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ing out of the page in the ŷ direction. . . . . . . . . . . . . . . . . . . . 162

viii



ACKNOWLEDGMENT

I would like to thank my primary thesis advisor, Professor Margaret Cheney, for her

guidance, support, and advice. Her enthusiasm for mathematics and cooperative

research has influenced me greatly. My mentor at the Naval Research Laboratory,

Dr. Eric Mokole, significantly guided the scope and subject matter of this thesis;

I appreciate his generous offer of time and research resources. I would next like to

thank Professor David Isaacson for his time and support as a member of my thesis

committee and instructor of the many engaging courses that I took with him during

my time at RPI. I would also like to thank Professor William Siegmann, for his

guidance during my experiences as an undergraduate student and graduate student

at Rensselaer Polytechnic Institute.

I would like to thank all of the other teachers and professors that have chal-

lenged and encouraged me including Mrs. Jonas, Mr. Hopkins, Mrs. Champagne,

Mrs. Davis, Mrs. Raszewski, Professor Kovacic, and Professor Kapila. I am also

extremely grateful to Dawnmarie Robens of the RPI graduate program for her con-

tinual assistance and advice.

At the Naval Research Laboratory Radar Division I have had the opportunity

to work with some really exceptional people. I would like to thank my supervisor

Dr. Aaron Shackelford for his mentoring and Dr. Jimmy Alatishe for his informative

discussions about radar hardware. I am especially grateful to Dr. Thomas Higgins

for his advice, feedback, and time consuming proofreading of this thesis.

I thank all of my talented and outrageous friends from the math department:

Ashley Baer, Jessica Jones, Analee Miranda, Peter Muller, Heather Palmeri, Joseph

Rosenthal, Katie Voccola, and any others that I am sure to have forgotten. Home-

work sessions, stress relieving workouts, and pizza are some of things that I have

learned are best shared with awesome people.

I lastly thank my family for their limitless support and encouragement.

This work was supported by the Naval Research Laboratory and the National

Defense Science and Engineering Graduate Fellowship.

ix



ABSTRACT

The aim of this thesis is to further the theory for multistatic imaging of moving

targets through the development and simulation of scalar and vector radar data

models and accompanying imaging operations. In the first part of the thesis we

investigate scalar representations of multistatic radar data. We begin by comparing

two different approaches for developing a multistatic ambiguity function (MAF),

a tool used to assess performance of the waveforms and geometry of a multistatic

radar system jointly. One approach is deterministic in nature, originating from the

scalar wave equation, and the other is statistical, relying on a Neyman-Pearson

defined weighting of received data. Although the two methods are fundamentally

different in formulation, they are shown to yield similar results. We then build on

the data model for the existing deterministically derived MAF with the inclusion of

antenna beam patterns by relating the current density on the radiating and receiving

antennas to a far-field spatial weighting factor. From this model we develop an

imaging formula in position and velocity that can be interpreted in terms of filtered

backprojection or matched filtering and a corresponding ambiguity function or point-

spread function. We use the resulting data model and MAF to examine scenarios

with various geometries and transmit waveforms and we show that the performance

of a multistatic system depends critically on the system geometry and transmitted

waveforms.

In the second part of the thesis we develop a vector multistatic data model

incorporating polarization and antenna effects from transmitters and receivers mod-

eled as long thin dipoles. We derive the model beginning with the potential formu-

lation of Maxwell’s equations and describe radiation from a transmitting antenna,

scattering from a moving target, and reception at a receiving antenna in both the

time and frequency domains. This model is developed from beginning to end with

the transmit waveform and scattering behavior of the target left arbitrary and we

obtain physical intuition, greater understanding and control of assumptions, and

the ability to carefully model the desired multistatic scenario by formulating our

x



data model from first principles. Following formulation of the data model we de-

rive two imaging operations that combine the data collected at each receiver, first

assuming that the contributions from all transmitters in the scene are separable

and then assuming that the contributions from all transmitting antennas cannot be

separated and must be treated as a unit. We then utilize the presented data model

and imaging operations to simulate multiple antenna geometries and transmission

schemes. Scattering behavior of the target is modeled with both a bistatic scattering

matrix based on physical optics for a perfectly electrically conducting flat rectan-

gular plate and a general complex scattering matrix. Simulations exhibit the angle

and polarization dependent scattering behavior and cross-polarization of the inci-

dent electric field consistent with the scattering models. The images formed under

both the separable and nonseparable assumptions are comparable when waveforms

with low cross-correlation are used. We approach the multistatic radar problem by

combining an electromagnetic data model with signal processing to obtain an image,

but the data model can also be used to generate high-quality data for a variety of

applications.
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CHAPTER 1

Introduction

Multistatic radar has been an area of intense research in recent years due to the in-

herent flexibility and importance of radar as an all-weather electromagnetic sensor

and the additional theoretical advantages of a multistatic radar system. Tradi-

tional monostatic radars radiate electromagnetic energy from an antenna, the field

propagates through space and is reflected in many directions from objects in the

environment, some of the reflected energy is received by the antenna of the radar,

and through processing techniques information about the intercepted objects is ex-

tracted. Radar systems can be used to detect and track targets, detect moving

targets in clutter rich environments, form images of stationary or moving targets or

scenes, recognize meteorological conditions, and classify targets. Although for some

of these applications other sensors can be used, such as electro-optical sensors, radar

is functional when these sensors fail perhaps in the dark of night or behind cloud

formations.

Multistatic radar systems differ from traditional monostatic systems, or bistatic

systems characterized by a separated transmitter and receiver, in that they consist

of multiple transmitters and/or receivers. A multistatic system consisting of mul-

tiple transmitters and one or more receivers can transmit multiple waveforms from

collocated or distributed antennas, possibly illuminating a larger area than a mono-

static system. The power of the transmitting antenna is a limiting factor on the

extent of a radar’s visibility; the use of multiple transmitting antennas to illuminate

an area may help overcome the physical limitations of amplifier power and antenna

aperture sizes. It is also possible to augment fielded systems with additional low-

power passive components to form a multistatic system, leveraging cooperative or

noncooperative signals of opportunity. These passive radar systems are well suited

to a variety of situations because they can be inexpensive and unobtrusive.

The design of a multistatic system, however, requires consideration of many

factors including the number, geometry, polarization of the transmitters and re-

1



2

ceivers, and the waveforms that will be transmitted from each radiating antenna. It

is important to ensure that all system components are coherent in time (that there is

a common clock available to all transmitters and receivers) and frequency. If either

of these condition are not met there will be some loss of information. The fusion of

data received from multiple sensors, whether coherent or incoherent, is another issue

inherent to multistatic radar. Ongoing theoretical research is necessary to address

the complexity of multistatic radar.

The aim of this thesis is to further the theory for multistatic imaging of mov-

ing targets through the development and simulation of scalar and vector radar data

models and accompanying imaging operations. In the first part of the thesis we

investigate scalar representations of multistatic radar data. We begin by comparing

two different approaches for developing a multistatic ambiguity function (MAF), a

tool used to assess performance of the waveforms and geometry of a multistatic radar

system jointly. One approach is derived with a deterministic signal model from an

imaging perspective and the other is derived for specific statistical target assump-

tions from a detection perspective. The deterministic MAF is formulated from the

scalar wave equation and describes radiation of the transmitted waveforms, scatter-

ing from a distribution of moving point-like targets, and reception at the receiving

antennas. The statistical MAF is developed by defining an optimal multistatic

detector corresponding to a Swerling II type target with fluctuating complex reflec-

tivity. Although the two methods are fundamentally different in formulation, the

corresponding numerical simulations are shown to yield similar results.

We then build on the data model for the existing deterministically derived

MAF with the inclusion of antenna beam patterns by relating the current density

on the radiating and receiving antennas to a far-field spatial weighting factor. From

this model we develop an imaging formula in position and velocity that can be inter-

preted in terms of filtered backprojection or matched filtering and a corresponding

ambiguity function or point-spread function. We use the resulting data model and

MAF to examine scenarios with various geometries and transmit waveforms and we

show that the performance of a multistatic system depends critically on the system

geometry and transmitted waveforms.
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In the second part of the thesis we develop a vector multistatic data model

incorporating polarization and antenna effects from transmitters and receivers mod-

eled as long thin dipoles. We derive the model beginning with the potential formu-

lation of Maxwell’s equations and describe radiation from a transmitting antenna,

scattering from a moving target, and reception at a receiving antenna in both the

time and frequency domains. Following formulation of the data model we derive two

imaging operations that combine the data collected at each receiver, first assuming

that the contributions from all transmitters in the scene are separable and then as-

suming that the contributions from all transmitting antennas cannot be separated

and must be treated as a unit. We then utilize the presented data model and imag-

ing operations to simulate multiple antenna geometries and transmission schemes.

Scattering behavior of the target is modeled with both a bistatic scattering ma-

trix based on physical optics for a perfectly electrically conducting flat rectangular

plate and a general complex scattering matrix. Simulations exhibit the angle and

polarization dependent scattering behavior and cross-polarization of the incident

electric field consistent with the scattering models. The images formed under both

the separable and nonseparable assumptions are comparable when waveforms with

low cross-correlation are used.

This work is novel in that the model is developed from beginning to end with

the transmit waveform and scattering behavior of the target left arbitrary. We

obtain physical intuition, greater understanding and control of assumptions, and

the ability to model the desired multistatic scenario carefully by formulating our

data model from first principles. This work is also relevant because we combine an

electromagnetic data model with signal processing to obtain an image. Although

electromagnetics and signal processing are rich areas of study for radar applications,

the two fields are infrequently combined.

The remainder of this thesis is organized as follows. In Chapter 2 we in-

vestigate scalar representations of multistatic radar data from the perspective of

the multistatic ambiguity function (MAF). In Chapter 3 we formulate a full vector

model for multistatic radar data including the polarization and scattering of electro-

magnetic waves and two corresponding imaging operations that combine the data
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collected at each receiver. In Chapter 4 we conclude with a summary of this thesis

work, a description of areas left for future research, and a discussion of the spe-

cific contributions to the field of multistatic radar modeling and imaging of moving

targets.



CHAPTER 2

Scalar Radar Data Model

2.1 Introduction

In this chapter we investigate scalar representations of multistatic radar data

from the perspective of the multistatic ambiguity function (MAF). The classical am-

biguity function (CAF) is a tool that is used to assess the performance of monostatic

radar waveforms; the MAF is an analogous tool for multistatic radar systems. Mul-

tistatic radar systems are characterized by the number and geometry of transmitters

and receivers, the choice of antennas, the transmitted waveforms, and the method

of fusing data received by multiple sensors. The added flexibility of a multistatic

radar system results in the need for developing the more complex MAF as a metric

for assessing the choice of waveforms and the system geometry jointly. Although

the CAF is primarily important for waveform design, we will show that the MAF

can be derived as part of an imaging operation in position and velocity.

Modeling and design of multistatic radar systems has been an area of sub-

stantial research in recent years. There has been theory developed for multistatic

moving target detection [1–6], multistatic imaging of a stationary scene [7–10], mul-

tistatic imaging of moving targets [11–16], and coherence of components of a mul-

tistatic system [17–19]. Multiple formulations of the multistatic ambiguity func-

tion have been presented in the literature and will be briefly described in Section

2.2.4 [4, 5, 11–14,20–25].

In Chapter 2 we first provide some background on the electromagnetic wave

equation, matched filtering, the classical ambiguity function, and the multistatic

ambiguity function. The rest of the chapter is broken into two sections. In Section

2.3 we formulate two multistatic ambiguity functions that are found in the literature,

one derived with a deterministic signal model from an imaging perspective and one

derived for specific statistical target assumptions from a detection perspective. The

deterministic MAF is formulated from the scalar wave equation and models radiation

of the transmitted waveforms, scattering from a distribution of moving point-like

5
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targets, and reception at the receiving antennas. The statistical MAF is developed

by defining an optimal multistatic detector corresponding to a Swerling II type target

with fluctuating complex reflectivity. After presenting both models we compare the

mathematical expressions and corresponding numerical simulations. We show that

although the derivations of the two MAFs are quite different, numerical results are

comparable and in the case of a single transmitter both mathematical expressions

can be written in terms of the classical ambiguity function. In Section 2.4 we

build on the data model for the existing deterministically derived MAF with the

inclusion of antenna beam patterns by relating the current density on the radiating

and receiving antennas to a far-field spatial weighting factor. The formulation yields

a data model that is appropriate for narrowband waveforms in the case when the

targets are moving slowly relative to the speed of light. From this model we develop

an imaging formula in position and velocity that can be interpreted in terms of

filtered backprojection or matched filtering and a corresponding ambiguity function

or point-spread function. We show through simulations how the resulting MAF can

be used to investigate the impact of geometry and transmit waveforms on multistatic

system performance.

2.2 Background

2.2.1 Electromagnetic Wave Equation

Maxwell’s equations in the time domain

∇ ·D = ρ

∇ ·B = 0

∇× E = −∂B
∂t

∇×H = J +
∂D
∂t
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combined with the free space constitutive relations

D = ε0E
B = µ0H

yield

∇ · E =
1

ε0
ρ (2.1)

∇ ·B = 0 (2.2)

∇× E = −∂B
∂t

(2.3)

∇×B = µ0J + µ0ε0
∂E
∂t

(2.4)

where D(r, t) is the electric displacement field, B(r, t) is the magnetic induction

field, E(r, t) is the electric field, H(r, t) is the magnetic intensity or magnetic field,

ρ(r, t) is the charge density, J (r, t) is the current density, ε0 is the permittivity of

free space, and µ0 is the permeability of free space. In free space ρ(r, t) = 0 and

J (r, t) = 0 so that (2.1) and (2.4) become

∇ · E = 0 (2.5)

and

∇×B = µ0ε0
∂E
∂t
, (2.6)

respectively.

We can obtain the electromagnetic vector wave equation from Maxwell’s equa-

tions under the free space assumption. We begin by taking the curl of both sides of

(2.3) and substituting (2.6) to obtain

∇×∇× E = −µ0ε0
∂2E
∂t2

. (2.7)
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We next apply the vector identity

∇× (∇×A) = ∇(∇ ·A)−∇2A (2.8)

to (2.7)

∇(∇ · E)−∇2E = −µ0ε0
∂2E
∂t2

(2.9)

and recall (2.5) to obtain the wave equation

∇2E = µ0ε0
∂2E
∂t2

(2.10)

or (
∇2 − 1

c2
0

∂2

∂t2

)
E(r, t) = 0 (2.11)

where c0 = (µ0ε0)−1/2. We have explicitly included the temporal and spatial depen-

dences of the electric field. Through a similar process we can obtain the vector wave

equation for the magnetic field H. Each component of the electric field or magnetic

field satisfies the scalar wave equation. In Chapter 2 we consider solutions to the

scalar wave equation and in Chapter 3 we consider the vector wave equation derived

from the potential formulation of Maxwell’s equations.

2.2.2 Matched Filtering

The matched filter is the optimal linear filter for maximizing the signal-to-

noise ratio (SNR) for a signal received in white noise. The impulse response of the

matched filter is given by

h(t) = s∗(−t)

where s(t) is the transmitted waveform. The signal that is transmitted, scattered

from a target, and received is assumed to have the form

srec(t) = ρs(t− τ) + n(t)

where ρ is the scattering strength of the target including range losses, τ = 2R/c0

is the two-way time delay, R is the distance from the antenna to the target, and
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n(t) is white noise. The output of the matched filter is obtained by convolving the

received signal with the impulse response

η(t) = (h ∗ srec)(t) =

∫ ∞
−∞

s∗(−t′)srec(t− t′)dt′ =
∫ ∞
−∞

s∗(t′)srec(t+ t′)dt′, (2.12)

which is the correlation of s(t) and srec(t). The matched filter output SNR, SNRmf,

is given by

SNRmf =
2E

N0

where E is the energy of the received signal and N0 is the unilateral power spectral

density of white noise.

2.2.3 Classical Ambiguity Function

The classical ambiguity function (CAF), or Woodard ambiguity function, is a

tool that is used to assess the performance of monostatic radar waveforms [26–30].

The CAF describes the matched filter output for targets at different distances R

and velocities v and is expressed as

χ(τ, fd) =

∫ ∞
−∞

s(t)s∗(t+ τ)ei2πfdtdt (2.13)

in terms of time delay τ = 2R/c0 and Doppler frequency fd = 2v/c0 where a

positive range R corresponds to a target further in range than a reference target

and a positive v denotes an incoming target. Letting

Ψ(τ, fd) = |χ(τ, fd)|2, (2.14)

if the signal is normalized to unit energy such that∫ ∞
−∞
|s(t)|2dt = 1

then the maximum value of (2.14) is attained at the origin

Ψ(τ, fd) ≤ Ψ(0, 0) = 1 (2.15)
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and the volume under the surface of (2.14) is given by∫ ∞
−∞

∫ ∞
−∞

Ψ(τ, fd)dτdfd = 1. (2.16)

If the signal is not normalized to unit energy then (2.15) and (2.16) are equal to

(2E)2 where E is the energy of the signal. Sometimes (2.13) is referred to as the

autocorrelation function and (2.14) the ambiguity function [28,30]. The signs of the

time delay and Doppler frequency in (2.13) may be reversed.

If we assume that the received signal input for the matched filter has the form

srec(t) = s(t)ei2πfdt

with zero time delay and Doppler frequency fd, then the output of the matched

filter is given by

η(t) = (h ∗ srec)(t) =

∫ ∞
−∞

s(t′)s∗(t′ − t)ei2πfdt
′
dt′ = χ(−t, fd) (2.17)

so that the matched filter output for a target with Doppler frequency fd is a time-

reversed version of (2.13) [30].

We will now examine the classical ambiguity functions for two standard wave-

forms, a linear chirp and a pseudo-random phase-coded waveform. The linear chirp

has linear frequency modulation (LFM), constant amplitude, pulse width T , and

bandwidth B that is swept either up or down over the duration of the pulse. The

linear chirp is defined as

schirp(t) = A rect(t/T ) cos(2πf0t+ παt2) (2.18)

where

rect(x) =

 1 |x| ≤ 1/2

0 |x| > 1/2
,

f0 is the carrier frequency, A is the amplitude, and α = ±B/T is the LFM slope

that is positive for an up-chirp and negative for a down-chirp. The classical ambi-
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guity diagram of an up-chirp waveform with 10 GHz carrier frequency, 20 µs pulse

width, and 1 MHz bandwidth is plotted in power on a dB scale in Figure 2.1. We

have plotted (2.14) for velocities ranging from −3 km/s to 3 km/s and time delays

ranging from −20 µs to 20 µs relative to a reference target. Depending on the defi-

nition of the ambiguity function, Figure 2.1 plots either values from the ambiguity

function (2.14) or the magnitude squared of values from the ambiguity function

(2.13). The ridge extending from negative velocity and time delay to positive veloc-
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Figure 2.1: Classical ambiguity function of an up-chirp.

ity and time delay, with slope 1/α = 1.33 (km/s)/µs, reflects the Doppler tolerance

of LFM waveforms. This property is beneficial for detection of fast moving targets

because it is not necessary to implement multiple matched filters to cover the range

of possible Doppler shifts. The time (range) sidelobes are low across all Doppler

frequencies (velocities) as shown by the low ambiguity outside of the ridge in Figure

2.1. Nonlinear frequency modulated (NLFM) waveforms increase the rate of change

of frequency modulation (FM) near the ends of the pulse and decrease the rate of

change near the center, resulting in a waveform that does not require frequency

domain weighting to reduce time sidelobes. Symmetric FM results in a thumbtack-

like ambiguity function while asymmetric FM results in an ambiguity function that

is more ridge-like. Nonlinear FM waveforms are less Doppler tolerant than LFM

waveforms and thus are better suited to applications where the approximate target
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velocity is known, such as tracking [30].

The pulse of a phase-coded waveform is subdivided into N sub-pulses, or chips,

of duration δ = T/N and a phase modulation is applied to each sub-pulse. There are

numerous phase modulation schemes, some resulting in ambiguity functions that re-

semble the ridged LFM ambiguity function and others that have a more thumbtack-

like appearance. Pseudo-random phase codes, or pseudo-noise (PN) codes, are phase

codes that consist of a sequence of chips with pseudo-random phases that are deter-

ministically generated by any of a variety of mechanisms. These codes may appear

random to an outside observer without prior knowledge of the code and the cross-

correlation between two different codes is low compared to other types of waveforms.

Pseudo-random codes are used in communications: each subscriber is assigned a

unique code by the base station and is able to correctly extract the relevant signals

from the collection of signals intended for all subscribers through matched filtering.

The classical ambiguity diagram of a 20 chip pseudo-random phase code with 10

GHz carrier frequency, 20 µs pulse width, and 1 MHz bandwidth is plotted in power

on a dB scale in Figure 2.2. We have again plotted (2.14) for velocities ranging

from −3 km/s to 3 km/s and time delays ranging from −20 µs to 20 µs relative to

a reference target. The thumbtack ambiguity diagram reflects the Doppler sensitiv-
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Figure 2.2: Classical ambiguity function of a 20 chip pseudo-random phase code.

ity of pseudo-random phase coded waveforms, which is beneficial for slowly moving
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target applications or when knowledge of target speed is desired. It is evident from

examining Figures 2.1 and 2.2 that the time (range) sidelobes are higher for the PN

code than for the LFM waveform, which may hinder the detection of small targets

in the sidelobes of large scatterers.

In addition to the waveforms briefly described above there are also continu-

ous waveforms (CW) of a single amplitude and frequency. Time-frequency coded

waveforms consist of a pulse train where each pulse is at a different frequency.

When modulated waveforms are matched filtered with the transmitted signal

as described in Section 2.2.2, the range resolution is improved to the same level that

could be achieved by a shorter pulse; this phenomenon is called pulse compression.

The SNR is also increased through pulse compression, reducing the transmit power

required to detect a target at a given range. Consequently, if a system is peak-power-

limited, it is possible to transmit a longer waveform and increase the transmitted

energy without losing range accuracy [28]. This discussion is not meant to cover

the immense field of waveform design but rather to orient the reader with some

terminology and concepts.

2.2.4 Multistatic Ambiguity Function

The multistatic ambiguity function (MAF), or multiple-input-multiple-output

(MIMO) ambiguity function, is a tool used to assess the waveforms and geometry

of a multistatic radar system jointly. The MAF is determined by the waveform

choice for each transmitter, the multistatic geometry, and the method of fusing data

received by multiple sensors; consequently there are numerous possible formulations.

The bistatic ambiguity function is closely related to the classical ambiguity

function but considers bistatic ranges and velocities. Although there is no issue of

combining information from multiple sensors as in the case of the MAF, the resulting

ambiguity function is geometry dependent. The effect of system geometry on the

shape of the bistatic ambiguity function has been considered in [31].

The added complexity of multiple transmitters and receivers in a multistatic

radar system has led to multiple formulations of the MAF. A MAF is presented

in [21] for a nonfluctuating point-like target of constant velocity and closely spaced
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transmitting and receiving sensors so that the relative Doppler frequencies observed

by each sensor are assumed identical. Other work has focused on developing MAFs

from the perspective of determining an optimal multistatic detector corresponding

to a target with statistically varying complex amplitude. An incoherent single trans-

mitter and multiple receiver system and a moving target are considered in [4,5] and

the work is extended for multiple transmitters in [20]. Coherent and incoherent pro-

cessing of single transmitter and multiple receiver systems are considered in [24] and

multiple transmitter and receiver systems in [23,25]. MAFs have also been derived

with deterministic signal models and a greater focus on wave propagation [11–14,22].

Although the classical and bistatic ambiguity functions are typically used for

waveform design, the intrinsic dependance on geometry and fusion of information

elevate the MAF to a construct that is more closely related to imaging. The MAF

indicates that imaging can be thought of as a detection problem in position and

velocity.

In this chapter we consider in detail the deterministically derived MAF pre-

sented in [11–14, 22] and the statistically derived MAF presented in [4, 5, 20] with

multiple transmitters and receivers. We also formulate an extended deterministic

MAF [16].

2.2.5 Fourier Transform Convention

Throughout this thesis we will adopt the convention that the Fourier transform

is given by

F (ω) = F{f(t)} =

∫ ∞
−∞

f(t)eiωt dt (2.19)

and the inverse Fourier transform by

f(t) = F−1{F (ω)} =
1

2π

∫ ∞
−∞

F (ω)e−iωt dω. (2.20)

2.3 Comparison of Deterministic and Statistical Multistatic

Ambiguity Functions

In Section 2.3 we consider multistatic radar systems consisting of M trans-

mitters at position ym with m = {1, 2, . . . ,M} and N receivers at position zn with
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n = {1, 2, . . . , N}. We assume that all transmitters and receivers are stationary

and that the target located at x may be stationary or moving with velocity v. We

present a deterministic signal model and corresponding MAF in Section 2.3.1 and a

statistical signal model and corresponding MAF in Section 2.3.2. In Section 2.3.3 we

discuss the mathematical expressions and underlying assumptions of both MAFs.

We then present numerical simulations in Section 2.3.4 and conclude the section.

2.3.1 Deterministic Data Model

The multistatic ambiguity function presented in [11–14, 22] is obtained as a

byproduct of an imaging method. The imaging method involves first developing a

mathematical model for the scattered field, using this model in a matched filter that

is applied at each receiver, and coherently summing the resulting filtered outputs

with appropriate weights for each transmitter-receiver pair.

We derive the deterministic data model for a bistatic pair consisting of the

mth transmitter at position ym and the nth receiver at position zn. The derivations

in [11,12,22] develop a mathematical model for data from a single isotropic source.

For the transmitter source located at ym we denote the waveform by sm(t), the

transmission time by −Tm, and the wavefield at time t and position x by ψ(t,x).

We assume that away from the targets, the source wavefield satisfies the scalar wave

equation [
∇2 − c−2

0 ∂2
t

]
ψ(t,x) = δ(x− ym)sm(t+ Tm), (2.21)

where c0 is the speed of light in a vacuum. We denote by qv the phase-space

distribution of target reflectivity. In other words, qv(x − vt) is the reflectivity, at

time t, of those scatterers moving with velocity v that, at time t = 0, were located

at position x . We write the total wavefield ψ as the sum ψ = ψin +ψsc where ψin is

the incident field and ψsc is the scattered field. Under the Born (single-scattering)

approximation, we can think of the reflected incident field as providing a source∫
qv(x− vt)dv ψin

m(t,x) for the scattered field ψsc
m(t, zn) received at zn such that

[∇2 − c−2
0 ∂2

t ]ψ
sc
m(t, zn) =

∫
qv(x− vt)dv ψin

m(t,x). (2.22)
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We use the free-space Green’s function and several changes of variables to obtain

ψsc
m(t, zn) =

∫
δ(t− t′ − |x+ vt′ − zn|/c0)

4π|x+ vt′ − zn|

×
∫
qv(x)dv

sm(t′ + Tm − |x+ vt′ − ym|/c0)

4π|x+ vt′ − ym|
dt′dx. (2.23)

and we write Rx,n = |x − zn|, Rx,n = x − zn, and R̂x,n = Rx,n/Rx,n. We assume

a slowly moving target (i.e. |vt| � |x − zn|), which allows us to carry out the t′

integration in (2.23):

ψsc
m(t, zn) =

∫
sm(αx,v(t−Rx,n/c0)−Rx,m/c0 + Tm)qv(x)

(4π)2Rx,nRx,mµx,v

dx dv (2.24)

where

µx,v =1 + R̂x,n · v/c0,

αx,v =
1− R̂x,m · v/c0

1 + R̂x,n · v/c0

≈ 1− (R̂x,m + R̂x,n) · v/c0

=1 + βx,v,

βx,v =− (R̂x,m + R̂x,n) · v/c0. (2.25)

The scattered field in (2.24) can be viewed as a sum of attenuated, time-delayed,

Doppler-scaled copies of the transmitted waveform.

For the case of multiple transmitters, we assume that each of the N receivers

can identify which part of the signal is from which transmitter. This identification

of source transmitter could perhaps be done by separating the transmissions in

frequency or code; this issue is left for the future.

We construct an image Iu(p) as an approximation of qv(x), the true phase

space distribution of scatterers moving at velocity v and located at position x at

time t = 0. This image is formed by matched filtering the weighted scattered field

with a time-delayed, Doppler-scaled version of the transmitted waveform and then
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by summing over all transmitters and receivers:

Iu(p) = (4π)2

M∑
m=1

N∑
n=1

Rp,nRp,mµp,uαp,uJm,n

×
∫
s∗m(αp,u(t−Rp,n/c0)−Rp,m/c0 + Tm)ψsc

m(t, zn)dt.

(2.26)

Here the star denotes complex conjugation, the weights Rp,m, Rp,n and µp,u are

introduced to cancel the denominator of (2.24) when p = x and u = v, and Jm,n

denotes a geometry-dependent weighting function. This weighting function is left

undetermined in [12]. In the simulations below, we take Jm,n to be equal for all

pairs of transmitters and receivers.

In order to characterize the imaging system, we relate the image to the true

phase-space reflectivity:

Iu(p) =

∫
K(p,u;x,v)qv(x)dx dv (2.27)

where

K(p,u;x,v) =
M∑
m=1

N∑
n=1

Jm,nαp,u
Rp,nRp,mµp,u

Rx,nRx,mµx,v

×
∫
s∗m(αp,u(t−Rp,n/c0)−Rp,m/c0 + Tm)

× sm(αx,v(t−Rx,n/c0)−Rx,m/c0 + Tm)dt (2.28)

is the weighted multistatic ambiguity function (MAF), referred to as the point-

spread function in [11,12,22]. For point-like targets (qv(x) = δ(x−x0)δ(v−v0)) the

weighted MAF K(p,u;x0,v0) is the phase-space image of that target distribution.

We recall that the classical (narrowband) radar ambiguity function for the

waveform radiated by the mth transmitter can be written as

Am(ω̃, τ) = e−iωmτ

∫
sm(t)s∗m(t− τ)eiω̃t dt (2.29)
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where ωm = 2πfm and fm is the carrier frequency of the transmitted waveform

sm(t). Additionally, we write

ω̃ = ωm(βp,u − βx,v) = 2πfm(βp,u − βx,v)

where ωmβp,u is the angular Doppler shift for position p and velocity u. Then, in

the narrowband approximation, the weighted multistatic ambiguity function (2.28)

can be rewritten in the form

K(p,u;x,v) =
M∑
m=1

N∑
n=1

Rm,nAm (ω̃, τ) (2.30)

where

Rm,n =
Jm,nRp,nRp,mµp,uαp,u

Rx,nRx,mµx,vαx,v

, (2.31)

ω̃ =2πfm(βp,u − βx,v), (2.32)

τ =
αp,u(Rp,n −Rx,n)

c0

+
Rp,m −Rx,m

c0

+

(
1− αp,u

αx,v

)(
Rx,m

c0

− Tm
)
. (2.33)

Clearly, the simpler case of a single transmitter with multiple receivers reduces

(2.30) to

K(p,u;x,v) =
N∑
n=1

RnA (ω̃, τ)

with τ and ω̃ defined above. In this case, there is only one transmitted waveform

and the weighting Rn only depends on the receiver.

