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Dedicated to all friends of Mathematics

and Good Thinking





Introduction

You better read this intro-
duction on my website
www.jaapspies.nl, unless
you are reading a pdf with
link information.

Solving Math Problems

NAW

The NAW is a publication of the Dutch Royal Mathematical
Society, the Koninklijk Wiskundig Genootschap (KWG). The
society publishes the Nieuw Archief voor Wiskunde (NAW)1, a 1 http://www.nieuwarchief.nl

quarterly for all of its members with a famous Problem Section.
The Problem Section has a very old history. The Problems and
Solutions have been published since the early beginnings of the
Society in 1778, and for several decades they constituted the
most substantial part of the material in the Proceedings of the
Society.

Starting

Starting in december 2001 with Problem 26 from the NAW I
became interested in problemsolving. Such a simple formulated
problem:

‘Does there exist a triangle with sides of integral length such
that its area is equal to the square of the length of one of its
sides’.

Learning about elliptical curves and other fine topics of Num-
ber Theory I found a solution, and an other one, one more,
etcetera. You can find the published solution in the NAW 5/3

nr. 3 and my collection of solutions can be found on my web-
site ( .probl26.ps, .probl26.pdf) 2. Recently (july 2005, ok, not 2 See my website:

http://www.jaapspies.nl/mathfilesso recently) I found solution number eight, based on a repre-
sentation of Heronian triangles found in my solution of UWC
Problem2005-1C.

http://www.jaapspies.nl
https://www.wiskgenoot.nl/about-kwg
https://www.wiskgenoot.nl/about-kwg
http://www.nieuwarchief.nl
http://www.nieuwarchief.nl
http://www.nieuwarchief.nl/serie5/pdf/naw5-2001-02-4-380.pdf
http://www.math.leidenuniv.nl/%7Enaw/index.php?taal=1
http://www.nieuwarchief.nl/serie5/pdf/naw5-2002-03-3-279.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2002-03-3-279.pdf
http://www.jaapspies.nl/mathfiles/probl26.ps
http://www.jaapspies.nl/mathfiles/probl26.pdf
http://www.jaapspies.nl/mathfiles/problems.html
http://www.jaapspies.nl/mathfiles/prob26-8.pdf
http://www.jaapspies.nl/mathfiles/problem2005-1C.pdf
http://www.jaapspies.nl/mathfiles/problem2005-1C.pdf
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Next Problem

The next problem that touched me by surprise was Problem 29

of the NAW. There was an erroneous solution in NAW 5/3 nr.
3 and the problem was declared open again in NAW 5/3 nr. 4.
The editor of the problem section Robbert Fokkink challenged
me to attack this unsolved problem. I found a solution in the
beginning of Januari 2003. Interesting is to know that Problem
29 originated from work related to a paper of Lute Kamstra:
Juggling polynomials, CWI Report PNA-R0113, July, 2001. So-
lutions of Problem 29 can be generated with my C-program
problem29.c.

For myself I translated and extended the problem to a Danc-
ing School Problem: How to match boys and girls in a dancing
class under certain length restrictions. My story of the Danc-
ing Schools includes the solution of Problem 29, but also links
with certain kinds of Rook Placing Problems. There is a SAGE-
program to generate polynomial solution to a certain class of
problems. From the Dancing School Problem originated the se-
quences A079908-A079928 from the OEIS3 (see below). My solu- 3 http://oeis.org

tion of problem 29 is in terms of the permanent of (0,1)-matrices.
So I became interested in Permanents. Playing with Maple and
counting I found an alternative for the famous Ryser’s algorithm.
I implemented my algorithm in a C/C++program, which was
used to contribute to Neil Sloane’s On-line Encyclopedia of
Integer Sequences (OEIS). See for instance A087982, A088672

and A089476. Problem 29 showed up in disguise as part 2 of
Problem2006-2B (see below) in the NAW 5/7 nr. 2. There were
no solutions sent in, so this is an absolute waste of a nice prob-
lem!

There is an article in the NAW 5/7 nr. 4 December, 2006:
Dancing School problems, Permanent solutions of Problem 29.
See here for a print and a preprint.

UWC/Problems

The problem section of the NAW was discontinued and merged
with the UWC, the University Math Competition, open for
Belgian and Dutch math students. Starting with NAW 5/4

http://www.nieuwarchief.nl/serie5/pdf/naw5-2002-03-1-096.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2002-03-3-279.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2002-03-3-279.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2002-03-4-375.pdf
http://www.jaapspies.nl/mathfiles/problem29.pdf
http://www.jaapspies.nl/mathfiles/problem29.c
http://www.jaapspies.nl/mathfiles/pr29.pdf
http://www.jaapspies.nl/mathfiles/pr29.pdf
dancing.sage
dancing.sage
http://oeis.org/A079908
http://oeis.org/A079928
http://oeis.org/
http://www.jaapspies.nl/mathfiles/permanent.pdf
http://oeis.org/
http://oeis.org/A087982
http://oeis.org/A088672
http://oeis.org/A089476
http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-4-283.pdf
http://www.jaapspies.nl/mathfiles/dancingschool.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2003-04-1-091.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2003-04-1-091.pdf
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nr.1 the Problem Section and the UWC became the section
Problemen/UWC. First in Dutch, but later on my suggestion
the problems are formulated in the English language, as are the
solutions. Students can gather points with their solutions. Others
can send their solutions ‘hors concours’.

In the NAW 5/5 nr. 3 there was no UWC/problems section,
due to a misunderstanding between the editorial board and the
editors of the section. There was a change of editors starting
with the NAW 5/5 nr. 4. Note the difference: Opgave is replaced
by Problem.

The UWC has now changed back into a general Problem
Section, open to everyone.

http://www.nieuwarchief.nl/serie5/pdf/naw5-2003-04-1-091.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2003-04-1-091.pdf
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Problems from the NAW
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Opgave A NAW 5/4 nr. 3, September 2003

The problem

Introduction

Let {an}∞
n=0 be a non-decreasing sequence of real numbers such

that
(n− 1)an = nan−2 for n = 1, 2, ... with initial value a0 = 2. We
have to calculate a1.

Solution 1

We have a2k−2 ≤ a2k−1 ≤ a2k for k ≥ 2.
The recursion (n− 1)an = nan−2 leads to the following results:

For n = 2k− 1

a2k−1 =
2k− 1
2k− 2

· 2k− 3
2k− 4

· ... · 3
2
· a1

and for n = 2k

a2k =
2k

2k− 1
· 2k− 2

2k− 3
· ... · 2

1
· a0 = 2k · 2k− 2

2k− 1
· 2k− 4

2k− 3
· ... · 2

3
· 1

1
· a0

This can be written with double factorials1 1 See for instance
en.wikipedia.org/wiki/Double_factorial

as

a2k−1 =
(2k− 1)!!
(2k− 2)!!

· a1

and

a2k = 2k · (2k− 2)!!
(2k− 1)!!

· a0

https://en.wikipedia.org/wiki/Double_factorial
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So

(2k− 1) · ((2k− 2)!!)2

((2k− 1)!!)2 · a0 ≤ a1 ≤ 2k · ((2k− 2)!!)2

((2k− 1)!!)2 · a0

As we can easily see

a1 = lim
k→∞

2k · ((2k− 2)!!)2

((2k− 1)!!)2 · a0

From the properties of double factorials it follows that

(2k− 2)!! = 2k−1 · (k− 1)! = 2k−1 · Γ(k)

and

(2k− 1)!! =
2k
√

π
Γ(

1
2
+ k)

So with a well known limit we get

a1 = lim
k→∞

π · k(Γ(k))2

(Γ( 1
2 + k))2

= π · 1 = π

Solution 2

Without double factorials we can write

a2k−1 =
(2k− 1)!

(2k−1 · (k− 1)!)2 · a1

and

a2k =
2k(2k−1(k− 1)!)2

(2k− 1)!
· a0

and hence

a1 = lim
k→∞

2k(2k−1(k− 1)!)4

((2k− 1)!)2 · a0 = lim
k→∞

2k · 24(k−1)

(2k− 1)2(2k−2
k−1 )

2 · a0

Writing a0 = 2 and n = k− 1 we get with other well known limits

a1 = lim
n→∞

4(n + 1) · 24n

(2n + 1)2(2n
n )

2 = lim
n→∞

4n2 + 4n
4n2 + 4n + 1

· 24n

n(2n
n )

2 = 1 · π = π
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Opgave B NAW 5/4 nr. 3, September 2003

The problem

Introduction.

Let S(n) be the sum of the remainders on division of the natural
number n by 2, 3, ..., n− 1. Show that

lim
n→∞

S(n)
n2

exists and compute its value.

Solution.

We define the remainder in the division of n by k by rn,k =

n− k · [ n
k ], so from the definition of S(n) it follows that

S(n) =
n−1

∑
k=2

rn,k =
n

∑
k=1

rn,k =
n

∑
k=1

(n− k · [n
k
]) = n2 −

n

∑
k=1

k · [n
k
]

With σ(k) = ∑d|k d, Theorem 324 and the proof of this Theorem
taken from Hardy and Wright, An Introduction to the Theory of
Numbers, 5th ed. p. 264-266

1, we get 1 G. H. Hardy. An introduction
to the theory of numbers.
Clarendon Press Oxford
University Press, Oxford
New York, 1979. ISBN
0198531710

S(n) = n2 −
n

∑
x=1

∑
1≤y≤n/x

y = n2 −
n

∑
k=1

σ(k)

= n2 − (
1
12

π2n2 + O(nlogn))

Hence

lim
n→∞

S(n)
n2 = 1− 1

12
π2
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Opgave C NAW 5/4 nr. 3, September 2003

The problem

Introduction.

See NAW 5/4/ nr. 3 September 2003, opgave C:

http://www.nieuwarchief.nl/serie5/pdf/naw5-2003-04-3-
269.pdf

Solution.

Let the points A, B, C, D be defined by coordinates (x1, y1),
(x2, y2), (x3, y3), (x4, y4). As easily can be shown, we have Z1 =

Z2 with xZ1 = xZ2 = 1
4 ∑4

i=1 xi and yZ1 = yZ2 = 1
4 ∑4

i=1 yi.

Let S1 be the centre of gravity of ABD and S2 that of BCD, than
we have
xS1 = x1+x2+x4

3 , yS1 = y1+y2+y4
3 , xS2 = x2+x3+x4

3 and yS2 =
y2+y3+y4

3 .

We define A1 as the ’area’ of ABD, A2 the ’area’ of BCD and the
weighting factors p1 = A1

A1+A2
and p2 = A2

A1+A2
.

According to a more or less well known result1 we can calculate 1 See Lemma below

A1 and A2 from the coordinates:
A1 = 1

2 ((y2− y1)(x1 + x2) + (y4 − y2)(x4 + x2) + (y1 − y4)(x1 +

x4)) and
A2 = 1

2 ((y3− y2)(x3 + x2) + (y4 − y3)(x4 + x3) + (y2 − y4)(x2 +

x4)).

http://www.nieuwarchief.nl/serie5/pdf/naw5-2003-04-3-269.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2003-04-3-269.pdf
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Now we can calculate Z3 with xZ3 = p1 · xS1 + p2 · xS2 and
yZ3 = p1 · yS1 + p2 · yS2 .

If Z1 = Z2 = Z3 we have equations

(4p1 − 3)x1 + x2 + (1− 4p1)x3 + x4 = 0 (3.1)

and
(4p1 − 3)y1 + y2 + (1− 4p1)y3 + y4 = 0 (3.2)

Without loss of generality we may state that A(−a, 0), B(0, b), C(x3, y3)

and D(0, d) with a > 0 and d > b. We have A1 = 1
2 a(d − b),

A2 = 1
2 x3(d− b) and p1 = a

a+x3
.

When we solve the above equation (1) for x3 we find x3 = ±a.
The only solution that holds is x3 = a. With the second equation
we find y3 = b + d.

So ABCD is a parallellogram

Lemma

The area A of a simple region R can be calculated with an inte-
gral over the boundary C of R.

A =
∮
C

(x dx + x dy)

Proof: We use the Theorem of Green:∮
C

(P dx + Q dy) =
∫∫
R

(
∂Q
∂x
− ∂P

∂y

)
dxdy

Suppose Q(x, y) = P(x, y) = x, then we simply get:

∂Q
∂x
− ∂P

∂y
= 1

So the righthand side is the area A of the region R. P0, P1, P2, ...
Pn, where Pn = P0. The area of the polygon can be calculated by
the circular integral over the sides.

A =
∮
C

(x dx + x dy) =
n−1

∑
i=0

Ii
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Here is Ii the contibution to the integral along the line segment
PiPi+1. Pi has coordinates (xi, yi).

Suppose xi+1 6= xi, than we find the following equation for the
line through vertices Pi and Pi+1

y− yi =
yi+1 − yi
xi+1 − xi

(x− xi)

so
dy =

yi+1 − yi
xi+1 − xi

dx

Now we calculate the integral Ii.

Ii =

xi+1∫
xi

(x dx + x dy) =
xi+1∫
xi

x dx +

xi+1∫
xi

x
yi+1 − yi
xi+1 − xi

dx

=

(
1 +

yi+1 − yi
xi+1 − xi

) xi+1∫
xi

dx

=

(
1 +

yi+1 − yi
xi + 1− xi

)
· 1

2
(xi+1

2 − xi
2)

=
1
2
(xi+1

2 − xi
2) +

1
2
(yi+1 − yi)(xi+1 + xi)

We easily see that we may use the same formula for the case
xi+1 = xi

We now calculate A = ∑n−1
i=0 Ii. From the fact that xn = x0 follows

immediately that quadratic terms cancel out. Conclusion:

A =
n−1

∑
i=0

1
2
(yi+1 − yi)(xi+1 + xi)

So

A =
1
2

n−1

∑
i=0

(yi+1 − yi)(xi+1 + xi) (3.3)

Example

The triangle with vertices (0,0), (4,3) and (3,5) has an area

A =
1
2
((3− 0)(0+ 4)+ (5− 3)(4+ 3)+ (0− 5)(3+ 0)) =

12 + 14− 15
2

=
11
2

.
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Which can be verified by elementary means.
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Opgave A NAW 5/4 nr. 4, December 2003

The problem

Introduction

For each non-negative integer n, let an be the number of digits in
the decimal expansion of 2n that are at least 5. Evaluate the sum
∑∞

n=0
an
2n .

