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In a recent issue of the American Mathematical Monthly, H. E. Thomas, Jr. 
proposed the following 

Problem. Find all integer solutions (n, r) of the equation 

zi = ziz. 

In the present paper we solve Thomas’s problem by proving the following: 

Theorem. The only integer solutions of the equation 

are 

n=l,r==l; n = 10, r = 5; n = 13, r = 6; and n = 645, r = 85. 

In a recent issue of the American Mathematical Monthly [4] H. E. 
Thomas Jr. proposed the following. 

PROBLEM. Find all integer solutions (n, r) of the equation 

In the present paper we solve Thomas’s problem by proving the fol- 
lowing 
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THEOREM. The only integer solutions of Eq. (1) are (n, r) = (1, l), 
(10, 5), (13, 6) and (645, 85). 

Proof. Equation (1) may be written 

3(n2 + n) = r(r + 1)(2r + l), 

and, on setting X = 2n + 1, Y = 2r + 1, it reduces to solving 

Y3-- Y+ 3 = 3x2, (2) 

with X and Y positive and odd. We now prove that the only integer solu- 
tions of (2) with X > 0 and X and Y are (X, Y) = (1, - l), (1, l), 
(3, 3), (21, ll), (27, 13) and (1291, 171), which will prove our result. 

To this end, let us consider the cubic field Q(h) given by 

P--h+3=0. (3) 

From a table of cubic fields [3, p. 1411 we get the following data on 
QO) : 

(i) An integral basis is [l, h, P]; 

(ii) The class number is 1; 

(iii) A fundamental unit is given by 

Eg = P+h-- 1; 

(iv) The factorization of 3 is given by 

3 = --A@ + 1)(X - 1). 

We now write (2) as 

(Y-A)(Y2+AY+X2- 1) = 3Y2. 

Any common factor of Y - X and Y2 + hY + h2 - 1 must divide 

[Y2 + hY + A2 - l] - [(Y + 2X)(Y - A)] = 3x2 - 1. 

Since the norm of 3X2 - 1 is 239, 3X2 - 1 is a prime in Z[h]. Thus we 
conclude that 

Y - x = &(e,)“’ (h)Q” (A - 1)” 

- (A - 1)“’ . (3h2 - l)*s * (a + bA + cA~)~, 

where a, b, c E 2 and we may assume that each qi is 0 or 1. 

(4) 
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On taking norms of both sides of (4), we get 

y3 - y + 3 = -J-(3)*a+*3+*4 * (239)Q - 22, 

where z E 2. 
Thus we conclude that q5 = 0 and that either two of q2 , q3, q4 are 0 

and one is 1 or all three are 1. Thus we must consider the following 
8 equations: 

Y - X = fh(a + bX + cX~)~, 

Y - X = f(c,,) X(u + bX + cA~)~, 

Y - X = &(A - l)(a + bX + cP)~, 

Y - X = f(e,,)(h - l)(u + bX + cX~)~, 

Y - h = &(A + I)(u + bh + cA~)~, 

Y - h = f(~J(h + I)(u + bh + cA~)~, 

Y - X = f3(u + bh + cA~)~, 

Y - h = f3(e,)(u + bh + cA~)~. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

Equation (11) yields 

r(Y - A) = 3(d - 6bc) + 3(2ub + 2bc - 3c3h + 3(b2 + 2uc + c2) h2, 

which is impossible. Similarly, Eq. (12) . 1s impossible. Equation (6) yields 

-a2 - 3b2 + 6c2 - 6uc - 6ub = 0, 

a2-2b2-2c2-4uc-6bc= FY, 

u2 - 3~2 + 2ub - 4bc = f 1. 

This yields a odd, since Y is odd. Thus b is odd, c is even and the first 
equation is impossible modulo 4. Similarly, Eqs. (8) and (10) are impos- 
sible. 

Let us now consider Eq. (5). We write it as 

and get 

Yh - X2 = i(u + bX + ch2)” 

u2 - 6bc = 0, 

b2 + 2ac + c2 = fl, 

2ub + 2bc - 3c2 = =l=Y. 
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This implies that a is even, c is odd and b is even. Thus the upper sign 
must be taken, and we get 

a2 - 6bc = 0. 
(13) 

b2 + 2ac + c2 1. 

Thus we have two possibilities; either 

b = 2n2, c = 3m2 , 

with m odd, or 

with n odd. 
b = 6m2, c = n2, 

On substituting (14) into (13), we get 

a = 6mn 

a = 6mn 

(14) 

(15) 

4n4 + 36nm3 + 9m4 = 1, 

which reduces to 

u* - 3078u2v2 + 92952uv3 - 789471v* = 1. (16) 

Further, on substituting (15) into (13), we get 

n* + 12n3m + 36m4 = 1, 

which reduces to 

u* - 54u2v2 + 216uv3 - 207~” = 1. 

Equation (7) may be written 

F3(Y - A) = (A + @(a + bh + cW2. 

