsieve, PrimeGrid, LLR L3739 Gournay, PSieve, Srsieve, PrimeGrid, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3744 Green1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3767 Huang1, PSieve, Srsieve, PrimeGrid, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3785 Reichel, PSieve, Srsieve, PrimeGrid, LLR L3787 Palumbo, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3790 Tamagawa, PSieve, Srsieve, PrimeGrid, LLR L3797 Schmidt3, PSieve, Srsieve, PrimeGrid, LLR L3800 Amschl, PSieve, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3838 Boyden, PSieve, Srsieve, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3843 Whiteley, PSieve, Srsieve, PrimeGrid, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3855 Lunner, PSieve, Srsieve, PrimeGrid, LLR L3857 Hudec, PSieve, Srsieve, PrimeGrid, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3860 Cimrman, PSieve, Srsieve, PrimeGrid, LLR L3861 Roemer, PSieve, Srsieve, PrimeGrid, LLR L3862 Gudenschwager, PSieve, Srsieve, PrimeGrid, LLR L3863 WaldenForrest, PSieve, Srsieve, PrimeGrid, LLR L3864 Piantoni, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3867 Traebert, PSieve, Srsieve, PrimeGrid, LLR L3868 Miller3, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3873 Sala, PSieve, Srsieve, PrimeGrid, LLR L3876 Apreutesei, PSieve, Srsieve, PrimeGrid, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3886 Vogel, Srsieve, CRUS, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3890 Beeson, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3909 Taylor2, PSieve, Srsieve, PrimeGrid, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3914 Matsuda, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3967 Inouye, PSieve, Srsieve, Rieselprime, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4026 Batalov, Cyclo, EMsieve, PIES, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4040 Oddone, PSieve, Srsieve, PrimeGrid, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4076 Lacroix, PSieve, Srsieve, NPLB, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4106 Ga, PSieve, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4111 Leps1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4118 Slegel, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4122 Sasaki1, PSieve, Srsieve, PrimeGrid, LLR L4123 Bush, PSieve, Srsieve, PrimeGrid, LLR L4133 Ito, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4191 Mahan, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4262 Hutchins, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4269 Romanov, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4283 Crawford1, PSieve, Srsieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4287 Suzuki1, PSieve, Srsieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4547 Nair, TwinGen, NewPGen, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4575 Gingrich2, Srsieve, CRUS, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4629 Chen2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4714 James1, Srsieve, CRUS, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4812 Nezumi, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4839 Harris, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4961 Vornicu, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4974 Monroe, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4994 Wong, Srsieve, NewPGen, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5000 Wimmer2, Srsieve, CRUS, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5118 Vanderveen1, PSieve, Srsieve, PrimeGrid, Rieselprime, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5209 Hansen1, Srsieve, CRUS, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5218 Atnashev, LLR2, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5227 Nagayama, Srsieve, CRUS, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5340 Ogawa, MultiSieve, NewPGen, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5347 Whyte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5365 Racanelli, Srsieve, CRUS, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5388 Dewar, Srsieve, CRUS, LLR L5389 Doornink, TwinGen, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5415 VanHullebusch, Srsieve, CRUS, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5490 Vasiliu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5519 Atnashev, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5551 Marler, PSieve, Srsieve, NPLB, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5580 Ivanek1, Srsieve, CRUS, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5598 Rodermond, PSieve, Srsieve, NPLB, LLR L5599 Jayaputera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5630 Orpen1, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5643 Fisher1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5654 DeJesus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5660 Andrews2, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5669 Song, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5673 Lepri, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5695 Steinberg, NewPGen, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5717 Natividad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5747 Pettit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5752 Wissel, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5759 Benz1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5760 West, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5761 Sawyer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5762 Liskay, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5777 New, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5779 Wakeland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5781 Cesarini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5785 Kelley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5786 Madarasz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5788 Gordon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5789 Williams8, LLR L5790 Kolencik, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5792 Puada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5795 VandeVelde, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5800 Geiger1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5801 Rozkosz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5806 Georgell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5813 Griffiths, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5815 Huerta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5822 Kulbanau, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p168 Cami, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p254 Vogel, Srsieve, CRUS, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p257 Siemelink, Srsieve, OpenPFGW p258 Batalov, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p271 Dettweiler, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p292 Dausch, Srsieve, SierpinskiRiesel, OpenPFGW p294 Batalov, EMsieve, PIES, LLR, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p300 Gramolin, NewPGen, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p383 Maloy, OpenPFGW p384 Booker, OpenPFGW p385 Rajala, Srsieve, CRUS, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p390 Jaworski, Srsieve, Rieselprime, Prime95, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p397 Rodenkirch, Fpsieve, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p429 Steinberg, MultiSieve, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p432 Rodermond, Cksieve, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown Y Young