Solution

Let b(n) be the number of odd digits in the decimal expansion of
2n. We can easily see that (change of notation) a(n) = b(n + 1),
because a digit with value 5 or higher in 2n generates an odd
digit in the next generation 2n+1. The sequence b(n) is well
known from Sloane’s On-Line Encyclopedia of Integer Sequences
as A055254. See [1] and [2]. We evaluate

∞

∑
n=0

a(n)
2n =

∞

∑
n=0

b(n + 1)
2n

We do not know a formula for a(n) nor b(n) other than an algo-
rithm that can be implemented for instance in Maple.

A055254:=proc(n) local i, j, k, val;

val:= 2ˆn; j:=0; k:= floor(ln(val)/ln(10))+1;

for i from 1 to k do

if (val mod 10) mod 2 = 1 then j:=j+1 fi;
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val:=floor(val/10);

od;

RETURN(j);

end:

When we calculate the sum of the first 200 terms we get:

357097343168664505675991576075813911671600665285065074511387
1606938044258990275541962092341162602522202993782792835301376

and approximately

0.22222222222222222222222222222222222222222222222222222222220362

With 1000 terms we even get more 2s in the decimal expansion,
so there is circumstantial evidence enough to evaluate the sum in
question to 2

9 .

This is not much of a proof. Is there a kind of CAS-equivalent of
’epsilontics’: For ε > 0 there is a Nε, such that n > Nε implies
| 29 −∑n

k=0 a(k)/2k| < ε?

Not every ε can be represented in a computer system.

See http://www.nieuwarchief.nl/serie5/pdf/naw5-2004-05-2-
174.pdf for a real proof.

References

[1] N.J.A. Sloane, The On-Line Encyclopedia of Integer Se-
quences, Notices of the AMS, Vol. 50 nr 8 (September 2003),
912-915.

[2] http://oeis.org
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http://www.nieuwarchief.nl/serie5/pdf/naw5-2004-05-2-174.pdf
http://oeis.org


opgave b naw 5/4 nr. 4, december 2003 27

5

Opgave B NAW 5/4 nr. 4, December 2003

The problem

Introduction.

Let G be a group such that squares commute and cubes com-
mute,
i.e., g2h2 = h2g2 and g3h3 = h3g3 for all g, h ∈ G.

Show that G is Abelian.

Solution.

We define (x, y) = x−1y−1xy, called commutator of x and y.
From this definition follows (x, y) = 1 if, and only if, xy = yx.
Thus all commutators in group G are 1 if, and only if, G is an
Abelian group. The subgroup G′ of G generated by all commuta-
tors (x, y) is called the commutator subgroup or derived group.
The factor group G/G′ is Abelian.

Our problem can be translated in the statement: The factor
group G/K is Abelian if K is the group generated by the com-
mutators (x2, y2) and (x3, y3) with x and y in G. Or (x2, y2) =

1∧ (x3, y3) = 1 implies (x, y) = 1.

Let G be the free group generated by ′a′ and ′b′. Can we proof
that the factor group G/[(a2, b2), (a3, b3)] is Abelian?

See http://www.nieuwarchief.nl/serie5/pdf/naw5-2004-05-2-
174.pdf for a real proof.

http://www.nieuwarchief.nl/serie5/pdf/naw5-2004-05-2-174.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2004-05-2-174.pdf
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The problem

Introduction.

Let (Xn)n≥1 be a sequence of independent and identically dis-
tributed random variables with P{Xn = 1} = P{Xn = −1} = 1

2 .
Set Sn = ∑n

k=1 Xk. Calculate P{S3 = 1 ∨ S6 = 2 ∨ · · · ∨ S3n =

n ∨ · · · }.

Solution.

Let P(n) = P{S3 = 1 ∨ S6 = 2 ∨ · · · ∨ S3n = n} and An =

{1, 2, 3, ..., n}. We notice that

P{S3k = k} =
(3k

k )

23k

With the principle of inclusion/exclusion we get

P(n) = P(n, 1)− P(n, 2)+ · · ·+(−1)k−1P(n, k)+ · · · (−1)n−1P(n, n)

where

P(n, k) = ∑
{i1,i2,··· ,ik}⊂An

P{S3i1 = i1 ∨ S3i2 = i2 ∨ · · · ∨ S3ik = ik} =

= ∑
i1<i2<···<ik≤n

(3i1
i1
)(3i2−3i1

i2−i1
) · · · (3ik−3ik−1

ik−ik−1
)

23i123i2−3i1 · · · 23ik−3ik−1
=

= ∑
i1<i2<···<ik≤n

(3i1
i1
)(3i2−3i1

i2−i1
) · · · (3ik−3ik−1

ik−ik−1
)

23ik
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We have to calculate limn→∞ P(n).

We see that

P(n + 1, k) = ∑
i1<i2<···<ik≤n+1

(3i1
i1
)(3i2−3i1

i2−i1
) · · · (3ik−3ik−1

ik−ik−1
)

23ik
=

= P(n, k) + ∑
i1<i2<···<ik−1<ik=n+1

(3i1
i1
)(3i2−3i1

i2−i1
) · · · (3n+3−3ik−1

n+1−ik−1
)

23n+3

and so
P(n + 1) = P(n) +D(n)

with

D(n) =
n+1

∑
k=1

(−1)k−1 ∑
i1<i2<···<ik−1<ik=n+1

(3i1
i1
)(3i2−3i1

i2−i1
) · · · (3n+3−3ik−1

n+1−ik−1
)

23n+3

We have P(2) = P(1) + D(1) and P(3) = P(2) + D(2) =

P(1) +D(1) +D(2), etcetera. Hence

P(n) = P(1) +
n−1

∑
i=1
D(i) = 3

8
+

n−1

∑
i=1
D(i)

Elementary counting gives the following results:

D(1) = 6/64 = 0.093750

D(2) = 21/512 = 0.041016

D(3) = 90/4096 = 0.021973

D(4) = 429/32768 = 0.013092

D(5) = 2184/262144 = 0.008331

D(6) = 11628/2097152 = 0.005545

D(7) = 63954/16777216 = 0.003812

D(8) = 360525/134217728 = 0.002686

D(9) = 2072070/1073741824 = 0.001930

D(10) = 12096045/8589934592 = 0.001408

Total ∑10
i=1D(i) = 1662515613/8589934592, so

P(11) =
3
8
+

10

∑
i=1
D(i) = 4883741085/8589934592 = 0.5685422901
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We can do better: the sequence a(n)n≥1 = 6, 21, 90, 429, 2184, 11628, · · ·
can be written as:

a(n) =
2

3n + 2

(
3n + 3
n + 1

)
and hence

D(n) = a(n)
23n+3

Further we can write

P(n) = 3
8
+

n−1

∑
i=1
D(i) = 3

8
+

n−1

∑
i=1

(3i+3
i+1 )

(3i + 2)23i+2 (6.1)

The probability in question is

lim
n→∞

P(n) = 3
8
+

∞

∑
i=1

(3i+3
i+1 )

(3i + 2)23i+2 = 0.57294901687515772769311 · · ·

Conclusion.

The above calculations are based on a lemma:

D(n) = 2
3n + 2

P{S3n+3 = n + 1} (6.2)

This lemma can be proved with induction on n, proving

a(n) = 23n+3 · D(n) = 2
3n + 2

(
3n + 3
n + 1

)
=

3(3n + 1)
(2n + 1)(n + 1)

(
3n
n

)

The summand

D(i) =
(3i+3

i+1 )

(3i + 2)23i+2

is a hypergeometric term, but not ’Gosperable’, so there is no
closed form for P(n) in the sense of [1]1 Definition 8.1.1. See [1] 1 Marko Petkovsek. A =

B. A K Peters/CRC Press,
Natick, MA, USA, 1996.
ISBN 1568810636

and [2]. Maple 8 gives a 3F2 hypergeometric form.

lim
n→∞

P(n) = 3
8
+

∞

∑
i=1

(3i+3
i+1 )

(3i + 2)23i+2 =
3
8
+

3
32
· 3F2(1,

5
3

,
7
3

;
5
2

, 3;
27
32

)

which evaluates to 0.57294901687515772769311 · · · .
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The problem

Introduction

For every integer n > 2 prove that

n−1

∑
j=1

(
1

n− j

n−1

∑
k=j

1
k

)
<

π2

6

Solution

Let

sn−1 =
n−1

∑
j=1

(
1

n− j

n−1

∑
k=j

1
k

)
(7.1)

We have s1 = 1, s2 = 1 1
4 , s3 = 49

36 = 5
4 + 1

9 and s4 = s3 +
1
42 .

We shall prove the following

Proposition

sn = sn−1 +
1
n2 for n > 1 (7.2)

From this proposition follows:

sn = 1 +
1
22 +

1
32 + ... +

1
n2 =

n

∑
k=1

1
k2 (7.3)

And we are finished, because limn→∞ ∑n
k=1

1
k2 = π2

6 , we have

sn−1 < sn < π2

6 . Note: this is true for n ≥ 2.

Now we prove the proposition.
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Let An−1 = (aij) = ( 1
n−i ·

1
j ) with 1 ≤ i ≤ j ≤ n − 1 and

Bn = (bij) = ( 1
n+1−i ·

1
j ) with 1 ≤ i ≤ j ≤ n.

Then
sn−1 = ∑

1≤i≤j≤n−1
aij and sn = ∑

1≤i≤j≤n
bij

Comparing aij with bij we see bij = ai−1,j for 2 ≤ i ≤ j ≤ n− 1.

So

sn = sn−1 −
n−1

∑
i=1

aii +
n

∑
j=1

b1j +
n

∑
i=1

bin − bnn

We can write aii =
1

(n−i)i =
1

n(n−i) +
1
ni , so

n−1

∑
i=1

aii =
1
n

n−1

∑
i=1

1
n− i

+
1
n

n−1

∑
i=1

1
i
=

1
n

Hn−1 +
1
n

Hn−1 =
2
n

Hn−1

where Hn−1 is the (n− 1)-th harmonic number.

Further we know

n

∑
j=1

b1j =
n

∑
i=1

bin =
1
n

n

∑
k=1

1
k
=

1
n

Hn

Now
sn = sn−1 −

2
n

Hn−1 +
1
n

Hn +
1
n

Hn −
1
n2

and hence

sn = sn−1 +
2
n
(Hn − Hn−1)−

1
n2 = sn−1 +

2
n
· 1

n
− 1

n2

This concludes the proof of the proposition

sn = sn−1 +
1
n2 (7.4)
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The problem

Introduction

Consider the first digit in the decimal expansion of 2n for n ≥ 0:
1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, · · · . Does the digit 7 appear in this
sequence? Which digit appears more often, 7 or 8? How many
times more often?

Solution

The first question is easily solved affirmative: 246 = 70368744177664.

The sequence is well known from Sloane’s On-Line Encyclopedia
of Integer Sequences as A0089521. See [1]. We use the formula 1 http://oeis/A008952

a(n) = b2n/10bn·
ln 2
ln 10 cc

in a Maple Program [2] to calculate the frequency of digit d in all
a(k) with k ≤ n.

> A:=proc(n,d) local i,k,s;

s:=0;

for k from 0 to n do

i:=floor(2ˆk / 10ˆfloor(k*ln(2)/ln(10)));

if i=d then s:=s+1 fi;

od;

RETURN(s);

end;

http://oeis/A008952
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> seq(A(500,i),i=1..9);

151, 88, 63, 49, 39, 34, 28, 26, 23

Frequency count f (d) for leading digit d of 2n:

≤ n d 1 2 3 4 5 6 7 8 9

85 26 16 10 9 7 5 4 5 4

86 26 16 10 9 7 5 5 5 4

100 31 17 13 10 7 7 6 5 5

200 61 36 24 20 16 13 11 11 9

1000 302 176 125 97 79 69 56 52 45

2000 603 354 248 194 160 134 114 105 89

3000 904 529 374 291 238 201 173 155 136

4000 1205 705 499 388 317 269 230 207 181

5000 1506 882 623 485 397 335 288 259 226

6000 1807 1058 748 582 476 401 347 309 273

7000 2108 1233 874 679 554 468 406 359 320

8000 2409 1409 999 776 633 537 462 412 364

9000 2710 1587 1122 873 714 602 520 463 410

10000 3011 1761 1249 970 791 670 579 512 458

Benford’s law : 3010 1761 1249 969 791 669 579 511 457

The second question can be answered by: ’the winner is 7’! From
n > 209 or some more, the frequency of the digit 7 is greater
than that of 8.

We can generalize: for n large enough the frequencies are a
decreasing sequence, meaning for digits d1 and d2: d1 < d2

implies f (d1) > f (d2). We can think of a reason: multiplication
of 2n with leading digit 1 with 210 = 1024, gives more often the
same leading digit, compared with the larger leading digits 2, 3,
· · · , 9, and so on.

But Benford’s law comes to the rescue (see [3]), our sequence is a
well known example:

Prob(first significant digit = d) = log10(1 +
1
d
), for d = 1, 2, ..., 9

The similarity of the last two lines in the table above is striking!
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The last question is the most difficult to answer. Our best guess
for large n is according to Benford’s law:

f (7)
f (8)

tends to
log10(1 + 1/7)
log10(1 + 1/8)

= 1.133706496

References
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[3] Hill, T.P., The Significant-Digit Phenomenon, Amer. Math.
Monthly 102, 322-327, 1995

http://oeis.org
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The problem

Introduction

The sequence 333111333131333111333... is identical to the se-
quence of its block lengths. Compute the frequency of the num-
ber 3 in this sequence.