2.3.2 Statistical Data Model

The multistatic ambiguity function, or global ambiguity function, as presented

in [4, 5, 20] determines weights for receiver contributions from the Neyman-Pearson

optimal global statistic corresponding to a Swerling II target. A simple model is

assumed for the received signal, weights are applied to the matched filtered output

from each receiver, and the weighted contributions are added noncoherently. An

overview of the derivation is presented in Section 2.3.2 and a more detailed derivation
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of the global ambiguity function not readily available in the literature is given in

Appendix A.

As in the deterministic model, we let ym denote the position of the mth trans-

mitter with transmit waveform sm(t) and zn denote the position of the nth receiver.

At each transmitter, we assume that a coherent processing interval (CPI) consists

of a single pulse of duration Tdm and energy Em so that

sm(t) =
√

2Em<{fm(t)eiωct}, 0 ≤ t ≤ Tdm (2.34)

where fm(t) is the complex envelope of the transmitted pulse, ωc = 2πfc, and fc is

the carrier frequency for all transmitters. This approach does not require parts of

the received signal to be separated out according to source transmitter. The input

into the nth receiver is given by the set of hypotheses:

H0 : rn(t) = nn(t) (2.35)

H1 : rn(t) =
M∑
m=1

am,nγm,ns̃m(t− τam,n)eiωam,nt + nn(t)

where nn(t) is the noise at the nth receiver, τam,n is the travel time along the

propagation path from the mth transmitter to the target to the nth receiver, and

γm,n ≈ (Rx,mRx,n)−1 is the propagation loss along this path for a target located

at x where Rx,m = |x − ym| and Rx,n = |x − zn|. The angular frequency ωam,n

is the total Doppler shift of the signal at the nth receiver that originated from the

mth transmitter. The waveform s̃m(t) =
√

2Emfm(t) is the complex envelope of the

transmitted signal sm(t).

The coefficient am,n is the direction-dependent effective target reflectivity. We

assume that a1,n = a2,n = · · · = aM,n ≡ an so that the reflectivity depends only

on the receiver position. This assumption may correspond to a scenario where all

transmitters are isotropic; we note that bistatic range losses are taken into account

elsewhere in the γm,n term. We further assume a Swerling II target model so that

the complex reflectivity is given by an = Aneiφn where the amplitude An denotes

an independent Rayleigh distributed random variable with parameter A0n and the
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phase φn denotes an independent random variable uniformly distributed on [0, 2π].

The real and imaginary components of the noise nn(t) are zero-mean Gaussian with

equal variance, unilateral power spectral density N0n, and Rayleigh distributed en-

velope. The superscript a is used to denote a value corresponding to an actual target

while the superscript h is used to denote a value corresponding to a hypothesized

target.

At each receiver we perform standard matched filtering of the received data

with the expected composite received waveform. The expected, normalized, and

weighted composite waveform at the nth receiver, pn(t;~τhn , ~ω
h
n), is specified by

pn(t;~τhn , ~ω
h
n) =

1

Bn

M∑
m=1

bm,nfm(t− τhm,n)eiωhm,nt, (2.36)

where

~τhn = [τh1,n, . . . , τ
h
M,n]T (2.37)

~ωhn = [ωh1,n, . . . , ω
h
M,n]T .

The coefficients

bm,n =
Rp,m=1

Rp,m

√
Em
Em=1

(2.38)

are derived for each transmitter-receiver pair from the bistatic radar equation, under

the assumptions that b1,n = 1 and PmGm ∼ Em where Pm is the power of the mth

transmitter and Gm is the gain of the mth transmitter. By inspection, bm,n depends

only on the transmitter. The normalization constant Bn in (2.36) is chosen so that∫ ∞
−∞

pn(t;~τhn , ~ω
h
n)p∗n(t;~τhn , ~ω

h
n)dt = 1 (2.39)

and ∫ ∞
−∞

pn(t;~τan , ~ω
a
n)p∗n(t;~τan , ~ω

a
n)dt = 1. (2.40)

The received signal at the nth receiver can then be rewritten using (2.34), (2.36),
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and (2.38) to obtain

rn(t) =
anµn
Rp,n

M∑
m=1

√
Em

Rp,m

fm(t− τamn)eiωam,nt + nn(t)

=
anBnµn

√
Em=1

Rp,m=1Rp,n

pn(t;~τan , ~ω
a
n) + nn(t) (2.41)

where µn is the compensation constant [20]. The output of the matched filter at the

nth receiver is given by

dn =

∣∣∣∣∫ ∞
−∞

rn(t)√
N0n

p∗n(t;~τhn , ~ω
h
n) dt

∣∣∣∣ . (2.42)

By the assumptions that the envelope of the noise and the amplitude of the

complex reflectivity of the target are both Rayleigh distributed, the output of the

matched filter, dn, will be Rayleigh distributed whether or not a target is present. We

recall that a Rayleigh distributed random variable A with parameter A0 will satisfy

E{A2} = 2A2
0 and so p(A) = R

(
A,
√

1
2
E{A2}

)
where R denotes the Rayleigh

probability density function

R(A,A0) =
A

A2
0

exp

{
− A2

2A2
0

}
. (2.43)

Under H0, we have E{d2
n} = 1, whereas under H1, we haveE{d2

n} = ρn
2

+ 1 where

ρn is the signal-to-noise ratio at the nth receiver given by

ρn =
4A2

0nB
2
nµ

2
nEm=1

N0nR2
p,m=1R

2
p,n

. (2.44)

Thus, the distribution of dn is given by

H0 : p(dn|H0) = R

(
dn,

√
1

2
E{d2

n}
)

= R

(
dn,

√
1

2

)
(2.45)

H1 : p(dn|H1) = R

(
dn,

√
1

2
E{d2

n}
)

= R

(
dn,

√
1

2

(ρn
2

+ 1
))

. (2.46)

We treat the data from each of the receivers asN independent observations and
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so the joint probability density of d = [d1, . . . , dN ] is the product of the individual

probability densities and the likelihood ratio can be written as

L(d) =

∏N
n=1R

(
dn,
√

1
2

(
ρn
2

+ 1
))

∏N
n=1R

(
dn,
√

1
2

)
∝ eD (2.47)

where

D =
N∑
n=1

ρn
ρn + 2

d2
n (2.48)

is the optimal global statistic in the Neyman-Pearson sense.

We write the global ambiguity function [32], or multistatic ambiguity function,

as

Θ(Th, Ta,Ωh,Ωa) =
N∑
n=1

cnΘn(~τhn , ~τ
a
n , ~ω

h
n, ~ω

a
n) (2.49)

where

Θn(~τhn , ~τ
a
n , ~ω

h
n, ~ω

a
n) =

∣∣∣∣∫ ∞
−∞

pn(t;~τan , ~ω
a
n)p∗n(t;~τhn , ~ω

h
n) dt

∣∣∣∣2 (2.50)

is the ambiguity function for the nth receiver in terms of the composite waveforms

corresponding to a true and hypothetical target and

Th = {τhm,n}M×N , Ta = {τam,n}M×N
Ωh = {ωhm,n}M×N , Ωa = {ωam,n}M×N .

The weights cn are defined subject to
∑N

n=1 cn = 1,

Θ(Ta, Ta,Ωa,Ωa) = 1, (2.51)

and

Θ(Th, Ta,Ωh,Ωa) =
1

K
E{Ds} (2.52)

where K is a normalization constant and Ds is the global statistic when only signal

is present in the received data.
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We solve for K and obtain the weights, cn, of the individual ambiguity func-

tions,

cn =

ρ2
n

2(ρn+2)∑N
k=1

ρ2
k

2(ρk+2)

, n = 1, ..., N. (2.53)

It follows that the global ambiguity function, or statistically derived multistatic

ambiguity function, is given by

Θ(Th, Ta,Ωh,Ωa) =
N∑
n=1

cnΘn(~τhn , ~τ
a
n , ~ω

h
n, ~ω

a
n)

where

Θn(~τhn , ~τ
a
n , ~ω

h
n, ~ω

a
n) =

∣∣∣∣∫ ∞
−∞

pn(t;~τan , ~ω
a
n)p∗n(t;~τhn , ~ω

h
n) dt

∣∣∣∣2 ,
cn =

ρ2
n

2(ρn+2)∑N
k=1

ρ2
k

2(ρk+2)

,

ρn =
4A2

0nB
2
nµ

2
nEm=1

N0nR2
x,m=1R

2
x,n

,

and pn(t;~τan , ~ω
a
n) and pn(t;~τhn , ~ω

h
n) are the composite waveforms corresponding to a

true and hypothetical target, respectively.

The global ambiguity function can be expressed in terms of actual and hy-

pothetical ranges and velocities, as stated in [20], but for ease of comparison with

the deterministic model, we write the global ambiguity function in terms of p,u,x,

and v, where x and v are respectively the actual vector position and velocity of the

target, and p and u correspond to a hypothetical vector position and velocity of the

target. The statistically derived multistatic ambiguity function can be rewritten as

Θ(p,u,x,v) =
N∑
n=1

cnΘn(p,u,x,v) (2.54)
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where

τam,n =
Rx,m +Rx,n

c0

, τhm,n =
Rp,m +Rp,n

c0

ωam,n = ωmβx,v, ωhm,n = ωmβp,u

with

βx,v =− (R̂x,m + R̂x,n) · v/c0,

βp,u =− (R̂p,m + R̂p,n) · u/c0.

A more detailed derivation of the global ambiguity function is given in Appendix A.

For the much simplified case of a single transmitter, (2.54) can be written as

Θ(p,u,x,v) =
N∑
n=1

cnΘ̃n(p,u,x,v)

=
N∑
n=1

cn

∣∣∣∣∫ ∞
−∞

f(t− τan)f ∗(t− τhn )ei(ωan−ωhn)t dt

∣∣∣∣2
=

N∑
n=1

cn

∣∣∣∣∫ ∞
−∞

f(t)f ∗(t− τ)eiω̃t dt

∣∣∣∣2 (2.55)

by several changes of variables and with

τ =
Rx,m=1 +Rx,n − (Rp,m=1 +Rp,n)

c0

ω̃ =ωc(βp,u − βx,v) = 2πfc(βp,u − βx,v), (2.56)

where ωc = 2πfc and fc is the carrier frequency of the waveform sent from the single

transmitter.

2.3.3 Discussion

Although the deterministic and statistical approaches in Sections 2.3.1 and

2.3.2 appear to have different goals (imaging versus detection), in fact these goals

are closely related: both approaches provide information about target position and
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velocity. In particular, plotting the detection test statistic as a function of target

position and velocity produces an image [33].

The two approaches are based on fundamentally different underlying assump-

tions. The deterministic approach neglects multiple scattering, and uses an isotropic

model for target scattering. The statistical approach assumes a Swerling II tar-

get and the resulting received signal, after processing, is assumed to be Rayleigh-

distributed with zero-mean, Gaussian, equal-variance, real and imaginary compo-

nents.

Both approaches, however, apply weights to the filtered data from each re-

ceiver and in the case of a single transmitter both MAFs reduce to summing ordinary

bistatic narrowband radar ambiguity functions, with arguments adjusted for target

locations and velocities. The weighting is done somewhat differently in the two

approaches. In the deterministic approach, the weighting is due to purely geomet-

rical factors and the data corresponding to each individual bistatic pair is weighted

uniquely [34]. In the statistical approach, a statistical criterion is used to deter-

mine the appropriate weights, and the statistics are assumed to already incorporate

information about the relevant geometry and target radar cross section.

The two approaches also differ in their assumptions about coherency of the sys-

tem. The statistical approach assumes a noncoherent system, and consequently the

summation of ambiguity functions is noncoherent. The deterministic approach can

accommodate either a coherent or noncoherent system; the summation of ambiguity

functions would then be coherent or noncoherent as appropriate. In our derivation

and subsequent simulations we assume the deterministic approach is coherent.

2.3.4 Simulations

Simulation Parameters

In the following simulations, we use a complex up-chirp waveform of unit

amplitude with 10 GHz carrier frequency, 100 MHz sampling frequency, 100 µs

pulse width, and 5 MHz bandwidth. The spatial region of interest is a circle of 10

km radius.
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Scenarios

Target

Transmitter

Receivers

15 km

10 km

(a)

Receivers
Target

Transmitter

10 km

(b)

Receivers

1.5 km/s

Target

Transmitter

10 km

(c)

Figure 2.3: Arrangement of target, transmitter, and receivers for cases 2.3(a)-(c).

Results

Figures 2.4 and 2.5 correspond to the scene in Figure 2.3(a). Four receivers

are spaced at a radius of 15 km and angles of 45◦, 135◦, 225◦, and 315◦ from the

center of the scene and a transmitter is placed 15 km from the center of the scene

at 90◦. We make an arbitrary choice to locate the target at the center of the scene

to impose equal propagation loses at each receiver, and the target has constant zero

velocity. The figures display the zero velocity cut and are shown with a normalized

dB colorscale. The peak, identified by a white circle, is in the correct location for

both models, but the ambiguity is lower for the deterministic model in Figure 2.4.

Figures 2.6 and 2.7 correspond to the scene in Figure 2.3(b). Four receivers

are spaced at radius 8, 6, 5, and 7 km and angle 30◦, 55◦, 110◦, and 140◦ respectively

from the center of the scene and a transmitter at radius 10 km and angle 90◦. The

target is located at the center of the scene and has zero velocity. Due to nonuniform

spacing of the receivers, the propagation loses along each path will differ. Again,

the peak is in the correct location for both models but the ambiguity is lower in

Figure 2.6.

Figures 2.8 and 2.9 correspond to the scene in Figure 2.3(c). This is the same

scene as figures 2.6 and 2.7 except that the target has velocity 1.5 km/s in direction

270◦. The figures display the zero velocity cut as before and the peak is spatially
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Figure 2.4: Deterministic MAF with equally spaced receivers and stationary target,
zero velocity cut.

Figure 2.5: Statistical MAF with equally spaced receivers and stationary target,
zero velocity cut.

Figure 2.6: Deterministic MAF with receivers spaced in a rough line and stationary
target, zero velocity cut.
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Figure 2.7: Statistical MAF with receivers spaced in a rough line and stationary
target, zero velocity cut.

shifted in the direction opposite of the target velocity by about 300 m in both figures,

as would be expected. As in the zero velocity cases, the ambiguity is lower in Figure

2.8.

Figure 2.8: Deterministic MAF with receivers spaced in a rough line and target
velocity 1.5 km/s, zero velocity cut.

2.3.5 Conclusion

Despite differences in the underlying assumptions of the deterministic and

statistical models, the derived multistatic ambiguity functions and simulations are

very similar. The deterministic MAF in Section 2.3.1 is derived from an imaging

point of view, whereas the statistical MAF in Section 2.3.2 is derived from a detection

point of view. The summations of the received data at each antenna can be either

coherent or noncoherent for the deterministic MAF and are noncoherent for the
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Figure 2.9: Statistical MAF with receivers spaced in a rough line and target velocity
1.5 km/s, zero velocity cut.

statistical MAF. The papers [4, 5, 20] are mainly focused on weight determination.

The resulting MAFs differ yet both are modifications of the same classical ambiguity

function.

The simulations show that the deterministically and statistically derived mul-

tistatic ambiguity functions provide comparable results for the zero-velocity case as

well as for nonzero velocity cuts. The deterministic model has slightly more pro-

nounced spatial localization than the statistical model, as would be predicted when

comparing a coherent system to a noncoherent system.

The comparison of the resulting MAFs and corresponding simulations attests

to the close relationship between detection and imaging, as observed in other works

[33], and encourages thinking of imaging as a detection problem at each point in

space and velocity.

2.4 Extension of the Deterministic Model

In Section 2.4 we build on the data model for the existing deterministically

derived MAF from Section 2.3.1 with the inclusion of antenna beam patterns by

relating the current density on the radiating and receiving antennas to a far-field

spatial weighting factor. We begin in Section 2.4.1 by formulating a data model that

incorporates radiation of the transmitted waveforms, scattering from a distribution

of moving point-like targets, and reception at the receiving antennas. From this

model we develop an imaging formula in position and velocity and a corresponding
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ambiguity function or point-spread function in Sections 2.4.2 and 2.4.3. We present

numerical simulations in Section 2.4.4 and then conclude.

2.4.1 Model for Data

Model for wave propagation

We model wave propagation and scattering by the scalar wave equation [35]

for the wavefield ψ(t,x) due to a current density jm(t+ Tm,x−ym) transmitted at

time −Tm from location ym:

[∇2 − c−2(t,x)∂2
t ]ψ(t,x) = µ0∂tjm(t+ Tm,x− ym) . (2.57)

where µ0 denotes the vacuum magnetic permeability.

A single scatterer moving at velocity v corresponds to an index-of-refraction

distribution n2(x− vt):

c−2(t,x) = c−2
0 [1 + n2(x− vt)] , (2.58)

where c0 is the speed of light in vacuum. We write qv(x − vt) = c−2
0 n2(x − vt).

To model multiple moving scatterers, we let qv(x− vt)dx dv be the corresponding

quantity for the scatterers in the volume dx dv centered at (x,v), the spatial dis-

tribution, at time t = 0, of scatterers moving with velocity v. Consequently, the

scatterers in the spatial volume dx (at x) give rise to

c−2(t,x) = c−2
0 +

∫
qv(x− vt)dv . (2.59)

We note that the physical interpretation of qv involves a choice of a time

origin. A choice that is particularly appropriate, in view of our assumption about

linear target velocities, is a time during which the wave is interacting with targets

of interest. This implies that the activation of the antenna at ym takes place at

a negative time which we have denoted in (2.57) by −Tm. The wave equation
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corresponding to (2.59) is then[
∇2 − c−2

0 ∂2
t −

∫
qv(x− vt)dv ∂2

t

]
ψ(t,x) = µ0∂tjm(t+ Tm,x− ym) . (2.60)

Model for transmitted field

The “incident” field ψin
m(t,x) is the field that is generated by the transmitter

at position ym and propagates into an empty universe:

[∇2 − c−2
0 ∂2

t ]ψ
in
m(t,x) = µ0∂tjm(t+ Tm,x− ym) . (2.61)

We assume that the antenna is constructed to be sufficiently broadband so that the

source term can be written as the product

µ0∂tjm(t,x) = sm(t)fm(x) (2.62)

where sm(t) is the waveform transmitted from the antenna located at ym and fm(x)

is a spatial factor. We recall that according to the convention adopted in (2.20),

sm(t) can be written in terms of its inverse Fourier transform as

sm(t) =
1

2π

∫
e−iωtSm(ω)dω . (2.63)

The frequency-domain version of (2.61) is then

[∇2 + k2]Ψin
m(ω,x) = e−iωTmSm(ω)fm(x− ym), (2.64)

where k = ω/c0 and we can solve (2.64) to obtain

Ψin
m(ω,x) =

∫
eik|x−zn|

4π|x− zn|
e−iωTmSm(ω)fm(zn − ym)dz. (2.65)

We assume that the antenna is distant from the target, so that |x − ym| �
|zn−ym| and |x−ym| � k|zn−ym|2. Consequently in (2.65) we make the far-field

expansion
eik|x−zn|

4π|x− zn|
≈ eik|x−ym|

4π|x− ym|
eik ̂(x−ym)·(ym−zn) (2.66)
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thus obtaining

Ψin
m(ω,x) ≈ eik|x−ym|

4π|x− ym|
e−iωTmSm(ω)

∫
eik ̂(x−ym)·(ym−zn)fm(zn − ym)dzn

=
eik|x−ym|

4π|x− ym|
e−iωTmSm(ω)Fm(k ̂(x− ym)) (2.67)

where Fm denotes the spatial Fourier transform of fm. Fm represents the far-field

beam pattern of the transmitting antenna as a function of frequency. We assume

that the antenna is sufficiently broadband that Fm is independent of frequency over

the effective support of the waveform Sm(ω). Hence, we replace Fm(k ̂(x− ym))

with Fm(x̂− ym) to reflect the dependence of the beam pattern solely on the angle

determined by the transmitter and observation positions ym and x, respectively.

Consequently, the transmitted field in the time domain can be expressed as

ψin
m(t,x) =

Fm(x̂− ym)

4π|x− ym|
sm(t− |x− ym|/c0 + Tm). (2.68)

Model for scattered field

We can likewise model the scattered field that is received at zn using the

scalar wave equation under the Born (single-scattering) approximation with a source∫
qv(x− vt)dv ∂2

t ψ
in
m(t,x) provided by the reflected incident field:

[∇2 − c−2
0 ∂2

t ]ψ
sc
m(t, zn) =

∫
qv(x− vt)dv∂2

t ψ
in
m(t,x). (2.69)

Solving for the scattered field we obtain

ψsc
m(t, zn) =

∫
δ(t− t′ −Rx,n(t′)/c0)

4πRx,n(t′)

∫
qv(x)dv

× Fm(R̂x,m(t′))
s̈m(t′ + Tm −Rx,m(t′)/c0)

4πRx,m(t′)
dt′dx (2.70)

whereRx,m(t′) = x+vt′−ym, Rx,m(t′) = |Rx,m(t′)|, and R̂x,m(t′) = Rx,m(t′)/Rx,m(t′).

We assume that the targets are moving slowly, so that |v|t′ and k|v|2t′2 are

much smaller than |x− ym| or |x− zn| where k = ωmax/c0 and ωmax is the effective

maximum angular frequency of the signal sm(t). Thus, we can replace Rx,m(t′) and
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R̂x,m(t′) with Rx,m(0) and R̂x,m(0) such that and Rx,m(0) = x − ym, Rx,m(0) =

|Rx,m(0)|, and R̂x,m(0) = Rx,m(0)/Rx,m(0). The scattered field in the slow-mover

case can then be written [11]

ψsc,S
m (t, zn) =

∫
Fm(R̂x,m(0))

(4π)2Rx,n(0)Rx,m(0)µx,v(0)
s̈m [φ(t,x,v)] qv(x)dx dv (2.71)

where

φ(t,x,v) = αx,v (t−Rx,n(0)/c0)−Rx,m(0)/c0 + Tm (2.72)

with Doppler scale factor

αx,v =
1− R̂x,m(0) · v/c0

1 + R̂x,n(0) · v/c0

(2.73)

and

µx,v(0) = 1 + R̂x,n(0) · v/c0. (2.74)

We assume the radar system is using a narrowband waveform of the form

sm(t) = s̃m(t) e−iωmt (2.75)

where s̃m(t) is slowly varying, as a function of t, in comparison with exp(−iωmt)

and ωm is the carrier frequency for the transmitter at position ym. The scattered

field in the narrowband case becomes

ψsc,SN
m (t, zn) =

∫ −ω2
mFm(R̂x,m(0))

(4π)2Rx,n(0)Rx,m(0)µx,v(0)
s̃m [φ(t,x,v)] e−iωmφ(t,x,v)qv(x)dx dv.

(2.76)

Model for received data

By an argument similar to the one used to obtain the transmission beam pat-

tern Fm(R̂x,m(0)), we obtain a receiver antenna beam pattern Fn(R̂x,n(0)) [35]. We

observe that Fn is dependent on the angle determined by the receiver and observa-

tion positions zn and x, respectively. This factor arises from modeling the reception

process that occurs at the receiving antenna, zn, as an integration of the scattered
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field ψsc,SN
m (t, zn) over the antenna with an appropriate weighting function and ap-

plying the far-field expansion as before. Consequently, we express the received data

as

dm,n(t) =

∫ −ω2
mFm(R̂x,m(0))Fn(R̂x,n(0))

(4π)2Rx,n(0)Rx,m(0)µx,v(0)
s̃m [φ(t,x,v)] e−iωmφ(t,x,v)qv(x)dx dv.

(2.77)

2.4.2 Image Formation

The corresponding imaging operation involves applying a weighted matched

filter and summing over all transmitters ym and receivers zn. The phase-space image

is given by the expression

I∞(p,u) =
∑
m

∑
n

(4π)2Rp,n(0)Rp,m(0)µp,u(0)αp,u

−ω2
m

Jm,n(p,u)

×
∫
s̃∗m [φ(t,p,u)] eiωmφ(t,p,u)dm,n(t)dt. (2.78)

Here the star denotes complex conjugation, and Jm,n is a geometrical factor [11]

that depends on the configuration of transmitters and receivers.

2.4.3 Analysis of the Image: Ambiguity Function

We obtain the narrowband MIMO ambiguity function (point-spread function)

of the imaging system, KNB
∞ (p,u;x,v), by substituting (2.77) into (2.78)

I∞(p,u) =

∫
KNB
∞ (p,u;x,v)qv(x)d3x d3v (2.79)

with

KNB
∞ (p,u;x,v) =

∑
m

∑
n

Fm(R̂x,m(0))Fn(R̂x,n(0))Jm,n(p,u)

×
∫
s̃∗m [φ(t,p,u)] s̃m [φ(t,x,v)] eiωm[φ(t,p,u)−φ(t,x,v)] dt.

(2.80)

Through some manipulation the MIMO ambiguity function (MAF) reduces
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to [11]

KNB
∞ (p,u;x,v) =

∑
m

∑
n

eiΦm,nFm(R̂x,m(0))Fn(R̂x,n(0))J̃m,n(p,u)Am(ω̃, τ),

(2.81)

where J̃m,n is a geometrical factor closely related to Jm,n above,

Am(ω̃, τ) = e−iωmτ

∫
s̃∗m(t− τ) s̃m(t) eiω̃tdt (2.82)

is a version of the classical monostatic narrowband radar ambiguity function, which

is defined here to include a phase, with parameters

ω̃ = ωm(βp,u − βx,v) (2.83)

τ = [(Rp,m(0) +Rp,n(0))− (Rx,m(0) +Rx,n(0))]/c0, (2.84)

and

exp [iΦm,n] = exp [ iωm(βp,u − βx,v)(Rx,m(0)/c0 − Tm)]

× exp [−ikmβu(Rx,n(0)−Rp,n(0))] (2.85)

with km = ωm/c0 and βx,v = −
(
R̂x,m(0) + R̂x,n(0)

)
·v/c0. The narrowband result

in (2.81) clearly exhibits the importance of the bistatic bisector vectors R̂x,m(0) +

R̂x,n(0) and R̂p,m(0) + R̂p,n(0). We observe that the MAF (2.81) is a weighted sum

of classical narrowband ambiguity functions.

2.4.4 Simulations

In the following simulations, we examine multiple geometries with moving

targets.

Simulation Parameters

We use a complex up-chirp and two 20-chip random polyphase codes with

10 GHz carrier frequency, 20 MHz sampling frequency, 20 µs pulse width, and 1
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MHz bandwidth. The classical ambiguity functions (CAFs) for these waveforms are

shown in Figures 2.10(a)-2.10(c). The ridge-like CAF with low range lobes of the

up-chirp and thumbtack CAF with higher range side lobes shown in Figure 2.10 are

evident in our simulations of the MAF for various geometries.
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Figure 2.10: Classical ambiguity functions of an up-chirp, (a), and two 20 chip
random polyphase codes, (b) and (c), plotted against velocity and time delay on a
dB scale.

The beam pattern used in these simulations is based on a N -element uniform

linear array with half-wavelength spacing and half-power beam width of approxi-

mately 10◦ for N = 10 and 4◦ for N = 25. It is expressed as a function of angle

by

F̃m(θ) =
1

N

sin
(
Nπ
2

sin(θ)
)

sin
(
π
2

sin(θ)
) , −π

2
≤ θ ≤ π

2
(2.86)

where F̃m(θ) = Fm(R̂x,m(0)) = Fn(R̂x,n(0)) and θ is measured relative to antenna

boresight. The boresight direction is assumed to be in the direction of the scene
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center.
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Figure 2.11: Beam Pattern Power, F̃ 2
m(θ), with N=10.

Scenarios

1.5 km/s

Target
4 km

TransmitterReceiver

3 km

(a)

TransmitterReceivers

1.5 km/s

Target
3 km

(b)

1.5 km/s

Target
4 km

Receivers
Transmitters

3 km

(c)

Figure 2.12: Arrangement of target, transmitters, and receivers for cases 2.12(a)-(c).

Results

Figures 2.13-2.16 display the MAF for various geometries depicted in Figure

2.12(a)-2.12(c) and are shown with a normalized dB colorscale. The region displayed

is a 6 km by 6 km square. In some plots, peaks are identified by white circles. The
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antenna beam patterns of the transmitters are evident in the plots of the MAF

power.

Figures 2.13 and 2.14 correspond to the bistatic scene in Figure 2.12(a). A

transmitter is spaced at radius 4 km and angle 50◦ a receiver at radius 4 km and

angle 130◦. The transmitted waveform is an up-chirp. We make an arbitrary choice

to locate the target at the center of the scene to impose equal propagation loses at

each receiver in multistatic cases described below, and the target and has velocity

1.5 km/s in direction 270◦. In the corresponding velocity cut shown, the peak is

in the correct location. The 10 element beam pattern in Figure 2.13 and the 25

element beam pattern in Figure 2.14 is clearly visible.

Figure 2.13: MIMO ambiguity function (MAF) for bistatic transmitter and receiver
case. Each antenna has 10 elements and the transmitted waveform is an up-chirp.
Cut at correct velocity.

Figure 2.14: MAF for bistatic transmitter and receiver case. Each antenna has 25
elements and the transmitted waveform is an up-chirp. Cut at correct velocity.



39

Figures 2.15 and 2.16 correspond to the scene in Figure 2.12(b). Four receivers

are spaced in a line with a transmitter in the center at radius 4 km and angle 90◦. An

up-chirp waveform is used in Figure 2.15 and the phase code from Figure 3.11(b) is

used in Figure 2.16. The target is located at the center of the scene and has velocity

1.5 km/s in direction 270◦. Figure 2.15(a) depicts the zero velocity cut in which

the target is nearly in the correct location but is spatially shifted in the direction

opposite of the target velocity by about 300 m, as would be expected from the

up-chirp CAF in 3.11(a). Figure 2.15(b) depicts the correct velocity cut in which

the target is in the correct location. Figure 2.16(a) depicts the zero velocity cut in

which the target is not visible, indicative of the doppler intolerance of phase codes.

Figure 2.16(b) depicts the correct velocity cut in which the target is in the correct

location.