This yields 

(17) 

b2-2c2+2ac+2ab+2bc= fY, 

a2 - 2ba - 5c2 - 4ac + 2ub - 4bc = F3, (18) 

a2 + b2 - 2ca + 2ac + 2ab - 4bc = 0. (1% 

This yields b odd, a odd and c even. Thus the upper sign must be taken, 
and thus Eqs. (18) and (19) yield 

b2+c2+2ac= 1. (20) 

Equation (19) may be written 

(a + b + c)” = 3c(c + 2b). 
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Thus there are two possibilities: 

(i) c = 6mz, c + 2b = 2n2, a + b + c = 6mn (21) 

or 

(ii) c = 2m2, c + 2b = 6n2, a + b + c = 2mn. (22) 

On solving (21) for a, b, c and substituting the results in (20), we get 

n4 - 18n2m2 + 72nm3 + 9m4 = 1. (23) 

On solving (22) for a, b, c and substituting the results in (20), we get 

m4 + 24m3n - 18m2n2 + 9n4 = 1, 

which reduces to 

u“ - 234u2v2 + 19442~~ - 45270~ = 1. (24) 

Similarly, Eq. (9) reduces to solving the quartic equations 

n4 + 18n2m2 + 72nm3 + 9m4 = 1 

and 

(25) 

u4 - 198u2z? + 151224~~ - 3231~~ = 1. (26) 

Thus the solution of (2) reduces to solving the 6 quark equations 

(1, 0, -3078,92952, -789471) = 1, (16) 
(1, 0, -54,216, -207) = 1, (17) 

(1, 0, -18,72,9) = 1, (23) 
(1, 0, -234, 1944, -4527) = 1, (24) 

(l,O, 18, 72, 9) = 1, cw 
and 

(1,0, -198, 1512, -3231) = 1. (26) 

We now prove the following. 

LEMMA. The only inteder solutions of each of these 6 quartic equations 
are (*l, 0). 

Proof. Equation (16) defines the field Q(8), where 

t!14 = 3078e2 + 929528 + 789471. 
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By the usual method of solving this equation, we find that it has two real 
and two complex roots, and thus, by the Dirichlet-Minkowski theorem 
on the group of units, the ring of integers of Q(0), Z(8), has two fundamen- 
tal units E1 and E, . Since the only roots of unity in Z(0) are f 1, Eq. (16) 
yields 

u + ve = fElmEzn, (27) 

and we must find all the units in Z(d) of this special type. Since all these 
units lie in the ring Z[l, 8, P, 13~1, Eq. (27) may be rewritten 

u + ve = kElmE2n, cw 

where l 1 and e2 are fundamental units of any subring of Z(0). 
Since 84 E 0 (mod 9), e2/3 is an integer in Z(0) and thus the integers 

1, 8, e2/3, 113/3 generate such a subring of Z(e) which we designate by 
z[i, 8, ey3, ey31. 

By Billevich’s algorithm [2], we find that 

l 1 = 1724768 + 1261738 + 1099e2 - 49e3 
and 

c2 = (2025 + 1808 + 4e2)/3 

are fundamental units of Z(l, 8, e2/3, e3/3). Further, we find 

-1 = El -34318 - 25498 - 23e2 + e3, 

E2 -’ = (1129041 + 824766’ + 716e2 - 32e3)/3. 

Thus Eq. (28) may be written 

‘f(u + ve) = (1724768 + 1261738 + 1099e2 - 49e3)” 

. 2025+180e+4e2 n 
( 3 1. 

Suppose first that m 3 0, n 2 0. Then (29) reduces to 

F(U + ve) = qb2n, 

where 01~ = Ed , 01~ = 3~2 . 
Now we find that 

0114 = 1 + 481, 

tl = I + 38 + 3e2+ es+ 4~, 

a2 = 1 + 4t2, 
t2 = 2+ e+ e2+4~, 

where A and B denote integers belonging to Z[l, 8, 8”, es]. 

(29) 

(30) 



ON TRIANGULAR NUMBERS 461 

Thus we set 

m = 4u + r, n = 4v + s, 

where r = 0, 1,2, 3, and s = 0. 
Considering (30) as a congruence modulo 4, we get 

V(r, s) = T(u + ~0) = (0 + 3e2 + 3(P)+’ (mod 4), 

and computing all possible values of r modulo 4, we find that 

(31) 

V(0, 0) = 1, 

~(1, 0) = 8 + 382 + 383, 

~(2, 0) = 3 + 28 + 282 + 283, 

v(3,o) = 2 + 38 + 82 + 83. 

Consequently, (31) holds only for r = 0. Thus (30) now becomes 

3324 + 24 = (1 + 4-9~1 + 4,5~, (32) 

and since 1: : 1 is odd, it follows from a result of Avanesov [I, p. 1621 
that the only solution of (32) is u = v = 0. 

Thus the only solution of (30) is m = n = 0. 
Suppose next that m < 0, FI < 0. Then we must solve 

w  + d-0 = ~~93~5 (33) 

where #3, = a!;‘, p2 = 3~;‘, M = - m, N = -n. Since 01~ and fil , as well 
as a2 and 13, are inverses mod 4 the values of V(r, s) we compute will be 
the same as those computed above, except for order. Consequently, we 
may assume that M = 4u, N = 4v. 

Now we find that 

Bl” = 1 + 4&‘, 

where 

and 

where 

fl’ = 3 + e + 82 + 383 + 4~1, 

P2 = 1 + 4f2’, 

f21 = 38 + 82 + 4~‘. 

Since 1: i 1 is odd, the only solution of (33) is M = N = 0. Similarly, 
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the cases m < 0, n 3 0 and m > 0, n < 0 yield m = n = 0 as the only 
solutions. Thus the only integer solutions of Eq. (16) are (u, U) = (f 1,O). 

In a similar fashion, we can show that the only integer solutions of each 
of the remaining 5 quartic equations are (* 1, 0), and the proof of the 
lemma is complete. 

Finally, we note that the solutions (i 1,O) of the 6 quartics yield 

(x, Y) = (1291, 71), (3, 3), (1, I), (27, 13), (1, -1) and (21, ll), 

respectively, as the only integer solutions of (2) with X > 0 and X and Y, 
and this completes the proof of the main theorem of this paper. 
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