Solution

This sequence is known as the Kolakoski-(3,1) sequence. See
N.J.A. Sloane’s On-Line Encyclopedia of Integer Sequences,
sequence number A0643531, which is in fact the Kolakoski-(1,3) 1 http://oeis/A064353

sequence, different only in the first position. See [1].

Michael Baake and Bernd Sing wrote: Unlike the (classical)
Kolakoski sequence on the alphabet {1,2}, its analogue on {1,3}
can be related to a primitive substitution rule. See [2] and [3]. We
base our calculations on section 2 of this paper.

Let A = 33, B = 31 and C = 11. In the case of Kol(3, 1) the
substitution σ and the matrix M of the substitution are given by

σ :
A 7→ ABC
B 7→ AB
C 7→ B

and M =

 1 1 0
1 1 1
1 0 0

 , (9.1)

where mij = 1 if and only if there is corresponding mapping in
σ, for instance A 7→ ABC corresponds to the fist column of M,
etcetera.

http://oeis/A064353
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An infinite fixed point can be obtained as follows:

A 7→ ABC 7→ ABCABB 7→ . . . (9.2)

This corresponds to

333111333131 . . . (9.3)

which is the unique infinite Kol(3, 1). The matrix M is prim-
itive because M3 has only positive entries. The characteristic
polynomial P(λ) of M is

P(λ) = λ3 − 2 λ2 − 1, (9.4)

and has one real root λ1 and two complex roots λ2,3. We have

2.205569 ≈ λ1 > 1 > |λ2| = |λ3| ≈ 0.67 (9.5)

According to the Perron-Frobenius Theorem2 there is a positive 2 See wikipedia

eigenvector to λ1. We easily verify that x1 = (λ1, λ2
1 − λ1, 1)T is

such an eigenvector.

Starting with x(0) = (1, 0, 0)T we define

x(k + 1) = Mx(k) (9.6)

The asymptotical behavior of this system will be of the form
x(n) = c · (λ1)

nx1 for some value of c.

From x(n) we can calculate the number of A’s, B’s and C’s. In
A = 33 there are two 3’s, etcetera, so we can easily calculate the
relative frequencies of the letters of the alphabet. The frequency
of the ’3’:

ρ3 =
2 · λ1 + 1 · (λ2

1 − λ1) + 0 · 1
2 · (λ2

1 + 1)
≈ 0.6027847150 (9.7)

References

[1] http://oeis.org/A064353

[2] Baake, Sing: Kolakoski-(3,1) is a (deformed) Model Set,
Canad. Math. Bull. 47, No. 2, 168–190 (2004)

[3] See also http://arxiv.org/abs/math.MG/0206098

https://en.wikipedia.org/wiki/Perron-Frobenius_theorem
http://oeis.org/A064353


opgave c naw 5/5 nr. 2, june 2004 41

10

Opgave C NAW 5/5 nr. 2, June 2004

The problem

Introduction

Let A be a ring and let B ⊂ A be a subring. As a subgroup, B has
finite index in A. Show that there exists a two-sided ideal I of A
such that I ⊂ B and I has finite index as a subgroup of A.

Solution

We have A and B as defined above. The index [A : B] = k < ∞
or with other words, the additive factor group A/B is a finite
Abelian group build from cosets of type x + B.

Let E(G) be the ring of endomorphisms of the Abelian group
G. We define a ring homomorphism f : B → E(A/B): for a ∈ B
we define f : a 7→ α with (x + B)α = xa + B. Note that we use
here the right function notation, avoiding the notion of anti-
homomorphism (see [2]).

The kernel of f is L = {a ∈ B|Aa ⊂ B}, L is the largest left-
ideal of A with L ⊂ B. The factor group B/L is isomorphic to a
subgroup of E(A/B), so B/L is a finite Abelian group and since
(A/L)/(B/L) ∼= A/B it follows that A/L is finite Abelian.

We now consider the ring homomorphism g: A → E(A/L): for
b ∈ A we define g: b 7→ β with β(x + L) = bx + L. Its restriction
to L, gL: L→ E(A/L) has kernel

I = {a ∈ L|aA ⊂ L} = {a ∈ B|Aa ⊂ B ∧ aA ⊂ B}.
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I is the largest two-sided ideal of A with I ⊂ B. We have L/I
finite and hence A/I is a finite Abelian group, so [A : I] < ∞.

References

[1]1 Marshall Hall, Jr. The Theory of Groups, Macmillan, New 1 Jr Hall, Marshall. The Theory
of Groups. The Macmillan
Company, New York, 1959
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[2] http://planetmath.org/encyclopedia/UnitalModule.html
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The problem

Introduction

1. Show that there exist infinitely many n ∈ N, such that
Sn = 1 + 2 + ... + n is a square.

2. Let a1, a2, a3, ... be those squares. Calculate limn→∞
an+1

an
.

Solution

We know Sn = 1
2 n(n + 1) so we have to solve the diophantine

equation
1
2

n(n + 1) = m2 (11.1)

Rewriting gives 4n2 + 4n = 8m2 or (2n + 1)2 − 1 = 2(2m)2.
Substituting x = 2n + 1 and y = 2m we get the Pell equation

x2 − 2y2 = 1 (11.2)

with an infinite number of solutions (3, 2), (17, 12), (99, 70)... with
corresponding n = 1, 8, 49, 288, ....

A well known result gives solutions of (2)

xk =
(3 + 2

√
2)k + (3− 2

√
2)k

2

and

yk =
(3 + 2

√
2)k − (3− 2

√
2)k

2
√

2
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The sequence {ai}i=1,2,3,... starts with 1, 36, 1225, 41616, ... and can
be calculated with

ak =
y2

k
4

=
((3 + 2

√
2)k − (3− 2

√
2)k)2

32
(11.3)

which can be rewritten as

ak =
((17 + 12

√
2)k + (17− 12

√
2)k)− 2

32
(11.4)

And so

ak+1
ak

=
((17 + 12

√
2)k+1 + (17− 12

√
2)k+1)− 2

((17 + 12
√

2)k + (17− 12
√

2)k)− 2
(11.5)

We easily see that limk→∞
ak+1

ak
= 17 + 12

√
2.

Remark

Finding a triangular number Sn that is cubic, except the trivial 1,
would be spectacular. As we try to solve

1
2

n(n + 1) = m3

substituting X = 2m and Y = 2n + 1 we get the elliptic curve with
equation

Y2 = X3 + 1 (11.6)

We find this curve as A36 in the Cremona table. The torsion
group is of order 6 with real members (-1,0), (0,-1), (0,1), (2,-3)
and (2,3). This means the only cubic triangular number is 1.

Moreover the above equation is also known from the Catalan
conjecture, or should we say Catalan theorem: the only non-
trivial integer powers that differ 1 are 23 and 32.

References

[1] http://oeis.org/A001110

http://oeis.org/A001110
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The problem

Introduction.

Let G be a finite set of elements and · a binary associative oper-
ation on G. There is a neutral element in G and that is the only
element in G with the property a · a = a.

Show that G with the operation · is a group.

Solution.

G is a finite semigroup with identity. Let A be a subset of G.
There is a smallest subsemigroup K of G which contains A. We
say A generates K, notation {A} = K. A single element x of
G generates a subsemigroup {x} = {xn|n > 0}. Since {x}
is finite there must be integers p > q, such that xp = xq. So
xp = xq+k = xqxk = xkxq = xq and e = xk is a neutral element for
{x}. We assume that k is the smallest integer with this property.

We easily verify that {x} = {e, x, x2, ..., xk−1} is a group with
neutral element e and as such a subgroup of G. Clearly e is
idempotent with e · e = e2 = e. According to the problem
statement e is the only element of G with this property.

We now proof the following lemma:

Let G be a finitely generated semigroup and H een subgroup of G.
Then there exists a maximal subgroup M of G containing H.
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Proof : Let G be generated by x1, ..., xm and let y1 be the first of
the xi not contained in H and with property H1 = {H, y1} is a
group. If such a y1 does not exist then M = H is the maximal
subgroup of G. We now have H1 ⊇ H. If H1 = G, then G is the
maximal subgroup sought. If not, choose H2 = {H1, y2} ⊇ H1,
where y2 is the first of the xi not contained in H1 and {H1, y2} is
a group. If such a y2 does not exist then M = H1 is the maximal
subgroup of G.

Continuing this proces we must reach the situation where no
more extension is possible: Hi ⊇ Hi−1 ⊇ ... ⊇ H, Hi is a group.
If Hi = {Hi−1, yi} = G the maximal subgroup is G else the
maximal subgroup M = Hi is a proper subgroup of G.

G is finite and so certainly finitely generated. According to the
above lemma {x} is contained in a maximal subgroup M. If
M = G we are ready, but let there be a y not in M, then {y} is
contained in a maximal subgroup M′, with neutral element e′,
with e′ · e′ = e′. If e′ 6= e we have a contradiction and there is no
such element y, hence M = G. If e′ = e than we easily see that
{M, y} is a group in contradiction with the maximality of M. So
we have proved that G is a group.
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The problem

Introduction

Calculate
∞

∑
n=1

1
∑n

i=1 i2

and
∞

∑
n=1

1
∑n

i=1 i3

Solution

This kind of problems make me feel young. They remind me to
the early sixtees and the lectures of Prof. Van der Blij1. 1 Search Van der Blij in

wikipedia.

Part 1

By a well known result we first write ∑n
i=1 i2 = n(n+1)(2n+1)

6 and
hence the first summand can be written as

6
n(n + 1)(2n + 1)

=
6
n
+

6
n + 1

− 24
2n + 1

Let

Sn =
n

∑
k=1

1

∑k
i=1 i2

= 6
n

∑
k=1

1
k
+ 6

n

∑
k=1

1
k + 1

− 24
n

∑
k=1

1
2k + 1

https://en.m.wikipedia.org/wiki/Fred_van_der_Blij
https://en.m.wikipedia.org/wiki/Fred_van_der_Blij
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so using a result on harmonic numbers we get

Sn = 6Hn + 6(Hn− 1)− 24(H2n+1−
1
2

Hn− 1) = 18− 24(H2n+1−Hn)

Hn being the n-th harmonic number. We know Hn = ln n + ∆n

with limn→∞ ∆n = γ, Euler’s constant.

Now with H2n+1 − Hn = ln(2n + 1)− ln n− ∆2n+1 + ∆n we can
easily see that limn→∞(H2n+1 − Hn) = ln 2 and therefor the first
answer is 18− 24 ln 2.

Part 2

First we write ∑n
i=1 i3 = n2(n+1)2

4 and hence the second summand
can be written as

4
n2(n + 1)2 =

4
(k + 1)2 +

4
k2 −

8
k
+

8
k + 1

)

Let

Sn =
n

∑
k=1

1

∑k
i=1 i3

=
n

∑
k=1

(
4

(k + 1)2 +
4
k2 −

8
k
+

8
k + 1

)

so

Sn = 4
n

∑
k=1

1
(k + 1)2 + 4

n

∑
k=1

1
k2 − 8

n

∑
k=1

1
k
+ 8

n

∑
k=1

1
k + 1

and

Sn = 4(
n

∑
k=1

1
k2 − 1) + 4

n

∑
k=1

1
k2 − 8Hn + 8(Hn − 1) = 8

n

∑
k=1

1
k2 − 12

So

lim
n→∞

Sn = 8 lim
n→∞

n

∑
k=1

1
k2 − 12 = 8 · 1

6
π2 − 12 =

4
3

π2 − 12
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Problem C NAW 5/6 nr. 1, March 2005

The problem

Introduction

We call a triangle integral if the sides of the triangle are integral.
Consider the integral triangles with rational circumradius.

1. Prove that for any positive integral p there are only a finitely
many integrals q such that there exists an integral triangle
with circumradius equal to p

q .

2. Prove that for any positive integral q there exist infinitely
many integral triangles with circumradius equal to p

q for an
integral p with gcd(p, q) = 1.

Solution

Let triangle ABC have integral sides a, b and c with area A and
circumradius R. There exists a relation between this quantities
given by Heron’s formulae

(4A)2 = (a + b + c)(a + b− c)(a− b + c)(−a + b + c) (14.1)

and
A =

abc
4R

or equivalently R =
abc
4A

(14.2)

So there is an one-to-one relation between the set of all integral
triangles with rational/integral area and the set of all integral
triangles with rational circumradius. The set of all integral
triangles with integral area is well studied as the Heronian
triangles.
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Part 1

The sides being integral implies the existance of a minimal
circumradius Rmin. For a given p there exist only finitely many q
with p

q > Rmin. So there are only finitely many q with R = p
q the

circumradius of an integral triangle.

Part 2

The case q = 1 is trivial, as it is a well known fact that there
are infinitely many numbers p where p is the hypothenuse of a
Pythagorean triangle. Scaling by two gives an integral triangle
with circumradius R = p.

For the case q > 1 we use a parametric representation of the
Heronian triangles as found in [1]

a = n(m2 + k2) (14.3)

b = m(n2 + k2) (14.4)

c = (m + n)(mn− k2) (14.5)

A = kmn(m + n)(mn− k2) (14.6)

For any integers m, n and k with mn > k2 > m2n
(2m+n) , gcd(m, n, k) =

1 and m ≥ n ≥ 1 we have one member of each simularity class of
the Heronian triangles.

Using this and (2) we get

R =
(m2 + k2)(n2 + k2)

4k
(14.7)

In our case we do not need the restriction to unique reduced
Heronian triangles. For the problem at hand we only need the
triangle inequalities a + b > c, a + c > b and b + c > a, together
with mn− k2 > 0. As we can easily see this can be realised by
m > k, n > k and k ≥ 1.