(a) (b)

Figure 2.15: MAF for one transmitter and four receiver case. Each antenna has
a 10 element beam pattern and the transmitted waveform is an up-chirp, (a) zero
velocity cut and (b) velocity cut at correct velocity.

Figure 2.17 corresponds to the scene in Figure 2.12(c). Two receivers are

spaced at radius 4 km and angle 45◦ and 135◦ from the center of the scene and two

transmitters at radius 4 km and angle 75◦ and 105◦. The rightmost transmitter

emits the random polyphase code in Figure 3.11(b) and the other the phase code in

Figure 3.11(c). The target is located at the center of the scene and has velocity 1.5

km/s in direction 270◦. In the corresponding velocity cut shown, the peak is in the

correct location. In other velocity cuts, not presented here, the target is not visible.
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(a) (b)

Figure 2.16: MAF for one transmitter and four receiver case. Each antenna has a
10 element beam pattern and the transmitted waveform is the phasecode in Figure
3.11(b), (a) zero velocity cut and (b) velocity cut at correct velocity.

Figure 2.17: MAF for the case of two transmitters and two receivers. Each an-
tenna has a 10 element beam pattern and each transmitter emits a distinct random
polyphase code. Velocity cut at correct velocity.

2.4.5 Conclusion

We have outlined the development of a linearized imaging theory that combines

the spatial, temporal, and spectral aspects of scattered waves, and also incorporates

antenna beam patterns.

This imaging theory is based on the general (linearized) expression we derived

for waves scattered from moving objects, which we model in terms of a distribution

in phase space. The expression for the scattered waves takes the form of a superpo-

sition of weighted, time delayed, and frequency shifted versions of the incident field;

consequently we form an image by applying a weighted matched filter.
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The effect of incorporating a transmit beam pattern is consistent with expec-

tations; the returns from the main lobe are greater than that from the side lobes.

The derived MAF has the capability of more closely approximating reality than the

previous foundational work [22].

Our simulations show that the information that can be obtained depends crit-

ically on the transmitted waveforms. In particular, the Dopper-intolerant polyphase

coded waveforms produce a MAF with good localization in velocity, as expected.

The up-chirp MAF, on the other hand, has low sidelobes, but can cause the target

image to focus at the wrong location and wrong velocity.



CHAPTER 3

Polarimetric Radar Data Model

3.1 Introduction

In Chapter 2 we investigated scalar representations of multistatic radar data

originating from the scalar wave equation. In this chapter we formulate a full vec-

tor model for multistatic radar data including the polarization and scattering of

electromagnetic waves. As in the previous chapter, we must address the fusion of

data from multiple transmitters and receivers, a natural consequence of considering

a multistatic system. In the vector case we must also address the representation of

the electromagnetic vector fields and the transformation of these fields that occurs

when the waves are scattered off of a target. The possible advantages of both mul-

tistatic systems and polarimetric systems encourage the formulation of a full vector

model for multistatic radar data.

As discussed in Chapter 1, multistatic systems have a number of theoretical

advantages, including the ability to transmit multiple waveforms from collocated

or distributed antennas, thus enabling interrogation of larger areas of interest due

to the geometry of the system. It may also be possible to augment fielded systems

with additional low-power passive components, forming a bistatic or multistatic sys-

tem [30,36]. The performance of a multistatic system is heavily dependent upon the

number, geometry, and polarization of the transmitters and receivers and the wave-

forms that will be transmitted. An appropriate model can be used to characterize

how these parameters impact performance for a particular environment and targets

of interest. A multistatic system must also ensure that all constituent antennas are

coherent in time, that there is a common clock available to all transmitters and

receivers, and frequency or risk a loss of information [17–19].

There has been significant work done to develop models for multistatic radar

systems and to address issues related to the design of a multistatic system. There

has been theory developed for multistatic moving target detection [1–6], multistatic

imaging of a stationary scene [7–10], multistatic imaging of moving targets [11–16],

42
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and coherence of a multistatic system [17–19].

Polarimetric radar systems are advantageous because more information can

be collected about an environment if multiple polarizations are transmitted and

received than if a single polarization is used. The polarization transformation of

the field incident on a target can provide information about the shape and material

of a target and can aid in target classification [37]. Receiving multiple polariza-

tions also ensures that information is not lost due to the presence of a target that

cross-polarizes the incident field. Despite the historically prohibitive cost of these

systems, polarimetry is integral to weather, geoscience, and synthetic aperture radar

applications [30,37–39].

The earliest work in radar polarimetry was carried out by George Sinclair,

the namesake of the Sinclair scattering matrix [40]. Other important foundational

work was conducted by Edward Morton Kennaugh at the Antenna Laboratory of

the Ohio State University [41] and Jean Richard Huynen [42]. There has been

substantial work in measurement and interpretation of the polarization response

from targets [43], decomposition of target scattering into primitive shapes [44, 45],

bistatic scattering [46–51], classification of radar polarimetry according to physical

scattering mechanisms [52, 53], and techniques for target detection and image con-

trast enhancement based on polarimetric filtering [52, 54–58]. The practicality of

fully polarimetric radar systems is supported in [59,60].

The goal of this work is to advance the theory for multistatic imaging of moving

targets by incorporating polarization and considering the full vector electromagnetic

fields.

In Chapter 3 we first provide some background on polarization and scattering

of electromagnetic plane waves and give a detailed description of the multistatic

polarimetric problem addressed in this chapter. We then formulate our data model

beginning with the potential formulation of Maxwell’s equations and the Green’s

function solution to the wave equation resulting in a far-field expression for the elec-

tric vector field. The processes of radiation from a transmitting antenna, scattering

from a moving target, and reception at a receiving antenna are then described in

both the time and frequency domains. Following formulation of the data model
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we derive two imaging operations that weight and sum the filtered data collected

at each receiver, first assuming that the contributions from each transmitter in the

scene are separable and then assuming that the contributions from all transmitting

antennas must be treated as a unit, an assumption that better approximates reality.

We then utilize the presented data model and imaging operations to simulate mul-

tiple antenna geometries with multiple transmission schemes and a single moving

target. Scattering behavior of the simulated target is modeled with both a bistatic

scattering matrix based on physical optics as derived in Appendix D and a general

complex scattering matrix used to investigate the effects of a scattering body that

introduces cross polarization of the transmitted electric field. We end the chapter

with conclusions and a summary of future work.

3.2 Background

3.2.1 Plane Wave Solution to the Wave Equation

Maxwell’s equations in free space can be combined to obtain the wave equation

∇2E(r, t)− 1

c2
0

∂2E(r, t)

∂t2
= 0 (3.1)

where

c0 = (µ0ε0)−1/2

is the speed of light in free space, µ0 is the permeability of free space, and ε0 is the

permittivity of free space. The time dependent solution to the wave equation is the

plane wave

E(r, t) = E0ei(k·r−ωt) (3.2)

where r is the position vector to the point of interest and k = kk̂ is the propagation

vector with wave number k = ω/c0 and direction of propagation k̂. The physical

electric field is obtained by taking the real portion of (3.2)

E(r, t) = Re
{
E0ei(k·r−ωt)} . (3.3)
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In the course of this background discussion we will refer to the physical electric field

(3.3). However, we note that the electric field in the frequency domain, E(r, w), is a

complex quantity and in general when Maxwell’s equations are given in the frequency

domain all field quantities are assumed to be complex [61]. In later sections we will

discuss the complex valued electric field in both the time and frequency domains.

3.2.2 Polarization of Electromagnetic Plane Waves

We consider a coordinate system defined by the orthonormal basis (k̂, ĥ, v̂)

and rewrite E0 as a sum of ĥ and v̂ components, perpendicular to the direction of

propagation,

E0 = E0
hĥ+ E0

vv̂ (3.4)

where E0
h = aae

−iδa and E0
v = ave

−iδv so that

Eh(r, t) = Re
{
aae

i(k·r−ωt−δa)
}

= aa cos (k · r − ωt− δa) (3.5)

Ev(r, t) = Re
{
ave

i(k·r−ωt−δv)
}

= av cos (k · r − ωt− δv) (3.6)

with magnitudes aa and av and phase angles δa and δv. We define an angle α relating

these magnitudes by

tanα =
aa
av

and let δ = δa − δv. Field quantities whose time dependence is a function of a

single angular frequency, for example ω, are said to be monochromatic. A general

depiction of the spatial evolution of the monochromatic plane wave components

given by Eh(r, t) and Ev(r, t) is shown in Figure 3.1.

Eh(r, t)

Ev(r, t)

ĥ

v̂

k̂

Figure 3.1: Spatial evolution of monochromatic plane wave components.

The polarization of a plane wave such as E(r, t) describes the shape and locus
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of the tip of the time dependent field vector in a plane orthogonal to the direction

of propagation. In general, the trace of the tip of the field vector as a function of

time forms an ellipse. The polarization ellipse in the h-v plane for a wave traveling

into the page in the k̂ direction in shown in Figure 3.2.

k̂
ĥ

v̂

⇠̂

⌘̂

a⇠

a⌘

av

 

�
↵

ah

Minor Axis

Major Axis

Polarization Ellipse

Figure 3.2: Polarization ellipse in the h-v plane for a wave traveling into the page
in the k̂ direction.

If aa 6= 0, av 6= 0, and δ = δa − δv 6= 0 then the field is elliptically polarized.

The polarization is characterized by several parameters labeled in Figure 3.2. The

axial ratio R is the ratio of the major axis of the ellipse, 2aξ, to the minor axis of

the ellipse, 2aη, and is given by

R =
aξ
aη
.

The rotation angle ψ is the angle between the major axis and a reference direction

chosen here to be v̂ and is given by

tan 2ψ = (tan 2α) cos δ

with −π/2 ≤ ψ ≤ π/2. The ellipticity angle χ is related to the axial ratio by

tanχ = ± 1

R
= ±aη

aξ
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and is also given by the expression

sin 2χ = (sin 2α) sin δ

with −π/4 ≤ χ ≤ π/4.

If the direction of rotation is clockwise in time for an observer looking in the

direction of propagation then the sense of polarization of the wave is right-handed

and if the direction of rotation is counterclockwise then the sense of polarization

of the wave is left-handed. This is consistent with the IEEE convention but goes

contrary to the definition used in classical optics [37,38,62]. With respect to Figure

3.2 the sense of rotation of the polarization is left-handed if χ > 0 then and right-

handed if χ < 0.

The wave is linearly polarized when δ = 0 and the field vector traces out a

straight line in time, as shown in the first diagram of Figure 3.3. The angle α is

defined above so that

α = arctan

(
aa
av

)
is the inclination angle. When ah = 0 the inclination angle is α = 0 and the wave

is completely vertically polarized and when av = 0 the inclination angle is α = π/2

and the wave is completely horizontally polarized.

Figure 3.3: Linear, circular, and elliptical polarization states.

The wave is circularly polarized when aa = av and δ = ±π/2, as shown in

the second diagram of Figure 3.3. If the sign of δ is positive then the wave has left



48

circular polarization and if δ is negative then the wave has right circular polarization.

The third example in Figure 3.3 depicts a general elliptically polarized wave.

At this point we recall that in free space E0 and H0 are related by the expres-

sion

H0 =
1

η0

k̂ ×E0 (3.7)

where

η0 = µ0c0 =

√
µ0

ε0

is the free space impedance. As a consequence of Maxwell’s equations the electric

field, magnetic field, and direction of propagation are mutually perpendicular and

together the electric field and magnetic field constitute a transverse electromagnetic

(TEM) field [38].

3.2.3 Scattering of Polarized Electromagnetic Plane Waves

The scattering of electromagnetic plane waves is usually described in either

the forward scatter alignment (FSA) convention or the backward scatter (BSA)

convention. Both of these conventions introduce a global coordinate system centered

at the scatterer and a local coordinate system at both the transmitting and receiving

antennas as shown in Figure 3.4.

ẑ

v̂i
k̂i

ĥi

v̂s

k̂sĥs

⇡ � ✓i

✓s
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�i
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(a)

v̂r

ĥr

k̂r

ĥt

k̂t
v̂t

ẑ

⇡ � ✓i

✓s

�s

�i

x̂

ŷ

(b)

Figure 3.4: Coordinate systems corresponding to the forward scatter alignment
(FSA) convention (a) and backscatter alignment (BSA) convention (b).
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Forward Scatter Alignment Convention

The FSA convention depicted in Figure 3.4(a) is favored in problems involving

wave scattering by particles and wave propagation in inhomogeneous media [37].

It is also the convention used to describe scattering in Sinclair’s seminal work [40].

The coordinate system defined by the FSA convention is given by

k̂i = cosφi sin θix̂+ sinφi sin θiŷ + cos θiẑ

ĥi =
ẑ × k̂i

|ẑ × k̂i|
= − sinφix̂+ cosφiŷ

v̂i = ĥi × k̂i = cosφi cos θix̂+ sinφi cos θiŷ − sin θiẑ

and

k̂s = cosφs sin θsx̂+ sinφs sin θsŷ + cos θsẑ

ĥs =
ẑ × k̂s

|ẑ × k̂s|
= − sinφsx̂+ cosφsŷ

v̂s = ĥs × k̂s = cosφs cos θsx̂+ sinφs cos θsŷ − sin θsẑ

where k̂i is the direction of propagation of the incident wave and k̂s is the direction of

propagation of the scattered wave. The FSA convention ensures that the directions

of the vertical and horizontal unit vectors are always defined with respect to the

direction of propagation. In forward scattering θs = θi and φs = φi, resulting in

the unit vectors k̂s = k̂i, ĥs = ĥi, and v̂s = v̂i. In backscattering θs = π − θi and

φs = π + φi, resulting in the unit vectors k̂s = −k̂i, ĥs = −ĥi, and v̂s = v̂i [37, 63].

We observe that the incident electric field can be written as a sum of compo-

nents as

Ei = Ei
hĥ+ Ei

vv̂ (3.8)
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and likewise the scattered electric field is given by

Es = Es
hĥ+ Es

vv̂. (3.9)

The scattering matrix in the FSA convention, also known as the Sinclair matrix,

[S]FSA is defined by

Es =
eik|r|

|r| [S]FSAEi (3.10)

or  Es
hs

Es
vs

 =
eik|r|

|r|

 Shshi
Shsvi

Svshi
Svsvi

FSA  Ei
hi

Ei
vi

 (3.11)

where |r| is the distance between the scatterer and the receiving antenna [37,40,41].

The polarization of the incident field is in the basis associated with the transmitter

(k̂i, ĥi, v̂i) and the polarization of the scattered field is in the basis associated with

the receiver (k̂s, ĥs, v̂s).

We observe that the scattering matrix has been defined in (3.10) and (3.11)

such that there is no dependence on range. The lack of range dependence is shown

in more detail in Appendix D where the scattering matrix for a flat rectangular PEC

plate is derived. This is the convention adopted by [37] although some references

adopt a range dependent scattering matrix defined so that

Es = [S]FSAEi. (3.12)

Expression (3.12) is the definition given by [64], in which the elements of the scat-

tering matrix are defined in terms of the radar cross section. The data model we

develop in Section 3.4 will already include range dependence and so we choose to

define a range independent scattering matrix.

Backscatter Alignment Convention

The BSA convention depicted in Figure 3.4(b) is favored for calculating radar

backscatter from a given target or medium and in radar polarimetry. The BSA

convention is also consistent with the IEEE standard which defines the polarization
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state of an antenna to be the polarization of the wave radiated by the antenna even

when the antenna is operating as a receiver [37]. The coordinate system defined by

the BSA convention is given by

k̂t = k̂i = cosφi sin θix̂+ sinφi sin θiŷ + cos θtẑ

ĥt = ĥi = − sinφix̂+ cosφiŷ

v̂t = v̂i = cosφi cos θix̂+ sinφi cos θiŷ − sin θiẑ

and

k̂r = −k̂s = − cosφs sin θsx̂− sinφs sin θsŷ − cos θsẑ

ĥr = −ĥs = sinφsx̂− cosφsŷ

v̂r = v̂s = cosφs cos θsx̂+ sinφs cos θsŷ − sin θsẑ

where k̂t is the direction of propagation of the incident wave and k̂r is the direc-

tion of propagation of the scattered wave. The BSA convention ensures that the

coordinate systems, (k̂t, ĥt, v̂t) and (k̂r, ĥr, v̂r), are identical when the transmitting

and receiving antenna are collocated. In a backscattering geometry θs = π − θi and

φs = π+φi, resulting in the unit vectors k̂r = k̂t, ĥr = ĥt, and v̂r = v̂t. In a forward

scattering geometry θs = θi and φs = φi, resulting in the unit vectors k̂r = −k̂t,

ĥr = −ĥt, and v̂r = v̂t [37, 63].

As in the FSA convention, transmitted and received electric fields in the BSA

convention can be written as a sum of components as

Et = Et
hĥ+ Et

vv̂ (3.13)

Er = Er
hĥ+ Er

vv̂. (3.14)
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The scattering matrix in the BSA convention [S]BSA is defined by

Er =
eik|r|

|r| [S]BSAEt (3.15)

or  Er
hr

Er
vr

 =
eik|r|

|r|

 Shrht Shrvt

Svrht Svrvt

BSA  Et
ht

Et
vt

 . (3.16)

The polarization of the transmitted field is in the basis associated with the trans-

mitter (k̂t, ĥt, v̂t) and the polarization of the received field is in the basis associated

with the receiver (k̂r, ĥr, v̂r) [37].

Relating the FSA and BSA Conventions

From examination of the coordinate systems associated with the FSA and

BSA conventions it is clear that

Ei = Et (3.17)

and

Es =

 −1 0

0 1

Er (3.18)

and so it follows that

[S]FSA =

 −1 0

0 1

 [S]BSA (3.19)

or

[S]BSA =

 −1 0

0 1

 [S]FSA. (3.20)

Throughout the rest of this chapter we will adopt the BSA convention and so for

ease of notation we let [S] ≡ [S]BSA denote the general scattering matrix.

3.3 Problem Set-up

We will consider a multistatic scene with m = 1, . . . ,M transmitters at posi-

tion xT,m, n = 1, . . . , N receivers at position xR,n, and a moving target at position

xa with velocity va. Our data model will consider the radiation, scattering, and re-
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ception processes as shown in Figure 3.5 for each bistatic pair consisting of the mth

transmitter and nth receiver. This diagram loosely portrays the input and output

parameters of each process in the frequency domain, top, and time domain, bottom.

The first block entitled ”Radiation” refers to the transformation from the desired

vr
mn(t)

V r
mn(!)Er

m(r,!)

Radiation Scattering Reception

Transmit
waveform

Received
voltage

Transmitted
electric
field

Received
electric
field

Sm(!)

sm(t)

Et
m(r,!)

Et
m(r, t) Er

m(r, t)

Figure 3.5: Block diagram of the polarimetric radar problem.

transmit waveform to the transmitted electric field, including antenna effects and

the polarization of the transmit antenna. The ”Scattering” block transforms the

transmitted electric field into the received electric field by applying the scattering

behavior of the target and Doppler effects from a moving target. The final ”Re-

ception” block transforms the received electric field into the received voltage, again

including antenna effects and the polarization of the receiving antenna. Our data

model will address each of these processes in detail.

We will assume that all antennas in the scene are dipoles of diameter 2a and

length 2L as shown in Figure 3.6. In the far field the electromagnetic field radiated

2a

2L

Figure 3.6: An arbitrary dipole of diameter 2a and length 2L.

from a dipole antenna resembles a uniform plane wave with electric and magnetic

fields in time phase, and mutually orthogonal to each other and the direction of

propagation. The electric field only exists in a plane defined by the orientation of

the dipole and the magnetic field exists in the plane orthogonal to both the electric

field and direction of propagation satisfying (3.7) in free space [65]. Consequently, a

dipole antenna is polarized in the same plane that the antenna is in, e.g., a vertically

oriented dipole antenna is vertically polarized. The plane wave components radiated

from a vertically polarized dipole antenna are depicted in Figure 3.7.
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E(r, t)

H(r, t)

Figure 3.7: Plane wave components radiated from a vertically polarized dipole an-
tenna.

Figure 3.8 provides a nominal example of a single bistatic pair of two dipole

antennas that will be modeled in the following section. We observe that the vec-

mth transmitter at position xT,m

nth receiver at position xR,n

ath target at position xa

rn
rm

Figure 3.8: One bistatic pair of the multistatic system consisting of two dipole
antennas.

tors rm and rn from the transmitting antenna to the target and from the receiving

antenna to the target, respectively, are both oriented towards the target, as is con-

sistent with the BSA convention described in Section 3.2.3. The global coordinate

system relating the mth transmitter, nth receiver, and target as well as the local

coordinate systems of both antennas is depicted in Figure 3.9 where
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v̂n

ĥn

v̂m

ĥm

�n

�m

ẑ

ŷ

x̂

⇡ � ✓m

✓n

r̂m

r̂n

Figure 3.9: A modified BSA coordinate system where the unit vectors and angles
have been renamed to better suit a multistatic geometry.

r̂m = cosφm sin θmx̂+ sinφm sin θmŷ + cos θmẑ

ĥm = − sinφmx̂+ cosφmŷ

v̂m = cosφm cos θmx̂+ sinφm cos θmŷ − sin θmẑ

r̂n = − cosφn sin θnx̂− sinφn sin θnŷ − cos θnẑ

ĥn = sinφnx̂− cosφnŷ

v̂n = cosφn cos θnx̂+ sinφn cos θnŷ − sin θnẑ

and the global coordinate system is centered at the target. Note that each bistatic

pair will require its own coordinate system.

3.4 Data Model

3.4.1 The Potential Formulation

We begin our derivation of the vector data model with the potential formula-

tion [66–68] . Maxwell’s equations in the time domain



56

∇ ·D = ρ

∇ ·B = 0

∇× E = −∂B
∂t

∇×H = J +
∂D
∂t

combined with the free space constitutive relations

D = ε0E
B = µ0H

yield

∇ · E =
1

ε0
ρ (3.21)

∇ ·B = 0 (3.22)

∇× E = −∂B
∂t

(3.23)

∇×B = µ0J + µ0ε0
∂E
∂t

(3.24)

where D(r, t) is the electric displacement field, B(r, t) is the magnetic induction

field, E(r, t) is the electric field, H(r, t) is the magnetic intensity or magnetic field,

ρ(r, t) is the charge density, and J (r, t) is the current density. We use E to denote

E(r, t) for simplicity.

The divergenceless magnetic induction field can be written as the curl of a

vector potential A
B = ∇×A (3.25)

and then substituted into the Maxwell-Faraday equation (3.23) to obtain

∇× E = − ∂

∂t
(∇×A). (3.26)
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Clearly from (3.26),

∇×
(
E +

∂A
∂t

)
= 0

and consequently the inner sum can be written as the gradient of a scalar potential

Φ

E +
∂A
∂t

= −∇Φ

so that

E = −∇Φ− ∂A
∂t

. (3.27)

Substituting (3.27) into Gauss’ law (3.21) yields

∇2Φ +
∂

∂t
(∇ ·A) = − 1

ε0
ρ. (3.28)

and putting (3.25) and (3.27) into Ampère’s law (3.24) we obtain

∇× (∇×A) = µ0J − µ0ε0∇
(
∂Φ

∂t

)
− µ0ε0

∂2A
∂t2

. (3.29)

We recall the vector identity

∇× (∇×A) = ∇(∇ ·A)−∇2A (3.30)

and rewrite (3.29)

∇(∇ ·A)−∇2A = µ0J − µ0ε0∇
(
∂Φ

∂t

)
− µ0ε0

∂2A
∂t2

and then rearrange to obtain(
∇2A− µ0ε0

∂2A
∂t2

)
−∇

(
∇ ·A + µ0ε0

∂Φ

∂t

)
= −µ0J . (3.31)

At this point we have reduced the problem of finding E and B from the four

Maxwell’s equations to finding A and Φ from (3.28) and (3.31). We choose the

Lorentz gauge, picking

∇ ·A = −µ0ε0
∂Φ

∂t
(3.32)
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and assuming

Φ(r)→ 0 as |r| → ∞.

Under the Lorentz gauge (3.28) and (3.31) reduce to

∇2Φ− µ0ε0
∂2Φ

∂t2
= − 1

ε0
ρ (3.33)

and

∇2A− µ0ε0
∂2A
∂t2

= −µ0J , (3.34)

respectively.

Expressions (3.33) and (3.34) can also be be rewritten in terms of the d’Alembertian

�2 ≡ ∇2 − µ0ε0
∂2

∂t2
= ∇2 − 1

c2
0

∂2

∂t2
(3.35)

as

�2Φ = − 1

ε0
ρ (3.36)

�2A = −µ0J . (3.37)

By taking the Fourier transform we obtain the frequency domain equivalents

of (3.33) and (3.34)

∇2Φ̃ + µ0ε0ω
2Φ̃ = − 1

ε0
ρ̃ (3.38)

∇2A+ µ0ε0ω
2A = −µ0J (3.39)

where A, J , Φ̃, and ρ̃ are the Fourier transforms of A, J , Φ, and ρ, respectively,

and A is used to denote A(r, ω) for simplicity.

Recall that in free space

c0 =
1√
µ0ε0

and

k =
ω

vp
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where k is the wave number and vp is the phase velocity of the wave and so it follows

that

k =
ω

c0

=
√
µ0ε0ω

and equations (3.38) and (3.39) become

∇2Φ̃ + k2Φ̃ = − 1

ε0
ρ̃ (3.40)

∇2A+ k2A = −µ0J . (3.41)

3.4.2 Green’s Function Solution to the Wave Equation

We observe that (3.40) and (3.41) are both inhomogeneous Helmhotz equa-

tions that may be uniquely solved using a Green’s function under the Sommerfeld

radiation condition. Recall that the Sommerfeld radiation condition holds that

lim
|r|→∞

|r|n−1
2

(
∂

∂|r| − ik

)
u(r) = 0 (3.42)

uniformly in all directions

r̂ =
r

|r|
for (

∇2 + k2
)
u = −f in Rn (3.43)

and that the Green’s function is the solution to the inhomogeneous Helmholtz equa-

tion with a Dirac delta as the source term

∇2G(r) + k2G(r) = −δ(r), r ∈ Rn (3.44)

where

G(r) =
eik|r|

4π|r| (3.45)

for n = 3. Thus, the Helmholtz equation in (3.43) has the solution

u(r) = (G ∗ f)(r) =

∫
Rn
G(r − r′)f(r′)dr′



60

and we are now able to solve (3.40) and (3.41)for Φ̃ and A, respectively,

Φ̃(r) =
1

ε0

∫
G(r − r′)ρ̃(r′)dr′ (3.46)

A(r) = µ0

∫
G(r − r′)J(r′)dr′. (3.47)

3.4.3 Expression for the Electric Field

We next determine an expression for E, the frequency domain electric field,

in terms of the vector potential A. In the frequency domain, (3.27) becomes

E = iωA−∇Φ̃ (3.48)

with the corresponding Lorentz gauge

∇ ·A = iµ0ε0ωΦ̃. (3.49)

We solve (3.49) for Φ̃

Φ̃ =
−i

ωµ0ε0
(∇ ·A) (3.50)

and substitute (3.50) into (3.48) to obtain

E(r, ω) = iω

(
A(r, ω) +

1

k2
∇ (∇ ·A(r, ω))

)
. (3.51)

Substituting our Green’s function solution for A (3.47) into (3.51) we obtain

E(r, ω) = iωµ0

∫
G(r − r′, ω)J(r′, ω)dr′

+
iωµ0

k2
∇
(
∇ ·
∫
G(r − r′, ω)J(r′, ω)dr′

)
. (3.52)

We recall from [62,69–71] that

∇
(
∇ ·
∫
G(r − r′, ω)J(r′, ω)dr′

)
=

∫
∇(∇ ·G(r − r′, ω)J(r′, ω))dr′

− 1

3
J(r, ω) (3.53)
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where the Green’s function is defined in (3.45). A derivation of this property and

an associated lemma can be found in Appendix B. We can then rewrite (3.52) as

E(r, ω) = iωµ0

∫
G(r − r′, ω)J(r′, ω)dr′

+
iωµ0

k2

∫
∇(∇ ·G(r − r′, ω)J(r′, ω))dr′ − iωµ0

3k2
J(r, ω) (3.54)

and further simplify to obtain

E(r, ω) = iωµ0

(∫ (
G(r − r′, ω)J(r′, ω) +

1

k2
∇(∇ ·G(r − r′, ω)J(r′, ω))

)
dr′

− 1

3k2
J(r, ω)

)
(3.55)

= iωµ0

∫ ((
I +

1

k2
∇∇

)
G(r − r′, ω)− 1

3k2
δ(r − r′)

)
· J(r′, ω)dr′

(3.56)

= iωµ0

∫
G(r − r′, ω) · J(r′, ω)dr′ (3.57)

where

G(r, ω) =

(
I +

1

k2
∇∇

)
G(r, ω)− 1

3k2
δ(r) (3.58)

is the dyadic Green’s function [70, 71], δ(r) = δ(r)I, and I is the unit dyad. We

note that the delta term in (3.58) does not appear in all forms of the dyadic Green’s

function presented in the literature, although reputable sources acknowledge that it

is necessary for (3.57) to hold. The identity

∇ (∇ · (G(r − r′, ω)J(r′, ω))) = (∇∇G(r − r′, ω)) · J(r′, ω)

has been used to rewrite (3.55) as (3.56) where ∇∇G(r−r′, ω) is a dyadic operator.

We evaluate the differentiation in (3.58) to obtain

G(r, ω) =

(
1 +

i

k|r| −
1

k2|r|2
)

IG(r, ω) +

(
−1− 3i

k|r| +
3

k2|r|2
)
r̂r̂G(r, ω)

− 1

3k2
δ(r)

(3.59)
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and the dyadic Green’s function can be rewritten as the sum

G(r, ω) = GSF(r, ω) +GNF(r, ω) +GMF(r, ω) +GFF(r, ω) (3.60)

with

GSF(r, ω) = − 1

3k2
δ(r) (3.61)

GNF(r, ω) = − eik|r|

4πk2|r|3 (I− 3r̂r̂) (3.62)

GMF(r, ω) =
ieik|r|

4πk|r|2 (I− 3r̂r̂) (3.63)

GFF(r, ω) =
eik|r|

4πk|r| (I− r̂r̂) (3.64)

whereGSF, GNF, GMF, andGFF correspond to the self-field, near-field, middle-field,

and far-field dyadic Green’s functions, respectively.

3.4.4 Radiation

We will now develop an expression for the transmitted electric field radiated by

the mth transmitter, denoted Et
m for consistency with the BSA convention. Recall

the expression for the electric field in terms of the dyadic Green’s function derived

in section 3.4.1

Et
m(r, ω) = iωµ0

∫
G(r − r′, ω) · J(r′, ω)dr′. (3.65)

To obtain the far-field electric field we substitute (3.64) into (3.65) to obtain

Et
m(r, ω) = iωµ0

∫
GFF(r − r′, ω) · J(r′, ω)dr′

= iωµ0

∫
eik|r−r′|

4πk|r − r′|
(
I− r̂ − r′r̂ − r′

)
· J(r′, ω)dr′

= iωµ0

∫
eik|r−r′|

4π|r − r′|
(
J(r′, ω)− r̂ − r′

(
r̂ − r′ · J(r′, ω)

))
dr′. (3.66)
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For large |r| we make the far-field assumption

|r − r′| ≈ |r| − r̂ · r′

and the expression for Et
m becomes

Et
m(r, ω) = iωµ0

eik|r|

4π|r|

(∫
e−ikr̂·r′J(r′, ω)dr′ − r̂

(
r̂ ·
∫

e−ikr̂·r′J(r′, ω)

)
dr′
)
.

(3.67)

Letting

F (kr̂, ω) =

∫
e−ikr̂·r′J(r′, ω)dr′ (3.68)

denote the radiation vector, the spatial Fourier transform of the current density J ,

we obtain

Et
m(r, ω) = iωµ0

eik|r|

4π|r| (F (kr̂, ω)− r̂ (r̂ · F (kr̂, ω))) . (3.69)

We recall the vector identity

A× (B ×C) = B(A ·C)−C(A ·B) (3.70)

and observe

r̂(r̂ · F ) = r̂ × (r̂ × F ) + F (r̂ · r̂)

= r̂ × (r̂ × F ) + F .

It follows that

F − r̂(r̂ · F ) = −r̂ × (r̂ × F )

and so (3.69) can be written as

Et
m(r, ω) = −iωµ0

eik|r|

4π|r| (r̂ × (r̂ × F (kr̂, ω))) . (3.71)

Local Coordinate System

The derivation of the radiated electric field and constituent radiation vector

makes use of the local coordinate system below where the center of the antenna is
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located at the origin.

ẑ

x̂

ŷ

�

r

x

y

z

r̂

�̂

 

 ̂

Figure 3.10: Local coordinate system used to define the radiation vector.

The coordinate system is defined as follows

r̂ = x̂ cosφ sinψ + ŷ sinφ sinψ + ẑ cosψ (3.72)

ψ̂ = x̂ cosφ cosψ + ŷ sinφ cosψ − ẑ sinψ (3.73)

φ̂ = −x̂ sinφ+ ŷ cosφ (3.74)

where

x = |r| cosφ sinψ

y = |r| sinφ sinψ

z = |r| cosψ

and

ẑ = r̂ cosψ − ψ̂ sinψ. (3.75)

Decomposition of the Radiation Vector

We recall that the electric field is always parallel to the transverse portion of
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the radiation vector, F⊥(kr̂, ω), where

F = r̂Fr + F⊥ = r̂ (r̂ · F ) + (r̂ × F )× r̂

which can be written as spherical coordinates as

F = r̂Fr + ψ̂Fψ + φ̂Fφ

and so

F⊥ = (r̂ × F )× r̂ = ψ̂Fψ + φ̂Fφ. (3.76)

We observe

(r̂ × F )× r̂ = −r̂ × (r̂ × F )

and so we can rewrite (3.71) as

Et
m(r, ω) = iωµ0

eik|r|

4π|r| ((r̂ × F (kr̂, ω))× r̂)

= iωµ0
eik|r|

4π|r|F⊥,m(kr̂, ω) (3.77)

= iωµ0
eik|r|

4π|r|
(
ψ̂Fψ,m(ψ, ω) + φ̂Fφ,m(φ, ω)

)
. (3.78)

Definition of the Radiation Vector

We will now define the radiation vector F (kr̂, ω) based on the radiator we

have chosen, a thin dipole. The current density and current distribution are related

by the expression

J (x, y, z;ω) = ẑI(z, ω)δ(x)δ(y) (3.79)

for linear antennas oriented along the z axis [72]. We can rewrite our expression for

the radiation vector (3.68) in cartesian coordinates as

F

(
kx

|r| ,
ky

|r| ,
kz

|r| ;ω
)

=

∫
e−ik(x,y,z)·(x′,y′,z′)/|r|J (x′, y′, z′;ω) dx′dy′dz′ (3.80)

where

|r| =
√
x2 + y2 + z2
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and substitute (3.79) into (3.80) to obtain the radiation vector for a length 2L linear

antenna

F

(
kx

|r| ,
ky

|r| ,
kz

|r| ;ω
)

= ẑ

∫ L

−L
e−ik(x,y,z)·(x′,y′,z′)/|r|I(z′, ω)δ(x′)δ(y′)dx′dy′dz′

= ẑ

∫ L

−L
I(z′, ω)e−ikzz′/|r|dz′. (3.81)

Using (3.72) and (3.75) we can rewrite (3.81) as

F (r, ψ;ω) =
(
r̂ cosψ − ψ̂ sinψ

)∫ L

−L
I(z′, ω)e−ik cosψz′dz′ (3.82)

where we have left the integral in (3.82) in terms of the cartesian coordinate system

along the antenna. This integral quantity is evaluated for the particular current dis-

tribution that corresponds to the chosen antenna. By (3.76) the transverse radiation

vector will have only a ψ̂ component and the radial component can be eliminated

yielding

F⊥(ψ, ω) = −ψ̂ sinψ

∫ L

−L
I(z′, ω)e−ik cosψz′dz′. (3.83)

We will now consider possible choices for the current distribution of the radiating

dipole.

Hertizian Dipole

For a Hertzian dipole we assume constant current distribution I0 and infinites-

imal length

I(z) = I0L δ(z) (3.84)

and substituting (3.84) into (3.83) yields the frequency independent transverse ra-

diation vector

F⊥(ψ) = −ψ̂ sinψ I0L. (3.85)

Long Thin Dipole

We instead wish to model our radiator as a thin dipole with the length 2L

much greater than the width 2a. The thin standing wave antenna has approximate
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current distribution

I(z, ω) = I0 sin (k (L/2− |z|)) (3.86)

resulting in the transverse radiation vector

F⊥(ψ, ω) = −2I0ψ̂

k

(
cos (kL cosψ)− cos (kL)

sinψ

)
(3.87)

[72]. While (3.87) is a more realistic approximation, we wish to relate the radiated

electric field to the transmit waveform of the antenna.

Long Thin Dipole with Modified Current Distribution

Another model for the current distribution of a thin dipole comes from [73–77]

and is related to the current distribution given by Wu and King [78, 79]. A zeroth-

order approximation for the modified current distribution is given by

I(z, ω) =
V in(ω)

Z0

sin (k (L− |z|))
αr sin(kL) + i cos(kL)

= −2iV in

Z0

sin (k (L− |z|))
((1 + αr)e−ikL + (1− αr)eikL)

= − i(1 + Γ)V in

Z0

sin (k (L− |z|))
1 + Γei2kL

eikL (3.88)

where V in(ω) is the Fourier domain input voltage, Z0 is the characteristic impedance

Z0 =
Ωη0

2π

with free space impedance

η0 = µ0c0

and

Ω = 2 ln(2L/a),

Zg is the generator impedance, assumed frequency independent, with Zg = αrZ0

and 0 < αr < 1, and Γ is the reflection coefficient from the antenna to the generator
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given by

Γ =
(1− αr)

(1 + αr)
< 1.

If a system is matched then αr = 1 so that Zg = Z0 and the current distribution

can be reduced to

I(z, ω) = − iπV in(ω)

ln(2L/a)µ0c0

sin (k (L− |z|)) eikL. (3.89)

We assume that V in(ω) is given by

V in(ω) = V0S(ω) (3.90)

where V0 is the amplitude of the input voltage and S(ω) is the Fourier transform of

the transmit waveform. The relationship in (3.90) allows us to represent the current

distribution in terms of the transmitted waveform

I(z, ω) = − iπV0S(ω)

ln(2L/a)µ0c0

sin (k (L− |z|)) eikL (3.91)

and we substitute (3.91) into (3.83) to obtain

F⊥(ψ, ω) =
i2πV0S(ω)ψ̂

ln(2L/a)µ0ω
eikL

(
cos (kL cosψ)− cos (kL)

sinψ

)
. (3.92)

Electric Field Radiated from a Long Thin Dipole

We recall that a dipole antenna is polarized in the same plane that the antenna

is in, e.g., a vertically oriented dipole antenna is vertically polarized. We let the

unit vector p̂m denote the polarization of the mth transmitting dipole where p̂m is

given in the basis of the transmitting dipole as described under the BSA convention

in Section 3.2.3. The mth radiation vector can be rewritten in terms of a scalar

radiation pattern that is oriented according to the antenna polarization

F⊥,m(ψm, ω) = Fm(ψm, ω)p̂m (3.93)
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where

Fm(ψm, ω) =
i2πV0,mSm(ω)

ln(2Lm/am)µ0ω
eikLm

(
cos (kLm cosψm)− cos (kLm)

sinψm

)
(3.94)

is the scalar radiation pattern for the long thin dipole with modified current distri-

bution,

ψm = arccos (|r̂ · êm|) , (3.95)

and êm is the orientation of the dipole. Note that previously the ψ used to determine

the radiation vector for a dipole was defined by the coordinate system where the

antenna is oriented along the ẑ-axis. This value of ψ corresponded to the angle

between the propagation vector and the dipole orientation. In (3.95) we similarly

define ψm as the angle between the propagation vector r̂ and the orientation vector

êm of the mth transmitting dipole, where the orientation of the dipole is defined

in the global coordinate system of the BSA convention. In (3.95) we take the

absolute value of the inner product r̂ · êm because the radiation pattern of a dipole

is symmetric.

Substituting (3.93) into the radiated electric field from the mth transmitter

(3.77) we obtain

Et
m(r, ω) = iωµ0

eik|r|

4π|r|Fm(ψm)p̂m. (3.96)

Time Domain Radiated Electric Field

We can obtain a time domain version of the radiated electric field by taking the

inverse Fourier transform with an appropriate contour. We have left the transmit

waveform S(ω) undefined and so we assume that a contour of integration exists for

a given transmit waveform so that F−1{Sm(ω)} = sm(t)

E t
m(r, t) =

1

2π

∫
Et
m(r, ω)e−iωtdω

=F−1
{
Et
m(r, ω)

}
=

V0,mp̂m
2|r| ln(2Lm/am) sinψm

×F−1{Sm(ω)eik(|r|+Lm)(cos (kLm)− cos (kLm cosψm))}
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=
V0,mp̂m

2|r| ln(2Lm/am) sinψm
F−1{Sm(ω)eik(|r|+Lm)}

∗ F−1{cos (kLm)− cos (kLm cosψm)}

=
V0,mp̂m

4|r| ln(2Lm/am) sinψm

∫
sm

(
τ − |r|

c0

− Lm
c0

)
×
[
δ

(
τ − t− Lm

c0

)
+ δ

(
τ − t+

Lm
c0

)
−δ
(
τ − t− Lm

c0

cosψm

)
− δ

(
τ − t+

Lm
c0

cosψm

)]
dτ

=
V0,mp̂m

4|r| ln(2Lm/am) sinψm

[
sm

(
t− |r|

c0

)
+ sm

(
t− |r|

c0

− 2Lm
c0

)
−sm

(
t− |r|

c0

− Lm
c0

(1− cosψm)

)
− sm

(
t− |r|

c0

− Lm
c0

(1 + cosψm)

)]
.

(3.97)

We observe that (3.97) is composed of four terms containing the transmitted wave-

form at various time delays. The first term corresponds to the field radiated from

the center feed of the dipole and thus the field incident at a distance |r| away from

the antenna is composed of a version of the transmit waveform that is only delayed

by time |r|/c0. The second term corresponds to the field radiated from the center

feed but only after the current has traveled to either end of the dipole and been

reflected back to the center, traveling a distance 2Lm. Half of the second term is

contributed by currents reflected from each end. The final two terms correspond to

the field radiated from each end of the dipole after the current has traveled a dis-

tance Lm. This behavior results from the assumption that the field is only radiated

from the discontinuities of the antenna [75], the center feed and ends. In reality

there would be additional reflections of current from either end of the dipole and

the center feed at decreasing amplitudes. Only the zeroth order terms result from

expression (3.91) for the current distribution.

3.4.5 Scattering

The scattered electric field from a target at location xa is given by

Er
m (r, ω) =

eik|xa−r|

4π|xa − r|
[S]aE

t
m (rm, ω) (3.98)
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where Er
m is again consistent with the BSA convention,

rm = xa − xT,m

is the vector from the mth transmitter to the ath target, and [S]a is the scattering

matrix of the ath target

[S]a ≡ [S]BSA
a =

 Shnhm Shnvm

Svnhm Svnvm

BSA

a

. (3.99)

The scattering matrix is dependent on aspect angle, frequency, and material proper-

ties of the target. The scattering matrix also completely describes the polarization

transforming properties of the target and changes the basis of the polarization of the

mth transmitting antenna, (r̂m, ĥm, v̂m), into the basis of the nth receiving antenna,

(r̂n, ĥn, v̂n). The choice of receiving antenna is necessary for the definition of the

scattering matrix.

In the literature most scattering matrices are given for the case of monostatic

backscatter due to the extreme complexity of defining a target’s scattering matrix

for all possible transmitter and receiver orientations and polarizations. In the simu-

lations presented later we will use a bistatic scattering matrix for a flat rectangular

plate derived for our specific scenario in Appendix D in addition to more complex

scattering matrices defined for the monostatic case.

We also observe that because we are considering a general scatterer we do

not know the frequency dependence of [S]a. In subsequent sections we will assume

that the scattering behavior can be sufficiently described over the bandwidth of the

transmit waveform by the values of [S]a at the carrier frequency. This is so that we

may consider the scattered field in both the time and frequency domains without

knowledge of the inverse Fourier transform of the scattering matrix. We will also

consider the case of the flat rectangular plate where the frequency dependence is

derived in Appendix D.

Let

pr
m = [S]ap̂m
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denote the polarization vector of the incident field transformed by the scattering

matrix of the ath target. Observe that pr
m is no longer of unit magnitude because

[S]a will be frequency dependent and include a scattering amplitude coefficient.

Although we have not yet discussed the receive antenna in detail, pr
m implicitly

depends on the polarization basis of the receive antenna.

Substituting the radiated field (3.96) into (3.98), the scattered electric field

becomes

Er
m (r, ω) = iωµ0

eik(|rm|+|xa−r|)

(4π)2|rm||xa − r|
Fm(ψm)pr

m. (3.100)

Scattered Electric Field for Moving Targets

We will next consider the case of moving targets. We first substitute (3.94) into

(3.100) and Fourier transform the scattered electric field through a process similar

to that used to obtain (3.97)

E r
m(r, t) =

1

2π

∫
Er
m(r, ω)e−iωtdω

=F−1 {Er
m(r, ω)}

=
V0,mp

r
m

2(4π)|rm||xa − r| ln(2Lm/am) sinψm

×F−1{Sm(ω)eik(|rm|+|xa−r|+Lm)(cos (kLm)− cos (kLm cosψm))}

=
V0,mp

r
m

4(4π)|rm||r − xq| ln(2Lm/am) sinψm

×
[
sm

(
t− |rm|

c0

− |xa − r|
c0

)
+ sm

(
t− |rm|

c0

− |xa − r|
c0

− 2Lm
c0

)
− sm

(
t− |rm|

c0

− |xa − r|
c0

− Lm
c0

(1− cosψm)

)
−sm

(
t− |rm|

c0

− |xa − r|
c0

− Lm
c0

(1 + cosψm)

)]
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=
V0,mp

r
m

4(4π)|xa − xT,m||r − xq| ln(2Lm/am) sinψm

×
[
sm

(
t− |xa − xT,m|

c0

− |xa − r|
c0

)
+ sm

(
t− |xa − xT,m||

c0

− |xa − r|
c0

− 2Lm
c0

)
− sm

(
t− |xa − xT,m|

c0

− |xa − r|
c0

− Lm
c0

(1− cosψm)

)
−sm

(
t− |xa − xT,m|

c0

− |xa − r|
c0

− Lm
c0

(1 + cosψm)

)]
. (3.101)

We next substitute xa−vat for the position of the ath moving target to obtain

E r
m(r, t) =

V0,mp
r
m

4(4π)|xa − xT,m + vat||xa − r + vat| ln(2Lm/am) sinψm

×
[
sm

(
t− |xa − xT,m + vat|

c0

− |xa − r + vat|
c0

)
+ sm

(
t− |xa − xT,m + vat||

c0

− |xa − r + vat|
c0

− 2Lm
c0

)
− sm

(
t− |xa − xT,m + vat|

c0

− |xa − r + vat|
c0

− Lm
c0

(1− cosψm)

)
−sm

(
t− |xa − xT,m + vat|

c0

− |xa − r + vat|
c0

− Lm
c0

(1 + cosψm)

)]
(3.102)

and assume that the target is slowly moving with respect to c0, |va| � c0. For large

distances |xa − xT,m| and |xa − r| we assume

|xa − xT,m + vat| ≈ |xa − xT,m|+ ̂xa − xT,m · vat

and

|xa − r + vat| ≈ |xa − r|+ x̂a − r · vat
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so that our expression for the time domain scattered electric field becomes

E r
m(r, t) =

V0,mp
r
m

4(4π)|xa − xT,m||xa − r| ln(2Lm/am) sinψm

×
[
sm

(
t− |xa − xT,m|

c0

−
̂xa − xT,m · vat

c0

− |xa − r|
c0

− x̂a − r · vat
c0

)

+ sm

(
t− |xa − xT,m|

c0

−
̂xa − xT,m · vat

c0

− |xa − r|
c0

− x̂a − r · vat
c0

− 2Lm
c0

)

− sm
(
t− |xa − xT,m|

c0

−
̂xa − xT,m · vat

c0

− |xa − r|
c0

− x̂a − r · vat
c0

− Lm
c0

(1− cosψm)

)

− sm
(
t− |xa − xT,m|

c0

−
̂xa − xT,m · vat

c0

− |xa − r|
c0

− x̂a − r · vat
c0

− Lm
c0

(1 + cosψm)

)]
=

V0,mp
r
m

4(4π)|rm||xa − r| ln(2Lm/am) sinψm

×
[
sm

(
t− |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

)

+ sm

(
t− |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

− 2Lm
c0

)

− sm
(
t− |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

− Lm
c0

(1− cosψm)

)

− sm
(
t− |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

− Lm
c0

(1 + cosψm)

)]
. (3.103)
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Frequency Domain Scattered Electric Field for Moving Targets

We obtain the frequency domain scattered field for a moving target by Fourier

transforming (3.103)

Er
m(r, ω) =

∫
E r
m(r, t)eiωtdt

=F {E r
m(r, t)}

=
V0,mp

r
m

4(4π)|rm||xa − r| ln(2Lm/am) sinψm

×F
{
sm

(
t− |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

)

+ sm

(
t− |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

− 2Lm
c0

)

− sm
(
t− |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

− Lm
c0

(1− cosψm)

)

− sm
(
t− |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

− Lm
c0

(1 + cosψm)

)}
=

V0,mp
r
m

4(4π)|rm||xa − r| ln(2Lm/am) sinψm

×F
{∫

sm

(
τ − |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

− Lm
c0

)

×
[
δ

(
τ − t− Lm

c0

)
+ δ

(
τ − t+

Lm
c0

)
−δ
(
τ − t− Lm cosψm

c0

)
− δ

(
τ − t+

Lm cosψm
c0

)]
dτ

}
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=
V0,mp

r
m

4(4π)|rm||xa − r| ln(2Lm/am) sinψm

×F
{
sm

(
t− |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

− Lm
c0

)

∗
[
δ

(
t+

Lm
c0

)
+ δ

(
t− Lm

c0

)
− δ

(
t+

Lm cosψm
c0

)
−δ
(
t− Lm cosψm

c0

)]}
=

V0,mp
r
m

2(4π)|rm||xa − r| ln(2Lm/am) sinψm
(cos (kLm)− cos (kLm cosψm))

×F
{
sm

(
t− |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

− Lm
c0

)}
.

(3.104)

To obtain the F{sm(·)} we first rewrite the expression

F{sm(·)} =F
{
sm

(
t− |rm|

c0

− r̂m · vat
c0

− |xa − r|
c0

− x̂a − r · vat
c0

− Lm
c0

)}

=F
{
sm

((
1− (r̂m + x̂a − r) · va

c0

)
t− |rm|

c0

− |xa − r|
c0

− Lm
c0

)}

=F
{
sm

(
αt− |rm|

c0

− |xa − r|
c0

− Lm
c0

)}
(3.105)

where

α = 1− (r̂m + x̂a − r) · va
c0

= 1− β

and through the change of variables τ = αt (3.105) becomes

F{sm(·)} =

∫
1

α
sm

(
τ − |rm|

c0

− |xa − r|
c0

− Lm
c0

)
eiωτ/αdτ. (3.106)

We observe that the quantity β is very small and so we are able to Taylor expand

1

α
≈ 1 + β = 1 +

(r̂m + x̂a − r) · va
c0
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and we can rewrite (3.106)

F{sm(·)} =

∫
sm

(
τ − |rm|

c0

− |xa − r|
c0

− Lm
c0

)
ei(1+β)ωτdτ

=Sm ((1 + β)ω) e
i(1+β)ω

(
|rm|
c0

+
|xa−r|

c0
+Lm

c0

)
(3.107)

where

β =
(r̂m + x̂a − r) · va

c0

.

The frequency domain scattered field for a moving target can now be written

by substituting (3.107) into (3.104)

Er
m(r, ω) =

V0,mp
r
mSm ((1 + β)ω)

2(4π)|rm||xa − r| ln(2Lm/am) sinψm
e

i(1+β)ω
(
|rm|
c0

+
|xa−r|

c0
+Lm

c0

)

× (cos (kLm)− cos (kLm cosψm)) . (3.108)

Narrowband Assumption

As an aside we recall from [80] the definition of a narrowband signal. We define

the upper and lower frequencies of the passband of the power spectral density of a

signal as fU and fL. A signal is considered narrowband if the fractional bandwidth

BF =
fU − fL

(fU + fL)/2

is between 0 and 0.01. We observe that in simulations utilizing an X-band waveform

with 10GHz carrier frequency can have a fractional bandwidth of nearly 100 MHz

and still be considered narrowband.

We can alternately obtain the frequency domain version of (3.105) after mak-

ing the narrowband assumption. We assume that the transmit waveform sm(·) is

narrowband and can be rewritten as

sm(t) = s̃m(t)e−iωmt

where s̃m(t) is slowly varying with respect to t and ωm is the carrier frequency of
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the transmit waveform. Then (3.105) becomes

F{sm(·)} =F
{
s̃m

(
t− |rm|

c0

− |xa − r|
c0

− Lm
c0

)
e
−iωm

(
αt− |rm|

c0
− |xa−r|

c0
−Lm

c0

)}
=S̃m (ω − αωm) e

i(ω+(1−α)ωm)
(
|rm|
c0

+
|xa−r|

c0
+Lm

c0

)
(3.109)

If we make the narrowband assumption the expression for the scattered field

becomes

Er
m(r, ω) =

V0,mp
r
mS̃m (ω − αωm)

2(4π)|rm||xa − r| ln(2Lm/am) sinψm
e

i(ω+(1−α)ωm)
(
|rm|
c0

+
|xa−r|

c0
+Lm

c0

)

× (cos (kLm)− cos (kLm cosψm)) . (3.110)

3.4.6 Reception

We will now model reception of the scattered electric field on the nth dipole

receiver located at xR,n and with polarization p̂n given in the basis of the receive

antenna. By the general Lorentz reciprocity theorem, the open current received

voltage at the nth receiver is given by

V r
mn(ω) = Er

m (xR,n, ω) ·H⊥,n (3.111)

where H⊥,n is the perpendicular component of the effective vector height of the nth

dipole Hn [66, 72,81].

The effective vector height is related to the radiation vector, previously defined

for a thin dipole in section 3.4.4, by

H⊥ = −F⊥
Iin

(3.112)

where Iin is the input current to the antenna terminals [40, 72, 82]. We again as-

sume a matched antenna system and define the input current of the nth dipole by

substituting z = 0 into the modified current distribution for a long thin dipole (3.91)

Iin,n = − iπV0,nSn (ω)

ln(2Ln/an)µ0c0

sin(kLn)eikLn . (3.113)
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We can write the transverse radiation vector, H⊥,n, in terms of a scalar reception

pattern and the polarization of the dipole just as was done with the radiation vector

in (3.93)

H⊥,n(ψn, ω) = Hn(ψn, ω)p̂n (3.114)

where

Hn(ψn, ω) =
2

k sin(kLn)

(
cos (kLn)− cos (kLn cosψn)

sinψn

)
(3.115)

is the scalar reception pattern obtained by substituting (3.92) and (3.113) into

(3.112) and taking the scalar portion,

ψn = arccos (|r̂n · ên|) ,

and ên is the orientation of the receive dipole. Substituting (3.114) into (3.111) we

obtain

V r
mn(ω) =

2

k sin(kLn)

(
cos (kLn)− cos (kLn cosψn)

sinψn

)
p̂n ·Er

m (xR,n, ω) . (3.116)

Time Domain Received Voltage as a Function of Er
m(r, t)

We can obtain the time domain received voltage in terms of the scattered elec-

tric field, E r
m(r, t), in (3.103) by inverse Fourier transform using F−1{Er

m (xR,n, ω)} =

E r
m(r, t)

vr
mn(t) =

1

2π

∫
V r
mn(ω)e−iωtdω

=F−1 {V r
mn(ω)}

=
2c0p̂n
sinψn

· F−1

{
Er
m (xR,n, ω)

1

ω sin(kLn)
(cos (kLn)− cos (kLn cosψn))

}
.

(3.117)

We continue the derivation of the time domain received voltage by writing the

inverse Fourier transform term as a convolution of two inverse Fourier transformed
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terms, one known and one to be determined,

vr
mn(t) =

2c0p̂n
sinψn

·
[
F−1 {Er

m (xR,n, ω)} ∗ F−1

{
cos (kLn)− cos (kLn cosψn)

ω sin(kLn)

}]
=

2c0p̂n
sinψn

·
[
E r
m(xR,n, t) ∗ F−1

{
cos (kLn)− cos (kLn cosψn)

ω sin(kLn)

}]
. (3.118)

Observe that in (3.118) we have written the time domain received voltage as a

convolution of the scattered electric field incident at xR,n, E r
m(xR,n, t), with the time

dependent portion of the impulse response of the reception process. This impulse

response is the inverse Fourier transform of the frequency dependent terms of the

transfer function for the reception process. The frequency independent portion of

the transfer function is still present in the impulse response and can be seen at the

beginning of (3.118).

We find the inverse Fourier transform term in (3.118) using the residue theorem

and Jordan’s lemma. We take the real line indented below the simple poles from

the denominator as the line of integration resulting in

F−1

{
cos (kLn)− cos (kLn cosψn)

ω sin(kLn)

}
=

1

2πi

∞∑
p=−∞
p 6=0

1

p
e−ipπt

c0
Ln (1− (−1)p cos (pπ cosψn)) .

(3.119)

The details of this procedure can be found in Appendix C. Substituting our solution

from (3.119) into (3.118) we obtain

vr
mn(t) =

2c0p̂n
sinψn

·

E r
m(xR,n, t) ∗

1

2πi

∞∑
p=−∞
p 6=0

1

p
e−ipπt

c0
Ln (1− (−1)p cos (pπ cosψn))

 .
(3.120)

We now substitute our expression for E r
m(r, t) from (3.103) with r = xR,n into
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(3.120)

vr
mn(t) =

c0p̂n
πi sinψn

·
[

V0,mp
r
m

4(4π)|rm||rn| ln(2Lm/am) sinψm

×
[
sm

(
t− |rm|

c0

− r̂m · vat
c0

− |rn|
c0

− r̂n · vat
c0

)
+ sm

(
t− |rm|

c0

− r̂m · vat
c0

− |rn|
c0

− r̂n · vat
c0

− 2Lm
c0

)
− sm

(
t− |rm|

c0

− r̂m · vat
c0

− |rn|
c0

− r̂n · vat
c0

− Lm
c0

(1− cosψm)

)
− sm

(
t− |rm|

c0

− r̂m · vat
c0

− |rn|
c0

− r̂n · vat
c0

− Lm
c0

(1 + cosψm)

)]
∗

∞∑
p=−∞
p 6=0

1

p
e−ipπt

c0
Ln (1− (−1)p cos (pπ cosψn))

]
. (3.121)

We let

β =
(r̂m + r̂n) · va

c0

,

γ =
|rm|
c0

+
|rn|
c0

,

and rn = xa − xR,n for the receiving dipole located at xR,n. We note that this β

is the same as defined in Section 3.4.5 but with the position xR,n substituted for r

so that x̂a − r becomes r̂n = ̂xa − xR,n. We rewrite the sum of delayed transmit

waveforms as a single delayed transmit waveform convolved with a sum of delta

functions
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vr
mn(t) =

c0V0,mp
r
m · p̂n

(4πi)(4π)|rm||xa − r| ln(2Lm/am) sinψm sinψn

× sm
(

(1− β)t− γ − Lm
c0

)
∗
[
δ

(
t+

Lm
c0

)
+ δ

(
t− Lm

c0

)
−δ
(
t+

Lm
c0

cosψm

)
− δ

(
t− Lm

c0

cosψm

)]
∗

∞∑
p=−∞
p 6=0

1

p
e−ipπt

c0
Ln (1− (−1)p cos (pπ cosψn))

=
c0V0,mp

r
m · p̂n

(4πi)(4π)|rm||xa − r| ln(2Lm/am) sinψm sinψn

× sm
(

(1− β)t− γ − Lm
c0

)
∗

∞∑
p=−∞
p 6=0

1

p
e−ipπt

c0
Ln (1− (−1)p cos (pπ cosψn))

×
[
e−ipπLm

Ln + eipπLm
Ln − e−ipπLm

Ln
cosψm − eipπLm

Ln
cosψm

]
=

c0V0,mp
r
m · p̂n

(2πi)(4π)|rm||xa − r| ln(2Lm/am) sinψm sinψn

× sm
(

(1− β)t− γ − Lm
c0

)
∗

∞∑
p=−∞
p 6=0

1

p
e−ipπt

c0
Ln

[
(1− (−1)p cos (pπ cosψn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cosψm

))]
=

c0V0,mp
r
m · p̂n

(2πi)(4π)|rm||xa − r| ln(2Lm/am) sinψm sinψn

×
∫ ∞
−∞

sm

(
(1− β)τ − γ − Lm

c0

)
×

∞∑
p=−∞
p 6=0

1

p
e−ipπ(t−τ)

c0
Ln

[
(1− (−1)p cos (pπ cosψn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cosψm

))]
dτ. (3.122)

The physical significance of (3.122) can be partially understood by examining the
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above derivation, particularly (3.121). It is clear that four time delayed versions of

the transmit waveform are incident on the receive antenna. However, the reception

process of the dipole, which is expected to mirror the radiation process by reciprocity,

is hidden in this formulation. The physical interpretation of the received voltage

will be explained in an aside in the next section.