Let k = q and p = (m2+q2)(n2+q2)
4 . All we have to prove is

the existance of infinitely many (m, n) such that 4 is a divisor
of (m2 + q2)(n2 + q2). If q is even than choose n > q with
gcd(n, q) = 2 so 4|(n2 + q2), let m > q be a positive integer with
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gcd(m, q) = 1. If q is not even choose n > q and m > q both
not even with gcd(n, q) = gcd(m, q) = 1, so 2|(n2 + q2) and
2|(m2 + q2).

The sums m2 + q2 and n2 + q2 or ( n
2 )

2 + ( q
2 )

2 are so called primi-
tive sums of two squares, defined by x2 + y2 with gcd(x, y) = 1.
For a prime divisor of such a primitive sum x2 + y2 it is not possi-
ble to be a divisor of y. In all cases we easily verify that we have
a Heronian triangle with circumradius R = p

q with gcd(p, q) = 1,
so we have infinitely many of them.

Reference

[1] Buchholz, R. H., Perfect Pyramids, Bull. Austral. Math. Soc.
45, nr 3, 1992.
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Problem A NAW 5/6 nr. 2, June 2005

The problem

Introduction

A student association organises a large-scale dinner for 128

students. The chairs are numbered 1 through 128. The students
are also assigned a number between 1 and 128. As the students
come into the room one by one, they must sit at their assigned
seat. However, 1 of the students is so drunk that he can’t find his
seat and takes an arbitrary one. Any sober student who comes in
and finds his seat taken also takes an arbitrary one. The drunken
student is one of the first 64 students. What is the probability
that the last student gets to sit in the chair assigned to him?

Solution

We solve this problem for n students with n > 1. Without loss
of generality we may assume that the first student is drunk, see
below. There are three possibilities: student 1 seats on seat 1

(we call this success, because student n will be seated on seat
n), student 1 seats on seat n (failure) or student 1 seats on a
remaining arbitrary seat k.

In the last case the next students with numbers less than k
will be seated on their assigned seat. Student k will now act
as a drunken student by taking an arbitrary free seat. So in a
way student k becomes the new number ’1’ of a corresponding
problem with n − k + 1 students. The choices are: Student ’1’
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seats on seat 1 (success), he or she seats on the last seat (failure)
or again the choice of an arbitrary free seat. This process is
repeated until we have eventually two students, the ’first’ and
the last and there are only two choices, one leads to success, the
other to failure.

In the end ’success’ and ’failure’ are completely symmetric in
this story. In all possible stages of the process success and failure
have the same probability, so the probability the last student will
be seated on the last chair is 1/2.

See http://www.nieuwarchief.nl/serie5/pdf/naw5-2005-06-4-
332.pdf

http://www.nieuwarchief.nl/serie5/pdf/naw5-2005-06-4-332.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2005-06-4-332.pdf
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Problem C NAW 5/6 nr. 2, June 2005

The problem

Introduction

1 In what follows, P stands for the set consisting of all odd 1 This problem plays a role in
a few sequences in the OEIS:
http://oeis.org/A111774,
http://oeis.org/A111775,
http://oeis.org/A111787,
http://oeis.org/A109814

and
http://oeis.org/A174090

prime numbers; M is the set consisting of all natural 2-powers
1, 2, 4, 8, 16, 32, ...; T is the set consisting of all positive integers
that can be written as a sum of at least three consecutive natural
numbers.

1. Show that the set theoretic union of P, M and T coincides
with the set consisting of all the natural numbers..

2. Show that the sets P, M and T are pairwise disjoint.

3. Given b ∈ T, determine t(b) in terms of the prime decomposi-
tion of b, where by definition t(b) stands for the minimum of
all those numbers t > 2 for which b admits an expression as
sum of t consecutive natural numbers.

4. Consider the cardinality C(b) of the set of all odd positive
divisors of some element b of T. Now think of expressing this
b in all possible ways as a sum of at least three consecutive
natural numbers. Suppose this can be done in S(b) ways.
Determine the numerical connection between the numbers
C(b) and S(b).

Remark: In this problem we clearly follow the convention not to
include zero in the natural numbers.

http://oeis.org/A111774
http://oeis.org/A111775
http://oeis.org/A111787
http://oeis.org/A109814
http://oeis.org/A174090
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Solution

First let
a = pe0

0 · p
e1
1 · · · p

em
m (16.1)

be the ’prime decomposition’ of a positive integer a with p0 = 2,
e0 ≥ 0 and p1, ..., pm odd primes with ei > 0 for i = 1, ..., m. We
want to write a as the sum of k consecutive natural numbers
starting with n.

a = n+(n+ 1)+ · · · (n+ k− 1) = k ·n+
k(k− 1)

2
= k(2n+ k− 1)/2

So
‘2a = k · (2n + k− 1) (16.2)

We define k to be the smallest factor, thus k <
√

2a. We observe
that only one of the factors is odd.

Part 1 and 2

When a is a power of 2 we can only have k = 1. A power of two
is clearly not an odd prime and vice versa. An odd prime can
only be written as a sum of 2 consecutive natural numbers (k =

2). For all other positive integers we have at least one odd prime
divisor pi. Let k = pi ≥ 3 and n = (2a/k− k + 1)/2. It follows
that a can be written as the sum of at least three consecutive
positive integers starting with n. The rest is trivial.

Part 3

Let b = a ∈ T and p1 the smallest odd prime divisor of b. From
(2) it follows that if e0 = 0, meaning b is odd, we have t(b) = p1,
else t(b) = min(2e0+1, p1).

Part 4

Let again be b = a ∈ T. We use the prime decomposition (1) to
find the number of all odd divisors of b. We easily see that this
number must be
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(e1 + 1) · (e2 + 1) · · · (em + 1). So C(b) = (e1 + 1) · (e2 + 1) · · · (em +

1).

S(b) is the number of ways b can be expressed as sum of at least
three positive integers.

From (2) it follows that for each odd divisor of b we can find a
k <

√
2a. We must exclude k = 1 and k = 2. Only in case of

an odd b we can have k = 2, so S(b) = C(b)− 2 if b is odd and
S(b) = C(b)− 1 if b is even.

See http://www.nieuwarchief.nl/serie5/pdf/naw5-2005-06-4-
332.pdf

http://www.nieuwarchief.nl/serie5/pdf/naw5-2005-06-4-332.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2005-06-4-332.pdf
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Problem B NAW 5/5 nr. 3, October 2005

The problem

Introduction.

1. Let G be a group and suppose that the maps f , g : G → G with
f (x) = x3 and g(x) = x5 are both homomorphisms. Show that G
is Abelian.

2. In the previous excercise, by which pairs (m, n) can (3, 5) be
replaced if we still want to be able to prove that G is Abelian.

Solution.

Part 1

Let (ab)5 = a5b5 for all a, b ∈ G, then we easily see that (ba)4 =

a4b4. Now (ab)3 = a3b3 for all a, b ∈ G and hence (ba)2 = a2b2.
So (a2b2)2 = a4b4 and b2a2 = a2b2. Hence in G squares commute.

Now a4b4 = b4a4 = (ba)4 and so b3a3 = (ab)3 = a3b3 and hence
in G cubes commute. In the solution of Opgave 2003-4B from the
UWC 1 it is proved that in this case G is Abelian. 1 See Chapter 5

Part 2

We define fn(x) = xn for x ∈ G. fm and fn are homomorphisms.

The case m = 2 (m ≤ n) is trivial because from (ab)2 = a2b2

follows immediately ba = ab, etcetera.
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From (ab)m = ambm and (ab)n = anbn (m < n) follows (ba)m−1 =

am−1bm−1 and (ba)n−1 = an−1bn−1.

If k(m− 1) = n− 1 and m− 1 = n− m we get (am−1bm−1)k =

an−1bn−1. So n = 2m− 1 and k = 2 and we may conclude that the
(m− 1)-th powers commute.

See http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-1-
066.pdf

See also

Vlastimil Dlab, A note on powers of a group, Acta Sci. Math.
(Szeged) 25, 1964, pp. 177-178.

http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-1-066.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-1-066.pdf


problem c naw 5/6 nr. 4, december 2005 61

18

Problem C NAW 5/6 nr. 4, December 2005

The problem

Introduction

For a finite affine geometry there are a finite number of points
and the axioms are as follows:

1. Given two distict points, there is exactly one line that includes
both points.

2. The parallel postulate: Given a line L and a point P not on L,
there exists exactly one line through P that is parallel to L.

3. There exists a set of four points, no three collinear.

We denote the set of points by P, and the set of lines by L. We
define an automorphisme or collineation σ the usual way (a
collineation keeps collinearity).

Prove that there exist a point P ∈ P with σ(P) = P or a line L ∈ L
with σ(L) = L or σ(L) ∩ L = ∅.

Solution

Let π be a finite affine plane of order n. π can be canonically
embedded in a projective plane π̄ of order n by adding a line L∞

and a point on every line L of π: L ∧ L∞, where parallel lines L
and L′ share the same point on L∞.
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π̄ has n2 + n + 1 points Pi and an equal number of lines Li. Let
N = n2 + n + 1. We define an incidence matrix A = (aij) of order
N:

aij = 1 if Pi ∈ Lj and aij = 0 if Pi /∈ Lj

We see that
AAT = AT A = nI + J (18.1)

with J a matrix with every entry 1.

A collineation σ of π can be extended to a collineation of π̄,
also indicated by σ. σ acts on the points Pi as a permutation P
and as a permutation Q on the lines Li. We write P and Q as
(0, 1)-matrices of order N with entries:

pij = 1 if σ(Pi) = Pj

qij = 1 if σ(Li) = Lj

and pij = 0, qij = 0 otherwise.

We now have
AQ = PA

and according to (1) we have

(det(A))2 = det(nI + J) = (n + 1)2nN−1 > 0

So
Q = A−1PA

P and Q are similar as matrices, but also as permutations. Es-
pecially P and Q have the same number of cycles of length one,
also called fixed "points".

σ(L∞) = L∞, so there must be at least one fixed point. If there
are no fixed points on L∞ there is a affine point P with σ(P) = P.
If there is a fixed point on L∞, say L ∧ L∞, then σ(L) ‖ L, meaning
σ(L) = L or σ(L) ∩ L = ∅.

See http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-
2-147.pdf By mistake my name is not mentioned. I think my
method is quite original.

http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-2-147.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-2-147.pdf
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Problem B NAW 5/7 nr. 1, March 2006

The problem

Introduction

Let P = (0, 0) and Q = (3, 4). Find all points T = (x, y) such that

• x and y are integers,

• the length of the line segments PT and QT are integers.

Solution

Let the length of the line segments PT and QT be denoted by
|PT| and |QT|. |PT| − |QT| can take integer values ranging from
-5 to 5. Let ||PT| − |QT|| = d with d = 0, 1, 2, 3, 4, 5. So

(
√
(x2 + y2 −

√
(x− 3)2 + (y− 4)2)2 = d2

and

(36− 4d2)x2 + 96xy+(64− 4d2)y2 +(−300+ 12d2)x+(−400+ 16d2)y+(d2− 25)2 = 0

For d = 0 this simplifies to y = −6x+25
8 with clearly no integer

solutions.

For d = 5 the equation simplifies to 4x− 3y = 0 with solutions
(x, y) = (3k, 4k) with integer k.

For d = 4 the equation reduces to −28x2 + 96xy− 108x− 144y +

81 = 0 with

y =
(2x− 9)(14x− 9)

48(2x− 3)
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clearly with no integer solutions.

For d = 3 we get 96xy + 28y2 − 192x− 256y + 256 = 0 and

x =
(7y− 8)(y− 8)

24(y− 2)

with obvious solution (0, 8). Less easier to find is (3,−4). There
are no other integral solutions.

For d = 2 the equation becomes 20x2 + 96xy + 48y2 − 252x −
336y + 441 = 0. Solving for x we get

x =
63
10
− 12

5
y± 1

5

√
84y2 − 336y + 441

Hence 84y2 − 336y + 441 = 84(y− 2)2 + 105 must be square. Let
Y = y − 2, then we have to solve Pell’s equation X2 − 84Y2 =

105. This equation has an infinity of solutions based on the
fundamental solution (21, 2), but a corresponding x is not integer.
As we can see from

x =
63
10
− 12

5
(Y + 2)± 1

5
X =

15− 24Y± 2X
10

For d = 1 we have the equation 32x2 + 96xy + 60y2 − 288x −
384y + 576 = 0. Solving for x we get:

x =
9
2
− 3

2
y± 1

4

√
6y2 − 24y + 36

We want 6y2 − 24y + 36 = 6(y − 2)2 + 12 to be square. Let
Y = y − 2, then we solve the Pell equation X2 − 6Y2 = 12.
(X, Y) = (6, 2) is a solution. The equation X2 − 6Y2 = 1 has
fundamental solution (5, 2).

We use the following result: If p, q is a solution of x2 − Dy2 = N,
and r, s is a solution to x2 − Dy2 = 1, then x = pr + qsD,
y = ps + qr is also a solution of x2 − Dy2 = N, because (pr +
qsD)2 − D(ps + qr)2 = (p2 − Dq2)(r2 − Ds2).

We define the matrix

A =

(
r sD
s r

)
=

(
5 12
2 5

)
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Now we define (
Xn

Yn

)
= An

(
p
q

)
= An

(
6
2

)

For each n ≥ 0 we define X = ±Xn and Y = ±Yn. So for each
n ≥ 0 we find four solutions (x, y) with

y = Y + 2 and x =
X− 6Y + 6

4

Results of a SAGE [1] program for calculating (x, y):

(0, 4) (−3, 4) (3, 0) (6, 0)
(−18, 24) (−45, 24) (21,−20) (48,−20)
(−192, 220) (−459, 220) (195,−216) (462,−216)
(−1914, 2160) (−4557, 2160) (1917,−2156) (4560,−2156)
(−18960, 21364) (−45123, 21364) (18963,−21360) (45126,−21360)
(−187698, 211464) (−446685, 211464) (187701,−211460) (446688,−211460)
(−1858032, 2093260) (−4421739, 2093260) (1858035,−2093256) (4421742,−2093256)

Reference

[1] William Stein, David Joyner, SAGE 1 : System for Algebra and 1 SAGE is now
called SageMath, see
http://www.sagemath.org/

Geometry Experimentation, Comm. Computer Algebra 39 (2005)
61-64.