Time Domain Received Voltage by Substituting Er
m(r, ω)

Alternatively we can obtain the frequency domain received voltage (3.122)

by substituting the expression for the frequency domain scattered electric field,

Er
m(r, ω) (3.116), into (3.108). We choose not to make the narrowband assumption

for generality and V r
mn(ω) becomes

V r
mn(ω) =

V0,mSm ((1 + β)ω)pr
m · p̂n

(4π)k|rm||rn| ln(2Lm/am)
e

i(1+β)ω
(
γ+Lm

c0

)
1

sin(kLn)

×
(

cos (kLm)− cos (kLm cosψm)

sinψm

)(
cos (kLn)− cos (kLn cosψn)

sinψn

)
.

(3.123)

We again obtain the time domain received voltage by inverse Fourier transform

vr
mn(t) =

1

2π

∫
V r
mn(ω)e−iωtdω

=F−1 {V r
mn(ω)}

=
c0V0,m p

r
m · p̂n

(4π)|rm||rn| ln(2Lm/am) sinψm sinψn
F−1

{
1

ω
Sm ((1 + β)ω) e

iω(1+β)
(
γ+Lm

c0

)

× 1

sin(kLn)
(cos (kLm)− cos (kLm cosψm)) (cos (kLn)− cos (kLn cosψn))

}
=

c0V0,m p
r
m · p̂n

(4π)|rm||rn| ln(2Lm/am) sinψm sinψn
F−1

{
Sm ((1 + β)ω) e

iω(1+β)
(
γ+Lm

c0

)}
∗ F−1

{
(cos (kLm)− cos (kLm cosψm)) (cos (kLn)− cos (kLn cosψn))

ω sin(kLn)

}
.

(3.124)
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We next make a change of variables to find the first inverse Fourier transform term

F−1

{
Sm ((1 + β)ω) e

iω(1+β)
(
γ+Lm

c0

)}
=

1

1 + β
sm

(
t

1 + β
− γ − Lm

c0

)
≈ (1− β)sm

(
(1− β)t− γ − Lm

c0

)
≈ sm

(
(1− β)t− γ − Lm

c0

)
for small β and continue the derivation of vr

mn(t)

vr
mn(t) =

c0V0,m p
r
m · p̂n

(4π)|rm||rn| ln(2Lm/am) sinψm sinψn
sm

(
(1− β)t− γ − Lm

c0

)
∗ F−1

{
(cos (kLm)− cos (kLm cosψm)) (cos (kLn)− cos (kLn cosψn))

ω sin(kLn)

}
.

(3.125)

Observe that in (3.125) we have again written the received voltage as a convolu-

tion, here a convolution of the time delayed transmit waveform sm(·) with the time

dependent portion of the impulse response of the combined radiation and reception

processes. This impulse response is the inverse Fourier transform of the frequency

dependent terms of the corresponding transfer function. We note that this impulse

response does not completely relate the original transmit waveform sm(t) with the

received voltage because the waveform in (3.125) is time delayed.

As an aside, we examine the physical interpretation of (3.125). We rewrite

(3.125)

vr
mn(t) =

c0V0,m p
r
m · p̂n

2(4π)|rm||rn| ln(2Lm/am) sinψm sinψn
sm

(
(1− β)t− γ − Lm

c0

)
∗ F−1

{
i

ω
(

e
iωLn

c0 − e
−iωLn

c0

)
×
(

e
iωLm

c0 + e
−iωLm

c0 − e
iωLm

c0
cosψm − e

−iωLm
c0

cosψm
)

×
(

e
iωLn

c0 + e
−iωLn

c0 − e
iωLn

c0
cosψn − e

−iωLn
c0

cosψn
)}
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=
c0V0,m p

r
m · p̂n

2(4π)|rm||rn| ln(2Lm/am) sinψm sinψn
sm

(
(1− β)t− γ − Lm

c0

)
∗ F−1

{
e

iω
(Lm+Ln)

c0 + e
−iω

(Lm+Ln)
c0 + e

iω
(Lm−Ln)

c0 + e
iω

(−Lm+Ln)
c0

+ e
iω

(Lm cosψm+Ln cosψn)
c0 + e

−iω
(Lm cosψm+Ln cosψn)

c0

+ e
iω

(Lm cosψm−Ln cosψn)
c0 + e

iω
(−Lm cosψm+Ln cosψn)

c0

− e
iω

(Lm+Ln cosψn)
c0 − e

−iω
(Lm+Ln cosψn)

c0 − e
iω

(Lm−Ln cosψn)
c0

− e
iω

(−Lm+Ln cosψn)
c0 − e

iω
(Lm cosψm+Ln)

c0 − e
−iω

(Lm cosψm+Ln)
c0

− e
iω

(Lm cosψm−Ln)
c0 − e

iω
(−Lm cosψm+Ln)

c0

}

∗ F−1

 i

ω
(

e
iωLn

c0 − e
−iωLn

c0

)


=
c0V0,m p

r
m · p̂n

2(4π)|rm||rn| ln(2Lm/am) sinψm sinψn

∫
sm

(
(1− β)τ − γ − Lm

c0

)
×
[
δ

(
τ − t+

Lm
c0

+
Ln
c0

)
+ δ

(
τ − t− Lm

c0

− Ln
c0

)
+ δ

(
τ − t+

Lm
c0

− Ln
c0

)
+ δ

(
τ − t− Lm

c0

+
Ln
c0

)
+ δ

(
τ − t+

Lm
c0

cosψm +
Ln
c0

cosψn

)
+ δ

(
τ − t− Lm

c0

cosψm −
Ln
c0

cosψn

)
+ δ

(
τ − t+

Lm
c0

cosψm −
Ln
c0

cosψn

)
+ δ

(
τ − t− Lm

c0

cosψm +
Ln
c0

cosψn

)
− δ

(
τ − t+

Lm
c0

cosψm +
Ln
c0

)
− δ

(
τ − t− Lm

c0

cosψm −
Ln
c0

)
− δ

(
τ − t+

Lm
c0

cosψm −
Ln
c0

)
− δ

(
τ − t− Lm

c0

cosψm +
Ln
c0

)
− δ

(
τ − t+

Lm
c0

+
Ln
c0

cosψn

)
− δ

(
τ − t− Lm

c0

− Ln
c0

cosψn

)
− δ

(
τ − t+

Lm
c0

− Ln
c0

cosψn

)
− δ

(
τ − t− Lm

c0

+
Ln
c0

cosψn

)]
dτ
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∗ F−1

 i

ω
(

e
iωLn

c0 − e
−iωLn

c0

)


=
c0V0,m p̂n · pr

m

(4π)3|rm||rn| ln(2Lm/am) sinψm sinψn

(
sm

(
(1− β)t1 − γ −

Lm
c0

)
+ . . .

+sm

(
(1− β)t8 − γ −

Lm
c0

)
− sm

(
(1− β)t9 − γ −

Lm
c0

)
− . . .

−sm
(

(1− β)t16 − γ −
Lm
c0

))

∗ F−1

 i

ω
(

e
iωLn

c0 − e
−iωLn

c0

)
 (3.126)

where

t1 = t− Lm
c0

− Ln
c0

t9 = t− Lm
c0

cosψm −
Ln
c0

t2 = t+
Lm
c0

+
Ln
c0

t10 = t+
Lm
c0

cosψm +
Ln
c0

t3 = t− Lm
c0

+
Ln
c0

t11 = t− Lm
c0

cosψm +
Ln
c0

t4 = t+
Lm
c0

− Ln
c0

t12 = t+
Lm
c0

cosψm −
Ln
c0

t5 = t− Lm
c0

cosψm −
Ln
c0

cosψn t13 = t− Lm
c0

− Ln
c0

cosψn

t6 = t+
Lm
c0

cosψm +
Ln
c0

cosψn t14 = t+
Lm
c0

+
Ln
c0

cosψn

t7 = t− Lm
c0

cosψm +
Ln
c0

cosψn t15 = t− Lm
c0

+
Ln
c0

cosψn

t8 = t+
Lm
c0

cosψm −
Ln
c0

cosψn t16 = t+
Lm
c0

− Ln
c0

cosψn, (3.127)

β =
(r̂m + r̂n) · va

c0

,

and

γ =
|rm|
c0

+
|rn|
c0

.

We leave the remaining inverse Fourier transform term in (3.126) in its current form.

Examining this term, we observe that the complex inverse Fourier transform will

have a double pole at ω = 0. This singularity is order 2 due to the sin(kLn) term in
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our choice of input current, Iin, in (3.112) in addition to the 1/ω from Er
m (xR,n, ω).

As in Appendix C, we can indent below this pole and find the contribution from

the small arc of radius ε. We find that in the limit as ε → 0, the contribution

goes to infinity and so we cannot continue to solve for the time domain received

voltage. The complete time domain received voltage will be derived shortly in a

more tractable formulation. However, the point of this aside has been to obtain a

formulation of vr
mn(t) that can be interpreted physically. We observe that we obtain

a summation of sixteen time delayed versions of the transmitted waveform. This

intuitively makes sense for the chosen radiator, a long thin dipole, because, as we

have shown in Section 3.4.4, using the zeroth order model for the current distribution

on a long thin dipole results in the radiation of four distinct time delayed versions of

the transmit waveform emanating from the feed point, an end of the dipole, or the

feed point after reflection at one end of the dipole. After undergoing the scattering

process described by the scattering matrix [S]a, each of these signals may be incident

on either end of the receive dipole, the feed point, or may enter the feed point, travel

to an end of the dipole and back to the feed, resulting in four received voltages from

each radiated signal for a total of sixteen received voltages. The time delay of each

term in (3.126) corresponds to one of the scenarios just described.

Now that we have developed some understanding of the physical significance

of the received voltage we will continue our derivation. We find the remaining

inverse Fourier transform term in (3.125) using the residue theorem and Jordan’s

lemma. As in (3.119), we take the real line indented below the simple poles from

the denominator as the line of integration

F−1

{
(cos (kLm)− cos (kLm cosψm)) (cos (kLn)− cos (kLn cosψn))

ω sin(kLn)

}
=

1

2πi

∞∑
p=−∞
p 6=0

1

p
e−ipπt

c0
Ln

[
(1− (−1)p cos (pπ cosψn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cosψm

))]
. (3.128)

The details of this procedure can also be found in Appendix C. Substituting our
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solution from (3.128) into (3.125) we obtain

vr
mn(t) =

c0V0,m p
r
m · p̂n

(4π)|rm||rn| ln(2Lm/am) sinψm sinψn
sm

(
(1− β)t− γ − Lm

c0

)
∗ 1

2πi

∞∑
p=−∞
p 6=0

1

p
e−ipπt

c0
Ln

[
(1− (−1)p cos (pπ cosψn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cosψm

))]
=

c0V0,mp
r
m · p̂n

(2πi)(4π)|rm||rn| ln(2Lm/am) sinψm sinψn

×
∫ ∞
−∞

sm

(
(1− β)τ − γ − Lm

c0

)
×

∞∑
p=−∞
p 6=0

1

p
e−ipπ(t−τ)

c0
Ln

[
(1− (−1)p cos (pπ cosψn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cosψm

))]
dτ (3.129)

with

β =
(r̂m + r̂n) · va

c0

and

γ =
|rm|
c0

+
|rn|
c0

.

We observe that (3.129) is identical to (3.122), as expected.

Narrowband Assumption

We next rewrite expression (3.129) under the narrowband assumption. As in

section 3.4.5 we assume that the transmit waveform sm(·) is narrowband and can

be rewritten as

sm(t) = s̃m(t)e−iωmt
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where s̃m(t) is slowly varying with respect to t and ωm is the carrier frequency of

the transmit waveform. Then (3.129) becomes

vr,NB
mn (t) =

c0V0,mp
r
m · p̂n

(2πi)(4π)|rm||rn| ln(2Lm/am) sinψm sinψn

×
∫ ∞
−∞

s̃m

(
τ − γ − Lm

c0

)
e
−iωm

(
(1−β)τ−γ−Lm

c0

)

×
∞∑

p=−∞
p 6=0

1

p
e−ipπ(t−τ)

c0
Ln

[
(1− (−1)p cos (pπ cosψn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cosψm

))]
dτ. (3.130)

3.5 Image Formation

The goal of the imaging operation is to determine the distribution of three-

dimensional positions and three-dimensional velocities corresponding to targets in

the scene. Consequently, the full dimensional case image is formed in six-dimensional

phase space. The resulting image will also allow us to examine the angle dependent

scattering response of these targets and the transformation of transmit waveforms

caused by the chosen radiators.

We let xh and vh denote a hypothetical position and velocity, respectively, and

the a subscripts in xa and va now denote a true location and velocity. Then time

domain received voltage, as given by (3.129), from the nth receiver corresponding

to the signal radiated from the mth transmitter and scattered by a true target at

position xa with velocity va and angle dependent scattering matrix [S]a can be
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rewritten

vr
mn(t,xa,va) =

([S]ap̂m) · p̂n
ln(2Lm/am) sinψm sinψn

c0V0,m

(2πi)(4π)|ram||ran|

×
∫ ∞
−∞

sm

(
(1− βa)τ − γa − Lm

c0

)
×

∞∑
p=−∞
p 6=0

1

p
e−ipπ(t−τ)

c0
Ln

[
(1− (−1)p cos (pπ cosψn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cosψm

))]
dτ

=Ra
mnQmn(t,xa,va) (3.131)

where

Ra
mn =

V0,m

(4π)|ram||ran| ln(2Lm/am) sinψm sinψn

and

Qmn(t,xa,va) =
([S]ap̂m)Tp̂n

2πi

∫ ∞
−∞

sm

(
(1− βa)τ − γa − Lm

c0

)
×

∞∑
p=−∞
p6=0

c0

p
e−ipπ(t−τ)

c0
Ln

[
(1− (−1)p cos (pπ cosψn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cosψm

))]
dτ.

(3.132)

We note that we will now explicitly include the parameters xa and va in

vr
mn(t,xa,va) so that it may be distinguished from vr

mn(t,xh,vh). Likewise we add

the superscript h to ram = xa−xT,m and ran = xa−xR,n to distinguish the quantities

from rhm = xh − xT,m and rhn = xh − xR,n and

βa =
(r̂am + r̂an) · va

c0

and

γa =
|ram|
c0

+
|ran|
c0

.



91

At this time we will also define smn(t,xh,vh), the time-delayed, Doppler-scaled

version of the transmitted waveform corresponding to a target at position xh with

velocity vh so that

smn(t,xh,vh) = sm
(
(1− βh)t− γh

)
(3.133)

where sm(t) is the waveform emitted by the mth transmitter. Observe that this

waveform does not have the Lm/c0 delay present in the waveform in (3.132). This

delay corresponds to the time that it takes for the signal to travel from the feed

point of the antenna to either end and is specific to the chosen radiator. We will

use this notation in the following description of the imaging process.

We let q(xa,va) denote the true distribution of point-like scatterers in position

and velocity and as in [11–16], we construct an image I(xh,vh) as an approximation

to q(xa,va). The scattering matrix [S]a describes the scattering behavior for a

point-like target at position xa and velocity va in the distribution q(xa,va).

We will approach image formation under two sets of assumptions: first the

received data is assumed separable so that the contributions emanating from each

transmitter can be distinguished and next the total received data at each receiver

must be treated as a unit. While the former scenario is more desirable, because the

contribution from each bistatic pair of a transmitter and receiver can be examined

independently and weighted, the later scenario more closely approximates reality. In

general, a receiver in a multistatic system will receive a superposition of transformed

versions of the waveforms from each transmitter and would only be able to deal

with individual bistatic pairs if the signals can be separated through preprocessing,

which may not be possible. However, if the transmitted waveforms are distributed

in frequency or are coded in a way that makes the signals separable, then the first

approach may be possible and the added flexibility of dealing with bistatic pairs

makes this approach worthy of investigation.

Narrowband Assumption

If the narrowband assumption is made and we use the expression for the time
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domain received voltage in (3.130) then

vr,NB
mn (t,xa,va) = Ra

mnQ
NB
mn(t,xa,va) (3.134)

with

QNB
mn(t,xa,va) =

([S]ap̂m)Tp̂n
2πi

∫ ∞
−∞

s̃m

(
τ − γa − Lm

c0

)
e
−iωm

(
(1−βa)τ−γa−Lm

c0

)

×
∞∑

p=−∞
p6=0

c0

p
e−ipπ(t−τ)

c0
Ln

[
(1− (−1)p cos (pπ cosψn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cosψm

))]
dτ.

(3.135)

Frequency Sensitive Scattering Matrix

If the scattering behavior of the target varies over the bandwidth of the trans-

mitted waveform then we cannot take the term ([S]ap̂m)Tp̂n outside the inverse

Fourier transform to find the time domain received voltage as in Section 3.4.6. The

expression for the time domain received voltage is then given by

vr,FS
mn (t,xa,va) =Ra

mnQ
FS
mn(t,xa,va) (3.136)

with

QFS
mn(t,xa,va) =F−1

{
([S]ap̂m)Tp̂n
k sin(kLn)

Sm ((1 + βa)ω) e
iω(1+βa)

(
γa+Lm

c0

)

×
[

(cos (kLm)− cos (kLm cosψm))

× (cos (kLn)− cos (kLn cosψn))

]}
. (3.137)

In this case (3.137) cannot be further simplified without knowledge of the specific

frequency dependence of the scattering matrix [S]a.
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3.5.1 Contributions from each Transmitter Assumed Separable

In this section we assume that some preprocessing has been done to the data

from each receiver so that the contributions from each transmitter are known. As

discussed above, the transmit waveforms would need to be specially designed in this

scenario and knowledge of the transmit waveforms and positions of each transmit

and receive antenna would be beneficial if not necessary. This is the assumption

made in [11–16].

The time domain data from the nth receiver corresponding to the signal radi-

ated from the mth transmitter and scattered by a true target at position xa with

velocity va and angle dependent scattering matrix [S]a is written in terms of the

time domain received voltage as

dmn(t,xa,va) =

∫
vr
mn(t,xa,va)q(xa,va) dxadva

=

∫
Ra
mnQmn(t,xa,va)q(xa,va) dxadva.

We can then write the data in terms of a forward operator

P : (q(xa,va), [S]a)→ dmn(t,xa,va) (3.138)

that describes the transformation from the distribution of targets q(xa,va) and

corresponding scattering matrices [S]a to the received data dmn(t,xa,va). Image

formation involves applying an approximate inverse of the forward operator to the

received data

P−1 : dmn(t,xa,va)→ I(xh,vh). (3.139)

As in [11–14, 35], this is done by taking the inner product of the received data,

dmn(t,xa,va), with a version of the transmit waveform smn(t,xh,vh) corresponding

to a hypothetical location and velocity. We recall that the complex inner product,

< ·, · >, is given by

< f, g >=

∫
f(x)g∗(x) dx.

The output from each bistatic pair is then weighted and summed under the as-
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sumption that the system is coherent, that there is a common clock available to all

transmitters and receivers.

We write the resulting image as

I(xh,vh) =
∑
m

∑
n

Wmn

∫
s∗mn(t,xh,vh)dmn(t,xa,va) dt

=
∑
m

∑
n

Wmn

∫
s∗mn(t,xh,vh)

∫
Ra
mnQmn(t,xa,va)q(xa,va) dxadva dt

=

∫ [∑
m

∑
n

WmnR
a
mn

∫
Qmn(t,xa,va)s

∗
mn(t,xh,vh) dt

]
× q(xa,va) dxadva

=

∫
K(xh,vh;xa,va)q(xa,va) dxadva (3.140)

where the point-spread function, K(·), is given by

K(xh,vh;xa,va) =
∑
m

∑
n

WmnR
a
mn

∫
Qmn(t,xa,va)s

∗
mn(t,xh,vh) dt

=
∑
m

∑
n

WmnR
a
mnAmn(xh,vh;xa,va) (3.141)

and as in Chapter 2 Amn(·) is an analog to the ambiguity function given by

Amn(xh,vh;xa,va) =

∫
Qmn(t,xa,va)s

∗
mn(t,xh,vh) dt. (3.142)

The image formed in (3.140) is the total image created by combining contributions

from all transmit and receive polarizations, equivalent to adding the HH, HV, VH,

and VV components from each receiver. We recall that the linear basis that defines

the polarization of each transmitter and receiver is dependent on the location of

the antenna. If there are multiple transmitters or receivers then it no longer makes

sense to talk about the HH, for example, component of the image because there

may be multiple contributions with horizontal transmit and receive polarization

where horizontal polarization is defined differently at each antenna. If we wish to

examine the HH, HV, VH, and VV components of an image individually then we use

(3.140) but consider only the received data that has a single transmit and receive
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polarization. Considering these components is more intuitive when there is a single

transmitter and receiver.

If the system is not coherent, the magnitude must be taken of the output from

each pair before summation, phase information will be lost, and (3.142) becomes

Amn(xh,vh;xa,va) =

∣∣∣∣∫ Qmn(t,xa,va)s
∗
mn(t,xh,vh) dt

∣∣∣∣ . (3.143)

3.5.2 Contributions from each Transmitter Assumed Nonseparable

In this section we assume that no preprocessing has been done to the data

from each receiver so that the total received data at each receiver must be treated

as a unit. This is the assumption made in the statistical MAF presented in Chapter

2 and in [4, 5, 15, 20,83–85].

The total time domain data from the nth receiver corresponding to the signal

radiated from all transmitters and scattered by a true target at position xa with

velocity va and angle dependent scattering matrix [S]a is written in terms of the

time domain received voltage as

dn(t,xa,va) =

∫ ∑
m

vr
mn(t,xa,va)q(xa,va) dxadva

=

∫ ∑
m

Ra
mnQmn(t,xa,va)q(xa,va) dxadva.

We can then write the data in terms of a forward operator similar to the

operator defined in (3.138)

P̃ : (q(xa,va), [S]a)→ dn(t,xa,va) (3.144)

that describes the transformation from the distribution of targets q(xa,va) and

corresponding scattering matrices [S]a to the total received data dn(t,xa,va). We

again find an approximate inverse of the forward operator to the received data

P̃−1 : dn(t,xa,va)→ Ĩ(xh,vh). (3.145)

Observe the assumption that the transmitted signals are nonseparable results in a



96

slightly different image, denoted by Ĩ(xh,vh). Under this assumption the image is

formed by taking the inner product of the received data, dn(t,xa,va), with a summa-

tion of versions of the transmit waveform from each transmitter
∑

m smn(t,xh,vh)

corresponding to a hypothetical location and velocity. The output from each receiver

is then weighted and coherently summed. Note that it will now only be possible to

weight the data from the individual receivers.

We write the resulting image as

Ĩ(xh,vh) =
∑
n

Wn

∫ (∑
m

smn(t,xh,vh)

)∗
dn(t,xa,va) dt

=
∑
n

Wn

∫ (∑
m

smn(t,xh,vh)

)∗
×
∫ ∑

m

Ra
mnQmn(t,xa,va)q(xa,va) dxadvadt

=

∫ [∑
n

Wn

∫ (∑
m

smn(t,xh,vh)

)∗

×
(∑

m

Ra
mnQmn(t,xa,va)

)
dt

]
q(xa,va) dxadva

=

∫
K̃(xh,vh;xa,va)q(xa,va) dxadva (3.146)

where the point-spread function, K̃(·), is given by

K̃(xh,vh;xa,va) =
∑
n

Wn

∫ (∑
m

smn(t,xh,vh)

)∗(∑
m

Ra
mnQmn(t,xa,va)

)
dt

=
∑
n

Wn Ãn(xh,vh;xa,va) (3.147)

and as in Chapter 2 Ãn(·) is an analog to the ambiguity function given by

Ãn(xh,vh;xa,va) =

∫ (∑
m

smn(t,xh,vh)

)∗(∑
m

Ra
mnQmn(t,xa,va)

)
dt.

(3.148)

The image formed in (3.146) is again the total image created by combining contri-
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butions from all transmit and receive polarizations, equivalent to adding the HH,

HV, VH, and VV components from each receiver.

If the system is not coherent (3.148) becomes

Ãn(xh,vh;xa,va) =

∣∣∣∣∣
∫ (∑

m

smn(t,xh,vh)

)∗(∑
m

Ra
mnQmn(t,xa,va)

)
dt

∣∣∣∣∣.
(3.149)

3.6 Simulations

In the following simulations we examine a scene of interest with a moving target

under multiple transmitter and receiver configurations and polarization schemes.

The simulation parameters, scenarios considered, and results for both separable and

nonseparable transmitter contributions are offered in this section.

3.6.1 Simulation Parameters

We use a complex up-chirp and two 20-chip random polyphase codes with

10 GHz carrier frequency, 20 MHz sampling frequency, 50 µs pulse width, and 1

MHz bandwidth. The classical ambiguity functions (CAFs) for these waveforms are

shown in Figures 3.11(a)-3.11(c). The ridge-like CAF with low range lobes of the

up-chirp and thumbtack CAF with higher range side lobes shown in Figure 3.11 are

evident in our simulations of the MAF for various geometries. We recall that these

waveforms may be considered narrowband by the definition cited in section 3.4.5

and so in the following simulations we make the narrowband assumption and we use

the time domain received voltage given by expression (3.134).

We assume that the antennas are half-wavelength dipoles with total length

2L = λ/2. For a 10 GHz carrier frequency λ = 3 cm and so L = 0.75 cm and the

total length is 1.5cm. We assume that that diameter of the dipole antenna is 0.75

mm, or a = 0.375 mm where the diameter is 2a and so the length of the dipole is

20 times its diameter. This roughly corresponds to 21 AWG wire.

Figure 3.12 shows the CAF of an up-chirp waveform with 10 GHz center

frequency and 1 Mhz of bandwidth in 3.12(a), the CAF of this waveform after it has

been radiated from the long thin dipole of half-wavelength length 1.5 cm in 3.12(b),
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Figure 3.11: Classical ambiguity functions of an up-chirp, (a), and two 20 chip
random polyphase codes, (b) and (c), plotted against velocity and time delay on a
dB scale.

and the CAF of this waveform after it has been radiated and received on the same

dipole in a monostatic set-up in 3.12(c). This corresponds to the same waveform

shown in 3.11(a) and it is one of the waveforms used in simulations in this section.

Clearly there is very little distortion from either radiation or radiation and reception

of this narrowband waveform at this center frequency.

Figure 3.13 shows the CAF of an up-chirp waveform with 100 MHz center

frequency and 1 Mhz of bandwidth in 3.13(a), the CAF of this waveform after it has

been radiated from the long thin dipole of half-wavelength length 1.5 m in 3.13(b),

and the CAF of this waveform after it has been radiated and received on the same

dipole in a monostatic set-up in3.13(c). This waveform is just outside the limit

of the narrowband definition given in Section 3.4.5 with a fractional bandwidth
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Figure 3.12: Classical ambiguity functions of an up-chirp with 10 GHz center fre-
quency and 1 MHz bandwidth (a), the up-chirp after it has been radiated from a
long thin dipole (b), and after radiation and reception on the same dipole (c).

of 0.01. There is little distortion from radiation alone resulting in a CAF 3.13(b)

that looks nearly identical to 3.13(a) but with slightly less dynamic range near the

prominent diagonal ridge. However, the distortion from radiation and reception

is much greater as seen in 3.13(c), especially away from the range-Doppler ridge.

This distortion encourages the use of a data model that includes antenna effects like

the one presented in Section 3.4. We will not use waveforms with a lower center

frequency or larger fractional bandwidth, as shown here, in the following simulations

because we wish to make the narrowband approximation and use a physical optics

approximation for some of our scatterers, requiring λ much smaller than the length

of the target.

3.6.2 Scenarios

The simulations in this section correspond to the arrangement of target, trans-

mitters, and receivers for the cases depicted in Figure 3.14(a)-(e). Figure 3.14(a)
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Figure 3.13: Classical ambiguity functions of an up-chirp with 100 MHz center
frequency and 1 MHz bandwidth (a), the up-chirp after it has been radiated from a
long thin dipole (b), and after radiation and reception on the same dipole (c).

is a standard monostatic backscatter scenario that is used to verify the data model

and provide a baseline that simulations from other geometries can be compared to

and Figure 3.14(b) is a bistatic scenario with a bistatic angle of 60o that is used to

illustrate the effect of incidence angle on scattering behavior. Figures 3.14(c) and

3.14(d) incorporate two receivers with a single transmitter between the receivers

and Figure 3.14(e) is a more complicated scenario with two transmitters and two

receivers. Figures 3.14(c) - (e) require data from multiple receivers to be fused and

Figure 3.14(e) introduces the additional problem of multiple transmit waveforms.

Although the data model addresses a six-dimensional position and velocity space,

the center of the scatterer and the feed points of the transmitters and receivers

are assumed to be in the same x-y plane for the cases shown. This is so that the

six-dimensional space can be presented in two dimensions by taking a cut in the

ẑ-direction of position and a single velocity cut. Unless specified the velocity cut is

always the velocity cut corresponding to the moving target. However, the scattering
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body and antennas may be oriented out of the x-y plane.

3 km
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(a)
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Figure 3.14: Arrangement of target, transmitters, and receivers for cases 3.14(a)-(e).

The scene of interest is a 6 km by 6 km square. In all cases we assume a single

target in the center of the scene moving at a speed of 1.5 km/s in the 270o direction.

We make an arbitrary choice to locate the target at the center of the scene to impose

equal propagation loses at each receiver in multistatic cases. We also assume that

all transmitters and receivers are oriented so that boresight is towards the center

of the scene and coincides with the direction of propagation for a target located at

scene center. All plots in this section are shown of power on a dB scale.

3.6.3 Results

Separable Transmitter Contributions

The first set of results we will examine were obtained assuming that the con-
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tributions from each transmitter are known. The images are formed using the first

process described in Section 3.5.

Figures 3.15 through 3.27 consider a perfectly electrically conducting flat rect-

angular plate of length L = 1 m and height H = 1 m that is oriented along the x-z

plane with normal pointing in the ŷ direction. With respect to the diagrams of the

simulation scenarios given in Figure 3.14, the plate is located in the center of the

scenes and each of the scenes depict the orientation of scatterer, transmitters, and

receivers in the x-y plane with the ẑ direction pointing out of the page. The BSA

scattering matrix used to model this plate is derived in Appendix D

[S]plate =− ik

2π
LHsinc

(
k
L

2
(cosφm sin θm − cosφn sin θn)

)
× sinc

(
k
H

2
(cos θm − cos θn)

)

×

 − sinφn sin θm 0

cosφm cos θm sin θn − cosφn cos θn sin θm sinφm sin θn

 (3.150)

where angles φm, φn, θm and θn are given by Figure 3.9. Due to our specific scenarios

where the scatterer, transmitters, and receivers are all located in the same x-y plane,

θm = θn = π/2 and

[S]plate =− ik

2π
LHsinc

(
k
L

2
(cosφm − cosφn)

) − sinφn 0

0 sinφm

 . (3.151)

In Figures 3.15 and 3.16 we consider the simple monostatic scenario described

in Figure 3.14(a) and the scattering matrix reduces to

[S]plate =
ik

2π
LH

 1 0

0 1

 (3.152)

for normal incidence with θn = π − θm = π/2 and φn = π + φm = π/2. This is

the same scattering matrix that is found in the literature [37, 38, 42, 51, 64] and the

matrix portion of (3.152) is consistent with the monoscatic backscatter response

from a sphere, plate, or trihedral [38].
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Due to the symmetric nature of (3.152) we assume that the single transmit

and receive dipole is horizontally polarized in Figures 3.15 and 3.16 for simplic-

ity. In Figure 3.15 the transmit waveform is the chirp with CAF shown in 3.11(a)

and in Figure 3.16 the transmit waveform is the phase code with CAF shown in

3.11(b). These baseline images are consistent with the behavior of these waveforms

as discussed in Chapter 2. The Doppler tolerance of linearly modulated frequency

waveforms and Doppler intolerance of phase codes is evident in Figures 3.15 and

3.16, respectively. The range rings visible in 3.15 and 3.16 are consistent with the

monostatic geometry.

(a) (b)

Figure 3.15: Chirp waveform, for scene Figure 3.14(a), flat rectangular scatterer,
(a) zero velocity cut and (b) velocity cut at correct velocity.

Figures 3.17 through 3.20 correspond to the simple bistatic case described in

Figure3.14(b). The scattering matrix now reduces to

[S]plate =
ik

2π
LHsinc

(
k

√
3L

4

) 1 0

0 1
2

 (3.153)

and we assume that the transmitter and receiver both consist of a horizontally

polarized dipole and a vertically polarized dipole. In Figures 3.17 and 3.18 the

transmit waveform is the chirp with CAF shown in 3.11(a) and in Figures 3.19 and

3.20 the transmit waveform is the phase code with CAF shown in 3.11(b). The

total images are shown in Figures 3.17 and 3.19 and the HH and VV components
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(a) (b)

Figure 3.16: Phase coded waveform, for scene Figure 3.14(a), flat rectangular scat-
terer, (a) zero velocity cut and (b) velocity cut at correct velocity.

are shown in Figures 3.18 and 3.20. Figures 3.18(a) and (b) are normalized to

Figure 3.17 and Figures 3.20(a) and (b) are normalized to Figure 3.19. It is clear

from Figures 3.18 and 3.20 that the magnitude of the horizontal component of the

scattered electric field is greater than the vertical component, as expected from

(3.153). We note that the first “H” in HH denotes the receive polarization and the

second denotes the transmit polarization. These polarizations are given in the bases

associated with the transmit and receive dipoles as defined in Figure 3.9.

Figure 3.17: Chirp waveform, for scene Figure 3.14(b), flat rectangular scatterer,
total image.

Figures 3.21 and 3.22 correspond to the multistatic scenario described in Figure
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(a) (b)

Figure 3.18: Chirp waveform, for scene Figure 3.14(b), flat rectangular scatterer,
HH image (a) and VV image (b).

Figure 3.19: Phase coded waveform, for scene Figure 3.14(b), flat rectangular scat-
terer, total image.

3.14(c). We assume the transmitting antenna consists of two orthogonal dipoles, one

horizontally polarized and the other vertical, and that the receiver to the right of

the transmitter at 30o is horizontally polarized and the receiver to the left of the

transmitter and 150o is vertically polarized. The scattering matrix associated with

both bistatic pairs is given by

[S]plate =
ik

2π
LHsinc

(
k

√
3L

4

) 1
2

0

0 1

 . (3.154)
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(a) (b)

Figure 3.20: Phase coded waveform, for scene Figure 3.14(b), flat rectangular scat-
terer, HH image (a) and VV image (b).

In Figure 3.21 the transmit waveform is the chirp with CAF shown in 3.11(a)

and in Figure 3.22 the transmit waveform is the phase code with CAF shown in

3.11(b). The peaks of the plots are denoted with white circles. Only the total

images are shown because it makes little sense to compare the components from

different bistatic pairs. The scattering matrix given in (3.154) corresponds to both

bistatic pairs but this is due to the symmetry of the receivers about the transmitter

and in general a different scattering matrix will reflect the polarization and ampli-

tude transformation by the scatterer for each bistatic pair. The contribution from

the bistatic pair consisting of the transmitter and leftmost receiver with vertical

polarizations is greater than the contribution from the bistatic pair consisting of the

transmitter and rightmost receiver with horizontal polarizations, as again would be

expected from the scattering matrix in (3.154).

Figures 3.23 and 3.24 correspond to the multistatic scenario described in Fig-

ure 3.14(d). This scenario is very similar to Figure 3.14(c) but now the receivers are

no longer symmetric about the transmitter and so we will obtain a different scat-

tering matrix for each bistatic pair. We assume the transmitting antenna and both

receiving antennas, located at 45o and 105o are horizontally polarized. The scatter-

ing matrix associated with the bistatic pair consisting of the transmit antenna and
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Figure 3.21: Chirp waveform, for scene Figure 3.14(c), flat rectangular scatterer,
total image.

Figure 3.22: Phase coded waveform, for scene Figure 3.14(c), flat rectangular scat-
terer, total image.

the rightmost antenna is given by

[S]plate, 45o =
ik

2π
LHsinc

(
k

√
2L

4

) √
2

2
0

0 1


≈ ik

2π
LHsinc (0.3536 kL)

 0.7071 0

0 1

 (3.155)

and the scattering matrix associated with the bistatic pair consisting of the transmit
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antenna and the leftmost antenna is given by

[S]plate, 105o =
ik

2π
LHsinc

(
k

√
2(
√

3− 1)L

8

) √
2(
√

3+1)
4

0

0 1


≈ ik

2π
LHsinc (0.1294 kL)

 0.9659 0

0 1

 . (3.156)

The contribution from the horizontally polarized bistatic pair consisting of the trans-

mitter and leftmost receiver is much greater than the contribution from the hori-

zontally polarized bistatic pair consisting of the transmitter and rightmost receiver,

which correspond to the first elements in (3.156) and (3.155), respectively. Figures

3.23 and 3.24 illustrate angle dependent scattering strength.

Figure 3.23: Chirp waveform, for scene Figure 3.14(d), flat rectangular scatterer,
total image.

In Figures 3.25 through 3.27 we consider the multistatic scenario with multiple

transmitters shown in Figure 3.14(e). In Figure 3.25 the transmit waveform is the

chirp with CAF shown in 3.11(a) and in Figures 3.26 and 3.27 the transmit waveform

for the transmitter at 45o is the phase code with CAF shown in 3.11(b) and transmit

waveform for the transmitter at 135o is the phase code with CAF shown in 3.11(c).

The scattering matrix associated with each bistatic pair is defined from (3.151) as

we have done previously.

In Figures 3.25 and 3.26 we assume the transmitting antenna at 45o is hori-

zontally polarized, the transmitter at 135o is vertically polarized, the receiver at 75o
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Figure 3.24: Phase coded waveform, for scene Figure 3.14(d), flat rectangular scat-
terer, total image.

is vertically polarized, and the receiver at 105o is horizontally polarized. The total

images show bistatic range rings for the contribution from each bistatic pair. We

observe that although we transmit the same waveform from both transmitters in

Figure 3.25, the chirps are transmitted from two different polarizations. In Figure

3.26, the phase codes are different and the waveforms are transmitted from two dif-

ferent polarizations. The positions of the transmitters and receivers are symmetric

about the normal of the scattering plate, resulting in the same scattering matrix for

each bistatic pair. However, the contribution from the vertically polarized bistatic

pair consisting of the leftmost transmitter and rightmost receiver is less than the

contribution from the horizontally polarized bistatic pair consisting of the rightmost

transmitter and leftmost receiver, because the “HH” term is larger than the “VV”

term in the scattering matrix that corresponds to both bistatic pairs. Figures 3.25

and 3.26 illustrate polarization dependent scattering strength.

In Figure 3.27 we assume the transmitting antennas at 45o and 135o consist of

both a vertically polarized dipole and a horizontally polarized dipole, the receiver

at 75o is vertically polarized, and the receiver at 105o is horizontally polarized. The

scattering strength corresponding to each bistatic pair varies according to both angle

and polarization, and is consistent with the scattering matrices that arise for each

pair.

Although in Figures 3.25 through 3.27 we have assumed that some prepro-
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Figure 3.25: Chirp waveform, for scene Figure 3.14(e), flat rectangular scatterer,
total image.

Figure 3.26: Phase coded waveform, for scene Figure 3.14(e), flat rectangular scat-
terer, total image.

cessing has been done on the received data so that the contributions from each

transmitter are separable, we will later consider a similar case where the contribu-

tions are nonseparable.

In Figures 3.28 through 3.31 we again consider the bistatic case described in

Figure 3.14(b) and we assume that the transmitter and receiver both consist of a

horizontally polarized dipole and a vertically polarized dipole. We will now consider

a complex target with corresponding scattering matrix

[S]complex =

 3
2

1− i
2

1− i
2

1
2

 . (3.157)
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Figure 3.27: Phase coded waveform, for scene Figure 3.14(e), flat rectangular scat-
terer, total image. Transmitter composed of both a horizontally polarized dipole
and vertically polarized dipole.

The scattering matrix in (3.157) does not correspond to a known scatterer and it

is not defined based on the orientation of the scatterer, transmitter, and receiver.

However, we are only considering a single transmitter and receiver so we can assume

that (3.157) corresponds to this scenario for some unspecified scatterer in some

orientation.

As an aside we observe that in a purely monostatic configuration the matrix

(3.157) could decomposed into the following 3
2

1− i
2

1− i
2

1
2

 =

 1 0

0 1

+

 0 1

1 0

+
1

2

 1 −i

−i −1

 (3.158)

where the first matrix on the right hand side may correspond to a sphere, plate,

or trihedral, the second matrix may correspond to a dihedral, and the third may

correspond to a helix [38, 42]. Note that the above dihedral scattering matrix com-

pletely cross-polarizes an incident linearly polarized wave. This behavior is only

observed in the unique case when the dihedral is tilted 45o relative to the incident

wave polarization. Although we are not considering a monostatic scenario in the

following simulations, the images that result from using this scattering matrix give

insight into the effect of a complex scatterer that introduces cross polarization.

In Figures 3.28 and 3.29 the transmit waveform is the chirp with CAF shown
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in 3.11(a) and in Figures 3.30 and 3.31 the transmit waveform is the phase code

with CAF shown in 3.11(b). The total images are shown in Figures 3.28 and 3.30

and the HH, HV, VH, and VV components are shown in Figures 3.29 and 3.31. In

Figures 3.18 and 3.20 we only had HH and VV components because the scattering

matrix for the flat plate (3.153) does not have cross terms but in Figures 3.29 and

3.31 we have all four components due to the cross terms in (3.157). We again note

that the first “H” in HH denotes the receive polarization and the second denotes

the transmit polarization. Figures 3.29(a)-(d) are normalized to Figure 3.28 and

Figures 3.31(a)-(d) are normalized to Figure 3.30.

In Figures 3.29 and 3.31 the magnitudes of the HH, HV, and VH components

are noticeably larger than the magnitude of the VV component and the magnitudes

of the HH and HV components are somewhat larger than the magnitude of the VH

component. From (3.157) we expect the magnitude of the HH component to be

larger than the magnitude of the VV component but any discussion of the HV and

VH components would benefit from examination of the real and imaginary parts of

each component of the received data.

Figure 3.28: Chirp waveform, for scene Figure 3.14(b), complex scatterer, total
image.

Nonseparable Transmitter Contributions

The next set of results we will examine were obtained assuming that the con-

tributions received from all transmitters must be treated as a unit and consequently
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(a) (b)

(c) (d)

Figure 3.29: Chirp waveform, for scene Figure 3.14(b), complex scatterer, HH image
(a), HV image (b), VH image (c), and VV image (d).

Figure 3.30: Phase coded waveform, for scene Figure 3.14(b), complex scatterer,
total image.
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(a) (b)

(c) (d)

Figure 3.31: Phase coded waveform, for scene Figure 3.14(b), complex scatterer,
HH image (a), HV image (b), VH image (c), and VV image (d).

the images are formed using the second process described in Section 3.5.

In Figures 3.32 through 3.34 we again consider the multistatic scenario with

multiple transmitters shown in Figure 3.14(e). The scattering matrix associated

with each bistatic pair is defined from (3.151) as in the previous section.

In Figures 3.32 and 3.33 we assume the transmitting antenna at 45o is hori-

zontally polarized, the transmitter at 135o is vertically polarized, the receiver at 75o

is vertically polarized, and the receiver at 105o is horizontally polarized. The total

images show bistatic range rings for the contribution from each bistatic pair.

In Figure 3.32 the transmit waveform for the transmitter at 45o is the phase

code with CAF shown in 3.11(b) and transmit waveform for the transmitter at 135o is
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the phase code with CAF shown in 3.11(c) so that the two transmitted phase codes

are different and the waveforms are transmitted from two different polarizations.

However, unlike the previous section in which we treated the contributions from each

transmitter as separable, now the contributions are added prior to image formation

and are treated as a unit. The total received data at each receiver is convolved with

the sum of the time-delayed and Doppler-scaled transmit waveforms. As a result,

we observe cross-correlation residue in Figure 3.32 that is not present in Figure 3.26.

The peak and prominent range rings are visible in both the figure obtained assuming

separable transmitter contributions and the figure obtained assuming nonseparable

contributions because the two transmitted phase codes have low cross-correlation.

Figure 3.32: Phase coded waveform, for scene Figure 3.14(e), flat rectangular scat-
terer, total image formed assuming the transmitter contributions are nonseparable.

We will next examine a case where the nonseparable image formation method

is not ideal. In Figure 3.33 the transmit waveform from both transmitters is the

chirp with CAF shown in 3.11(a). Although the chirp is transmitted at a different

polarization from each transmitter, the received data is convolved with the sum of

time-delayed and Doppler-shifted waveforms from both transmitters, regardless of

the polarization of the transmitting antenna. The correlation of the transmitting

chirp with itself is much higher than the cross-correlation of the two phase codes,

resulting in much more residue in the resulting image. Clearly, the transmission

scheme corresponding to Figure 3.32 is not desirable when the contributions from

all transmitters can not be separated prior to image formation.
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Figure 3.33: Chirp waveform, for scene Figure 3.14(e), flat rectangular scatterer,
total image formed assuming the transmitter contributions are nonseparable.

In Figure 3.34 we assume the transmitting antennas at 45o and 135o consist of

both a vertically polarized dipole and a horizontally polarized dipole, the receiver

at 75o is vertically polarized, and the receiver at 105o is horizontally polarized. As

in Figure 3.32 the transmit waveform for the transmitter at 45o is the phase code

with CAF shown in 3.11(b) and transmit waveform for the transmitter at 135o

is the phase code with CAF shown in 3.11(c). The transmitter contributions are

nonseparable, in contrast to Figure 3.27 where the contributions were separated.

Examining both Figures 3.27 and 3.34 we observe that the range rings are much less

pronounced in Figure 3.34 but that the shapes of the bistatic range rings are similar

for both and the peaks are in the correct location. As in Figure 3.32, we observe

cross-correlation residue in Figure 3.34 but the correct image is obtained because

the two transmitted phase codes have low cross-correlation.

We note that we have considered only a scene with multiple transmitters and

receivers in simulations where the transmitter contributions are assumed nonsepa-

rable. In the case of a single transmitter, the resulting images are identical whether

the transmitter contributions are assumed separable or nonseparable.
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Figure 3.34: Phase coded waveform, for scene Figure 3.14(e), flat rectangular scat-
terer, total image formed assuming the transmitter contributions are nonseparable.
Transmitter composed of both a horizontally polarized dipole and vertically polar-
ized dipole.

3.7 Conclusions

In Chapter 3 we provided some background on polarization and scattering

of electromagnetic plane waves and described the specific multistatic polarimetric

problem addressed in the chapter. We then formulated a full vector data model

incorporating propagation and scattering of the electric vector field and realistic

antenna effects. Following formulation of the data model we described two imag-

ing operations, first assuming that the contributions from each transmitter in the

scene are separable and then assuming that the contributions from all transmitting

antennas must be treated as a unit. The presented data model and imaging op-

erations were then utilized to simulate multiple antenna geometries with multiple

transmission and polarization schemes and a single moving target.

The data model was formulated by examining analytic expressions for the

transmit waveform, transmitted electric field, scattered electric field, and received

voltage in both the time and frequency domains. In the time domain, a summation

of time-delayed versions of the transmit waveform is present in expressions for the

transmitted field and the received voltage. These summations are consistent with

radiation and reception of the electric field at the discontinuities of a long thin dipole

under the zeroth order approximation for the current distribution on the dipole.

Antenna effects from the dipole that are incorporated into the data model were
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shown through simulation to be negligible for a small fractional bandwidth and more

evident for a larger fractional bandwidth. Inclusion of both the scattering matrix and

fast-time Doppler effects from a moving target is achieved by considering both the

time and frequency domains. We obtain physical intuition, greater understanding

and control of assumptions, and the ability to model the desired multistatic scenario

carefully by formulating our data model from first principles. This work is novel in

that the model is developed from beginning to end with the transmit waveform and

scattering behavior of the target left arbitrary.

Simulations that employed the bistatic scattering matrix for a PEC flat rect-

angular plate demonstrated the model’s ability to accurately depict angle and po-

larization dependent scattering behavior. The simulations that incorporated the

scattering matrix consistent with a cross-polarizing complex scatterer illustrated

the transformation of each component of the incident electric field in polarization,

magnitude, and phase. Fast-time Doppler effects of a moving target were also dis-

cernible; as in Chapter 2 the target was visible in the correct velocity cut in all

cases and the Doppler tolerance of the chirp waveforms and Doppler sensitivity of

the phase coded waveforms was demonstrated.

Separable and nonseparable imaging operations were employed to form images

of the simulated data. The separable image formation was successful regardless

of the transmit waveforms and provides the opportunity to incorporate bistatic

weighting schemes that could improve the performance of a multistatic system. The

more realistic nonseparable image formation relied on low cross-correlation of the

transmit waveforms if multiple transmitters were included. When two different

phase coded waveforms were transmitted from two locations, the images formed

under both assumptions were comparable.

Future work may consider bistatic scattering from other physical objects, time-

varying scattering behavior, non-free-space propagation, and alternative transmit-

ting and receiving antennas. Multiple targets can be easily modeled with a superpo-

sition of the received data corresponding to each scatterer. The data model can also

be tailored for other applications, including moving target indication and synthetic

aperture radar with one or more bistatic pairs.



CHAPTER 4

Conclusions and Future Work

In this thesis we have extended the theory for multistatic imaging of moving targets

through the development and simulation of scalar and vector radar data models and

accompanying imaging operations. In the first part of this work, we investigated

scalar representations of multistatic radar data from the perspective of the multi-

static ambiguity function. We began by examining two different MAFs from the

literature, one approach deterministic in nature, originating from the scalar wave

equation, and the other statistical, relying on a Neyman-Pearson defined weighting

of received data. Despite differences in the underlying assumptions of the deter-

ministic and statistical models, the mathematical expressions for the MAFs in the

case of a single transmitter and multiple receivers can both be written in terms of

the classical ambiguity function. Simulations show that the deterministically and

statistically derived multistatic ambiguity functions provide comparable results for

both stationary and moving targets. The comparison of the resulting MAFs and

corresponding simulations attests to the close relationship between detection and

imaging, encouraging the view of imaging as a detection problem at each point in

space and velocity.

We then extended the data model for the existing deterministically derived

MAF with the inclusion of antenna beam patterns by relating the current density

on the radiating and receiving antennas to a far-field spatial weighting factor. The

resulting data model is appropriate for narrowband waveforms in the case when

the targets are moving slowly relative to the speed of light. From this model we

developed an imaging formula in position and velocity that can be interpreted in

terms of filtered backprojection or matched filtering and a corresponding ambiguity

function or point-spread function. We used the resulting data model and MAF

to examine scenarios with various geometries and transmit waveforms and showed

that the performance of a multistatic system depends critically on the transmitted

waveforms.

119
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In second part of this thesis, we developed a vector multistatic data model,

incorporating polarization and antenna effects from transmitters and receivers mod-

eled as long thin dipoles. The derived data model describes radiation from a trans-

mitting antenna, scattering from a moving target, and reception at a receiving an-

tenna in both the time and frequency domains. Scattering from a moving target

is modeled by including both the target scattering matrix and fast-time Doppler

effects. Following formulation of the data model we described two imaging opera-

tions, first assuming that the contributions from each transmitter in the scene are

separable and then assuming that the contributions from all transmitting antennas

must be treated as a unit. The presented data model and imaging operations were

then used to simulate multiple antenna geometries with multiple transmission and

polarization schemes and a single moving target. The simulations that employed

the bistatic scattering matrix for a perfectly electrically conducting flat rectangular

plate exhibited the expected angle and polarization dependent scattering behavior.

The simulations that incorporated the scattering matrix consistent with a cross-

polarizing complex scatterer illustrated the transformation of each component of

the incident electric field. The two imaging operations were employed to form im-

ages of the simulated data. While the more realistic nonseparable image formation

relied on low cross-correlation of the transmit waveforms if multiple transmitters

were included, the separable image formation was successful regardless of the trans-

mit waveforms.

This work is novel in that the model is developed from beginning to end with

the transmit waveform and scattering behavior of the target left arbitrary. The

derivation of the received data relates the desired transmit waveform to the trans-

mitted field, scattered field, and received voltage, describing transformations that

are sometimes simplified without knowledge of what assumptions are necessary or

have already been made. We obtain physical intuition, greater understanding and

control of assumptions, and the ability to model the desired multistatic scenario

carefully by formulating our data model from first principles. Although electromag-

netics and signal processing are rich areas of study for radar applications, the two

fields are infrequently combined. Without a high-fidelity data model, it is difficult
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to predict how signal processing techniques will perform with real data. In this

work we combine an electromagnetic data model with signal processing to obtain

an image, but the data model can also be used to generate high-quality data for a

variety of applications.

Future work would likely build upon the vector multistatic data model and

corresponding imaging operations. This more complete model is especially relevant

for multistatic scenarios because the polarization of the radiated electromagnetic

field is inherently linked to the orientation and geometry of antennas in the scene.

Modeling the full vector electromagnetic field is advantageous even in the case of

a single polarization monostatic radar system because the polarization dependent

scattering behavior of objects in the environment can result in a loss of information

if the polarization of the incident field is cross-polarized by scatterers. Future work

may consider analytically and through simulations: bistatic scattering from other

physical objects, time-varying scattering behavior, non-free-space propagation, and

alternative transmitting and receiving antennas. Multiple targets can be easily

modeled with a superposition of the received data corresponding to each scatterer.

The data model can also be tailored for other applications, including moving target

indication and synthetic aperture radar with one or more bistatic pairs.



LITERATURE CITED

[1] B. Himed, H. Bascom, J. Clancy, and M. C. Wicks, “Tomography of moving

targets (tmt),” in Proc. SPIE, vol. 4540, Dec. 2001, pp. 608–619.

[2] R. S. Adve, R. A. Schneible, M. C. Wicks, and R. McMillan, “Adaptive

processing for distributed aperture radars,” in 2004 Int. Waveform Diversity

and Design Conf., Edinburgh, UK, Nov. 2004.

[3] R. S. Adve, R. A. Schneible, G. Genello, and P. Antonik,

“Waveform-space-time adaptive processing for distributed aperture radars,”

in 2005 IEEE Int. Radar Conf., Arlington, VA, USA, May 2005, pp. 93–97.

[4] I. Bradaric, G. Capraro, D. Weiner, and M. Wicks, “Multistatic radar systems

signal processing,” in 2006 IEEE Radar Conf., Verona, New York, USA, Apr.

2006, p. 22.

[5] I. Bradaric, G. Capraro, and M. Wicks, “Waveform diversity for different

multistatic radar configurations,” in Conf. Record 41st Asilomar Conf.

Signals, Systems and Computers, Nov. 2007, pp. 2038–2042.

[6] L. Landi and R. S. Adve, “Time-orthogonal-waveform-space-time adaptive

processing for distributed aperture radars,” in 2007 Int. Waveform Diversity

and Design Conf., Pisa, IT, Jun. 2007, pp. 13–17.

[7] A. J. Devaney, “Inversion formula for inverse scattering within the Born

approximation,” Optics Letters, vol. 7, pp. 111–112, 1982.

[8] ——, “A filtered backpropagation algorithm for diffraction tomography,”

Ultrasonic Imaging, vol. 4, pp. 336–350, 1982.

[9] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering

Theory, 2nd ed. Berlin: Springer, 1998.

122



123

[10] T. Varsolt, B. Yazici, and M. Cheney, “Wide-band pulse-echo imaging with

distributed apertures in multi-path environments,” Inverse Problems, vol. 24,

no. 4, p. 045013, Aug. 2008.

[11] M. Cheney and B. Borden, “Imaging moving targets from scattered waves,”

Inverse Problems, vol. 24, p. 22, Oct. 2008.

[12] L. Wang, M. Cheney, and B. Borden, “Multistatic radar imaging of moving

targets,” in 2010 IEEE Radar Conf., Washington, DC, USA, May 2010, pp.

391–396.

[13] ——, “Multistatic radar waveforms for imaging of moving targets,” in Proc.

FFT 2011, Feb. 2011.

[14] ——, “Multistatic radar imaging of moving targets,” IEEE Trans. Aerosp.

Electron. Syst., Nov. 2010.

[15] T. Webster, J. Kim, I. Bradaric, and M. Cheney, “Deterministic and

statistical models for multistatic ambiguity functions,” in 2012 IEEE Radar

Conf., Atlanta, GA, USA, May 2012, pp. 208–213.

[16] T. Webster, L. Xu, and M. Cheney, “Antenna beam patterns in MIMO radar,”

in 2012 IEEE Radar Conf., Atlanta, GA, USA, May 2012, pp. 332–337.

[17] M. Weiß, “Synchronisation of bistatic radar systems,” in Proc. 2004 IEEE

Int. Geoscience and Remote Sensing Symp., vol. 3, Sep. 2004, pp. 1750–1753.

[18] I. Walterscheid, T. Espeter, A. R. Brenner, J. Klare, J. H. G. Ender, H. Nies,

R. Wang, and O. Loffeld, “Bistatic SAR experiments with PAMIR and

TerraSAR-X–setup, processing, and image results,” IEEE Trans. Geosci.

Remote Sens., vol. 48, no. 8, pp. 3268–3279, Aug. 2010.

[19] J. S. Sandenbergh, M. R. Inggs, and W. A. Al-Ashwal, “Evaluation of

coherent netted radar carrier stability while synchronised with gps-disciplined

oscillators,” in 2011 IEEE Radar Conf., Kansas City, MO, USA, May 2011,

pp. 1100–1105.



124

[20] I. Bradaric, G. Capraro, D. Weiner, and M. Wicks, “A framework for the

analysis of multistatic radar systems with multiple transmitters,” in Int.

Conf. Electromagnetics Advanced Applications, Sep. 2007, pp. 443–446.

[21] G. San Antonio, D. R. Fuhrmann, and F. C. Robey, “MIMO radar ambiguity

functions,” IEEE J. Sel. Topics Signal Process., vol. 1, no. 1, pp. 167–177,

Jun. 2007.

[22] M. Cheney, L. Wang, and B. Borden, “Spatial, temporal, and spectral aspects

of radar data,” in 2009 IEEE Radar Conf., Pasadena, CA, USA, May 2009,

pp. 1–5.

[23] T. Derham, S. Doughty, C. Baker, and K. Woodbridge, “Ambiguity functions

for spatially coherent and incoherent multistatic radar,” IEEE Trans. Aerosp.

Electron. Syst., vol. 46, no. 1, pp. 230–245, Jan. 2010.

[24] M. Adjrad and K. Woodbridge, “Analysis of the multistatic ambiguity

function for coherent and incoherent detectors,” in 2011 IEEE Radar Conf.,

Kansas City, MO, USA, May 2011, pp. 1096–1099.

[25] A. Guruswamy and R. Blum, “On a definition of the ambiguity function for

non-coherent radars,” in 2012 IEEE 7th Sensor Array and Multichannel

Signal Processing Workshop, Hoboken, NJ, USA, Jun. 2012, pp. 141–144.

[26] C. E. Cook and M. Bernfeld, Radar Signals. New York: Academic, 1965.

[27] P. M. Woodward, Probability and Information Theory, with Applications to

Radar. New York: McGraw-Hill, 1953.

[28] H. L. V. Trees, Detection, Estimation, and Modulation Theory, Part III,

1st ed. New York: John Wiley and Sons, Inc., 1971.

[29] N. Levanon, Radar Principles. New York: Wiley, 1998.

[30] M. Skolnik, Radar Handbook, 3rd ed. New York: The McGraw-Hill

Companies, 2008.



125

[31] T. Tsao, M. Slamani, P. Varshney, D. Weiner, H. Schwarzlander, and

S. Borek, “Ambiguity function for a bistatic radar,” IEEE Trans. Aerosp.

Electron. Syst., vol. 33, no. 3, pp. 1041–1051, Jul. 1997.

[32] D. Weiner, M. Wicks, and G. Capraro, “Waveform diversity and sensors as

robots in advanced military systems,” in 2004 Int. Waveform Diversity and

Design Conf., Edinburgh, UK, Nov. 2004.

[33] K. Voccola, B. Yazici, M. Ferrara, and M. Cheney, “On the relationship

between the generalized likelihood ratio test and backprojection for synthetic

aperture radar imaging,” in Proc. SPIE, vol. 7335, May 2009.

[34] Y. Fang, M. Cheney, and S. Roecker, “Imaging from sparse measurements,”

Geophysical Journal International, vol. 180, pp. 1289–1302, 2010.

[35] M. Cheney and B. Borden, Fundamentals of Radar Imaging. SIAM, 2009.