See also: http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-
3-219.pdf

http://www.sagemath.org/
http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-3-219.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-3-219.pdf
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Problem B NAW 5/7 nr. 2 , December 2005

The problem

Introduction

Imagine a flea circus consisting of n boxes in a row, numbered
1, 2, ..., n. In each of the first m boxes there is one flea (m ≤
n). Each flea can jump upwards or forwards to boxes with a
maximal distance d = n−m. For all fleas all d + 1 jumps have the
same probability.

The director of the circus has marked m boxes to be special
targets. On his sign all m fleas jump simultaneously.

1. Calculate the probability that after the jump exactly m boxes
are occupied.

2. Calculate the probability that all the m marked boxes are
occupied.

Solution

Part 1

Let d = n−m. The jumps of the fleas corresponds to a bipartite
graph G. We can associate a (0,1)-matrix B of size m by n with
this graph. We have bij = 1 if and only if i ≤ j ≤ i + d. A
matching M with cardinality t corresponds in the matrix B to a
set of t ones with no two of the ones on the same line. The total
number of jumps with exactly m boxes occupied is the number
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of matchings with |M| = m is per(B), the permanent of B. See
[1], p. 44.

The asked probability is per(B)
(d+1)m .

Part 2

Let A be the set of marked boxes, so A = {a1, a2, ..., am} is a
subset of {1, 2, 3, ..., n}, with 1 ≤ a1 < a2 < ... < am ≤ n
and (m > 0, m ≤ n). A succesful jump of the fleas can be
associated with a permutation of the elements of A. We are
looking for permutations π of the elements of A with restrictions
on permitted positions such that k ≤ π(k) ≤ k + d for all
1 ≤ k ≤ m. With this restrictions we can associate a (0,1)-matrix
C = [cij], where cij = 1, if and only if aj is permitted in position i,
meaning i ≤ aj ≤ i + d.

Compare Problem 29 from NAW 5/3 nr. 1 March 2002.

We define SC as the set of all permitted permutations, to be more
precise

SC = {π|
m

∏
i=1

ciπ(i) = 1} (20.1)

The number of elements of SC can be calculated by summing
over all possible π

|SC| = ∑
π

m

∏
i=1

ciπ(i) = per(C) (20.2)

where per(C) is the permanent of C. See [2].

So the asked probability is per(C)
(d+1)m .

References

[1] Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge
University Press, 1991.

[2] The Dancing School Problems: The Dancing School Problems:
http://www.jaapspies.nl/mathfiles/problems.html

http://www.jaapspies.nl/mathfiles/problems.html 
http://www.jaapspies.nl/mathfiles/problems.html 
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Problem C NAW 5/7 nr. 3, September 2006

The problem

Introduction

Consider the triangle ABC inscribed in an ellipse. For given A
the other vertices can be adjusted to maximize the circumfer-
ence. Prove or disprove that this maximum circumference is
independent of the position of A on the ellipse.

Solution

We show that the maximal circumference is independent of point
A.

Let E and E′ be ellipses with the same foci F1 and F2. Ellipse
E′ is inside E and sufficiently close to E. Let the points A, B, C
and X be on E, such that the line segments AB, BC and CX are
tangent to E′. In general the points A and X do not coincide, but
if we shrink ellipse E′ continously this will be eventually the case
for E′ = E0. In this situation we have a triangle ABC inscribed in
E with maximal circumference.

Figure 21.1: Illustration from
note[1]

If we now move point A along ellipse E, we see that according to
a theorem of Poncelet we always have a triangle inscribed in E
and

circumscribed around E0 with by construction a maximal cir-
cumference. Chasles, Darboux and others proved that all this
triangles have the same maximal circumference. See for exam-
ple [1] Livre III, Chapitre III, part 176, p. 283. 1 We follow the 1 www.nieuwarchief.nl serie

5 deel 08

http://www.nieuwarchief.nl/serie5/pdf/naw5-2007-08-3-232.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2007-08-3-232.pdf
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historical proof of Darboux, using ’infinitesimal’ arguments. Let
triangle ABC be defined as above. We have tangents AP and AQ
with P and Q on ellipse E0. Triangle ABC is a ’billiard triangle’,
meaning the tangents make equal angles tot the normal of E in
point A. We move A to A′ over an ’infinitesimal’ distance and
the corresponding points P and Q move to P′ and Q′. Taking in
account the properties of tangents we have

d(AP) = −AA′cos(A′AP) + PP′

and
d(AQ) = −AA′cos(A′AQ)−QQ′

and with the fact that the angles A′AP and A′AQ are supple-
mentary, we get

d(AP + AQ) = PP′ −QQ′ = d(arc(PQ))

Hence the difference D = (AP + AQ)− arc(PQ) is constant.

Doing this for all vertices of triangle ABC this leads to 3D =

O−O′, O being the circumference of ABC and O′ the perimeter
of the ellipse E0.

Conclusion: The maximal circumference is independent of the
position of A.

This problem can easily be generalized to an n-sided (convex)
polygon inscribed in an ellipse for n ≥ 3.

See: http://www.nieuwarchief.nl/serie5/pdf/naw5-2007-08-3-
232.pdf

Remark

For a treatment independent of Poncelet’s Theorem see George
Lion, Variational Aspects of Poncelet’s Theorem, Geometricae
Dedicata 52, 105-118, 1994.

References

[1] Darboux, G: Principes de Géométrie analytique, Gauthier-
Villars, Paris, 1917. Available in facsimile: http://gallica.bnf.fr

http://www.nieuwarchief.nl/serie5/pdf/naw5-2007-08-3-232.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2007-08-3-232.pdf
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Problem C NAW 5/7 nr. 4, December 2006

The problem

Introduction

Let G be a finite group of order p + 1 with p a prime. Show that p
divides the order of Aut(G) if and only if p is a Mersenne prime,
that is, of the form 2n − 1, and G is isomorphic to (Z/2)n.

Solution

Let p be a Mersenne prime with p = 2n − 1 and G be isomorphic
to (Z2)

n, so G is an elementary Abelian group of order 2n. It
is a well known fact that the group of automorphisms of the
elementary Abelian group of order qr is of order (qr − 1)(qr −
q)...(qr − qr−1), the order of GL(r, q). Hence p = 2n − 1 is a
divisor of |Aut(G)|. Let now p be a divisor of |Aut(G)|. |G| =
p + 1, so there are p elements of G not equal the identity e, say
g1, g2, ..., gp. Clearly p > 2, so p + 1 is even, so according to the
first Sylow Theorem 1 there is a subgroup of G of order 2, and 1 See for instance Marshall

Hall, Jr. The Theory of
Groups Chapter 4.

hence there is an element g of order 2. As p is a divisor of the
order of the automorphism group of G, we need all possible
automorphisms with g → gi, i = 1, 2, ..., p, hence all elements gi

are of order 2.

So G is isomorphic to (Z/2)n with p + 1 = 2n and hence p =

2n − 1 is a Mersenne prime.
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Problem A NAW 5/8 nr. 1, April 2007

The problem

Introduction

Define the sequence {un} by u1 = 1, un+1 = 1 + (n/un). Prove or
disprove that

un − 1 <
√

n ≤ un

Solution

By definition we have u1 = 1, un+1 = 1 + (n/un) and hence
un(un+1 − 1) = n.

So
√

n =
√

un(un+1 − 1) is the geometric mean of un and
un+1 − 1 and therefor

un+1 − 1 ≤
√

n ≤ un

for all n ≥ 1.

Further we have for n ≥ 2

un − 1 ≤
√

n− 1 <
√

n

This inequality holds also for n = 1, so we proved

un − 1 <
√

n ≤ un

for all n ≥ 1.
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Problem B NAW 5/8 nr. 1, April 2007

The problem

Introduction

Given a non-degenerate tetrahedron (whose vertices do not all
lie in the same plane), which conditions have to be satisfied in
order that the altitudes intersect at one point?

Solution

Let T be such a tetrahedron with vertices A0, A1, A2 and A3 in a
Euclidean space E. We define āi = ~OAi and

ēij = āi − āj (24.1)

for i 6= j. The vector ēij is a direction vector of the edge Ai Aj.

The altitude hi passing through Ai is determined by the follow-
ing equations

ējk · (āi − x̄) = 0

ējl · (āi − x̄) = 0 (24.2)

ēkl · (āi − x̄) = 0

with {i, j, k, l} = {0, 1, 2, 3}.

Note that we need only two of them to determine hi.

We now proof the following Lemma:
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An altitude hi intersects with an altitude hj if and only if

ēkl · ēij = 0 (24.3)

Proof: From (2), the altitude hi is determined by the equations

ējk · (āi − x̄) = 0

ēkl · (āi − x̄) = 0

and the altitude hj is determined by the equations

ēli · (āj − x̄) = 0

ēkl · (āj − x̄) = 0

Let P be on hi and hj. Let p̄ be the point vector of P. Then ēkl ·
(āi − p̄) = 0 and ēkl · (āj − p̄) = 0 and hence

ēkl · (āi − āj) = ēkl · ēij = 0

From (3) it follows that ēkl · āi = ēkl · āj and so two of the four
equations are equal. Three planes intersect in one point unless
they are parallel to a line. This is clearly not the case since T is
non-degenerate and the vectors ējk, ēkl and ēil are independent.
So hi and hj must have a point in common.

For reasons of symmetry the same holds for the altitudes hk and
hl .

Definition: A tetrahedron is called orthocentric if the altitudes
intersect in one point.

Theorem: The following statements are equivalent:

i) T is orthocentric.

ii) All opposite edges are orthogonal.

Proof: i)⇒ ii). This follows immediately from the lemma.

ii)⇒ i). We now have

ēij · ēkl = ēik · ējl = ēil · ējk = 0

So by the lemma, any two altitudes intersect. The four altitudes
are not in the same plane, so there must be a common point.
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Problem A NAW 5/8 nr. 2, August 2007

The problem

Introduction

1. Find the largest number c such that all natural numbers n
satisfy

n
√

2− bn
√

2c ≥ c
n

2. For this c, find all natural numbers n such that n
√

2− bn
√

2c =
c
n

Solution

Let p = bn
√

2c and q = n, so we have to find the largest c for
which √

2− p
q
≥ c

q2 (25.1)

holds for all natural numbers q.

We define a function f : x → x2 − 2. The equation f (x) = 0 has a
solution x =

√
2. We note that p

q is an approximation of
√

2 and

that 1 ≤ p
q <
√

2.

Let M be the maximal value of f ′(x) = 2x in the interval

[1,
√

2], so M = 2
√

2. Now f ( p
q ) = ( p

q )
2 − 2 = p2−2q2

q2 , hence∣∣∣ f ( p
q )− f (

√
2)
∣∣∣ ≤ 1

q2 .

By the mean-value theorem we get:

f (
p
q
)− f (

√
2) = f ′(ξ)(

p
q
−
√

2)



78 a bit of math

for some ξ in the interval [1,
√

2].

Hence
√

2− p
q
=

∣∣∣∣ p
q
−
√

2
∣∣∣∣ ≥ 1

Mq2 =
1
4

√
2

q2

Mutatis mutandi we have found c = 1
4

√
2.

For this c there clearly is no n satisfying the equality of question
2.

Remark

According to [Hardy]1 the numbers
√

5 and 2
√

2 play a crucial 1 G. H. Hardy. An introduction
to the theory of numbers.
Clarendon Press Oxford
University Press, Oxford
New York, 1979. ISBN
0198531710

role in approximations of irrational numbers by rationals. For
instance the Theorem: Any irrational ξ 6= 1

2 (
√

5 − 1) has an
infinity of rational approximations for which∣∣∣∣ p

q
− ξ

∣∣∣∣ < 1
2q2
√

2
=

1
4

√
2

q2

Interesting, isn’t it?

Reference

[Hardy] Hardy, Wright, An Introduction to the Theory of Num-
bers, 5th edition, Oxford.
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Problem C NAW 5/8 nr. 4, December 2007

The problem

Introduction

Let G be a finite group with n elements. Let c be the number of
pairs (g1, g2) ∈ G × G such that g1g2 = g2g1. Show that either
G is commutative or that 8c ≤ 5n2. Show that if 8c = 5n2 then 8

divides n.

Solution

We need some elementary group theory and notation. Let Z(g)
be the centralizer of g ∈ G and K(g) the conjugacy class contain-
ing g. Z is the center of G.

We now have |G| = n, c = ∑g∈G |Z(g)| and

|K(g)| = [G : Z(g)] =
|G|
|Z(g)| =

n
|Z(g)|

We write the ratio

r =
c

n2 =
∑g∈G |Z(g)|

n2 =

=
1
n2 · ∑

g∈G

n
|K(g)| =

=
1
n
· ∑

g∈G

1
|K(g)| =

k
n

where k is the number of conjugacy classes.
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We note that r = 1 if and only if G is commutative. So from now
on let G be a non Abelian group.

We proof the following lemma:

The order of G/Z can not be a prime number.

Proof: As groups with order a prime are cyclic it is enough
to proof that G/Z can not be cyclic. Suppose G/Z be cyclic
generated by Zx. We get

G = Z ∪ Zx ∪ (Zx)2 ∪ (Zx)3 ∪ · · · = Z ∪ Zx ∪ Zx2 ∪ Zx3 ∪ · · ·

and now arbitrary elements g1 = z1xi and g2 = z2xj clearly
commute. This is a contradiction.