[36] N. J. Willis and H. D. Griffiths, Eds., Advances in Bistatic Radar. Raleigh,

NC: SciTech Publishing, 2007.

[37] F. T. Ulaby and C. Elachi, Eds., Radar Polarimetry. Norwood, MA: Artech

House, Inc., 1990.

[38] E. Krogager, “Aspects of polarimetric radar imaging,” Ph.D. dissertation,

Tech. Univ. Denmark, Copenhagen, Denmark, 1993.

[39] K. Voccola, “Statistical and analytical techniques in synthetic aperture radar

imaging,” Ph.D. dissertation, Dept. Math. Sciences, Rensselaer Polytechnic

Inst., Troy, NY, 2011.

[40] G. Sinclair, “The transmission and reception of elliptically polarized waves,”

in Proc. IRE, vol. 38, no. 2, Feb. 1950, pp. 148–151.

[41] E. M. Kennaugh, “Effects of type of polarization on echo characteristics,”

Antenna Lab., Ohio State Univ., Columbus, Rep. 381-1 to 394-24, 1949-1954.

[42] J. R. Huynen, “Phenomenological theory of radar targets,” Ph.D.

dissertation, Delft Univ. Technol., Delft, The Netherlands, 1970.



126

[43] H. A. Zebker and L. Norikane, “Radar polarimeter measures orientation of

calibration corner reflectors,” Proc. IEEE, vol. 75, pp. 1686–1688, 1987.

[44] S. R. Cloude and E. Pottier, “Review of target decomposition theorems in

radar polarimetry,” IEEE Trans. Geosci. Remote Sens., vol. 34, no. 2, pp.

498–518, Mar. 1996.

[45] W. L. Cameron, N. N. Youssef, and L. K. Leung, “Simulated polarimetric

signatures of primitive geometrical shapes,” IEEE Trans. Geosci. Remote

Sens., vol. 34, no. 3, pp. 793–803, May 1996.

[46] G. Heath, “Bistatic scattering reflection asymmetry, polarization reversal

asymmetry, and polarization reversal reflection symmetry,” IEEE Trans.

Antennas Propag., vol. 29, no. 3, pp. 429–434, May 1981.

[47] S. Chaudhuri and W. Boerner, “A polarimetric model for the recovery of the

high-frequency scattering centers from bistatic-monostatic scattering matrix

data,” IEEE Trans. Antennas Propag., vol. 35, no. 1, pp. 87–93, Jan. 1987.

[48] A.-L. Germond, E. Pottier, and J. Saillard, “Foundations of bistatic radar

polarimetry theory,” in Radar 97, no. 449, Oct. 1997, pp. 833–837.
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APPENDIX A

Derivation of the Global Ambiguity Function

The goal of this appendix is to derive the global ambiguity function, or statistically

derived multistatic ambiguity function, described in Section 2.3.2. This derivation

determines weights for the matched filter output of each receiver from the Neyman-

Pearson optimal global statistic, which is found from the likelihood ratio. The

derivation originates from a construct developed to determine the optimal detector

for a pulsed monostatic system [83]. The concept was later extended to weight

receiver contributions from a multistatic system utilizing a single pulse with multiple

receivers and either a single transmitter [4, 5, 84–86] or multiple transmitters [20].

The weighted contributions from each multistatic receiver can be used to determine

the optimal detector or can be combined to form a multistatic ambiguity function.

We first provide some relevant background and then recall the model for the

received data and the matched filtered output from each receiver described in Sec-

tion 2.3.2. From the matched filtered output we determine the probability density

functions corresponding to the assumptions that the received data is completely

noise and that the received data is composed of noise and a target return. The

likelihood ratio and optimal global statistic are found from the two pdfs and then

the weighting on each receiver’s output is computed and applied. The weighted

receiver contributions are added non-coherently to obtain the multistatic ambiguity

function.

A.1 Background

A.1.1 Rayleigh Distribution

The probability density function for a Rayleigh distributed random variable x

with parameter σ is given by

p(x) = R (x, σ) =
x

σ2
e
−x2

2σ2 (A.1)
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with variance 4−π
2
σ2 and mean σ

√
π
2
. Recall the relationship

E{x2} = var{x}+ (E{x})2. (A.2)

Substituting a Rayleigh distributed RV x with parameter σ into (A.2) we obtain

E{x2} =
4− π

2
σ2 +

(
σ

√
π

2

)2

= 2σ2 (A.3)

and so

σ =

√
1

2
E{x2}

and the pdf of x is given by

p(x) = R

(
x,

√
1

2
E{x2}

)
. (A.4)

We also recall that if two random variables x and y are Gaussian and inde-

pendent with zero mean and equal variance then the random variable z =
√
x2 + y2

has a Rayleigh density [87]. In the following derivation we will assume that the in-

phase and quadrature components of the noise from each of the N receivers, nn(t),

are zero-mean Gaussian with equal variance such that the envelope of the noise is

Rayleigh distributed.

A.1.2 Swerling II Target Model

Swerling target models describe the fluctuations in radar cross section (RCS)

of a target as observed by a pulsed radar system that may illuminate the same target

during multiple scans. The RCS varies according to the probability density function

of a chi-squared distribution with a given number of degrees of freedom.

The Swerling II target model specifically describes a target with an RCS that

is independent from pulse to pulse. The RCS is given by a chi-squared pdf with 2

degrees of freedom

p(x) =
1

x̄
e−

x
x̄ , (A.5)

with x̄ = E{x}, which is consistent with a target that is made up of multiple
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independent scatterers of roughly equal areas. The complex gain of a Swerling

II type target corresponding to the nth pulse is given by an = Ane
iφn where the

amplitude An denotes an independent Rayleigh distributed random variable with

parameter A0n so that p(An) = R(An, A0n) and the phase φn denotes an independent

random variable uniformly distributed on [0, 2π] [83]. In the following derivation

we will assume a Swerling II type target where the RCS associated with the look

direction of each receiver is independent.

A.2 Output of the Matched Filter

We recall from Section 2.3.2 that at each transmitter, we assume that a co-

herent processing interval consists of a single pulse of duration Tdm and energy Em:

sm(t) =
√

2Em<{fm(t)eiωct}, 0 ≤ t ≤ Tdm (A.6)

where fm(t) is the complex envelope of the transmitted pulse, ωc = 2πfc, and it is

assumed that the carrier frequency fc is the same for all transmitters.

The input into the nth receiver is given by the set of hypotheses:

H0 : rn(t) = nn(t) (A.7)

H1 : rn(t) =
M∑
m=1

am,nγm,ns̃m(t− τam,n)eiωam,nt + nn(t)

where nn(t) is the noise at the nth receiver, τam,n is the travel time along the propaga-

tion path from the mth transmitter to the target and from there to the nth receiver,

and γm,n ≈ (Rx,mRx,n)−1 is the propagation loss along this path for a target located

at x where Rx,m is the distance between the target and mth transmitter located at

ym and Rx,n is the distance between the target and nth receiver located at zn. The

angular frequency ωam,n is the total Doppler shift of the signal at the nth receiver

that originated from the mth transmitter. The superscript a denotes a value that

corresponds to a true target, and so τam,n and ωam,n correspond to the travel time

and Doppler shift, respectively, of a true target. The relationship between the travel

time and angular frequency and the target position and velocity will be explicitly
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stated later. The waveform s̃m(t) =
√

2Emfm(t) is the complex envelope of the

transmitted signal sm(t). The coefficient am,n is the direction-dependent effective

target reflectivity. We assume that a1,n = a2,n = · · · = aM,n ≡ an. In addition, we

assume a Swerling II target model with complex reflectivity given by an = Aneiφn

where the amplitude An denotes an independent Rayleigh distributed random vari-

able with parameter A0n and the phase φn denotes an independent random variable

uniformly distributed on [0, 2π]. The real and imaginary components of the noise

nn(t) are zero-mean Gaussian with equal variance, unilateral power spectral density

N0n, and Rayleigh distributed envelope.

At each receiver we perform standard matched filtering of the received data

corresponding to a true target at position x and with velocity v with the expected

composite received waveform corresponding to a hypothetical target at position p

and with velocity u. The expected, normalized, and weighted composite waveform

at the nth receiver pn(t;~τhn , ~ω
h
n) is specified by

pn(t;~τhn , ~ω
h
n) =

1

Bn

M∑
m=1

bm,nfm(t− τhm,n)eiωhm,nt, (A.8)

where

~τhn = [τh1,n, . . . , τ
h
M,n]T (A.9)

~ωhn = [ωh1,n, . . . , ω
h
M,n]T

and the superscript h denotes that this composite waveform corresponds to a hypo-

thetical target. The coefficients

bm,n =
Rp,m=1

Rp,m

√
Em
Em=1

(A.10)

are derived for each transmitter-receiver pair from the bistatic radar equation, under

the assumptions that b1,n = 1 and PmGm ∼ Em where Pm is the power of the mth

transmitter and Gm is the gain of the mth transmitter. By inspection, bm,n depends

only on the transmitter. The composite waveform corresponding to a true target

pn(t;~τan , ~ω
a
n) is defined the same way with subscript p replaced with x and superscript
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h replaced with a. The normalization constant Bn is chosen so that∫ ∞
−∞

pn(t;~τhn , ~ω
h
n)p∗n(t;~τhn , ~ω

h
n)dt = 1 (A.11)

and ∫ ∞
−∞

pn(t;~τan , ~ω
a
n)p∗n(t;~τan , ~ω

a
n)dt = 1. (A.12)

The received signal at the nth receiver under hypothesis H1 can be rewritten in

terms of the composite waveform yielding

rn(t) =
anBnµn

√
Em=1

Rx,m=1Rx,n

pn(t;~τan , ~ω
a
n) + nn(t) (A.13)

where µn is the compensation constant [20]. Then the output of the matched filter

at the nth receiver is given by

dn =

∣∣∣∣∫ ∞
−∞

rn(t)√
N0n

p∗n(t;~τhn , ~ω
h
n) dt

∣∣∣∣ . (A.14)

A.3 Derivation of the Optimal Global Statistic

To derive the likelihood ratio and corresponding optimal global statistic we

must first determine the pdfs of the output of the matched filter for each receiver,

dn, under hypotheses H0 and H1. We find E{d2
n|H0} and E{d2

n|H1} under the

assumption that the output of the matched filter is Rayleigh under both hypotheses.

A.3.1 Probability Density Under H0

Under H0 the received data at the nth receiver is rn(t) = nn(t) and so the

output of the matched filter is given by

dn =

∣∣∣∣∫ ∞
−∞

nn(t)√
N0n

p∗n(t;~τhn , ~ω
h
n) dt

∣∣∣∣ . (A.15)

We recall that the envelope of the white Gaussian noise is Rayleigh distributed so

under hypothesis H0, the matched filter output dn is also Rayleigh distributed. The
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desired expectation is then given by

E{d2
n|H0} = E

{∣∣∣∣∫ ∞
−∞

nn(t)√
N0n

p∗n(t;~τhn , ~ω
h
n) dt

∣∣∣∣2
}

= E

{[∫ ∞
−∞

nn(t)√
N0n

p∗n(t;~τhn , ~ω
h
n) dt

] [∫ ∞
−∞

nn(α)√
N0n

p∗n(α;~τhn , ~ω
h
n) dα

]∗}
= E

{[∫ ∞
−∞

nn(t)√
N0n

p∗n(t;~τhn , ~ω
h
n) dt

] [∫ ∞
−∞

n∗n(α)√
N0n

pn(α;~τhn , ~ω
h
n) dα

]}
= E

{∫ ∞
−∞

∫ ∞
−∞

1

N0n

nn(t)n∗n(α)p∗n(t;~τhn , ~ω
h
n)pn(α;~τhn , ~ω

h
n) dtdα

}
=

∫ ∞
−∞

∫ ∞
−∞

E

{
1

N0n

nn(t)n∗n(α)p∗n(t;~τhn , ~ω
h
n)pn(α;~τhn , ~ω

h
n)

}
dtdα

=
1

N0n

∫ ∞
−∞

∫ ∞
−∞

E {nn(t)n∗n(α)}E
{
p∗n(t;~τhn , ~ω

h
n)pn(α;~τhn , ~ω

h
n)
}

dtdα.

We next recall that white noise has unilateral power spectral density S(ω) = N0n

(in contrast to the more familiar bilateral power spectral density given by S(ω) =

N0n/2) and corresponding autocorrelation

E{nn(t)n∗n(α)} = N0nδ(t− α) (A.16)

so that

E{d2
n|H0} =

1

N0n

∫ ∞
−∞

∫ ∞
−∞

N0nδ(t− α)E
{
p∗n(t;~τhn , ~ω

h
n)pn(α;~τhn , ~ω

h
n)
}

dtdα

=

∫ ∞
−∞

E
{
p∗n(t;~τhn , ~ω

h
n)pn(t;~τhn , ~ω

h
n)
}

dt

= E

{∫ ∞
−∞

p∗n(t;~τhn , ~ω
h
n)pn(t;~τhn , ~ω

h
n)

}
= 1

by (A.11). We recall (A.4) and write the probability density function for the

Rayleigh distributed matched filter output under hypothesis H0 as

p(dn|H0) = R

(
dn,

√
1

2
E{d2

n|H0}
)

= R

(
dn,

√
1

2

)
. (A.17)
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A.3.2 Probability Density Under H1

Under H1 the received data at the nth receiver is

rn(t) =
anBnµn

√
Em=1

Rx,m=1Rx,n

pn(t;~τan , ~ω
a
n) + nn(t) (A.18)

and so the output of the matched filter is given by

dn =

∣∣∣∣∫ ∞
−∞

(
anBnµn

√
Em=1

Rx,m=1Rx,n

pn(t;~τan , ~ω
a
n) + nn(t)

)
1√
N0n

p∗n(t;~τhn , ~ω
h
n) dt

∣∣∣∣ . (A.19)

We recall that the amplitude An of the complex gain an is Rayleigh distributed, as

is the envelope of the noise, and so under hypothesis H1 the matched filter output

dn is also Rayleigh distributed. We let

p̃an(t) =
anBnµn

√
Em=1

Rx,m=1Rx,n

pn(t;~τan , ~ω
a
n) (A.20)

denote the portion of the received data that corresponds to the scaled, time-delayed,

and Doppler-shifted composite transmit waveform scattered from a true target so

that (A.18) can be written in terms of (A.20) as

rn(t) = p̃an(t) + nn(t). (A.21)

We choose

E{p̃an(t)p̃a∗n (α)} =
2A2

0nB
2
nµ

2
nEm=1

R2
x,m=1R

2
x,n

δ(t− α), (A.22)

recalling E{A2
n} = 2A2

0n from (A.3), and so

E{rn(t)r∗n(α)} =

(
2A2

0nB
2
nµ

2
nEm=1

R2
x,m=1R

2
x,n

+N0n

)
δ(t− α) (A.23)
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from (A.16). The desired expectation is then given by

E{d2
n|H1} =

1

N0n

∫ ∞
−∞

∫ ∞
−∞

E {rn(t)r∗n(α)}E
{
p∗n(t;~τhn , ~ω

h
n)pn(α;~τhn , ~ω

h
n)
}

dtdα

=
1

N0n

∫ ∞
−∞

∫ ∞
−∞

(
2A2

0nB
2
nµ

2
nEm=1

R2
x,m=1R

2
x,n

+N0n

)
δ(t− α)

× E
{
p∗n(t;~τhn , ~ω

h
n)pn(α;~τhn , ~ω

h
n)
}

dtdα

=

(
2A2

0nB
2
nµ

2
nEm=1

N0nR2
x,m=1R

2
x,n

+ 1

)∫ ∞
−∞

E
{
p∗n(t;~τhn , ~ω

h
n)pn(t;~τhn , ~ω

h
n)
}

dt

=

(
2A2

0nB
2
nµ

2
nEm=1

N0nR2
x,m=1R

2
x,n

+ 1

)
E

{∫ ∞
−∞

p∗n(t;~τhn , ~ω
h
n)pn(t;~τhn , ~ω

h
n)dt

}
=

2A2
0nB

2
nµ

2
nEm=1

N0nR2
x,m=1R

2
x,n

+ 1. (A.24)

We let

ρn =
4A2

0nB
2
nµ

2
nEm=1

N0nR2
x,m=1R

2
x,n

(A.25)

denote the signal-to-noise ratio at the nth receiver and rewrite (A.24) as

E{d2
n|H1} =

ρn
2

+ 1. (A.26)

We again recall (A.4) and write the probability density function for the Rayleigh

distributed matched filter output under hypothesis H1 as

p(dn|H1) = R

(
dn,

√
1

2
E{d2

n|H1}
)

= R

(
dn,

√
1

2

(ρn
2

+ 1
))

. (A.27)

A.3.3 Likelihood Ratio

The likelihood ratio test with threshold η is expressed

L(x)
H1

≷
H0

η (A.28)

where the likelihood ratio L(x) is given by

L(x) ≡ p(x|H1)

p(x|H0)
(A.29)
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[88].

We have derived the probability density function of the Rayleigh distributed

dn under H0 and H1

H0 : p(dn|H0) = R

(
dn,

√
1

2

)
= 2dn exp

{
−d2

n

}
(A.30)

H1 : p(dn|H1) = R

(
dn,

√
1

2

(ρn
2

+ 1
))

=
2dn

ρn
2

+ 1
exp

{ −d2
n

ρn
2

+ 1

}
. (A.31)

We treat the data from each of the receivers asN independent observations and

so the joint probability density of d = [d1, . . . , dN ] is the product of the individual

probability densities and the likelihood ratio can be written as

L(d) =

∏N
n=1 R

(
dn,
√

1
2

(
ρn
2

+ 1
))

∏N
n=1R

(
dn,
√

1
2

)
=

∏N
n=1

2dn
ρn
2

+1
exp

{
−d2

n
ρn
2

+1

}
∏N

n=1 2dn exp {−d2
n}

=
N∏
n=1

(
1

ρn
2

+ 1

) exp
{
−d2

n
ρn
2

+1

}
exp {−d2

n}

=

(
N∏
n=1

1
ρn
2

+ 1

)
exp

{∑N
n=1

−d2
n

ρn
2

+1

}
exp

{∑N
n=1−d2

n

}
=

(
N∏
n=1

1
ρn
2

+ 1

)
exp

{
N∑
n=1

−d2
n

ρn
2

+ 1
−

N∑
n=1

−d2
n

}

=

(
N∏
n=1

1
ρn
2

+ 1

)
exp

{
N∑
n=1

−d2
n

ρn
2

+ 1
+ d2

n

}

=

(
N∏

2=1

1
ρn
2

+ 1

)
exp

{
N∑
n=1

ρn
2
d2
n

ρn
2

+ 1

}

=

(
N∏
n=1

1
ρn
2

+ 1

)
︸ ︷︷ ︸

C

exp

{
N∑
n=1

ρn
ρn + 2

d2
n

}
. (A.32)
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Moving the quantity C into the threshold of the likelihood ratio we obtain

L̃(d) = exp

{
N∑
n=1

ρn
ρn + 2

d2
n

}
(A.33)

and we arrive at a sufficient statistic by taking the logarithm of both sides

l̃(d) =
N∑
n=1

ρn
ρn + 2

d2
n. (A.34)

A.3.4 Optimal Global Statistic

We define the optimal global statistic D in the Neyman-Pearson sense as

D =
N∑
n=1

wnd
2
n (A.35)

with weight

wn =
ρn

ρn + 2
(A.36)

and signal-to-noise ratio

ρn =
4A2

0nB
2
nµ

2
nEm=1

N0nR2
x,m=1R

2
x,n

. (A.37)

These weights are used to optimally weight the matched filtered outputs from the

individual receivers with the goal of maximizing the probability of detection for a

given probability of false alarm.

A.4 Global Ambiguity Function

We write the global ambiguity function, or multistatic ambiguity function, as

Θ(Th, Ta,Ωh,Ωa) =
N∑
n=1

cnΘn(~τhn , ~τ
a
n , ~ω

h
n, ~ω

a
n) (A.38)

where

Θn(~τhn , ~τ
a
n , ~ω

h
n, ~ω

a
n) =

∣∣∣∣∫ ∞
−∞

pn(t;~τan , ~ω
a
n)p∗n(t;~τhn , ~ω

h
n) dt

∣∣∣∣2 (A.39)
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is the ambiguity function for the nth receiver in terms of the composite waveforms

corresponding to a true and hypothetical target and

Th = {τhm,n}M×N , Ta = {τam,n}M×N
Ωh = {ωhm,n}M×N , Ωa = {ωam,n}M×N .

The weights cn are defined subject to
∑N

n=1 cn = 1,

Θ(Ta, Ta,Ωa,Ωa) = 1, (A.40)

and

Θ(Th, Ta,Ωh,Ωa) =
1

K
E{Ds} (A.41)

where K is a normalization constant and Ds is the global statistic when only signal is

present in the received data. We observe that the global ambiguity function (A.38)

is a weighted sum of the output of the matched filter (A.15) squared.

We next solve for K and obtain the weights, cn, of the individual ambiguity

functions. We let dsn denote the output of the matched filter when only signal is

present in the received data

dsn =

∣∣∣∣∫ ∞
−∞

anBnµn
√
Em=1√

N0nRx,m=1Rx,n

pn(t;~τan , ~ω
a
n)p∗n(t;~τhn , ~ω

h
n) dt

∣∣∣∣ (A.42)

so that

E
{
d2

sn

}
= E

{∣∣∣∣∫ ∞
−∞

anBnµn
√
Em=1√

N0nRx,m=1Rx,n

pn(t;~τan , ~ω
a
n)p∗n(t;~τhn , ~ω

h
n) dt

∣∣∣∣2
}

= E

{∣∣∣∣ anBnµn
√
Em=1√

N0nRx,m=1Rx,n

∣∣∣∣2
}∣∣∣∣∫ ∞

−∞
pn(t;~τan , ~ω

a
n)p∗n(t;~τhn , ~ω

h
n) dt

∣∣∣∣2
=

2A2
0nB

2
nµ

2
nEm=1

N0nR2
x,m=1R

2
x,n

Θn(~τhn , ~τ
a
n , ~ω

h
n, ~ω

a
n)

=
ρn
2

Θn(~τhn , ~τ
a
n , ~ω

h
n, ~ω

a
n). (A.43)
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It follows that

E{Ds} = E

{
N∑
n=1

wnd
2
sn

}

=
N∑
n=1

wnE{d2
sn}

=
N∑
n=1

wn
ρn
2

Θn(~τhn , ~τ
a
n , ~ω

h
n, ~ω

a
n)

=
N∑
n=1

ρ2
n

2 (ρn + 2)
Θn(~τhn , ~τ

a
n , ~ω

h
n, ~ω

a
n)

and by (A.41)

Θ(Ta, Ta,Ωa,Ωa) =
1

K
E{Ds}

∣∣∣∣
Th=Ta,Ωh=Ωa

=
1

K

N∑
n=1

ρ2
n

2 (ρn + 2)
Θn(~τan , ~τ

a
n , ~ω

a
n, ~ω

a
n)

=
1

K

N∑
n=1

ρ2
n

2 (ρn + 2)
. (A.44)

We recall (A.40) and solve (A.44) for K to obtain

K =
N∑
n=1

ρ2
n

2 (ρn + 2)
(A.45)

and the normalized weight cn of the ambiguity function of the nth receiver becomes

cn =

ρ2
n

2(ρn+2)∑N
k=1

ρ2
k

2(ρk+2)

, n = 1, ..., N. (A.46)

It follows that the global ambiguity function, or statistically derived multistatic

ambiguity function, is given by

Θ(Th, Ta,Ωh,Ωa) =
N∑
n=1

cnΘn(~τhn , ~τ
a
n , ~ω

h
n, ~ω

a
n)
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where

Θn(~τhn , ~τ
a
n , ~ω

h
n, ~ω

a
n) =

∣∣∣∣∫ ∞
−∞

pn(t;~τan , ~ω
a
n)p∗n(t;~τhn , ~ω

h
n) dt

∣∣∣∣2 ,
cn =

ρ2
n

2(ρn+2)∑N
k=1

ρ2
k

2(ρk+2)

,

ρn =
4A2

0nB
2
nµ

2
nEm=1

N0nR2
x,m=1R

2
x,n

,

and pn(t;~τan , ~ω
a
n) and pn(t;~τhn , ~ω

h
n) are the composite waveforms corresponding to a

true and hypothetical target, respectively.

We can also write the global ambiguity function in terms of x, v, p, and u,

where x and v are respectively the actual vector position and velocity of the target,

and p and u correspond to a hypothetical vector position and velocity of the target

so that

Θ(p,u,x,v) =
N∑
n=1

cnΘn(p,u,x,v) (A.47)

where

τam,n =
Rx,m +Rx,n

c0

, τhm,n =
Rp,m +Rp,n

c0

,

ωam,n = ωmβx,v, ωhm,n = ωmβp,u,

with

βx,v =− (R̂x,m + R̂x,n) · v/c0,

βp,u =− (R̂p,m + R̂p,n) · u/c0.



APPENDIX B

Properties Concerning Differentiation of Certain Spatial

Integrals

B.1 Motivation

The derivation of the expression for the electric field E in Section 3.4.3 makes

use of the property

∇
(
∇ ·
∫ V

ε(r)

G(r − r′)F (r′)dr′
)

=

∫ V

ε(r)

∇(∇ ·G(r − r′)F (r′))dr′

− 1

3
F (r). (B.1)

The proof of this property is achieved alongside the derivation of

∇×∇×
∫ V

ε(r)

G(r − r′)F (r′)dr′ =

∫ V

ε(r)

∇×∇×G(r − r′)F (r′))dr′

+
2

3
F (r) (B.2)

[62,69] with Green’s function

G(r) =
eik|r|

4π|r| . (B.3)

In (B.1) and (B.2) V is a volume enclosed by a regular closed surface Σ and ε(r) is

an infinitesimal sphere centered at r. Lemma B.2 is used in the theory of dispersion

and specifically the derivation of the Lorentz-Lorenz law.

B.2 Problem Set-up

We assume F (r) is an arbitrary continuous vector field and has continuous

derivatives of a sufficiently high order. Likewise, we assume G(r− r′) is continuous

in r and r′ with continuous derivatives except at r = r′ where G(r − r′) may have

a singularity of the form |r − r′|. Throughout the derivation we will consider the

144



145

integral

I(r) =

∫ V

vs(r)

G(r, r′)F (r′)dr′ (B.4)

where vs(r) is a small volume element completely contained within V that surrounds

a point r ∈ V lying a sufficient distance within Σ. All volume elements vs(r) are

spheres of radius s with surface σs(r). The notation used to define the bounds in

(B.4) indicates that the integrand is integrated within the entire volume V excluding

the small sphere vs(r). In our derivation we wish to examine what happens as vs(r)

shrinks to r, or the limit as the radius s→ 0.

B.3 Relation for Scalar Functions

We will first derive the expression

Lemma.

∂

∂α

∫ V

vs(r)

G(r, r′)Fj(r
′)dr′ =

∫ V

vs(r)

∂

∂α
G(r, r′)Fj(r

′)dr′

−
∫ σs(r)

G(r, r′)Fj(r
′)nαdS

′ (B.5)

where α is one component of an arbitrary coordinate system, Fj(r) is a scalar

component of the vector field F (r), nα is the α component of the unit radial vector

n̂ pointing outward from r towards the surface σs(r), and dS ′ is the surface element.

Proof. [62] Without loss of generality we consider the x-component in a Cartesian

coordinate system and let H = G(r, r′)Fj(r
′). We will also let dV ′ = dr′ denote

the volume element and the expression we wish to derive, (B.5), becomes

∂

∂x

∫ V

vs(r)

HdV ′ =

∫ V

vs(r)

∂H

∂x
dV ′ −

∫ σs(r)

HnxdS
′. (B.6)

From Leibniz’s rule for differentiation under the integral, for a differentiable

scalar function H we can write

∂

∂x

∫ V

vs(r1)

HdV ′ =

∫ V

vs(r1)

∂H

∂x
dV ′ + lim

δx→0

[∫ V

vs(r2)

HdV ′ −
∫ V

vs(r1)

HdV ′
]

(B.7)
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where r1 = (x, y, z) and r2 = (x + δx, y, z) denote the centers of spheres v(r1) and

v(r1) with surfaces σs(r1) and σs(r2). Consider Figure B.1 and observe that the

difference of the two integrals in (B.7) is equivalent to the contribution from the two

shaded regions.

dV 0

�x

r1 r2

n̂

dS0

x

vs(r2)vs(r1)

�s(r1) �s(r2)

Figure B.1: Spheres vs(r1) and vs(r2) with surfaces σs(r1) and σs(r2), respectively.

The volume element dV ′ can be rewritten in terms of the surface element dS ′,

the x-component of the outward normal nx, and the small distance δx

dV ′ = −dS ′nxδx

and (B.7) reduces to

∂

∂x

∫ V

vs(r1)

HdV ′ =

∫ V

vs(r1)

∂H

∂x
dV ′ −

∫ σ(r1)

HnxdS
′. (B.8)

Substituting H = G(r, r′)Fj(r
′) and dV ′ = dr′ back into (B.8) and writing the

partial derivatives in terms of an arbitrary component α we obtain the desired

relation (B.5).

We observe that the last term in (B.5)

∫ σs(r)

G(r, r′)Fj(r
′)nαdS ′

is a surface integral that will vanish as s→ 0. In the limit (B.5) becomes

∂

∂α

∫ V

ε(r)

G(r, r′)Fj(r
′)dr′ =

∫ V

ε(r)

∂

∂α
G(r, r′)Fj(r

′)dr′. (B.9)
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B.4 Higher Order Derivatives

We next examine the result of repeated application of the property given by

(B.5). We first consider the second partial with respect to the arbitrary component

α

∂2

∂α2

∫ V

vs(r)

G(r, r′)Fj(r
′)dr′ =

∂

∂α

(∫ V

vs(r)

∂

∂α
G(r, r′)Fj(r

′)dr′

−
∫ σs(r)

G(r, r′)Fj(r
′)nαdS ′

)

=

∫ V

vs(r)

∂2

∂α2
G(r, r′)Fj(r

′)dr′

−
∫ σs(r) ∂

∂α
(G(r, r′)Fj(r

′))nαdS ′

− ∂

∂α

∫ σs(r)

G(r, r′)Fj(r
′)nαdS ′. (B.10)

As s→ 0 the last term will vanish as discussed in Section B.3. We observe

∂G

∂α
=

dG

dr

∂r

∂α
= −nα

d

dr

eikr

4πr
= −nα

eikr

4πr

(
ik − 1

r

)
= nα

eikr

4πr

(
1

r
− ik

)
where r = |r − r′| and the surface element of a sphere can be rewritten in terms

of the solid angle element dΩ′ as dS ′ = s2dΩ′. It follows that the middle term of

(B.10) can be rewritten

∫ σs(r) ∂

∂α
(G(r, r′)Fj(r

′))nαdS ′ =

∫ Ω

Fj(r
′)
∂G(r, r′)

∂α
nαs

2dΩ′

=
1

4π

∫ Ω

Fj(r
′)n2

αeiks (1− iks) dΩ′ (B.11)

where Ω is the surface of the unit sphere. We recall that the average value of two

components, α and β, of the unit vector n̂ over the surface of the unit sphere is
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given by the expression

< nαnβ >=

∫ 2π

0

∫ π
0
nαnβ sinφ dφdθ∫ 2π

0

∫ π
0

sinφ dφdθ
(B.12)

=
1

3
δαβ (B.13)

where δαβ is the Kronecker delta. This expression is easily obtained by substituting

the x, y, and z components of n̂ in spherical coordinates

n̂ =


cos θ sinφ

sin θ sinφ

cosφ

 (B.14)

into the numerator of (B.12) as nα and nβ. We also note that the surface area of the

unit sphere is 4π and this quantity cancels out from the numerator and denominator

of (B.12). As s→ 0 expression (B.11) becomes

∫ σs(r) ∂

∂α
(G(r, r′)Fj(r

′))nαdS ′ =
1

3
Fj(r)

where Fj(r
′) has gone to Fj(r) in the limit. As s→ 0, vs(r)→ ε(r) and the second

partial of (B.4) with respect to α reduces to

∂2

∂α2

∫ V

ε(r)

G(r, r′)Fj(r
′)dr′ =

∫ V

ε(r)

∂2

∂α2
G(r, r′)Fj(r

′)dr′ − 1

3
Fj(r). (B.15)

We next consider the second mixed partial derivative of (B.4) and let β denote



149

a component different from α

∂2

∂β∂α

∫ V

vs(r)

G(r, r′)Fj(r
′)dr′ =

∂

∂β

(∫ V

vs(r)

∂

∂α
G(r, r′)Fj(r

′)dr′

−
∫ σs(r)

G(r, r′)Fj(r
′)nαdS ′

)

=

∫ V

vs(r)

∂2

∂β∂α
G(r, r′)Fj(r

′)dr′

−
∫ σs(r) ∂

∂α
(G(r, r′)Fj(r

′))nβdS ′

− ∂

∂β

∫ σs(r)

G(r, r′)Fj(r
′)nαdS ′. (B.16)

As in (B.10) the last term tends to zero as s → 0 and the middle term which can

be rewritten∫ σs(r) ∂

∂α
(G(r, r′)Fj(r

′))nβdS ′ =

∫ σs(r)

Fj(r
′)
∂G(r, r′)

∂α
nβs

2dΩ′

=
1

4π

∫ σs(r)

Fj(r
′)nαnβeiks (1− iks) dΩ′

also goes to zero as s→ 0 due to (B.13). The mixed partial derivative reduces to a

single term as s→ 0

∂2

∂β∂α

∫ V

ε(r)

G(r, r′)Fj(r
′)dr′ =

∫ V

ε(r)

∂2

∂β∂α
G(r, r′)Fj(r

′)dr′. (B.17)

B.5 Derivation of (B.1)

Lemma.

∇
(
∇ ·
∫ V

ε(r)

G(r − r′)F (r′)dr′
)

=

∫ V

ε(r)

∇(∇ ·G(r − r′)F (r′))dr′

− 1

3
F (r). (B.18)
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Proof. We first recall that in Cartesian coordinates (x, y, z) the gradient of the

divergence of a vector field F yields

∇ (∇ · F ) =

(
∂2Fx
∂x2

+
∂2Fy
∂x∂y

+
∂2Fz
∂x∂z

,
∂2Fx
∂y∂x

+
∂2Fy
∂y2

+
∂2Fz
∂y∂z

,

∂2Fx
∂z∂x

+
∂2Fy
∂z∂y

+
∂2Fz
∂z2

)
. (B.19)

We use (B.19) to consider the x-component of (B.18)

[
∇
(
∇ ·
∫ V

ε(r)

G(r − r′)F (r′)dr′
)]

x

=
∂2

∂x2

∫ V

ε(r)

G(r − r′)Fx(r′)dr′

+
∂2

∂x∂y

∫ V

ε(r)

G(r − r′)Fy(r′)dr′

+
∂2

∂x∂z

∫ V

ε(r)

G(r − r′)Fz(r′)dr′ (B.20)

and using the derived second order partial derivative properties from (B.15) and

(B.17) we obtain

[
∇
(
∇ ·
∫ V

ε(r)

G(r − r′)F (r′)dr′
)]

x

=

∫ V

ε(r)

∂2

∂x2
G(r, r′)Fx(r

′)dr′ − 1

3
Fx(r)

+

∫ V

ε(r)

∂2

∂x∂y
G(r, r′)Fy(r

′)dr′

+

∫ V

ε(r)

∂2

∂x∂z
G(r, r′)Fz(r

′)dr′. (B.21)

Similarly, the y- and z-components have the form[
∇
(
∇ ·
∫ V

ε(r)

G(r − r′)F (r′)dr′
)]

y

=

∫ V

ε(r)

∂2

∂y∂x
G(r, r′)Fx(r

′)dr′

+

∫ V

ε(r)

∂2

∂y2
G(r, r′)Fy(r

′)dr′ − 1

3
Fy(r)

+

∫ V

ε(r)

∂2

∂y∂z
G(r, r′)Fz(r

′)dr′ (B.22)
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[
∇
(
∇ ·
∫ V

ε(r)

G(r − r′)F (r′)dr′
)]

z

=

∫ V

ε(r)

∂2

∂z∂x
G(r, r′)Fx(r

′)dr′

+

∫ V

ε(r)

∂2

∂z∂y
G(r, r′)Fy(r

′)dr′

+

∫ V

ε(r)

∂2

∂z2
G(r, r′)Fz(r

′)dr′ − 1

3
Fz(r)

(B.23)

and by combining the results for the individual components we obtain (B.18).

B.6 Derivation of (B.2)

Lemma.

∇×∇×
∫ V

ε(r)

G(r − r′)F (r′)dr′ =

∫ V

ε(r)

∇×∇×G(r − r′)F (r′))dr′

+
2

3
F (r) (B.24)

Proof. As in the previous section we begin by recalling a vector identity; the curl

of the curl of a vector field F yields

∇×∇× F =

(
∂2Fy
∂y∂x

+
∂2Fz
∂z∂x

−
(
∂2

∂y2
+

∂2

∂z2

)
Fx,

∂2Fx
∂x∂y

+
∂2Fz
∂z∂y

−
(
∂2

∂x2
+

∂2

∂z2

)
Fy,

∂2Fx
∂x∂z

+
∂2Fy
∂y∂z

−
(
∂2

∂x2
+

∂2

∂y2

)
Fz

)
. (B.25)
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We use (B.25) to consider the x-component of (B.24)

[
∇×∇×

∫ V

ε(r)

G(r − r′)F (r′)dr′
]
x

=
∂2

∂y∂x

∫ V

ε(r)

G(r − r′)Fy(r′)dr′

+
∂2

∂z∂x

∫ V

ε(r)

G(r − r′)Fz(r′)dr′

− ∂2

∂y2

∫ V

ε(r)

G(r − r′)Fx(r′)dr′

− ∂2

∂z2

∫ V

ε(r)

G(r − r′)Fx(r′)dr′ (B.26)

and again using the derived second order partial derivative properties from (B.15)

and (B.17) we obtain

[
∇×∇×

∫ V

ε(r)

G(r − r′)F (r′)dr′
]
x

=

∫ V

ε(r)

∂2

∂y∂x
G(r, r′)Fy(r

′)dr′

+

∫ V

ε(r)

∂2

∂z∂x
G(r, r′)Fz(r

′)dr′

−
∫ V

ε(r)

∂2

∂y2
G(r, r′)Fx(r

′)dr′

−
∫ V

ε(r)

∂2

∂z2
G(r, r′)Fx(r

′)dr′ +
2

3
Fx(r).

(B.27)

Similarly, the y- and z-components have the form[
∇×∇×

∫ V

ε(r)

G(r − r′)F (r′)dr′
]
y

=

∫ V

ε(r)

∂2

∂x∂y
G(r, r′)Fx(r

′)dr′

+

∫ V

ε(r)

∂2

∂z∂y
G(r, r′)Fz(r

′)dr′

−
∫ V

ε(r)

∂2

∂x2
G(r, r′)Fy(r

′)dr′

−
∫ V

ε(r)

∂2

∂z2
G(r, r′)Fy(r

′)dr′ +
2

3
Fy(r)

(B.28)
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[
∇×∇×

∫ V

ε(r)

G(r − r′)F (r′)dr′
]
z

=

∫ V

ε(r)

∂2

∂x∂z
G(r, r′)Fx(r

′)dr′

+

∫ V

ε(r)

∂2

∂y∂z
G(r, r′)Fy(r

′)dr′

−
∫ V

ε(r)

∂2

∂x2
G(r, r′)Fz(r

′)dr′

−
∫ V

ε(r)

∂2

∂y2
G(r, r′)Fz(r

′)dr′ +
2

3
Fz(r)

(B.29)

and by combining the results for the individual components we obtain (B.24).



APPENDIX C

Complex Inverse Fourier Transform of Certain Quantities

In this appendix we will provide a detailed explanation of the process used to find

the complex inverse Fourier transforms given in (3.119) and (3.128).

C.1 Derivation of (3.119)

Equation (3.119) gives the inverse Fourier transform of the expression

F (ω) =
cos (kLn)− cos (kLn cos θn)

ω sin(kLn)

= i
e

iωLn
c0 + e

−iωLn
c0 − e

iωLn
c0

cos θn − e
−iωLn

c0
cos θn

ω
(

e
iωLn

c0 − e
−iωLn

c0

)
= i

e
2iωLn

c0 + 1− e
iωLn

c0
(1+cos θn) − e

iωLn
c0

(1−cos θn)

ω
(

e
2iωLn

c0 − 1
) . (C.1)

The desired transform is

f(t)L =
i

2π

∫
L

e−iωt
(

e
2iωLn

c0 + 1− e
iωLn

c0
(1+cos θn) − e

iωLn
c0

(1−cos θn)
)

ω
(

e
2iωLn

c0 − 1
) dω (C.2)

with the real line indented below the simple poles from the denominator as the line

of integration. We observe that the singularity at ω = 0 is once removable and so

the only singularities are simple poles located at

ωp =
pπc0

Ln
, p ∈ Z.

Figure C.1 displays the simple poles and the closed contour in the lower half plane.

We choose to perform the integration in the lower half plane to obtain the solution

for positive t, as directed by the form we take of the inverse Fourier transform.

We denote the closed contour by Cn and observe that it is composed of the

large arc Γn, the infinite sum of smaller arcs γp, and the line L along the real axis
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Figure C.1: Contour of integration used to derive (3.119).

so that

Cn = Γn +
∞∑

p=−∞

γp + L.

The arc Γn is chosen so that the radius r tends to infinity as n→∞ and so that the

arc does not intersect any of the poles along the real axis. The carefully treatment of

Γn is necessary so that we may apply Jordan’s lemma in this case of infinitely many

poles. The smaller arc’s, γp for p ∈ Z, indent below each simple pole and exclude

these singularities from the closed contour, resulting in integration around Cn that

equals zero. These small arcs are of radius ε and we determine the contribution

of the integration along each γp as ε → 0. The line L spans the real axis between

the poles and becomes the whole real axis as r → ∞ and ε → 0. We denote the

contribution from integrating along each segment of the path by f(t)(·) where (·) is

a placeholder for the segment so that

f(t)Cn = f(t)Γn +
∞∑

p=−∞

f(t)γp + f(t)L.

There are no singularities within the closed contour Cn and so by Cauchy’s formula

and the calculus of residues it is clear that f(t)Cn = 0. As discussed briefly above,

the large arc Γn is chosen so that we may apply Jordan’s lemma. The F (ω) in the



156

integrand tends to zero as ω → 0 and so f(t)Γn → 0 as n → ∞. We are left with

the expression

f(t)L = −
∞∑

p=−∞

f(t)γp .

we must determine the contribution from along each arc γp as ε → 0 to obtain the

desired inverse Fourier transform f(t)L.

We begin by considering the special case of ω0 = 0 by letting ω = εeiθ with

dω = iεeiθdθ and taking θ from π to 2π

f(t)γ0 = lim
ε→0

i

2π

∫ 2π

π

e−iεeiθt
(

e
2iεeiθ Ln

c0 + 1− e
iεeiθ Ln

c0
(1+cos θn) − e

iεeiθ Ln
c0

(1−cos θn)
)

εeiθ
(

e
2iεeiθ Ln

c0 − 1
) iεeiθdθ

= lim
ε→0

1

2π

∫ 2π

π

αεeiθ
(
1− iεeiθt

)
2i− αεeiθ

dθ

=
1

2π

∫ 2π

π

lim
ε→0

O(ε)

2i−O(ε)
dθ

= 0. (C.3)

We next consider the case of ωp = pπc0/Ln with p ∈ Z/{0} by letting ω = εeiθ +

pπc0/Ln with dω = iεeiθdθ and taking θ from π to 2π

f(t)γp = lim
ε→0

i

2π

∫ 2π

π

e−i(εeiθ+
pπc0
Ln

)t
(

e
2i(εeiθ+

pπc0
Ln

)Lnc0 + 1− e
i(εeiθ+

pπc0
Ln

)Lnc0
(1+cos θn)

)
(
εeiθ + pπc0

Ln

)(
e

2i(εeiθ+
pπc0
Ln

)Lnc0 − 1
)

+
e−i(εeiθ+

pπc0
Ln

)t
(
−e

i(εeiθ+
pπc0
Ln

)Lnc0
(1−cos θn)

)
(
εeiθ + pπc0

Ln

)(
e

2i(εeiθ+
pπc0
Ln

)Lnc0 − 1
)

 iεeiθdθ

= lim
ε→0

−1

(2πi)(2pπ)

[
e−ipπt

c0
Ln

(
2− (−1)p

(
eipπ cos θn + e−ipπ cos θn

)
+O(ε)

)
1 +O(ε)

]

×
∫ 2π

π

dθ

=
−1

(2πi)(pπ)

[
lim
ε→0

e−ipπt
c0
Ln (1− (−1)p cos (pπ cos θn) +O(ε))

1 +O(ε)

]∫ 2π

π

dθ

=
−1

(2πi)

1

p
e−ipπt

c0
Ln (1− (−1)p cos (pπ cos θn)) . (C.4)
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It follows that the desired inverse Fourier transform has the form

f(t)L = −
∞∑

p=−∞

f(t)γp

= −
∞∑

p=−∞
p6=0

−1

(2πi)

1

p
e−ipπt

c0
Ln (1− (−1)p cos (pπ cos θn))

=
1

(2πi)

∞∑
p=−∞
p 6=0

1

p
e−ipπt

c0
Ln (1− (−1)p cos (pπ cos θn)) (C.5)

and we have obtained (3.119).

C.2 Derivation of (3.128)

Equation (3.128) gives the inverse Fourier transform of the expression

F (ω) =
(cos (kLm)− cos (kLm cos θm)) (cos (kLn)− cos (kLn cos θn))

ω sin(kLn)

=
i

ω
(

e
iωLn

c0 − e
−iωLn

c0

) (e
iωLm

c0 + e
−iωLm

c0 − e
iωLm

c0
cos θm − e

−iωLm
c0

cos θm
)

×
(

e
iωLn

c0 + e
−iωLn

c0 − e
iωLn

c0
cos θn − e

−iωLn
c0

cos θn
)

=
i

ω
(

e
2iωLn

c0 − 1
) (e

iωLm
c0 + e

−iωLm
c0 − e

iωLm
c0

cos θm − e
−iωLm

c0
cos θm

)
×
(

e
2iωLn

c0 + 1− e
iωLn

c0
(1+cos θn) − e

iωLn
c0

(1−cos θn)
)
. (C.6)

The desired transform is

f(t)L =
i

2π

∫
L

e−iωt

ω
(

e
2iωLn

c0 − 1
) (e

iωLm
c0 + e

−iωLm
c0 − e

iωLm
c0

cos θm − e
−iωLm

c0
cos θm

)
×
(

e
2iωLn

c0 + 1− e
iωLn

c0
(1+cos θn) − e

iωLn
c0

(1−cos θn)
)

dω (C.7)

with the real line indented below the simple poles from the denominator as the line

of integration. We observe that the singularity at ω = 0 is now twice removable and
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so the only singularities are simple poles located at

ωp =
pπc0

Ln
, p ∈ Z/{0}.

Figure C.2 displays the simple poles and the closed contour in the lower half plane.

We again choose to perform the integration in the lower half plane to obtain the

solution for positive t.

�p

!p

��p

!�p

�n

!n

�n+1

!n+1!�n�1

��n�1 ��n

!�n

r

�n

L

�1��1

!1!�1

. . .. . .

Figure C.2: Contour of integration used to derive (3.128).

As in Section C.1, we denote the closed contour by Cn and observe that it is

composed of the large arc Γn, the infinite sum of smaller arcs γp, and the line L

along the real axis so that

Cn = Γn +
∞∑

p=−∞
p6=0

γp + L.

We also denote the contribution from integrating along each segment of the path by

f(t)(·) where (·) is a placeholder for the segment so that

f(t)Cn = f(t)Γn +
∞∑

p=−∞
p6=0

f(t)γp + f(t)L.
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By the same arguments presented in the previous section f(t)Cn = 0 and f(t)Γn → 0

as n→∞. We are left with the expression

f(t)L = −
∞∑

p=−∞
p 6=0

f(t)γp .

we must determine the contribution from along each arc γp as ε → 0 to obtain the

desired inverse Fourier transform f(t)L.

We consider only the case of ωp = pπc0/Ln with p ∈ Z/{0} by again letting

ω = εeiθ + pπc0/Ln with dω = iεeiθdθ and taking θ from π to 2π

f(t)γp = lim
ε→0

i

2π

∫ 2π

π

[
e−i(εeiθ+

pπc0
Ln

)t(
εeiθ + pπc0

Ln

)(
e

2i(εeiθ+
pπc0
Ln

)Lnc0 − 1
)

×
(

e
i(εeiθ+

pπc0
Ln

)Lmc0 + e
−i(εeiθ+

pπc0
Ln

)Lmc0 − e
i(εeiθ+

pπc0
Ln

)Lmc0
cos θm

− e
−i(εeiθ+

pπc0
Ln

)Lmc0
cos θm

)
×
(

e
2i(εeiθ+

pπc0
Ln

)Lnc0 + 1− e
i(εeiθ+

pπc0
Ln

)Lnc0
(1+cos θn)

− e
i(εeiθ+

pπc0
Ln

)Lnc0
(1−cos θn)

)]
iεeiθdθ

= lim
ε→0

−1

(2πi)(2pπ)

[
e−ipπt

c0
Ln (1 +O(ε))

1 +O(ε)

×
((

eipπLm
Ln + e−ipπLm

Ln

)
−
(

eipπLm
Ln

cos θm + e−ipπLm
Ln

cos θm
)

+O(ε)
)

×
(
2− (−1)p

(
eipπ cos θn + e−ipπ cos θn

)
+O(ε)

) ] ∫ 2π

π

dθ

=
−1

(2πi)(pπ)

[
lim
ε→0

e−ipπt
c0
Ln (1 +O(ε))

1 +O(ε)

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cos θm

)
+O(ε)

)
× (1− (−1)p cos (pπ cos θn) +O(ε))

]∫ 2π

π

dθ
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=
−1

2πi

1

p
e−ipπt

c0
Ln

[
(1− (−1)p cos (pπ cos θn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cos θm

))]
. (C.8)

It follows that the desired inverse Fourier transform has the form

f(t)L = −
∞∑

p=−∞

f(t)γp

= −
∞∑

p=−∞
p 6=0

−1

2πi

1

p
e−ipπt

c0
Ln

[
(1− (−1)p cos (pπ cos θn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cos θm

))]
=

1

2πi

∞∑
p=−∞
p 6=0

1

p
e−ipπt

c0
Ln

[
(1− (−1)p cos (pπ cos θn))

×
(

cos

(
pπ
Lm
Ln

)
− cos

(
pπ
Lm
Ln

cos θm

))]
(C.9)

and we have obtained (3.128).



APPENDIX D

Scattering from a Perfectly Electrically Conducting Flat

Rectangular Plate

In this appendix we will briefly derive the scattering behavior of a perfectly electri-

cally conducting flat rectangular plate under the physical optics approximation as

discussed in [37, 50, 64]. We wish to derive the FSA and BSA scattering matrices,

[S]FSA
plate and [S]BSA

plate, for the general bistatic case and specifically [S]BSA
plate, which is

used in simulations presented in Section 3.6.

D.1 Problem Set-up

As discussed in Section 3.2.3, the standard scattering matrix [S]FSA as given

by Sinclair [40] is derived for the forward scattering case and so we will use the

coordinate system in Figure D.1 where

ẑ

v̂i
k̂i

ĥi

v̂s

k̂sĥs

⇡ � ✓i

✓s

�s

�i

x̂

ŷ

Figure D.1: Forward scatter approximation (FSA) coordinate system.
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k̂i = cosφi sin θix̂+ sinφi sin θiŷ + cos θiẑ

ĥi = − sinφix̂+ cosφiŷ

v̂i = cosφi cos θix̂+ sinφi cos θiŷ − sin θiẑ

and

k̂s = cosφs sin θsx̂+ sinφs sin θsŷ + cos θsẑ

ĥs = − sinφsx̂+ cosφsŷ

v̂s = cosφs cos θsx̂+ sinφs cos θsŷ − sin θsẑ

[37].

We will derive the scattering matrices for a PEC flat rectangular plate that

is oriented along the x-z plane with the normal pointing out of the page in the ŷ

direction such that n̂ = ŷ as shown in Figure D.2.

x̂
ŷ

ẑ

L/2 �L/2

�H/2

H/2

Figure D.2: A flat rectangular plate oriented along the x-z plane with normal
pointing out of the page in the ŷ direction.
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D.2 Physical Optics Approximation

Physical optics is a high-frequency technique that holds when the wavelength

of the incident field is much smaller that the length of the scattering body. At

these higher frequencies the scatterer can be treated as a collection of independent

scattering centers [64]. Physical optics specifically eliminates the infinities of flat and

singly curved surfaces by approximating the induced surface fields and integrating

to obtain the scattered field. Determining the scattered field reduces to a local

boundary problem of a plane wave incident on a perfectly conducting plane and it

is known that the scattered field is a reflected plane wave satisfying

Er
tan = −Ei

tan, Hr
tan = H i

tan.

It follows that

n̂×E = n̂× (Ei +Er) = 0 (D.1)

and

n̂×H = n̂× (H i +Hr) = 2n̂×H i (D.2)

within the illuminated region S and

n̂×H = 0 (D.3)

elsewhere. The resulting Hertz vectors satisfying the boundary conditions (D.1),

(D.2), and (D.3) are given by

Πe(r) =
iη0

2πk

∫
S

n̂×H i e
ik|r−r′|

|r − r′|dS
′ (D.4)

Πm(r) = 0 (D.5)

where η0 is the impedance of free space, r′ = r0 + x′x̂ + y′ŷ + z′ẑ is point on the

surface of the scattering body, and r0 is the origin of the coordinate system that

for simplicity we assume to be (0, 0, 0) [37,64]. We observe that H i is a plane wave

that can be expressed as

H i = H0eikk̂i·r̂
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and so

Πe(r) =
iη0

2πk
{n̂×H0}

∫
S

eikk̂i·r′ e
ik|r−r′|

|r − r′|dS
′

=
iη0

2πk

eik|r|

|r| {n̂×H0}
∫
S

eik(k̂i−k̂s)·r′dS ′

for an observation in direction k̂s in the far field. We next break up H0 into ĥi and

v̂i components and we recall that

H0 = η−1
0 k̂i ×E0

so that

Πe(r) =
iη0

2πk

eik|r|

|r|
{
n̂×

(
H i

hĥi +H i
vv̂i

)}∫
S

eik(k̂i−k̂s)·r′dS ′

=
iη0

2πk

eik|r|

|r| M
{
n̂×

(
−η−1

0 Ei
hv̂i + η−1

0 Ei
vĥi

)}
(D.6)

where

M =

∫
S

eik(k̂i−k̂s)·r′dS ′. (D.7)

In the next section we will derive M for our specific scattering body.

D.3 Derivation of the Scattered Electric Field Es(r)

The scattered electric field can be expressed in terms of the Hertz vectors as

Es(r) = ∇×∇×Πe(r) + ikη0∇×Πm(r)

and at larges distances away from the scattering body ∇× (·) ≈ ikr̂ × (·) and so

Es(r) = −k2 {r̂ × r̂ ×Πe(r) + r̂ × η0Πm(r)} . (D.8)
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We obtain the scattered field in the direction r̂ = k̂s by substituting (D.6) and (D.5)

into (D.8)

Es(r) = − ik

2π

eik|r|

|r| M
{
k̂s × k̂s × n̂×

(
−Ei

hv̂i + Ei
vĥi

)}
. (D.9)

It is at this point that we choose our scattering body and coordinate system. Using

the FSA coordinate system in Figure D.1 we obtain

k̂s × k̂s × n̂× v̂i =(− sinφsx̂+ cosφsŷ)(− sinφs sin θi)

+ (cosφs cos θsx̂+ sinφs cos θsŷ − sin θsẑ)

× (cosφs cos θs sin θi − cosφi cos θi sin θs)

=ĥs(− sinφs sin θi) + v̂s(cosφs cos θs sin θi − cosφi cos θi sin θs)

(D.10)

and

k̂s × k̂s × n̂× ĥi =(cosφs cos θsx̂+ sinφs cos θsŷ − sin θsẑ)(sinφi sin θs)

=v̂s(sinφi sin θs) (D.11)

and substituting (D.10) and (D.11) into (D.9)

Es
plate(r) =− ik

2π

eik|r|

|r| Mplate

{
Ei

hĥs(sinφs sin θi)

+ Ei
hv̂s(cosφi cos θi sin θs − cosφs cos θs sin θi) + Ei

vv̂s(sinφi sin θs)

}
.

(D.12)

To find Mplate we observe that r′ = x′x̂ + z′ẑ on the surface of the plate

oriented along the x-z plane and so

(k̂i − k̂s) · r′ = (cosφi sin θi − cosφs sin θs)x
′ + (cos θi − cos θs)z

′ (D.13)

and substituting (D.13) into (D.7) we obtain M for the perfectly conducting flat



166

rectangular plate

Mplate =

∫ H/2

−H/2

∫ L/2

−L/2
eik((cosφi sin θi−cosφs sin θs)x′+(cos θi−cos θs)z′)dx′dz′

=LH
sin
(
kL

2
(cosφi sin θi − cosφs sin θs)

)
kL

2
(cosφi sin θi − cosφs sin θs)

sin
(
kH

2
(cos θi − cos θs)

)
kH

2
(cos θi − cos θs)

=LHsinc

(
k
L

2
(cosφi sin θi − cosφs sin θs)

)
sinc

(
k
H

2
(cos θi − cos θs)

)
(D.14)

where

sinc(x) ≡

 1 for x = 0
sin(x)
x

otherwise
.

Substituting (D.14) into (D.12) we obtain the scattered electric field from a PEC

flat rectangular plate

Es
plate(r) =− ik

2π

eik|r|

|r| LHsinc

(
k
L

2
(cosφi sin θi − cosφs sin θs)

)
× sinc

(
k
H

2
(cos θi − cos θs)

){
Ei

hĥs(sinφs sin θi)

+ Ei
hv̂s(cosφi cos θi sin θs − cosφs cos θs sin θi) + Ei

vv̂s(sinφi sin θs)

}
.

(D.15)

D.4 Derivation of the Scattering Matrices

We recall that the scattering matrix [S]FSA is defined by

Es =
eik|r|

|r| [S]FSAEi

or  Es
hs

Es
vs

 =
eik|r|

|r|

 Shshi
Shsvi

Svshi
Svsvi

FSA  Ei
hi

Ei
vi


where the polarization of the incident field is in the basis associated with the trans-

mitter (k̂i, ĥi, v̂i) and the polarization of the scattered field is in the basis associated

with the receiver (k̂s, ĥs, v̂s).
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As in [51] we can extract the scattering matrix from (D.15) so that

[S]FSA
plate =− ik

2π
M

 Shshi
Shsvi

Svshi
Svsvi

FSA

plate

=− ik

2π
LHsinc

(
k
L

2
(cosφi sin θi − cosφs sin θs)

)
× sinc

(
k
H

2
(cos θi − cos θs)

)

×

 sinφs sin θi 0

cosφi cos θi sin θs − cosφs cos θs sin θi sinφi sin θs

 . (D.16)

Under the FSA convention monostatic backscatter occurs when θ ≡ θs = π− θi and

φ ≡ φs = π + φi and the scattering matrix reduces to

[S]FSA
plate =− ik

2π
LHsinc (kL cosφ sin θ) sinc (kH cos θ)

×

 sinφ sin θ 0

0 − sinφ sin θ

 . (D.17)

We recall Ei = Et and

Es =

 −1 0

0 1

Er

relate the electric field in the BSA and FSA conventions as discussed in Section 3.2.3

and so it follows that

[S]FSA =

 −1 0

0 1

 [S]BSA

or

[S]BSA =

 −1 0

0 1

 [S]FSA.
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The scattering matrix under the BSA convention takes the form

[S]BSA
plate =− ik

2π
LHsinc

(
k
L

2
(cosφi sin θi − cosφs sin θs)

)
× sinc

(
k
H

2
(cos θi − cos θs)

)

×

 − sinφs sin θi 0

cosφi cos θi sin θs − cosφs cos θs sin θi sinφi sin θs

 . (D.18)

Monostatic backscatter again occurs when θ ≡ θs = π− θi and φ ≡ φs = π + φi and

the scattering matrix reduces to

[S]BSA
plate =

ik

2π
LHsinc (kL cosφ sin θ) sinc (kH cos θ)

×

 sinφ sin θ 0

0 sinφ sin θ

 . (D.19)

For normal incidence monostatic backscatter with θ = π/2 and φ = π/2 we obtain

the desired scattering matrix

[S]BSA
plate =

ik

2π
LH

 1 0

0 1

 (D.20)

that is found in the literature [37,38,42,51,64].

In Chapter 3 we have adopted the BSA convention and so for ease of notation

we let [S] ≡ [S]BSA denote the general scattering matrix and similarly [S]plate ≡
[S]BSA

plate.