In order to maximise the number of conjugacy classes k we must
maximise |Z| the number of conjugacy classes with only one
element. From the lemma it follows that |G/Z| ≥ 4 and so
|Z| ≤ 1

4 |G|. The other conjugacy classes must have 2 or more
elements. Hence

k ≤ 1
4
|G|+ 1

2
· 3

4
|G| = 5

8
n

so that
r ≤ 5

8
and therefor

8c ≤ 5n2

.

If r = 5
8 and hence k = 5

8 n it is trivial that 8 is a divisor of n.
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Problem A NAW 5/9 nr. 1, March 2008

The problem

Introduction

Denote the fractional part of a positive real number x by {x}.
Evaluate the following double integral:∫ 1

0

∫ 1

0

{
x
y

}{ y
x

}
dxdy

Solution

Let z =
{

x
y

} { y
x
}

, then

z =

(
x
y
−
⌊

x
y

⌋) ( y
x
−
⌊ y

x

⌋)
= 1− x

y

⌊ y
x

⌋
− y

x

⌊
x
y

⌋
+

⌊
x
y

⌋ ⌊ y
x

⌋

=


0 if x = y

1− x
y b

y
x c if x < y

1− y
x b

x
y c if x > y

for 0 < x ≤ 1 and 0 < y ≤ 1.

By symmetry we have

I =
1∫

0

1∫
0

z dxdy = 2
1∫

0

y∫
0

z dxdy = 2
1∫

0

y∫
0

(1−
⌊ y

x

⌋ x
y
)dxdy

Now if n ≤ y
x < n + 1 we have b y

x c = n, z = 1 − n x
y and

1
n+1 y < x ≤ 1

n y.
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We define

In =

1∫
0

1
n y∫

1
n+1 y

(1− n
x
y
)dxdy

We can easily check that

In =
1
4
(

1
n
− 1

n + 1
− 1

(n + 1)2 ) =
1

4n(n + 1)2

and

I = 2
∞

∑
n=1

In = 2
∞

∑
n=1

1
4n(n + 1)2 =

∞

∑
n=1

1
2n(n + 1)2 = 1− π2

12
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Problem B NAW 5/10 nr.2, June 2009

The problem

Introduction

A magic n× n matrix of order r is an n× n matrix whose entries
are non-negative integers and whose row and column sums are
all equal to r. Let r > 0 be an integer. Show that a magic n× n
matrix of order r is the sum of r magic n× n matrices of order 1.

Solution

Let A be an n × n magic matrix of order r. We want to assert
that A has n positive entries with no two positive entries on a
line. This looks trivial but it is not. We need a famous Minimax
Theorem of König. This theorem is known in various equivalent
forms and there are all kinds of proof in literature. We follow the
notation of [1]1. 1 Richard Brualdi. Combinato-

rial matrix theory. Cambridge
University Press, Cambridge
England New York, 1991.
ISBN 0521322650

Let A be an m× n matrix with elements from a ring R. The mini-
mal number of lines in A that cover all the non-zero elements of
A is equal the the maximal number of non-zero elements in A
with no two of the non-zero elements on a line.

We now return to our magic matrix A. If A does not have n

positive entries with no two on a line, then by König’s theorem
we could cover all the positive entries in A with x rows and
y columns, where x + y < n. All line sums are equal to r, so
(x + y) · r counts up to at least nr. We now have n ≤ x + y < n,
which is a contradiction.
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Let P1 be the permutation matrix of order n with ones in the
same position as those occupied by the n positive entries of A.
Let c1 be the smallest one of those positive entries. Then clearly
X1 = A− c1P1 is a magic matrix of order r− c1 with at least one
more zero and A = c1P1 + X1.

Applying the same argument on X1 gives X2 = X1 − c2P2,
iterating until we get an all zero matrix Xt, we obtain

A = c1P1 + c2P2 + · · ·+ ctPt

Multiplying by J, the n× n matrix with all ones, we get

c1 + c2 + · · ·+ ct = r

We now note that ciPi equals the sum of ci copies of Pi and Pi is
a magic matrix of order 1. So we have decomposed A in r magic
matrices of order 1.

References

[1] R.A Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cam-
bridge University Press, 1991.
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Problem B NAW 5/10 nr.3, September 2009

The problem

Introduction

Find all functions f : R>0 → R>0 such that

f (x + y) ≥ f (x) + y f ( f (x)) (29.1)

for all x and y in R>0

Solution

Let us rewrite (1) a bit to:

f (x + y) = f (x) + y f ( f (x)) + ε(x, y) (29.2)

with ε(x, y) ≥ 0 and {limy↓0ε(x, y) = 0.

This reminds us to the lecture notes of Prof. Van der Blij in the
early sixties:

f (x + h) = f (x) + h f ′(x) + ε∗(x, h) (29.3)

with limh→0
ε∗(x,h)

h = 0.

We easily see that a solution of the functional-differential equa-
tion

f ′(x) = f ( f (x)) (29.4)

with domain D f ⊂ R>0 can satisfy (2).

According to the references [1] and [2] solutions with x > 0 and
f (x) > 0 exist, but not with D f = R>0. A typical solution has the
following properties:
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1. We have an x0 > 0 with f (x0) < x0

2. There is a σ depending on x0 with 0 < σ ≤ 1 and f (σ) = σ.

3. We have a b > σ with f (b) < b

4. There is a c > b with f (c) = c.

5. The function f is increasing.

6. D f =< 0, c] ⊂ R>0.

Those solutions can not be continued for values of x larger than c

Our conclusion is that there are no functions f with domain
D f = R>0 satisfying (1).

For an elegant solution see: http://www.nieuwarchief.nl/serie5/pdf/naw5-
2010-11-1-074.pdf

References

[1] Eder, Elmar: The functional differential equation x′(t) = x(x(t)).
J. Diff. Eq. 54 (1984), 390-400.

[2] Wang Ke: On the Equation x′(t) = f (x(x(t))). Funcialaj
Ekvacioj, 33 (1990), 405-425.

http://www.nieuwarchief.nl/serie5/pdf/naw5-2010-11-1-074.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2010-11-1-074.pdf


87

Part II

Special Problems





naw problem 26 89

30

NAW Problem 26

Abstract

Does there exist a triangle with sides of integral lengths such
that its area is equal to the square of the length of one of its
sides?
The answer is no.

The problem

Introduction.

Does there exist a triangle with sides of integral lengths such
that its area is equal to the square of the length of one of its
sides?

Solution 1.

We can scale to integral sides easily, so suppose we have a trian-
gle with rational sides a, b and c with area A. Then the famous
Heron formula gives

(4A)2 = (a + b + c)(a + b− c)(a− b + c)(−a + b + c)

= (x + c)(x− c)(y + c)(−y + c)

= (x2 − c2)(−y2 + c2)

with x = a + b and y = a− b.
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Without loss of generality we may state that A = 1 and c = 1. So
we have

(x2 − 1)(y2 − 1) = −16

Does this equation have rational solutions?

We make substitutions X = x and Y = y(x2 − 1)− x2. Rearanging
we get

(Y + X2)2 − (X2 − 1)2 = −16(X2 − 1)

Substitution of X = 1/U − Y and solving for U means solving a
quartic with discriminant −2Y3 − 18Y2 + 34Y + 306. So we are
looking for a rational solution of

Z2 = −2Y3 − 18Y2 + 34Y + 306

Y = −1 and Z = 16 represents a solution, so we can write

v2 = 2u3 − 12u2 − 64u + 256

where v = Z and u = −Y− 1.

This equation of an elliptic curve can be transformed into a
Weierstrass equation (N.B.: new meaning of x and y):

y2 − 4xy + 64y = x3 − 16x2

Which can be reduced to minimal form

y2
1 + x1y1 + y1 = x3

1 − x2
1 − x1

This means that we have the elliptic curve (17 A 4 [1,-1,1,-1,0] 0 4)
from the appropriate Cremona table1. This curve has rank zero, 1 http://johncremona.github.io/ecdata

so in the torsion group we find all rational solutions: (0,0), (0,-1)
and (1,-1). It is easily verified that this result gives no solutions
to our original problem.

Solution 2.

Suppose a triangle ABC exists with integral sides a, b and c
with basis c, area c2 and height CD = 2c. Let BD = d, then

http://johncremona.github.io/ecdata
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d2 = a2 − 4c2 and d =
√

a2 − 4c2. We consider the case that ABC
is obtuse (The acute case is left as an excercise).

b2 = (c + d)2 + 4c2

= (c +
√

a2 − 4c2)2 + 4c2

= a2 + c2 + 2c
√

a2 − 4c2

Here a, b and c are integral, so also d =
√

a2 − 4c2 must
be an integer and therefore the triangles BDC and ADC are
Pythagorean.

A well known result states that a Pythagorean triangle can be
parametrized. We leave out some of the details. For BDC we
have a = BC = u2 + v2, BD = u2 − v2 and CD = 2uv, with
integers u, v and u > v. In triangle ADC we have AD = s2 − t2

and CD = 2st, with integers s, t and s > t. While AB = c = uv
we have

s2 − t2 = u2 − v2 + uv

st = uv

Dividing the lefthand side of the first equation by st and the
righthand side by uv we get

s
t
− t

s
=

u
v
− v

u
+ 1

Substitution of y = s
t and x = u

v while st = uv gives

y− 1
y
= x− 1

x
+ 1

By multiplying with xy we get

x2y− xy2 + xy + x− y = 0

This cubic can eventually be transformed into a Weierstrass
equation of an elliptic curve by Nagell’s algorithm. At first we
tried this by hand, but the famous Apec2 lib for MapleV from Ian 2 Connell, Apecs (arithmetic

of plane elliptic curves), a
program written in maple,
available via anonymous
ftp from math.mcgill.ca in
/pub/apecs (1997). This
information is obsolete.
You eventually can find the
Apecs file on the Internet
Archive Wayback Machine.

Connell did it within seconds.

The command Gcub(0, 1,−1, 0, 0, 1, 0, 1,−1, 0, 0, 0); returned
among others:
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present curve is, A17 = [1,−1, 1,−1, 0]

Meaning that we have the same elliptic curve as in solution 1.

Solution 3.

We can scale to integral sides easily, so suppose we have a trian-
gle with rational sides a, b and c with area A. Then the Heron
formula gives

(4A)2 = (a + b + c)(a + b− c)(a− b + c)(−a + b + c)

= (x + c)(x− c)(y + c)(−y + c)

= (x2 − c2)(−y2 + c2)

with x = a + b and y = a− b.

Without loss of generality we may state that A = 1 and c = 1. So
we have

(x2 − 1)(y2 − 1) = −16

Does this equation have rational solutions?

Making the substitutions U = x and V = y(x2 − 1) − x2 and
rearanging we get

(V + U2)2 − (U2 − 1)2 = −16(U2 − 1)

and so
2U2V + 18U2 + V2 − 17 = 0

with solution U = 1 and V = −1.

The Apecs 3 command Gcub(0, 2, 0, 0, 18, 0, 1, 0, 0,−17, 1,−1); 3 I’m still able to run Apecs
for Maple V in Windows
XP running in VirtualBox.
Modern software has
taken over. See for instance
SageMath.

returned among other information:

present curve is, A17 = [1,−1, 1,−1, 0]

Meaning that we have a well known elliptic curve of rank zero
while the order of the torsion group equals 4. So the members
of the torsion group (1,-1), (0,0) and (0,-1) are the only rational
solutions. It is easily verified that this result gives no solutions to
our original problem.
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Solution 4.

A Heron triangle is a triangle with sides of integral length and
integral area. According to K.R.S Sastry [1] every Heron triangle
with sides a, b and c can be parametrized as follows:

Let λ be a rational number such that 0 < λ ≤ 2.

(a, b, c) = (2(m2 + λ2n2), (2 + λ)(m2 − 2λn2), λ(m2 + 4n2)),

m, n being relative prime natural numbers such that m >
√

2λ.n.
For the sides we have a ≥ c and gcd(a, b, c) = 1. The area of this
triangle ∆ = 2λ(2 + λ)mn(m2 − 2λn2).

As one can see ∆ is always a multiple of b. So looking for a
solution of our problem we have to consider ∆ = b2, so

2λmn = (2 + λ)(m2 − 2λn2)

Dividing this equation by n2 gives

2λ
m
n

= (2 + λ)((
m
n
)2 − 2λ)

Making the substitutions U = λ and V = m
n we get

UV2 − 2U2 − 2UV + 2V2 − 4U = 0

with obvious solution U = 0 and V = 0.

This cubic can eventually be transformed into a Weierstrass
equation of an elliptic curve by Nagell’s algorithm.

The Apecs command Gcub(0, 0, 1, 0,−2,−2, 2,−4, 0, 0); returned
among other information:

present curve is, A17 = [1,−1, 1,−1, 0]

Meaning that we have the same well known elliptic curve of
rank zero while the order of the torsion group equals 4. So the
members of the torsion group (1,-1), (0,0) and (0,-1) are the only
rational solutions. It is easily verified that this result gives no
solutions to our original problem.
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[1] K.R.S Sastry, Heron Triangles: A Gergonne-Cevian-and-
Median Perspective, Forum Geometricorum Volume 1 (2001)
17-24

Solution 5.

We can scale to integral sides easily, so suppose we have a trian-
gle ABC with rational sides a, b and c with rational area ∆ and
∠ACB = θ. Since the area ∆ = 1

2 ab sin θ is rational, sin θ must be
a rational number.

According to the law of cosines, c2 = a2 + b2 − 2ab cos θ, so also
cos θ must be rational. Rational points on the unit circle can be
parametrized as follows:

(cos θ, sin θ) = (
1− t2

1 + t2 ,
2t

1 + t2 )

where the point (-1,0) or θ = π is excluded.

Without loss of generality we may state that ∆ = 1 and c = 1. So
we have

1 =
1
2

ab sin θ

1 = a2 + b2 − 2ab cos θ

and therefore ab = 2
sin θ . This results in

a2 + b2 = 1 +
2(1− t2)

t
Let’s try to investigate on this last expression. In triangle ABC
we have height CD = 2 and let AD = x. We can treat the obtuse
and acute case in one formula (the other case is trivial)

a2 + b2 = (x− 1)2 + 4 + x2 + 4

= (1− x)2 + 4 + x2 + 4

= 2x2 − 2x + 9

so 2x2t− 2xt + 9t = −2t2 + t + 2

It is clear that rational a and b give a rational x, but the converse
is apparantly not true. See for instance x = 1

2 , meaning a = b =
1
2

√
17.
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Making the substitutions U = x and V = t and rearanging we
get

2U2V − 2UV + 2V2 + 8V − 2 = 0

This cubic can be transformed into the minimal form of a Weier-
strass equation of an elliptic curve by Nagell’s algorithm.

Y2 + YX + Y = X3 − X2 − 6X− 4

Meaning that we have the elliptic curve (17A2[1,−1, 1,−6,−4], 0, 4)
of rank zero while the order of the torsion group equals 4 from
the Cremona table. So the members of the torsion group (3,-2),
(-1,0) and (-5/4,1/8) are the only rational solutions. It is easily
verified that this result gives no solutions to our original problem
(x = 1

2 and (t = 1
4 or t = −4)).

Solution 6.

We can scale to integral sides easily, so suppose we have a tri-
angle ABC with rational sides a, b and c with rational area ∆.
Without loss of generality we may state that ∆ = 1 and c = 1. Let
the height CD = 2 and AD = x. So, even without a picture we
can see that

a2 = (1− x)2 + 4 = (x− 1)2 + 4

b2 = x2 + 4

In our first attempt we eliminated x from this equations. This
resulted in

(a2 − b2)2 − 2(a2 + b2) + 17 = 0

Trying to solve this elegant equation we have to introduce a
variable say x with x2 = b2 − 4. So we better take the shortcut.

As easily can be seen the rational solutions of our second equa-
tion can be parametrized with rational t by

x =
4t

1− t2 , b =
2(t2 + 1)

1− t2
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Substitution of x in the first equation gives

a2 =
5t4 + 8t3 + 6t2 − 8t + 5

(1− t2)2

So we are looking for the rational solutions of the quartic

y2 = 5t4 + 8t3 + 6t2 − 8t + 5

with integer solution (1,4).

The command Quar(5, 8, 6,−8, 5, 1, 4) from the Apecs package
for MapleV returned among other information:

present curve is, A17 = [1,−1, 1,−1, 0]

Meaning that we have again the well known elliptic curve from
the Cremona table (17 A 4 [1,-1,1,-1,0] 0 4) of rank zero while
the order of the torsion group equals 4. So the members of
the torsion group (1,-1), (0,0) and (0,-1) are the only rational
solutions. It is easily verified that this result gives no solutions to
our original problem.

Solution 7.

We can scale to integral sides easily, so suppose we have a tri-
angle ABC with rational sides a, b and c with rational area ∆.
Without loss of generality we may state that ∆ = 1 and c = 1.
Let the height CD = 2 and BD = x. As we have seen before
the rectangular triangle BDC has a corresponding Pythagorean
triangle which can be parametrized using the integrals u and v.
So we have

x =
u2 − v2

uv
, CD =

2uv
uv

= 2 and a = BC =
u2 + v2

uv
.

and

b2 = 5 + 2x + x2

= 5 + 2
u2 − v2

uv
+ (

u2 − v2

uv
)2

=
u4 + 2u3v + 3u2v2 − 2uv3 + v4

u2v2
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Dividing by v4 and substituting U = u
v , we end up by searching

rational solutions of

V2 = U4 + 2U3 + 3U2 − 2U + 1

with obvious solution (0,1).

The command Quar(1, 2, 3,−2, 1, 0, 1) from the Apecs package
for MapleV returned among other information:

present curve is, A17 = [1,−1, 1,−1, 0]

And we did it again! Meaning that we have once again the well
known elliptic curve from the Cremona table (17 A 4 [1,-1,1,-1,0]
0 4) of rank zero while the order of the torsion group equals 4.
So the members of the torsion group (1,-1), (0,0) and (0,-1) are
the only rational solutions. It is easily verified that this result
gives no solutions to our original problem.

Solution 8.

A Heron triangle is a triangle with sides of integral length and
integral area. We use a parametric representation of the Hero-
nian triangles as found in [1]

a = n(m2 + k2)

b = m(n2 + k2)

c = (m + n)(mn− k2)

∆ = kmn(m + n)(mn− k2)

For any integers m, n and k with mn > k2 > m2n
(2m+n) , gcd(m, n, k) =

1 and m ≥ n ≥ 1 we have one member of each simularity class of
the Heronian triangles.

As one can see ∆ is always a multiple of c. So looking for a
solution of our problem we have to consider ∆ = c2, so

kmn(m + n)(mn− k2) = (m + n)2(mn− k2)2
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Or
kmn = (m + n)(mn− k2)

Dividing this equation by n3 gives

k
n
· m

n
= (

m
n
+ 1)(

m
n
− (

k
n
)2)

Making the substitutions U = m
n and V = k

n we get

UV2 −U2 + UV + V2 −U = 0

with obvious solution U = 0 and V = 0.

This cubic can eventually be transformed into a Weierstrass
equation of an elliptic curve by Nagell’s algorithm. The Apecs
package for MapleV from Ian Connell did this with no pain.

The command Gcub(0, 0, 1, 0,−1, 1, 1,−1, 0, 0); returned among
other information:

present curve is, A17 = [1,−1, 1,−1, 0]

Meaning that we have once again the well known elliptic curve
of rank zero while the order of the torsion group equals 4. So
the members of the torsion group (1,-1), (0,0) and (0,-1) are the
only rational solutions. It is easily verified that this result gives
no solutions to our original problem.

[1] Buchholz, R.H., Perfect Pyramids, Bull. Austral. Math. Soc.
45, nr 3, 1992.

Conclusion.

There is no such triangle.

With thanks to Ian Connell, John Cremona, James Milne and
Dave Rusin.
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NAW Problem 29, January 2003

The Problem

Let n and h be natural numbers with n > 0 and A be a subset of
{1, 2, ..., n + h} with size n. Count the number of bijective maps
π : {1, 2, ..., n} → A such that k ≤ π(k) ≤ k + h for all 1 ≤ k ≤ n.

Solution

Let A = {a1, a2, ..., an} be a subset of {1, 2, 3, ..., n + h}, with
1 ≤ a1 < a2 < ... < an ≤ n + h and (n > 0, h ≥ 0). We are looking
for permutations π of the elements of A with restrictions on
permitted positions such that k ≤ π(k) ≤ k + h for all 1 ≤ k ≤ n.
With this restrictions we can associate a (0,1)-matrix B = [bij],
where bij = 1, if and only if aj is permitted in position i, meaning
0 ≤ aj − i ≤ h.

We define SB as the set of all permitted permutations, to be more
precise

SB = {π|
n

∏
i=1

biπ(i) = 1}

The number of elements of SB can be calculated by

|SB| = ∑
π

n

∏
i=1

biπ(i) = per(B)

where per(B) is the permanent of B.



100 a bit of math

Example

Let n = 4, h = 3 and A = {2, 3, 5, 6}. We can easily see that in
this case we have

B =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1


and per(B) = 5, so there are 5 permitted permutations. Being
(2, 3, 5, 6), (3, 2, 5, 6), (2, 3, 6, 5), (3, 2, 6, 5) and (2, 5, 3, 6).

Implementation

An implementation of the algorithm can be found on the website
of the author:

http://www.jaapspies.nl/mathfiles/problem29.c

For a given n and h this program calculates for all possible
subsets A the number of allowed bijective maps.

Literature

[1] R.A Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cam-
bridge University Press, 1991.

[2] H. Minc, Permanents, Reading, MA: Addison-Wesley, 1978
1. 1 Henryk Minc. Permanents.

Addison-Wesley, Reading,
Mass., 1978

http://www.jaapspies.nl/mathfiles/problem29.c
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The Dancing School Problems, Februari 14, 2003

We give results related to problem 29 of the NAW. There are
connections to Mathematical Recreation and Graph Theory.

The Problem

Introduction.

The Dancing School Poblem:

Imagine a group of n (n > 0) girls ranging in integer length from
m to m + n − 1 cm and a corresponding group of n + h boys
(h ≥ 0) with length ranging from m to m + n + h− 1 cm. Clearly
m is the minimal length of both boys and girls.

The location is a dancing school. The teacher selects a group of
n out of n + h boys. A girl of length l can now choose a dancing
partner out of this group of n boys, someone either of her own
length or taller up to a maximum of l + h.

How many ’matchings’ are possible?

The proof of the equivalence of Problem 29 and the Dancing
School Problem is left as an excercice.

A Solution

Let’s return to the original problem of Lute Kamstra. Let n > 0
and h ≥ 0 and let A = {a1, a2, ..., an} be a subset of {1, 2, 3, ..., n +

h}, with 1 ≤ a1 < a2 < ... < an ≤ n + h. We are looking
for permutations π of the elements of A with restrictions on
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permitted positions such that k ≤ π(k) ≤ k + h for all k. With
this restrictions we can associate a (0,1)-matrix B = [bij], where
bij = 1, if and only if aj is permitted in position i, meaning
i ≤ aj ≤ i + h.

We define SB as the set of all permitted permutations, to be more
precise

SB = {π|
n

∏
i=1

biπ(i) = 1} (32.1)

The number of elements of SB can be calculated by

|SB| = ∑
π

n

∏
i=1

biπ(i) = per(B) (32.2)

where per(B) is the permanent of B.

For example, let n = 4, h = 3 and A = {2, 3, 5, 6}. We can easily
see that in this case we have

B =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1


and per(B) = 5, so there are 5 permitted permutations.

Case closed? We know that in general calculating a permanent is
a hard problem with algebraic complexity of order n22n. In some
special cases there are more efficient algorithms.

Some Questions and Answers

Bipartite Graphs

Matrix B can be interpreted as an incidence matrix of a bipar-
tite graph G with vertices in X = {1, 2, ..., n} and Y = A =

{a1, a2, ..., an}. An edge of G is a pair (i, aj) with bij = 1. The
edges of the example can be described as

E = {(1, 2), (1, 3), (2, 2), (2, 3), (2, 5), (3, 3), (3, 5), (3, 6), (4, 5), (4, 6)}.
A matching in G is a set of disjoint edges. A perfect matching is
a matching containing n edges.
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The number of perfect matchings is per(B). Is it possible to
calculate the number of perfect matchings with graph theory?

Rook Theory

This is a more algebraic approach of accounting for |SB|. We
interpret the matrix B as an n× n chess board. On squares with
bij = 1 we may place a rook. Let rk(B) be the number of ways we
can place k non-attacking rooks on the board (that is, choosing k
squares in B no two are on the same line). This corresponds to a
bipartite graph G, thus rk(B) is the number of matchings with k
edges.

The rook polynomial r(B, x) is defined as

r(B, x) =
n

∑
k=0

rk(B)xk

So the number of perfect matchings is rn(B) = per(B).

Is there a simple way to calculate r(B, x) from B? We don’t think
so, see also the next section.

Configuration Matrix

Let m = (n+h
n ) = (n+h

h ) be the number of different subsets Xi of
the set X = {1, 2, ..., n + h}. We define a (0,1) configuration matrix
C = [cij] with i = 1, ..., m, j = 1, ..., n + h and cij = 1 if and only if
xj ∈ Xi.

The set A in the previous subsection is characterized by the row
(0 1 1 0 1 1 0). Is it possible to find a matrix B directly from a row
of C?

Let Ak, k = 1, 2, ..., m be a possible subset of X. In the row [ckj] let
h be the number of entries with ckj = 0, n the number of entries
with ckj = 1 and Ak = {j|ckj = 1} = {a1, a2, ..., an}

We define matrix Bk = [bij] of order n with bij = 1 if and only if
0 ≤ aj − i ≤ h. So the answer of Problem 29 for Ak is per(Bk) for
k = 1, 2, ..., m.
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Related Poblems

Dancing School and Rooks

What if the girls take over power and put aside the teacher and
they choose directly out of the set of n + h boys (accepting the
length restrictions)?

Clearly we can once again associate a bipartite graph G to this
problem. The n-set X of girls and the (n + h)-set Y of boys
provide the vertices. If a girl a can choose a boy b of appropriat
length we have an edge {a, b} of G.

The adjacency matrix A has a special form

A =

(
O B
BT O

)

Here B is a (0,1)-matrix of size n by n + h which specifies the
adjacencies of the vertices of X and the vertices of Y. We have
bij = 1 if and only if i ≤ j ≤ i + h.

A matching M with cardinality n corresponds in the matrix B to
a set of n 1’s with no two of the 1’s on the same line. The total
number of matchings with |M| = n is per(B).

It is clear that our problem can be translated into a Rooks Prob-
lem:

Find the number of all possible non-attacking placings of n rooks
on a n× (n + h)-chessboard, while placing a rook on the i-th row
and the j-th column is restricted by the condition i ≤ j ≤ i + h.

Solutions?

Configuration Matrix

We tried to find a recursion from the configuration matrix of the
previous section, the so called direct attack. We define the total
number of matchings to be f (n, h). We can rearrange the rows
of C such that all rows with ci,n+h = 1 are placed together. In
this case we have π(n) = n + h, so the corresponding number
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of matchings is f (n− 1, h). In all other rows we have ci,n+h = 0,
counting for f (n, h− 1) matchings, but unfortunately also an extra
amount where h comes in! So we can write

f (n, h) = f (n− 1, h) + f (n, h− 1) + x(n, h)

So far we are not very succesfull in finding expressions for
x(n, h).

In terms of the previous section we may also state

f (n, h) =
m

∑
k=1

per(Bk)

We think this will not lead to any but trivial solutions, because
the calculation of the permanent is a #P-complete problem. The
most effective algorithm in general is Ryser’s (see later) which is
of order of complexity O(n22n).

Rooks Polynomials

In theory it is possible to calculate the rook polynomial of arbi-
trary chessboards with the so called expansion theorem. Given
a chessboard B, let rk(B) the number of of ways to put k non-
attacking rooks on the board, and let

r(B, x) =
n

∑
k=0

rk(B)xk

be the rook polynomial of board B and (r0(B), r1(B), ..., rn(B))
the rook vector of B.

We mark a square on board B as special and denote Bs as the
chessboard obtainted from B by deleting the corresponding row
and column. Bd is the board obtained from B by deleting the
special square. The ways of placing k non-attacking rooks can
now be divided in two cases, those that have the rook in the
special square and those that have not. In the fist case we have
rk−1(Bs) possibilities and in the second rk(Bd). So we have the
relation

rk(B) = rk−1(Bs) + rk(Bd)



106 a bit of math

This corresponds to

r(B, x) = x r(Bs, x) + r(Bd, x)

This is the so called expansion formula.

Now we can find the rook polynomial of arbitrary boards by
applying repeatedly the expansion formula. We think this is
only feasible for small sizes, but maybe there are some hidden
recursions.

The Permanent to the Rescue

As stated before we do have a solution to our problem: per(B)!
B has a clear form compared to the previous section. So maybe
there are solutions lying around.

There is one in Ryser’s Algorithm: Let’s try to translate Theorem
7.1.1. of [1]1 to our situation. Let B = [bij] the n× (n + h) (0,1)- 1 Richard Brualdi. Combinato-

rial matrix theory. Cambridge
University Press, Cambridge
England New York, 1991.
ISBN 0521322650

matrix with bij = 1 if and only if i ≤ j ≤ i + h. Let r be a number
with h ≤ r ≤ n + h− 1 and Br an n× (n + h− r) sub-matrix of
B. We define ∏(Br) to be the product of the row sums of Br and
∑ ∏(Br) the sum of all ∏(Br) taken over all choices of Br. So

per(B) =
n−1

∑
k=0

(−1)k
(

h + k
k

)
∑ ∏(Bh+k) (32.3)

This is a solution, be it not very effective! But maybe we can do
better in some cases.

The complements of ...

Intermezzo: Let A a (0,1)-matrix with m rows and n columns
(m ≤ n). α is a k-subset of the m-set {1, 2, ..., m} and β a k-subset
of {1, 2, ..., n}. A[α, β] is the k× k submatrix of A determined by
rows i with i ∈ α and columns j with j ∈ β.

The permanent per(A[α, β]) is called a permanental k-minor of A.
We define the sum over all possible α an β

pk(A) = ∑
β

∑
α

per(A[α, β])
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We define p0(A) = 1 and note that pm(A) = per(A). pk(A)

counts for the number of k 1’s with no two of the 1’s on the same
line, so pk(A) = rk(A) of the rook vector of A.

According to theorem 7.2.1 of [1] we can evaluate the permanent
of a (0,1)-matrix in terms of the permanental minors of the
complementary matrix Jm,n − A, where Jm,n is the m by n matrix
with all entries 1.

Translated to our matrix B of this section we get

per(B) =
n

∑
k=0

(−1)k pk(Jn,n+h − B)
(n + h− k)!

h!
(32.4)

This is in particular interesting for h ≥ n− 2, in this case we can
easily see that pk(Jn,n+h − A) is independent of h, meaning that
per(B) = f (n, h) is polynomial in h. For example we have:

f (3, h) = h3 + 3h (h ≥ 1),

f (4, h) = h4 − 2h3 + 9h2 − 8h + 6 (h ≥ 2),

f (5, h) = h5 − 5h4 + 25h3 − 55h2 + 80h− 46 (h ≥ 3),

f (6, h) = h6 − 9h5 + 60h4 − 225h3 + 555h2 − 774h + 484 (h ≥ 4),

f (7, h) = h7 − 14h6 + 126h5 − 700h4 + 2625h3 − 6342h2 + 9072h−
5840 (h ≥ 5),

We have polynomials up to f (9, h). 2 2 Computers are faster now.
n = 12 or higher maybe
feasable.

The Free Dancing School

What if the girls choose directly out of the set of n + h boys and
don’t accept the length restrictions? They may choose a boy of
their own length or taller.

Here again B is a (0,1)-matrix of size n by n + h which specifies
the possible dancing pairs. We now have bij = 1 if and only if
i ≤ j ≤ n + h. The number of matchings with cardinality n is
per(B).

Let b1, b2, ..., bm be integers with 0 ≤ b1 ≤ b2 ≤ ... ≤ bm. The
m by bm (0,1)-matrix A = [aij] defined by aij = 1 if and only if
1 ≤ j ≤ bi, (i = 1, 2, ..., m) is called a Ferrers matrix, denoted by
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F(b1, b2, ..., bm). According to [1] we can calculate the permanent
with

per(F(b1, b2, ..., bm)) =
m

∏
i=1

(bi − i + 1) (32.5)

We can associate B with a Ferrers matrix F(b1, b2, ..., bn) with
bi = h + i. So

per(B) =
n

∏
i=1

(h + i− i + 1) = (h + 1)n (32.6)

A result we could also have found by direct counting, but we
couldn’t resist mentioning Ferrers matrices!

References

[1] R.A Brualdi, H.J. Ryser, Combinational Matrix Theory, Cam-
bridge University Press.

[2] Nieuw Archief voor de Wiskunde (NAW), Problem Section:
Problem 29.
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Part III

Permanent Questions
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Note on the Permanent of a Matrix of order n

The Permanent of a Matrix of order n

A new algorithm or a new proof of a known result? Complexity
is of the same order as Ryser’s algorithm. Multiplication (and
addition) with 1 and -1 is extremely easy. So this approach can
probably be implemented very efficiently for (0,1) matrices.

The Permanent

Definitions

Let A be a matrix of order n, the permanent of A is defined by

per(A) = ∑
π

a1π(1)a2π(2)...anπ(n) (33.1)

while we sum over all n! possible permutations π of 1, 2, ..., n.

We define a vector x̄ = (x1, x2, ..., xn)T and a vector ȳ =

(y1, y2, ..., yn)T . Let ȳ = Ax̄. We define a multivariate polyno-
mial

P(x1, x2, ..., xn) =
n

∏
i=1

yi (33.2)

= (a11x1 + ... + a1nxn) ·
(a21x1 + ... + a2nxn) ·
...

(an1x1 + ... + annxn) (33.3)
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All terms are of degree n.

In the expansion of (3) we are looking for the coefficient of
the term with x1 · x2 · ... · xn. When we sum over all possible
permutations, we get

∑
π

a1π(1)xπ(1) · a2π(2)xπ(2) · ... · anπ(n)xπ(n) =

=

(
∑
π

a1π(1)a2π(2)...anπ(n)

)
· x1x2...xn

So per(A) is the coefficient of the term with x1x2...xn.

We define

Q(x̄) = (
n

∏
i=1

xi) · P(x1, x2, ..., xn) (33.4)

A Theorem

Now we sum Q(x̄) over all possible x̄ with xi = ±1.

∑
|x̄|∞=1

Q(x̄) = ∑
|xi |=1

(x1 · x2 · ... · xn) P(x1, x2, ..., xn)

|x̄|∞ = 1 meaning |xi| = 1 for i = 1, 2, ..., n.

We can easily see that only the term with x1 · x2 · ... · xn of
P(x1, x2, ..., xn) is always counted positive. A term t with factor
xk missing in P(x1, ..., xn), is counted once t and once −t so the
overall result is 0. We have 2n possible vectors x̄ with |x̄|∞ = 1,
so we have proved:

Theorem 1. The permanent of A is

per(A) = 2−n · ∑
|x̄|∞=1

Q(x̄) (33.5)

[1] R.A Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cam-
bridge University Press, 1991.

Remark: This chapter is essentially the note I sent to the AMM
on October 7th, 2003.
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The Formula of Spies aka Formula of Glynn

Wikipedia

Doing some investigations for this very book, I stumbled on
a Wikipedia article Computing the permanent. 1 Found the 1 https://en.wikipedia.org/,

Computing_the_permanentBalasubramanian–Bax–Franklin–Glynn formula. But wait a
minute. Isn’t this my very own formula from 2003? Looks almost
the same! It is essentially the same!

My Formula

In the end of 2002, early 2003 I solved Problem 29 of the NAW
(see Chapter 31). The solution was in terms of the permanent of
a square (0,1)-matrix. For practical calculations I needed a fast
algorithm. An implementation of Ryser’s algorithm was one
of the possibilities, but I found a formula at least as fast. The
derivation was simple, almost elementary. See Chapter 33.

I implemented my algorithm in an arbitrary precision C/C++program,
which was used to contribute to Neil Sloane’s On-line Encyclope-
dia of Integer Sequences. 2 2 For instance

http://oeis.org/A087982,
http://oeis.org/A088672,
http://oeis.org/A089480,
http://oeis.org/A089475

and
http://oeis.org/A089476

Some of the records still stand! Maybe I should give it a try with
the knowledge and computer power of today.

A short history from e-mails

In my e-mail of February 11th, 2003 I showed my results to
Robbert Fokkink at that time the editor of the Problem Section

https://en.wikipedia.org/wiki/Computing_the_permanent
http://oeis.org/A087982
http://oeis.org/A088672
http://oeis.org/A089480
http://oeis.org/A089475
http://oeis.org/A089476
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of the NAW. As a conjecture. A month later Robbert confirmed
the correctness with a sketch of a proof. In the mean time I had
written a short note with proof. How ’new’ was the formula?
Robbert made the suggestion to send an e-mail to an expert.

My message to Bruno Codenotti was answered with the sugges-
tion to go straight to the master of permanents: Richard Brualdi.
I owned a copy of his book: Brualdi, Ryser, Combinatorial Matrix
Theory. This book has a chapter on permanents and was the
source of my solution of problem 29. Brualdi and Ryser changed
my life!

Richard Brualdi wrote: ’Your formula is interesting and I cannot
recall seeing it before, but maybe it appears buried in some
paper or other.’ In a following message he suggested to send the
result as a note to the American Mathematical Monthly.

With this recommandation I sent my note to the AMM on Oc-
tober 7th, 2003. In answer came an e-mail with the notification
that my note was forwarded to Professor William Adkins for
refereeing. The refereeing proces could take several month and
I would get an answer from Dr. Adkins from Louisiana State
University. No such thing! After more than a year I asked: "What
happened to my note? Was it to lightweighted and is it blown
with the wind or what?

Additionally I mentioned the implementation of my algorithm in
C++, faster than an optimized Ryser’s code. I used this software
in some contributions to Neil Sloane’s On-Line Encyclopedia of
Integer Sequences. See above.

From October 2003 I put my program to work for the calculation
of sequences related to permanents. I had some discussions on
this theme with Neil Sloane and Edwin Clarke. From Edwin
Clarke: "Thanks for the copy of you note on permanents. It is an
interesting approach. It might be a good idea to write it up as a
new algorithm and compare it to known algorithms.It looks like
the time is about 2n which is certainly better than brute force n!."
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More recent developments

As I told in the introduction to this Chapter, I found this formula
of Glynn. I was flabbergasted (I like that word!). Wrote an e-
mail to my lifeline in Mathematics Robbert Fokkink. Robbert
suggested to contact David Glynn in Adelaide. And yes, David
replied after reading my long message.

I quote: "It looks like you could be added to an increasing list of
people that have rediscovered this formula for the permanent.
(But the first I think was Balasubramanian in his PhD thesis in
India.) My 2013 paper indeed shows that there are very many
different formulae that are related via an algebraic structure
called the Veronesean. Maybe I can get someone to put a refer-
ence to your articles around 2003-2006 or others on the wikipedia
website so that it can be noted there."

Once again someone suggested me to write a short note for
the Amercan Mathematical Monthly. Again I did. If I may say
so, it was a very readable manuscript. With emphasis on the
elementary approach. With some history of the permanent.
Just in the educational vein. This time the rejection was almost
immediate.

The motivation: “In 2010, Glynn published ‘The permanent
of a square matrix,’ a five-page note in The European Journal
of Combinatorics that offered four different formulas for the
matrix permanent. Now comes this manuscript, which offers
an elementary proof of the first of these. The Monthly does
publish new, elementary, proofs of old results, but only if the
old results are famous, and/or the new proofs are beautiful and
insightful. Unfortunately, neither of these applies here; on the
contrary, Glynn’s proof was more insightful. Consequently, we
must decline your submission for publication.”

SageMath

SAGE, now SageMath 3, was started in 2005 by William Stein. I 3 SageMath:
http://www.sagemath.orgfound SAGE at the end of 2005 and became an early adapter. In

http://http://www.sagemath.org/
http://http://www.sagemath.org/
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2006 and later I contributed quite some code and more. Sage is
Python+, so easy to learn and use. SageMath tries to be an Open
Source alternative for the big M’s: Magma, Mathematica, Maple
and Matlab. And integrates a lot of other Math software.

My programming skills are a little bit rusty nowadays, but I
came up with an implementation of both the formula of Glynn
and that of myself in Sage. SageMath has various options to
calculate the permanent of matrices over a field. Guess who
implemented Ryser’s algorithm? In the demoworksheet we
calculate the permanent of the example in Glynn’s 2010 article.
Look for the differences: In Glynn’s formule you see row sums
in the iterations in mine col sums. This is due to the use of right
or left multiplication in matrix theory. Results are the same, of
course: the sum of all diagonal products!
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